
Experiments in Obtaining Network Data For
Evaluation of Wi-Fi Performance Models

AXEL SMEETS
MASTER´S THESIS
DEPARTMENT OF ELECTRICAL AND INFORMATION TECHNOLOGY
FACULTY OF ENGINEERING | LTH | LUND UNIVERSITY

Printed by Tryckeriet i E-huset, Lund 2021

A
X

EL SM
EETS

Experim
ents in O

btaining N
etw

ork D
ata For Evaluation of W

i-Fi Perform
ance M

odels
LU

N
D

 2021

Series of Master’s theses
Department of Electrical and Information Technology

LU/LTH-EIT 2021-813
http://www.eit.lth.se

Experiments in Obtaining Network Data For
Evaluation of Wi-Fi Performance Models

Axel Smeets
dat12asm@student.lu.se

Department of Electrical and Information Technology
Lund University

Supervisor: Björn Landfeldt

Examiner: Christian Nyberg

May 18, 2021

© 2021
Printed in Sweden
Tryckeriet i E-huset, Lund

Acknowledgements

At this moment, looking back, I’m not exactly sure if I want to thank Björn
Landfeld–my supervisor–for pitching his grand vision to me, or if I want to curse
him for tricking me down the rabbit hole, nevertheless, I really want to thank
you for your support, advice, feedback and sense of humour throughout this long
journey – I learned a lot digging myself deeper and deeper down.

Next, I want to thank Stefan Höst–my second supervisor–for always keeping
your door open, Jaume and co. at Telenor for your enthusiasm and ultimately for
letting me do my own thing.

I also want to thank my friends at ON-IQ for your patience and support, my
fellow plinkman Axel Mårtensson for listening and my dive buddies Kristoffer and
Caroline always interrupting my studies.

And last but not least, a heartfelt thanks to my family.

i

ii

Abstract

The performance characteristics of Wi-Fi networks have traditionally been stud-
ied and analysed using analytical models and simulations. Due to the complex-
ity of wireless communication the existing analytical Wi-Fi network models rely
on certain network constraints and simplifications in order to be mathematically
tractable.

We set out to evaluate the practicality of using Wi-Fi performance models
to estimate network performance by collecting the model necessary parameters
directly from an access point. In order to evaulate, we must also collect network
metrics, such as packet payload size and number of nodes, for comparison with the
model parameters. We explore different venues to collect these parameters and
metrics to find out if it is practical to apply the models in Wi-Fi networks.

After performing three attempts, we conclude that this is difficult due to sev-
eral aspects in the Linux kernel, such as batching optimization patterns, propri-
etary kernel modules and firmware blobs. We believe that the data probably
already exists somewhere in the device firmware or driver software, but a lack of
documentation prevents us from effectively finding and using these data fields. We
hope to see this data being made available as part of an automatic optimization
functionality in future generations of Wi-Fi.

iii

iv

Popular Science Summary

Kan Wi-Fi fungera utan krångel? För att se om det är möjligt att förutsäga och
eventuellt åtgärda prestandaproblem så har vi undersökt om det går att tillämpa
akademiska Wi-Fi-modeller på mätdata från accesspunkter.

Vi konstaterar att det är mycket krångligt att samla in den data som behövs
för att utvärdera modellernas tillförlitlighet. På grund av vissa designval i Lin-
uxkärnan är det mycket svårt att utläsa denna data direkt. Drivrutinerna för
nätverkskorten har förmodligen tillgång till den tidsdata vi behöver, men vi tror
det krävs stor yttre påverkan innan chiptillverkarna aktivt gör den här typen av
data tillgänglig. Förhoppningsvis kan detta bli en del av en automatisk optimer-
ingsfunktionalitet i en framtida generation av Wi-Fi.

Modellerna i sig utgår från den koordineringsprocess som alla noder i ett Wi-Fi
nät måste underkasta sig. Processen kallas för "Carrier-sense/Multiple Access",
och beskriver nästan sig själv: varje nod lyssnar på nätets radiokanal och kon-
trollerar att ingen annan sänder, innan den försöker skicka ett meddelande. Mod-
ellering av denna process blir snabbt väldigt komplex och för att göra modellerna
matematiskt hanterbara har man gjort ett flertal antaganden och förenklingar,
vilket såklart kan påverka förmågan att spegla verkligheten.

För att undersöka modellernas tillförlitlighet har vi därför försökt samla in
mätdata, från accesspunkter och laptops, som motsvarar de parametrar som mod-
ellen själv beskriver: paketstorlek och hur lång tid det tar att få tillgång till
radiokanalen. Paketstorlek är trivial att samla in med t.ex. Wireshark, medans
den sistnämnda visade sig vara betydligt besvärligare.

Vi har konstruerat och genomfört tre uppställningar med experiment.
Den första, med det välkända programmet Wireshark, visade sig enbart kunna

samla in tidsdata om det fanns speciellt hårdvarustöd för tidsstämplar (mycket
ovanligt i konsumentprodukter).

I den andra uppställningen modellerade vi Linuxkärnans nätverkssystem som
ett kösystem. På grund av optimeringar i hur Linuxkärnarn hanterar avbrott så
har mätdata från detta experiment en för stor varians för våra ändamål.

I den sista uppställningen grävde vi djupare, in i nätverkskortets drivrutin där
vi hittade några intressanta parametrar. Efter flera tester drar vi slutsatsen att
det kanske går att använda dessa parametrar, men att vi inte kunnat bestämma
parametrarnas.

v

vi

Table of Contents

1 Introduction 1
1.1 Background . 1
1.2 Motivation . 2
1.3 Method, Problem Definition and Organization 3

2 Background 5
2.1 IEEE 802.11 . 5
2.2 Linux Networking . 8
2.3 Intel Wireless Wi-Fi Driver . 9
2.4 TG799-vac . 11
2.5 ubus - the OpenWrt micro bus architecture 11
2.6 Wireshark . 12
2.7 jana . 12

3 Previous Work 15
3.1 The Bianchi Model . 16
3.2 The Felemban-Ekici Model . 18

4 Experimental Approaches 21
4.1 Overview . 21
4.2 Model Metrics . 22
4.3 Experiment 1: Wireshark . 23
4.4 Experiment 2: Queueing the Network System 24
4.5 Experiment 3: Hacking on the driver 27
4.6 Evaluating: In the Wild . 29

5 Results 33
5.1 Experiment 1 . 33
5.2 Experiment 2 . 33
5.3 Experiment 3 . 35
5.4 ubus smoke test . 35
5.5 RSSI . 39

vii

6 Discussion and Future Work 43
6.1 Discussion of results . 43
6.2 The Felemban-Ekici Model . 46
6.3 Future work . 51
6.4 Closing remarks & thoughts . 52

References 53

viii

List of Figures

2.1 Schematic flowgraph of the DCF, where j is the current transmit
attempt, CW the current contention window size, Wj the contention
window size at attempt j and BO the back-off counter. 6

2.2 Contention window size increases exponentially on each retransmission
attempt, from CW min up to CW max 7

2.3 Time overview of a successful frame transmission and response in
“basic mode” and “RTS/CTS mode” 8

2.4 Schematic overview of a packet’s way from userspace to the physical
network interface. 10

2.5 An overview of the default queueing discipline, pfifo_fast. Packets
are enqueued into band 0, 1 or 2 depending on queue configuration
and packet TOS bits. Band 0 is highest priority and band 2 lowest.
Queue length is counted in number of packets. 10

2.6 The TG799-vac router from Technicolor 11

3.1 Bianchi’s Tagged-Node Markov chain model of the IEEE 802.11 DCF
where p is the collision probability, Wi the contention window size at
attempt i (0 ≤ i ≤ m) and m from Equation 2.2. 18

3.2 Felemban-Ekici’s Tagged-Node Markov chain (TNMC) model of the
IEEE 802.11 DCF. P is packet collision probability, Pd is probability
to decrease backoff counter, Pf = 1 − Pd, Wj is contention window
size at attempt j and L is the Short Retry Limit 20

4.1 Experiment 1: Wireshark, experiment design vs actual timing models 24
4.2 Experiment 2: Modelling the egress path of a packet as a queueing

system . 25
4.3 Experiment 3: Hacking the Wi-Fi driver setup overview 28
4.4 TG799 router and measurement antenna side by side, 1 meter from

laptop . 31

5.1 Scatter plot of Tdelay and Tsyscall (μs) for each packet sent. Tests go
from left to right, with each column being one test with a total of 3
different machines (and thus three rows). The first number in each
legend is the packet payload size. 34

ix

5.2 Experiment 3 - total network throughput (incl. UDP overhead) using
IEEE 802.11 n. 36

5.3 Experiment 3 - wireless media tx time captured on two devices using
IEEE 802.11 n. 37

5.4 Experiment 3 - total network throughput (incl. UDP overhead) using
IEEE 802.11 ac. 38

5.5 Experiment 3 - wireless media tx time captured on two devices using
IEEE 802.11 ac. 39

5.6 RSSI baseline experiment, background activity. 40
5.7 RSSI experiment under iperf3 saturation using one 80 MHz channel. 41

6.1 Our model reimplementation compared to values extracted from the
original paper under similar network conditions. 46

6.2 Empirically obtained packet drop probability for 802.11 n. 47
6.3 Empirically obtained packet drop probability for 802.11 ac. 48
6.4 Rescaled, (measured) normalized network throughput for 802.11 n

compared with Felemban-Ekici. 49
6.5 Rescaled, (measured) normalized network throughput during 802.11

ac compared with Felemban-Ekici. 50

x

List of Tables

5.1 Average serve rate and estimated queue length of the NIC. 33

xi

xii

Chapter 1
Introduction

This introductory chapter begins by reviewing Wi-Fi usage in our modern society,
and use this to motivate an evaluation of a IEEE 802.11 (Wi-Fi) performance
model based on a Markov Chain approximation of the Distributed Coordination
Function (DCF).

At the end of this chapter we describe the methodology, organization and
problem definition.

1.1 Background
Wi-Fi seems to be the wireless home network protocol of the (forseeable) future.
In 2014 a report on Wi-Fi adoption found that 25% of households, all over the
world, had set up Wi-Fi networks. In households with fixed-line broadband access,
65% had set up a Wi-Fi network[13]. The report also states that the number of
Wi-Fi-enabled devices is projected to increase.

Consumers today have higher expectations regarding network throughput than
the original IEEE 802.11 standard was designed for back in the mid 90’s. In
recent years, the Wi-Fi label has become hugely popular and the number of Wi-Fi-
capable devices have skyrocketed, especially in urban areas and neighbourhoods.
The protocol that once was aimed at corporate sector is now almost everywhere
around us, and in vastly different use-cases than for which it first was designed.
Beside home network use, Wi-Fi networks are also deployed for mobile network
off-loading [16].

Alongside this explosion of households relying on a Wi-Fi router to connect
their everyday electronics (computers, phones, TVs) and “smart devices” (i.e.
internet-connected devices), our usage patterns and quality expectations have sim-
ilarly increased: video streaming in 1080p and even UHD (4K) is now possible on
many platforms.

But the increased Wi-Fi usage does not come without problems. It has become
widely known among consumers that Wi-Fi can exhibit poor performance (for a
multitude of reasons). A user streaming video (a use case where user experience is
sensitive to throughput) to their TV will have a significant impact on the quality
of service another user on the same network experiences on their video conference
(sensitive to latency & jitter). As more people attempt to work remotely this type
of network contention can only be expected to become more common.

1

2 Introduction

Ignoring the physical aspects involved, the primary task of a wireless network
protocol is to share the underlying medium to all clients in an effective manner. As
with all radio technologies, Wi-Fi is primarily constrained by the radio spectrum
it can utilize. All available performance is derived from a clever exploitation of
this physical medium. As Wi-Fi usage has increased, the corresponding increase in
radio spectrum usage, and the resulting issues of media sharing and interference,
puts the protocol, and its medium access mechanisms in particular, under even
more pressure.

1.2 Motivation
The performance of a household Wi-Fi network is not solely determined by a router
or the broadband connection. Factors such as network configuration (channel
settings, guard intervals, access modes), environment (noisy neighbours?), and
clients (e.g. hardware and Wi-Fi generation) have a major impact on the ultimate
network performance perceived by users.

To meet a wide variety of customer expectations in scenarios such as VoIP,
low-latency gaming, ultra-high definition streaming and many network nodes, Wi-
Fi has evolved dramatically in complexity, resulting in a multitude of configurable
parameters. Even though newer routers are able to (somewhat) automatically
(re)configure themselves based on analysis of neighbouring networks, they are not
guaranteed to be optimal since they have a local view of the network (i.e. one
point-of-view). Older devices rely on manual configuration, often using factory
defaults.

If possible, could measuring (the right) Wi-Fi performance metrics shed some
light on why the perceived network performance is poor in a given situation? Could
the performance metrics be used to construct expert-type systems? In addition
would these metrics be useful in the development of autonomous (re)configuration
algorithms, embedded in a router? How would these algorithms be designed? Our
position is that a reasonable–for a reasonable definition of the definition–approach
is to build algorithms upon a model.

Accurately modelling the Wi-Fi communication and related performance char-
acteristics is an active field of research and today there are various proposed models
which perform well in simulations [4][6]. Some of these models are based on the
observation that Wi-Fi implements Carrier-sense multiple access/Collision avoid-
ance (CSMA/CA)—"listen before speaking"—in a Distributed Coordination Func-
tion (DCF) to reduce the likelihood of collisions happening in the first place, and
what to do when collisions occur. A branch of these models–of which one we will
attempt to evaluate in this report–are built on the approximation of the DCF as
a Markov Chain. Furthermore, the models are often constrainted by assumptions,
neccesary for mathematical tractablility, that cast doubt on the models ability to
reflect and perform in the physical world.

Evaluating if the models, despite their assumptions, are useful for determin-
ing network performance could potentially be of enourmous benefit for consumers,
business and ISPs alike. Imagine each router embedding and periodically run-
ning the model with locally sourced data, automatically alerting the end-user or

Introduction 3

ISP of potential performance problems and possible interventions. Who knows,
at some point in the future, devices might even attempt to cooperatively (and
autonoumously!) resolve identified network problems.

In this report we solely collect metrics from devices running Linux, as it is the
foundation of the majority of all Wi-Fi products on the market today. The same
software that runs on a Wi-Fi router can be run on a laptop and since the Linux
kernel is "open source", we can experiment directly with the software itself.

1.3 Method, Problem Definition and Organization
We aim to evaluate how well the model presented in [6] perform in the physical
world. The methodology for our work will be explained in further detail in fol-
lowing chapters, and is based on analysing the model, collecting and comparing
empirical data with the model.

Our problem definitions are formed by taking our overall goal of evaluating
the Felemban-Ekici model and breaking it into smaller pieces:

• Problem 1 - primary question: is the Felemban-Ekici model from [6] useful
for determining Wi-Fi network performance?

• Problem 2 - definition: what is a reasonable definition of useful in this
context?

Since we have elected to use an experimental methodology, we must also in-
clude definitions related to the collection and evaluation of empirical data.

• Problem 3 - analysis: what data should be collected?

• Problem 4 - experiment: how should the necessary data be collected?

• Problem 5 - evaluate: compare collected data with model and our definition
from Problem 2

The remainder of this thesis is organized as follows.
Chapter 2 provides a background to, and overview of, related systems, proto-

cols and hardware.
Chapter 3 introduces the research field and prior works.
In Chapter 4 we present the methodology and experiments dervied from Prob-

lem 2, Problem 3 and Problem 4.
We show collected data for Problem 3 and Problem 4 in Chapter 5, and discuss

these results with regards to Problem 5 and Problem 1 in Chapter 6 along with
ideas for future work and our closing thoughts.

Some source material can be found in the Appendix. However, please refer to
the repository available online at https://github.com/smeets/thesis for more
content and details.

4 Introduction

Chapter 2
Background

This chapter gives a brief introduction to the technologies and tools that were
used in this project. As explained in the introduction, the primary goal of this
thesis was to evaluate the usefulness of the model presented in [6] by comparing
the channel access time of the model with an estimation, derived in Chapter 4.
As will be explained in Chapter 4, obtaining exact measurements turned out to
be non-trivial and we therefore present information helpful in understanding the
forthcoming chapters of this thesis.

We begin with a brief overview of the IEEE 802.11 protocol and the dis-
tributed coordination function in particular, to form a basis for understanding the
Felemban-Ekici model, as well as our measurement setup.

Since we will use Linux-based devices to perform measurements it will be
important to also have some understanding of the Linux kernel’s networking sys-
tem. As we are particularly interested in measuring the time to send a packet, we
describe the network stack components which control and process an outbound
(egress) UDP packet, limited to 1500 bytes in order to not incur PHY-layer frag-
mentation.

Subsequently we provide an overview of the hardware used in this thesis, the
TG799-vac router, its OpenWrt system and how we interact with the firmware
using the micro bus system architecture.

Finally, we describe why Wireshark, a well-known and widely used open source
tool for capturing and inspecting network data, had to be replaced by more special-
purpose programs. We also introduce the program that was developed to perform
our network experiments—Jana—and compare it with existing programs.

2.1 IEEE 802.11
The ubiquitous family of wireless network protocols and ammendments, such as
IEEE 802.11g and IEEE 802.11x, is commonly known as Wi-Fi. Specifically, IEEE
802.11 defines the PHY and MAC layers of the network stack. Each ammendment
introduces additions, redactions and changes to these layers. It is beyond the scope
of this report to provide a detailed overview of the, sometimes quite significant, dif-
ferences between ammendments. Of special interest for our work is the Distributed
Coordination Function (DCF) which remains relatively unchanged, primarily for

5

6 Background

Start j 0 CW wj BO rand[0,CW-1]

BO > 0
?

listen on channel
for one TimeSlot

no

yes
is

channel
idle ?

BO BO - 1

transmit

yes

ACK
received

within
timeout

?

Success

j j + 1

yes

j == Short
Retry Limit

?

Drop

nono

yes

no

Figure 2.1: Schematic flowgraph of the DCF, where j is the current
transmit attempt, CW the current contention window size, Wj

the contention window size at attempt j and BO the back-off
counter.

backwards compatibility reasons. For a more complete definition of the Distributed
Coordination Function (DCF) the reader is referred to [1], [2] and [3].

In order to effectively allow multiple clients to access and utilize a shared
medium, a medium access control (MAC) protocol is utilized. The MAC protocol
governs when clients interact with the underlying physical medium (PHY-layer
protocol specifies how).

IEEE 802.11 implements a Carrier-Sense Multiple Access/Collision avoidance
(CSMA/CA) medium access control (MAC) scheme with a binary exponential
back-off algorithm. The CSMA/CA algorithm is run locally on each network node
and is called the Distributed Coordination Function (DCF). Figure 2.1 describes
the access and back-off mechanisms of the DCF as a flowgraph.

When nodes in a IEEE 802.11 network want to transmit data they must first
listen on the channel and wait until no activity has been detected for a duration,
the DCF Interframe Space (DIFS). Since this effectively synchronizes the nodes
waiting to transmit, a random delay is introduced to desynchronise nodes. This
delay is called back-off time (Tbackoff) and relates to the collision avoidance algo-
rithm. The back-off procedure quantizes time into discrete time-slots, each 9 μ to
50 μs long, depending on the IEEE 802.11 “version”.

While in back-off, nodes listen on the medium for a full slot and, if no activity
has been sensed, decrements the back-off counter. If nodes detect activity on the
medium during a slot, the counter is not decremented (counter freezing). Upon
reaching zero the node may attempt to (re)transmit. If no ACK has been received
after a certain duration (ACK-Timeout) the node waits another DIFS, enters further
back-off and restarts its journey back to zero again. The node has a fixed number
of attempts to retransmit the frame, ShortRetryLimit [1], and drops the frame
once exceeded. The exponential increase of the back-off counter is visualised in
Figure 2.2.

Time spent in back-off for each (re)transmission attempt j is described in
equation 2.1, where SlotTime is defined in [1] and U(0, Wj − 1) is a uniformly

Background 7

32 64

128

256

512

1024 1024

0 1 2 3 4 5 6

contention
window

size (CW),
time-slots

CWmax

CWmin transmission
attempt

1024

7
packet

dropped
initial

retransmission attempts
(ShortRetryLimit)

8

Figure 2.2: Contention window size increases exponentially on each
retransmission attempt, from CW min up to CW max

sampled integer value between 0 and the contention window size Wj − 1, i.e., the
maximum number of time-slots (exclusive, since 0 is a valid back-off value).

T j
backoff = SlotTime × U(0, Wj − 1) (2.1)

The contention window configuration is commonly expressed by two param-
eters, CWmin and CWmax. As seen in Figure 2.2, the initial contention window
size is CWmin and each subsequent transmission attempt will double the previous
window size, with a maximum value CWmax. The transmission attempt m where
the window size becomes CW max is defined in Equation 2.2.

m = log2
CW max

CW min
(2.2)

Equation 2.3 defines the contention window size at attempt j, where L is the
maximum number of retransmission attempts (ShortRetryLimit). The defined
values of j are the initial attempt (j = 0) and an extra L attempts before termi-
nation, which resolves to 0 ≤ j ≤ L.

Wj =
{

2jCW min if 0 ≤ j < m,
CW max if m ≤ j ≤ L

(2.3)

The description above details one of two relevant “access modes” (MACs) in
IEEE 802.11—“basic mode”. During CSMA/CA each node listens for activity lo-
cally and can therefore fail to detect nodes whose signal is too weak to be received,
causing what’s known as the hidden node problem.

8 Background

T

T

T

TTDIFS TBACKOFF TPHY TMAC TFRAME

TSIFS TACK

STA

AP

TDIFS TBACKOFF TDATA

TSIFS

STA

AP

RTS/CTS mode

Basic mode

TRTS

TCTSTSIFS

TSIFS

TACK

Figure 2.3: Time overview of a successful frame transmission and
response in “basic mode” and “RTS/CTS mode”

The second multiple access scheme requires that clients (also known as sta-
tions or STAs) first acquire the right to transmit, using a request-to-send (RTS)
message. If the STA is given permission, the AP will respond with a clear-to-send
(CTS) message. This access scheme is called RTS/CTS and potentially increases
performance in scenarios with multiple “hidden nodes”. The RTS/CTS protocol
assumes that all STAs have similar tx/rx capabilities. An overview of the required
interframe spaces (IFS) and protocol packets for “basic” and “RTS/CTS” modes
and how they compare, can be found in Figure 2.3.

2.2 Linux Networking
The Linux kernel has a complex networking subsystem which is beyond the scope of
this report to detail. Since we will be using Linux-based machines in our tests and
measurements, this section will present a refresh on the Linux networking stack.
Due to the measurements needed, only the outbound (egress) path is described.

A high-level schematic view of a packet’s path can be found in Figure 2.4. It
shows the packet’s path from a userspace program, through the kernel and into
the network interface responsible for physically transmitting it. There are 5 main
components in the figure: userspace, kernel, sockets, queueing discipline (qdisc),
driver and Network Interface Card (NIC). Each component is more complex than
described and interested readers are referred to [10], [12] and [9, Chapter 17]. The
flow through Figure 2.4 and the 5 components is described below:

A userspace program initializes, binds and attempts to send data through
a socket using system calls socket(2), bind(2) and send(2), sendto(2) or
sendmsg(2).

The linux kernel allocates a per-socket kernel buffer (skb), where related
kernel (bookkeeping), socket and packet data is stored. The initial size of the skb
depends on the net.core.wmem_default and net.core.wmem_max kernel param-
eters. The send(2), sendto(2) and sendmsg(2) syscalls must request memory
from the skb belonging to the socket in use, before proceeding through the packet
processing stack (UDP/TCP, IP, etc) and finally enqueuing the packet in the
queueing discipline (qdisc). The syscalls either blocks or fails, with EWOULDBLOCK

Background 9

or EAGAIN, when the packet does not fit into the send buffer (skb), depending on
the I/O mode of the socket (blocking or non-blocking).

The queueing discipline (qdisc) system is the internal queueing system of
the linux kernel. A qdisc is a configurable, per-network device queueing system
with a default “pfifo_fast”, prioritized fifo, queue, see Figure 2.5. As packets
arrive, the qdisc signals the driver, using a scheduler, that data is available. The
qdisc can be queried and configured using the tc(8) (traffic control), ip(8) and
ifconfig(8) programs. There is a reconfigurable CPU core-to-qdisc mapping
that specifies which CPUs can deliver packets to a specific qdisc. This mapping
can be configured using ethtool(8).

The driver interfaces between the kernel and network device hardware/-
firmware and can be considered a program itself (kernel module). Drivers used
throughout this thesis all use an internal ring buffer for egress packets, called the
“TX-Ring”. The driver pulls packets from the qdisc into the “TX-Ring” and sig-
nals the NIC that packets are ready to be sent. The processing of freeing memory
consumed by a packet is defered by an unknown time after the NIC signals the
driver it has processed the packet.

The Linux kernel supports a feature called “packet taps” which enable kernel
modules to capture packets as they enter or exit the kernel. The outbound taps
are called at the end of the Linux kernel’s outbound packet processing path, right
before control of the packet is handed over to the driver.

The network interface card (NIC) which primarily sends and receives pack-
ets. The internal design documents of many NICs are not publicly available and
open source drivers only hint at the design of important subsystems, such as buffers
and prefetchers.

The NICs used in this thesis are commonly found in laptops and do not have a
reconfigurable internal “TX-Ring”. Common sense suggests that NICs use some in-
ternal buffering mechanism in addition to the “TX-Ring” controlled by the driver.
Since we have no way of differentiating between these two “TX-Rings” the “TX-
Ring” depicted in Figure 2.4 should be seen as an abstraction of these two.

2.3 Intel Wireless Wi-Fi Driver
All selected machines used to measure Wi-Fi statistics have Intel wireless network
interface cards (NIC). On Linux these NICs are controlled by the “Intel Wireless
WiFi driver for Linux”—iwlwifi.

The iwlwifi driver supports both an older operation mode, dvm (iwldvm, as
well as a newer, mvm (iwlmvm). The iwlmvm module, included as part of iwlwifi,
in the Linux kernel source tree of version 4.13 was adapted for this thesis work to
enable logging of packet timing statistics with microsecond accuracy.

Internally, the driver allocates a fixed number of ring buffers used for holding
transmission frame descriptors, firmware commands and incoming frames. The
memory of these ring buffers is shared between the host and the NIC by using DMA
controllers but resides in host DRAM. By using a ring buffer the driver is able to
queue up to 254 frame descriptors for transmission, and vice versa for receiving.
This design dramatically reduces the per-frame communication overhead between

10 Background

KERNEL

SCHEDULER

SCHEDULER

SNDBUF
skb_sndbuf
SNDBUF

skb_sndbuf

QUEUEING
DISCIPLINE

(QDISC)

packet

packet

packet

SOCKETS

packet
descriptor

packet
descriptor

ref ref

pa
ck

et
de

sc
rip

to
r

TX
RING NIC

txqueuelen

 hard
 xmit

packet

packet
descriptor

 sendmsg

 device
queue
 xmit

packet
alloc

IP
PROCESSING

NEIGHBOUR /
ARP / ...

SOCKET
PROTOCOL

ref

free

 NET_TX_SIRQ

...

...

S
N

D
B

U
F

UDP / TCP / ...

restart
queue

IRQ
HANDLER

 clean-tx-ring

DRIVER

 TX INTERRUPT ref

 ip-finish-output

USERSPACE

 sendto

Figure 2.4: Schematic overview of a packet’s way from userspace
to the physical network interface.

txqueuelen

band 2

band 1

band 0

Figure 2.5: An overview of the default queueing discipline,
pfifo_fast. Packets are enqueued into band 0, 1 or 2 de-
pending on queue configuration and packet TOS bits. Band 0
is highest priority and band 2 lowest. Queue length is counted
in number of packets.

Background 11

Figure 2.6: The TG799-vac router from Technicolor

driver and NIC in certain conditions, at the expense of increased latency due to
queueing.

2.4 TG799-vac
The OpenWrt-based router examined in this thesis, as depicted in Figure 2.6
and commonly known as TG799-vac, supports two concurrent IEEE 802.11n and
802.11ac (2.4GHz and 5 GHz) IEEE 802.11 interfaces using 2x2 and 3x3 antenna
configurations, respectively (tx-antennas x rx-antennas). The device is manufac-
tured by Technicolor and uses Broadcom and Quantenna modems.

The IEEE 802.11n chip supports SGi (Short Guard interval) and STBC (Space-
time block code) over 20/40 MHz. The IEEE 802.11ac chip supports the same
technologies and increases the channel bandwidth to 20/40/80 MHz. SGi reduces
the guard interval used to eliminate intersymbol interference (as opposed to in-
terframe interference, which IFS eliminates) from 400 ns to 800 ns. STBC is a
technique to increase the reliability of transmission.

The router has been the default router provided by many Swedish ISPs and is
therefore a good router to use in the experiments.

2.5 ubus - the OpenWrt micro bus architecture
ubus is command line interface to the bus daemon (ubusd). Modules are organized
by namespaces in ubusd and can be interacted with using ubus. A usage example
can be found in Listing 2.1.

This tool was primarily used to read statistics from the TG799-vac device,
such as tx rates, packet counters and medium availability, intended for “in the
wild” evaluation of the model.

1 $ ubus call wireless . accesspoint get
2 {
3 "ap0": {
4 "ssid": "wl0",
5 " station_history ": 1,
6 " max_assoc ": 0,

12 Background

7 ... (omitted)
8 },
9 "ap1": {

10 ... (omitted)
11 },
12 ... (omitted)
13 }

Listing 2.1: ubus call listing all access points on this device

A key observation is that output is encoded in JSON format, which does not
limit the size of numbers. Special care must be taken when using a JSON decoder
to ensure that numbers are deserialized correctly. We observed one such problem
during our thesis work.

2.6 Wireshark
Wireshark is a well-known program for capturing and inspecting network data,
and has been used extensively during the research and development of this thesis.
On Linux, it uses libpcap to register a packet tap for live capture. Due to the way
packet taps work in the Linux kernel Wireshark cannot timestamp the moment
the packet physically was transmitted, unless the network interface card explicitly
supports hardware timestamps. None of the NICs used in this thesis have this
feature, hence we cannot use Wireshark for any time measurements.

2.7 jana
jana is a program, developed during this thesis, for running network tests. Specif-
ically, network tests using expontential, uniform and gamma distributed packet
send rates and payload sizes. This is in contrast to more powerful tools such as
pktgen and trafgen, which offer better performance and more per-packet control
at the expense of more configuration. Another widely used network benchmark
tool is iperf3, which we used for some experiments. However, it does not–to our
knowledge–support inter-packet latency and payload distributions.

As traffic patterns have a high impact on the network the idea was to see how
the model performed under bursty condition, such as web browsing and content
streaming, as well as constant-rate traffic such as video conferencing and gaming.

The network test cycle is basically a “ready, set, go!”-type of design: a server
waits for clients to say hello, and, after all N clients have been registered, broad-
casts a “set” message which all clients echo back to the server, which again waits
for N “set” before broadcasting a “go” message which marks the start of the net-
work test. All clients wait approximately 1 second after they have received the
“go” message before starting the packet generation, which decreases the likelihood
of clients failing to start due to the start packet being lost. This simple approach
proved resistant to partial network failures during the test wind-up stage.

The transmitting UDP socket was configured as non-blocking in an attempt
to emulate the inter-packet latency distribution as much as possible.

Background 13

For interested readers, we recommend browsing the various “Bufferbloat” projects
(https://www.bufferbloat.net/projects/), which links to at least two very
promising tools:

IRTT (https://github.com/heistp/irtt) – “IRTT measures round-trip time,
one-way delay and other metrics using UDP packets sent on a fixed period, and
produces both user and machine parseable output.”

Flent – “The FLExible Network Tester” (https://flent.org/).

14 Background

Chapter 3
Previous Work

Modelling of Wi-Fi performance has been an active field of research and this
chapter provides an introduction to the modeling approach described by Bianchi
[4] and subsequent efforts to improve it made by others. In particular, the studied
model presented by Felemban & Ekici [6] will be discussed.

As mentioned previously, the IEEE 802.11 family specifies the PHY and MAC
layers of WLANs. Analysing the performance impact of these protocols, and
their numerous parameters, is key to improving network performance. There are
two possible paradigms available: measuring/sampling or constructing an analytic
model of the system/property. Measuring can be done directly on both physical
hardware and software simulations whereas analytical models typically provide
performance figures as solutions of equations.

The complete behavior of the IEEE 802.11 standards has yet to be captured
by any single analytic model, and researchers instead take the standard scientific
approach of solving a constrained variant of the problem, which in turn requires
rigorous validation of the solution. A model may perform well in certain conditions
and pathologically in others. These behavioural pecularities arrise from simplifica-
tion of system behaviour and properties. In a given model, simplifications can also
be inherent in the original construction mechanism—the way the model itself was
constructed—which forces the model itself to undergo a sort of ironic self-analysis
and validation. Model authors typically present a validation effort to prove their
model’s credibility, which further requires scrutiny of the validation itself, possibly
in absurdum...

In short, model authors try to describe a complex system by modelling key
components in a simplified setting, and validate their model using other models
which have been more thoroughly reviewed.

Given this context, we first present the original Markov chain model from [4]
and describe how it models IEEE 802.11 properties using the DCF, some signif-
icant and intentional simplifications made and a narrow selection of subsequent
contributions made by others in [8][5][14][15].

Finally, the evaluated model [6] is described as well as the differences to both
the original model [4] and some intrinsic model properties useful in forthcoming
chapters.

15

16 Previous Work

3.1 The Bianchi Model
In [4], Bianchi presented a novel approach to modeling IEEE 802.11 performance
by creating a Markov chain model of the Distributed Coordination Function (DCF).
Bianchi defines three important properties: transmission probability (τ), nor-
malised throughput (S) and channel access delay (T). This section provides a
summary of the original model and definitions useful in later chapters.

Before going into detail about the Bianchi model, we start from the beginning.
The underlying assumption of a MAC-layer-based model of IEEE 802.11 is

that, in a setting with more than 2 STAs, the MAC protocol should be the system
bottleneck. By extension, it is reasonable to model the performance of the network
based on the DCF.

In [4], Bianchi starts by limiting the proposed model analysis to fully-connected,
single-hop networks in “saturation”. The saturation condition requires that all
STAs, at any point in time, always want to transmit. This allows Bianchi to
omit send queue distributions and simplify collision probabilities, which will be-
come important. Additionally, Bianchi assumes that there is a fixed number of N
equivalent, contending STAs.

The back-off counter for a given STA at time t is represented by the stochastic
process b(t). Since the back-off counter at any given time t is dependent on the
transmission history it follows that b(t) is non-Markovian. To solve this prob-
lem Bianchi assumes that each transmission attempt collides with a constant and
independent probability p.

In addition to the back-off counter process, b(t), Bianchi also introduces a
stochastic process s(t) representing the current back-off stage for a given STA at
time t. Recall from Equation 2.2 that m is the number of back-off stages, from
which the states of s(t) can be obtained as (0, . . . , m).

After breaking the historical dependency of the back-off process, Bianchi can
model the time-discrete bidimensional process {s(t), b(t)} as the Markov chain seen
in Figure 3.2. As seen in the figure, the model ignores several important behaviors
of the DCF, in particular retransmission limit and backoff counter freezing due to
channel state.

1. Retransmission Limit - the model does not drop the packet after failing
ShortRetryLimit retransmissions, instead it continues until the packet has
been successfuly acknowledged.

2. Back-off Counter Freezing - in each back-off state, the probability of
decrementing the back-off counter—equivalent to sensing the channel idle—is
always 1.

Bianchi assumes that the conditional collision probability p is constant and
independent of the back-off stage. This implies that p, the probability of an STA
encountering collision during transmission, is equivalent to the probability that any
of the other N −1 STAs also attempted to transmit, with transmission probability
τ

p = 1 − (1 − τ)N−1 (3.1)

Previous Work 17

By modelling the back-off counter itself, combined with the saturation condi-
tion and omission of retransmission limit, Bianchi solves the transmission proba-
bility τ by essentially finding the steady state probability of the back-off counter
being zero, and obtains

τ =
2(1 − 2p)

(1 − 2p)(CWmin + 1) + pCWmin(1 − (2p)m)
(3.2)

However, since τ is derived from the back-off counter, and the back-off counter
depends on the conditional collision probability p, it follows that τ and p are
recursively defined. Bianchi constructs a nonlinear system with equations for τ
and p and solves it numerically.

With probabilities for τ and p, Bianchi continues to his core contribution—the
normalised throughput. Denoted S, normalised throughput is defined as “the
fraction of time the channel is used to transmit payload bits”.

S =
E[payload information transmitted in a slot time]

E[length of slot time]
(3.3)

With E[P] denoting mean payload size, probabilities for transmission Ptr and
transmission success PS , the numerator in 3.3 becomes PSPtrE[P]. In a similar
fashion, the denominator in 3.3 can be expressed as the sum of empty time slots,
busy time slots and times slots with collisions. Let σ be the duration of an empty
slot, TS the average time the channel is sensed busy in case of successful trans-
mission, and TC the average time the channel is sensed busy in case of collision
for the non-colliding STAs. Now, Bianchi presents an equation for the normalized
througput S

S =
PSPtrE[P]

(1 − Ptr)σ + PtrPSTS + Ptr(1 − PS)TC
(3.4)

Note that S is expressed independent from the “access modes” found in Figure
2.3, which details the communication flow of a single, successful packet transmis-
sion and acknowledgement. Let H = TPHY +TMAC and assume propagation delay
δ. The differences between the “access modes” can thus captured by the variables
TS and TC

basic
{

T bas
S = H + E[P] + SIFS + δ + ACK + DIFS + δ

T bas
C = H + E[P] + DIFS + δ

(3.5)

RTS/CTS

⎧⎪⎨
⎪⎩

T rts
S = RTS + SIFS + δ + CTS + SIFS + δ

+ H + E[P] + SIFS + δ + ACK + DIFS + δ

T rts
C = RTS + DIFS + δ

(3.6)

From these equations Bianchi concludes that for any network of size N there
exists a troughput-optimal transmission probability τ , achievable by tuning the
congestion window sizes and CWmin and CWmax .

To make the model tractable Bianchi simplifies many behaviours, of which
two have received considerable efforts to implement. Some notable publications

18 Previous Work

Figure 3.1: Bianchi’s Tagged-Node Markov chain model of the IEEE
802.11 DCF where p is the collision probability, Wi the con-
tention window size at attempt i (0 ≤ i ≤ m) and m from
Equation 2.2.

are Wu [8] and Chatzimisios [5], who proposed improved models that included the
retransmission limit, followed by Zhang [15] and Xiao [14], who proposed models
that include back-off counter freezing.

3.2 The Felemban-Ekici Model
In 2011, a decade later, Felemban & Ekici published an extended version of
Bianchi’s model, where they significantly improved the model’s accuracy by in-
troducing a more accurate behaviour of the entry into backoff and the backoff
countdown procedures [6].

An overview of the TNMC model from [6] is presented in Figure 3.2. Some
differences compared to Bianchi’s TNMC are inclusion of retransmission limit (in
state {0, L}, collision results in packet drop) and counter freezing Pf (probability
of state a {i, j} transitioning to itself).

The inclusion of retransmission limits results in a different expression of τ
compared to Equation 3.2. Recall from Equation 2.3 that Wj is the size of the
contention window at back-off stage j and that L is the short retry limit from [1].
Felemban & Ekici solves τ similarly to Bianchi [4] by finding the probability of the
back-off counter reaching 0 in all back-off stages, expressed as

Previous Work 19

τ =
1 − P L+1

(ΣL
j=0[1 + 1

1−Pf
ΣWj−1

k=1
Wj−k

Wj
])(1 − P)

(3.7)

where P is the conditional collision probability (equivalent to p in Bianchi’s
paper) from Equation 3.1.

Somewhat contradictory, Felemban and Ekici obtains different values for the
parameters TC and TS , compared to Bianchi. This is probably explained by the
different Wi-Fi generation targeted.

basic
{

T bas
C = T bas

S = DIFS + Th + Tp + SIFS + ACK (3.8)

RTS/CTS

⎧⎪⎨
⎪⎩

T rts
S = DIFS + TRTS + SIFS + TCTS

+ SIFS + Th + Tp + SIFS + ACK
T rts

C = DIFS + TRTS + SIFS + TCTS

(3.9)

The equation for normalised throughput is indeed also different, but still sim-
ilar to Bianchi’s.

U =
PSTp

PSTS + (PB − PS)TC + (1 − PB) ∗ σ
(3.10)

Where PS and PB correspond to the probabilities that a slot contains a suc-
cessful transmission and that a slot is sensed busy, respectively.

As shown in Figure 2.1, the DCF back-off process algorithm specifies that a
node only decrements the back-off counter if the channel was sensed idle. In [6],
the authors obtained an accurate countdown probability (Pd) by introducing an
additional Markov chain to model the channel-sensing process and estimating the
probability of not counting down, i.e. probability of counter freeze (Pf). This chain
is called Channel-Sense Markov chain (CSMC). The counter freeze probability, Pf ,
is computed by finding the steady state probabilities of the CSMC by fixed point
iteration.

The addition of the CSMC and Pf increased the model’s accuracy signifi-
cantly compared to other models in various test conditions. In particular, the
introduction of Pf increased accuracy of the model when extended to unsaturated
networks.

While the model proposed by Felemban-Ekici models the DCF more closely
and accurately, several assumptions and omissions, inherited from [4], make the
model a very interesting candidate for real-world testing, namely:

1. Steady state - the counter freeze probability Pf is computed by finding
the steady state probabilities of the CSMC. The packet transmission and
conditional collision probabilities τ and P , respectively, are also computed
similarily by finding the steady states of the TNMC. Transient behaviour is
not included.

2. Colliding nodes - to simlify the equation for collision, the maximum num-
ber of simultaneously colliding nodes is assumed to be 3.

20 Previous Work

W0-1,0W0-2,01,00,0

1/W0

Pf
Pf Pf

Pd Pd Pd Pd

Wj-1,jWj-2,j1,j0,j

P/Wj

Pf
Pf Pf

Pd Pd Pd Pd

1-P

1-P 0,j-1

1-P

No ACK received
within ACK-Timeout,

assume packet
collision

P/WL

Start

dr
op
pe
d

WL-1,LWL-2,L1,L0,L

Pf Pf Pf

Pd Pd Pd Pd
1-P

se
nt

P

Figure 3.2: Felemban-Ekici’s Tagged-Node Markov chain (TNMC)
model of the IEEE 802.11 DCF. P is packet collision probability,
Pd is probability to decrease backoff counter, Pf = 1 − Pd, Wj

is contention window size at attempt j and L is the Short Retry
Limit

3. Wi-Fi b/g/n - the original model from [4] was presented for Wi-Fi b/g
networks and the evaluated model from [6] for Wi-Fi n. Today both Wi-
Fi ac and Wi-Fi ax exist. These newer generations include support for
beamforming and aggregation technologies that increase the performance of
the network in ways not considered in [4] or [6].

4. Independent packets - to simlify the equation for the conditional collision
probability P , packet collisions are assumed to independent.

5. The capture effect - a behaviour where a node successfully transmitting a
packet is more likely to win the race for the next transmission, due to other
nodes freezing their back-off counters, is not considered at all.

Another key contribution made in [6] was the presentation of an unsaturated
model. Recall that the Bianchi model assumed that the network was in saturation
conditions, i.e. all STAs always have something to send.

The condition limits the number of networks and scenarios the model can
be effectively applied to and thus limits the usefulness of the model. In [6], the
authors extended their saturated model work in unsaturated networks, primarily
by introducing packet transmission rate distributions.

Chapter 4
Experimental Approaches

This chapter begins by presenting the overall rationale for the experimental ap-
proach used to evaluate the theoretical model.

The primary challenge of analysing the usefulness of the Felemban-Ekici model
lies in the practical problem of accurately capturing network performance statis-
tics. In total, three different experiments were designed, peformed and evaluated.
Each subsequent experiment lead to a deeper understanding of the network system
and how various systems interact and their effect on the results.

Any experiment is, by design, constructed and designed in order to observe
a property or behaviour. So that is where this chapter starts – reasoning about
different parameters of the Felemban-Ekici model. Armed with this set of pa-
rameters, experiment design then becomes a game of exploiting known system
properties and behaviour to obtain a comparable data set.

After selecting intresting properties of the model we then proceed to present
all model evaluation experiments in a chronological order. For each experiment
we try to map the underlying idea to information presented in Chapters 2 and 3.
The experiments will relate to an informal and incomplete model of the system
under test and should therefore be read at least twice to answer questions such as
“if we assume the model to be true, is the experiment itself sound?” and “is the
model itself a good enough approximation?”. In an attempt to spare the reader
from inferring incorrect information based on experiment models, each experiment
will be also presented with a short analysis regarding its soundness.

After describing all model evaluation experiments we continue to present the
experiments designed to test if the stats collected from ubus on the TG-799
firmware showed any obvious problems.

Finally, we describe a proof-of-concept experiment to evaluate the Felemban-
Ekici model that we ultimately could not perform.

4.1 Overview
As mentioned in the introduction, in order to solve the primary problem as de-
scribed in Section 1.3 it has to be partitioned into more manageable pieces. The
problem discussed in this section is “Problem 2 - what is a reasonable definition
of useful?”.

21

22 Experimental Approaches

The premise is as follows: in order to evaluate a theoretical model there must
first exist some set of data provided by the model itself, and an equivalent set
of data to compare against. In this report, the data provided by the model are
referred to as the model metrics. The other dataset, the comparison set, is gathered
from a specific device and referred to as the captured metrics.

Since both the original model from Bianchi and Felemban-Ekici models have
strong performance claims backed by evaluations done with simulators, the stated
parameters and their behaviour can be considered fact–the models accurately
model IEEE 802.11 performance. What remains unknown is how well these mod-
els perform outside simulations – on physical hardware using (imperfect) software
drivers. One could argue that since IEEE 802.11 is a specification all hardware
and software that claim to follow that spec. should be considered equivalent to the
spec. and by extension simulators as well. However, this is in fact an assumption
that can serve as a conjecture and needs to be proven or disproven.

By this reasoning an answer to the original question can be formed:

Q Problem 2 - what is a reasonable definition of useful?

A Construct an experiment and collect metrics that have either a direct or indi-
rect equivalent in the theoretical model. If these metrics match numerically
the theoretical model is useful. If these metrics don’t match numerically
the theoretical model can still be considered useful if the trends of these
metrics match. If neither of these statments hold, the model is not useful.
If this is the case then we cannot verify the model, and the model should
be considered useless–after all, what is the point of an unverifiable model?

The experimental methodology essentially boils down to designing experi-
ments, based on knowledge of a device and its system, in such a way that the
experiment resulted in a set of captured metrics that were comparable with a
predefined set of model metrics.

4.2 Model Metrics
As stated earlier, in order to know what to capture we must first select relevant
metrics from the model and the protocol itself. After reading through [6] some
variables and parameters are of particular interest:

• N – number of network nodes

• D – per-packet payload size distribution

• U – normalized throughput (wrt. channel bit rate)

• P – conditional packet collision probability

• T – channel access delay

• RTS/CTS – the model presents models with basic access, RTS/CTS and a
hybrid access scheme using a payload threshold

Experimental Approaches 23

In addition to these, there are also some parameters and variables that are
used in [6] but originate from IEEE 802.11 specification itself:

• channel bit rate

• L – the ShortRetryLimit

• CWmin and CWmax – contention window min and max size

There are, of course, other parameters in the model, and certainly many more
parameters in the implementations of IEEE 802.11 (e.g. power saving, distance,
line-of-sight). These are, for the sake of tractability and real-world usefulness,
ignored and may contribute to significant errors (although such errors have yet to
be discovered in simulations).

As described earlier, the Felemban-Ekici model provides normalized through-
put (U), channel access delay (T) and conditional packet collision probability (P).

Normalized throughput (U) is constructed upon the conditional packet colli-
sion probability (P), payload size distribution (D) and a variant of channel access
delay, see Equation 3.10.

Thus the most important model metrics are conditional packet collision proba-
bility (P) – the probability that a packet collides during transmission – and channel
access delay (T), defined as “the time from the packet becoming the head of the
queue until the acknowledgment frame is received.”.

Conditional packet collision probability (P) is a simple metric, “count the num-
ber of transmission attempts and collisions”, but not an easy metric to obtain since
it occurs at a very low level in the networking stack. A possible alternative is the
packet drop probability P L+1 – the probability of exceeding the short retry limit.
The Linux networking system reliably reports transmission success and failure,
but not attempts.

The channel access delay (T) can be obtained by measuring the total time
described in Figure 2.3. Such a solution would require radio equipment not avail-
able for this thesis. A key insight is that, in a controlled experiment, most of the
parameters in Figure 2.3 are actually constant. The only dynamic parameter is
the time spent in backoff, TBACKOFF.

To summarize,

Q Problem 3 - what data should be collected?

A The number of network nodes (N), conditional packet drop probability
P L+1, channel access delay (T), payload size D, channel bit rate, retry
limit (L) and contention window sizes CWmin and CWmax.

With a set of well-defined model metrics we need to collect equivalent data
ponts for, we now move on to describe the experiments, which provide an answer
to “Problem 4 - how should this be done?”.

4.3 Experiment 1: Wireshark
The first experiment was based on the industry-standard Wireshark program to
capture outgoing packets. Built on libpcap, Wireshark uses a Linux kernel feature

24 Experimental Approaches

program
sendto(...)

NIC
transmission

wireshark
capture

Tsend Tsent

T

program
sendto(...)

NIC
transmission

wireshark
capture

Tsend Tsent

T

experiment
timing model

actual
timing model

Figure 4.1: Experiment 1: Wireshark, experiment design vs actual
timing models

called "packet taps" to "capture" packets. Wireshark records the packet itself and
some related timing data in a log file in a “pcap” format.

Naively, the corresponding channel access delay was thought to be obtainable
to comparing the timestamps between a send program’s call to sendto and the
“capture time” reported by Wireshark, as seen in Figure 4.1 (experiment timing
model, i.e. “the model which makes the experiment work”). This would, in fact,
be comparable to the complete timeline from Figure 2.3. No captured metric
comparable to conditional packet collision probability could be constructed, simply
due to the fact that Wireshark is too high-level to know about IEEE 802.11 frame
transmission failures.

The experiment was designed as follows:

1. device R, a TG799-vac router

2. device S, connected via ethernet to R, running jana in server mode

3. device C, connected via Wi-Fi to R, running jana in client mode with no
specified inter-packet latency distribution (a.k.a saturation mode)

4. wireshark running on C, captures outgoing packets to S

On C, placing the socket in non-blocking mode (O_NONBLOCK), jana can detect
whenever the socket buffer is full and avoid measuring the time it took for the
kernel to free some memory for the blocked packet.

With valid values for Tsend and Tsent, we can obtain the time it took to transmit
this packet, or something roughly equivalent to the Channel access delay by taking
the difference Tsent − Tsend

However, the Tsent timestamp obtained from Wireshark/libpcap is not what
one would expect and for our purposes this divergence between what we expected
and what libpcap delivered was too large to contiune this line of experimentation.
In Chapter 6 we will discuss the underlying reasons for this in more detail.

4.4 Experiment 2: Queueing the Network System
As the Wireshark-based approach seemingly crashed into a hard wall, insights
gleaned from the numerous attempts made to salvage it hinted at a more theoret-

Experimental Approaches 25

the network stack

NIC xmit

the qdisc

alloc pkt
in sndbuf

udp/tcp/ip
processing

add to
nic qdisc

NIC tx buffers
driver + hardware

S

xmitpktgen

kernel scheduler
forwards pkt

enter kernel
to send pkt

returns to
userspace

measurable time kernel scheduler
frees handled pkts

batched update
xmit success / fail

? time ? time ? time

Figure 4.2: Experiment 2: Modelling the egress path of a packet as
a queueing system

ical and academic design. What if we modelled the whole networking stack as a
queueing system? Wouldn’t the properties we were looking for simply be properties
of this system?

The insight that finally ties these loose ideas together, is that a kernel-owned
buffer, known as the sndbuf, owns the memory of each packet currently being
transmitted or received on a particular socket. The full lifecycle is shown in Fig-
ure 2.4 and is summarized here. Some code calls into sendto or sendmsg, which
attempts to allocate memory from the sndbuf, before potentially running tcp, udp
or ip processing filters and finally enqueueing the packet in the qdisc. The kernel
manages pumping packets from the qdisc into the NIC driver. After transmis-
sion, the NIC driver/hardware signals the kernel that packets were transmitted or
dropped. The kernel puts these packets on a “to free” list and eventually frees the
related memory, allowing new packets to be allocated from the sndbuf.

Modelling the network stack as a M/M/1/K system with K queue length,
where K is

K =
sndbuf

E[D] + kernel overhead (4.1)

where E[D] is the average payload size and kernel overhead a constant per-
packet bookeeping overhead.

The qdisc queue length is known, and the number of packets currently in the
qdisc system can be queried. Packets can either be owned by the qdisc or the NIC
and so, by assuming that the sndbuf is full, the number of packets in the NIC
queue system can be computed as

LNIC = K − Lqdisc (4.2)

We know have an equation for the number of packets in the NIC queue system
of Figure 4.2. Recalling Little’s Law, L = λW , which, in this context, states that
the average number of packets L in the networking system is equal to the genera-
tion rate multiplied by the average time W each packet spends in the networking
system. This law is applicable to any arrival process and service distribution, and
crucially, it’s also applicable to any subsystems as well.

26 Experimental Approaches

With Little’s Law we can obtain the service time WNIC of a packet, i.e the
average time a packet spends at the server. The exact definition of WNIC, assuming
a stable flow of packets and mostly full sndbuf, becomes

LNIC = λNICWNIC Little’s Law

WNIC =
LNIC
λNIC

isolate service time WNIC

WNIC =
K − Lqdisc

λNIC
substitute LNIC from Equation 4.2 (4.3)

Furthermore, WNIC can be deconstructed as shown in Figure 2.3 plus a term
for time spent waiting in the queue, and provides the final link how WNIC relates
to the variable we are looking for, TBACKOFF

WNIC = TQUEUE + TDIFS + TBACKOFF

+ TPHY + TMAC + TFRAME (4.4)
+ TSIFS + TACK

Where TQUEUE is the time spent waiting to be served, TDIFS and TSIFS are
the interframe spaces defined in IEEE 802.11 and set by the access point [1], TPHY
the preamble, TMAC time to send MAC header and TACK the time for a special
MAC packet. Simply, DIFS and SIFS depend on network configuration whereas PHY,
MAC, FRAME and ACK primarily depend on channel bit rate, guard interval and time
quantization (Tslot).

Some practical problems had to be resolved:

1. Fast polling of the qdisc queue, solved by hacking the tc (traffic control) pro-
gram, see https://github.com/smeets/thesis/tree/master/d3fi/tcq

2. A full qdisc will sliently drop new packets, solved by increasing the max
queue length using ifconfig txqueuelen

3. The NIC should at all times be maxed out, solved by increasing the sndbuf
size by increasing kernel parameters /proc/sys/net/core/wmem_max (UDP
sndbuf maximum size) and /proc/sys/net/core/wmem_default (UDP sndbuf
default size) to 10 MB. Combined with a large qdisc size this should allow
the kernel to always have packets to pump into the NIC.

The complete experiment:

1. Start a UDP-spam process, see https://github.com/smeets/thesis/tree/
master/d3fi/ethx.py

2. Get the active inode from /proc/net/udp

3. Log data from the specified iface and inode, see https://github.com/
smeets/thesis/tree/master/d3fi/data1.sh, using data from tcq, ethtool
and procfs device /proc/net/udp

Experimental Approaches 27

4. Send log data into a web server, https://github.com/smeets/thesis/
tree/master/d3fi/server.js, which stores the data and makes it avail-
able to a browser

5. A browser on the local host that loads a page from above server and peri-
odically fetches new log data

The primary issue with this approach is related to how the kernel keeps already
transmitted packets for an unknown amount of time before freeing the packet data
in batches, increasing overall system throughput.

4.5 Experiment 3: Hacking on the driver
Compared to the previous attempt, a more practical approach would be to try
and observe whenever packets are handed over to the NIC from qdisc and handed
over from the NIC back to the kernel. Sampling this process would then give an
estimate for the number of packets enqueued in the NIC.

This is in fact how the third and final experiment started: “Where in the
kernel can we log qdisc → NIC and NIC → kernel handover events?”. The anwer,
of course, is “in the NIC driver”.

While exploring in-tree wireless drivers a suspicious field appeared in a driver
for intel wireless NICs (iwlwifi), wireless_media_time, described as

* @wireless_media_time:
* for non-agg: RTS + CTS + frame tx attempts time + ACK.
* for agg: RTS + CTS + aggregation tx time + block-ack time.
* in usec.

and while this description appears to include some components from Figure
2.3, the comment is too vague to form any definition. Some notes:

• “wireless media time” should, in our opinion, refer to the total duration the
wireless medium was used. This implies that backoff is not included and
that frame transmission time is included. However, the comment indicates
the opposite.

• Consumer Wi-Fi networks often use a hybrid access mode, defaulting to
basic and only sending RTS/CTS frames if the payload size exceeds some
threshold. In our case this threshold is greater than the maximum amount
of payload a IEEE 802.11 frame can contain, which implies that RTS/CTS
will never be used in our setup.

• “frame tx attempts time” could include any combination of BACKOFF,
PHY, MAC and FRAME components. It is possible to probe some of these
components, e.g. varying payload size should give a corresponding impact
if FRAME is included, BACKOFF can be proved by changing number of
STAs.

28 Experimental Approaches

DESKTOP
(jana server)

TG-799
ROUTER

TEST LAPTOP 1
(jana client)

TEST LAPTOP 2
(jana client)

Raspberry Pi 4
(jana client)Raspberry Pi 4

(jana client)Raspberry Pi 4
(jana client)Raspberry Pi 4

(jana client)Raspberry Pi 4
(jana client)Raspberry Pi 4

(jana client)Raspberry Pi 4
(jana client)

Wi-Fi

Wi-Fi

Wi-Fi

Ethernet

Figure 4.3: Experiment 3: Hacking the Wi-Fi driver setup overview

In any case, the primary objective is to observe if this field is of use. Figuring
out exactly what “frame tx attempts time” is tricky. We can, however, run multiple
experiments with varying payload sizes and active network clients to see if backoff
or time spent transmitting data are included.

Our testbed, as shown in Figure 4.3, consists of

1. a TG-799 router

2. one desktop, running the jana server (connected via ethernet)

3. 20 Raspberry Pi 4, acting as network load generators (connected via Wi-Fi)

4. one laptop with modified Wi-Fi driver (connected via Wi-Fi)

5. one control laptop with modified Wi-Fi driver (connected via Wi-Fi)

The two laptops used the modified Wi-Fi driver to log the wireless_media_time
throughout the test. Both laptops ran the jana client, sending UDP packets to
the server running on the desktop, which was connected via ethernet. An ether-
net connection was chosen since Wi-Fi uses a shared medium, which means that
communication is simplex. By connecting the server via ethernet, we can assume
that the cost of forwarding packets from Wi-Fi to Ethernet is so low that it can be
ignored for our experiments. In addition to the two laptops we set up a number
Raspberry Pi 4s to also run the jana client and send UDP packets to the jana
server, with the intention increase the load on the CSMA algorithm and risk of
Wi-Fi frame collisions, which in turn affects the backoff process.

The experiment was parameterized on payload size and number of active jana
clients. Packet generation distribution was fixed to “as many as possible”.

The hypothesis is that varying payload size would reveal if wireless_media_time
contained any transmission timings, and varying the number of active jana clients
(i.e varying medium contention) would reveal any backoff timings.

Experimental Approaches 29

The number of clients were 5, 10, 15, 20 and payload sizes varied from 1 byte
to 32 kilobytes (1, 2, 4, 8, ...). Note that the maximum IEEE 802.11 frame size
is around 1460 bytes, so any packet jana generates with a payload larger than
approximately 1KB will result in multiple IEEE 802.11 frames being transmitted.
Intuitively, the per-frame wireless media time should remain constant while the
per-packet latency should increase linearly with the number of frames requires to
fully transmit the packet.

4.6 Evaluating: In the Wild
Evaluating the model under controlled conditions (“in the lab”) is only one part
of the analysis. How the model performs “in the wild” is a natural next step and
in this section we will describe the methodology behind our model evaluation, “in
the wild”.

Since we cannot expect end-users to load logging programs we must either run
a logger on a network client or log directly from the router. We do not have access
to a programmable radio so we will attempt to acquire metrics directly from the
router.

The network interface metrics can be accessed through various different inter-
faces. In this thesis two programs were tried during exploratory testing, ubus and
quantenna api. In the end ubus was chosen due to its broader range of statistics
(both 2.4 and 5 GHz modems, compared to only 5 GHz for quantenna) and con-
sistency of its output (no corrupt/invalid JSON was detected, compared to some
corrupted output for quantenna). Since both interfaces report metrics from the
same sources (from kernel, driver and firmware) we should get roughly equivalent
data points no matter the interface.

In conclusion, network performance metrics will be collected by periodically
calling the ubus program on the router.

4.6.1 Selecting ubus metrics
After deciding how to collect data, it is time to decide what data to collect.

As mentioned earlier, the model parameters form our comparison set. Data
collected during testing needs to map directly or indirectly to the comparison set.
It makes sense, then, to start with model parameters and try to find equivalent
metrics.

• network nodes (N) - maps directly to number of connected network clients.
We exclude the router from this number as it will never attempt to transmit
volountarily.

• channel bit rate - the bit rate used to transmit and receive. Expressed in
physical tx/rx rates in most drivers and indicated by the Modulation and
Coding Scheme (MCS) index. It is important to note that even if IEEE
802.11 n can transmit up to 600 Mbps, the advertised bit rate will depend
on signal strength, number of MIMO antennas, guard interval, bandwidth
and other factors. Therefore, it is better to log the physical tx/rx rates
actually used instead of using the theoretical maximum.

30 Experimental Approaches

• normalized throughput (U) - is estimated in the model as average time spent
transmitting payload vs. total system time. This is roughly equal to the
average throughput of the system divded by the advertised channel bit rate.
Average network throughput can be obtained by computing 8RX bytes

time (from
router’s point of view).

• packet collision probability (P) - refers to the IEEE 802.11 frame collision
probability and as far as we researched, must be obtained from the NIC.
Our NIC does not provide this information. An alternative is to count the
number of packets dropped by the NIC due to exceeding the maximum
number of retransmission attempts. The model defines this property as
P L+1, where P is the conditional collision probability and L the retry limit.

In addition to these metrics, we decided to include the Received Signal Strength
Indicator (RSSI), a vendor-specific metric which can be used to gauge signal
strength, in case our experiments showed any unexpected behaviour.

4.6.2 Analysing ubus metrics
As good scientists we should not take data at face value. Thus we decided to
conduct some experiments to sanity check the reported metrics. For each selected
metric a test was performed to try and uncover any unexpected behavior.

• network nodes (N) - read directly from ubus output

• channel bit rate - physical rx/tx rates read directly from ubus

• normalized throughput (U) - the RXbytes was read directly from ubus

• packet collision probability (P) - dropped backets read directly from iwconfig

The test: log periodically on a router running iperf3 in server mode with one
client running iperf3 in client mode during 12 hours.

4.6.3 RSSI experiments
Received Signal Strength Indicator (RSSI) is an important, and tricky, value. It
is important because it is often the only indicator of signal strength, and tricky
due to high variance between two chips, from same or different vendors, suggesting
that variance stems from a combination of hardware and software factors [7].

In order to establish whether the RSSI metric could be used or not, analysis
had to be done to verify the behavior, accuracy and variance of the reported values.
This was done in a shielded lab with low-to-no external interference and no self
interference from reflection.

Figure 4.4 shows how the router, antenna and laptop were set-up. Three
experiment sessions were carried out to measure RSSI, about 5 minutes per session,
with two different spectrum analysers.

The first test established the baseline rssi values when the system (laptop)
was idle, i.e. any network load originated from background services. The second
test was conducted using iperf3 to push as much network load as possible, see

Experimental Approaches 31

iperf3
client

iperf3
server

Shielded
Radio Lab

Figure 4.4: TG799 router and measurement antenna side by side, 1
meter from laptop

listings ??, ?? and ?? for relevant scripts. The third test was a control test with
a different spectrum analyser, but otherwise identical to the second test.

Scripts for parsing the spectrum analyser data and related heat map generator
are detailed in listings ?? and ??.

The spectrum analyser data was plotted as a heat map; frequency vs. time vs.
signal strength. This graph shows both how signal strength varies over time and
frequency. In contrast, the router metrics only specify one RSSI value and thus the
resulting plot compares RSSI vs. time. The graphs can be analysed individually
for insight into system behavior and compared to see how they relate.

We did not have time to get the second spectrum analyser to output data as
a fuse went during our first attempt with it and we had to wait for it to be fixed.
On the other hand, this spectrum analyser was used to calibrate and estimate
the attenuation of the antenna cable. In the end this analyser was mainly used
to eyeball that the first spectrum analyser was somewhat correct and to estimate
cable attenuation.

4.6.4 Evaluation
Armed with a solid set of router metrics data collection could begin.

To compare our collected data against the model we first implemented the
model as a program, see Listing 1 in the Appendix. As a preliminary test of the
implementation we tried to compare our model with the numbers published in
[6], and were surprised that only the conditional collision probability was correct:
neither normalized throughput nor channel access delay were correct. Since this
could be caused by different parametrisation we attempted to find possible pa-
rameters using a brute-force approach, but this resulted in skewed and unsound
parameters. So we reached out to the authors of the model in order to try and
obtain the original source code. After a week we got a reply that it could take a
while to dig stuff that old up and waited, but nothing arrived and we received no
response to subsequent follow-up emails.

Thus it became impossible for us to actually evaluate the model and so we

32 Experimental Approaches

shifted focus more heavily onto collection of the neccesary metrics.

Chapter 5
Results

This chapter presents results from experiments 1, 2 and 3 as well as the ubus smoke
test and RSSI analysis. A discussion of these results will follow in the subsequent
chapter.

5.1 Experiment 1
The relation between computed Tdelay, i.e. (Tpcap −Tsent), and Tsyscall can be seen
in Figure 5.1, where Tpcap is the time reported by libpcap, Tsent the timestamp
right after sendto returns and Tsyscall the time it took for sendto to execute.
This graph shows how our supposed “packet sent timestamp” was dominated by
the time it took to complete the call to sendto, which could only block due to a
full sndbuf.

5.2 Experiment 2
In Table 5.1 we present the recorded NIC serve rate λNIC, qdisc queue length
Lqdisc, specified sndbuf and packet payload size. The values were obtained from
a session with the system under test + 20 raspberry pi 4s.

Recall from Equations 4.2 and 4.3 how LNIC can be obtained and used with
Little’s Law to estimate WNIC:

λNIC 4108
Lqdisc 427
sndbuf 1,5 MB
payload 1042 B

Table 5.1: Average serve rate and estimated queue length of the
NIC.

33

34 Results

Figure 5.1: Scatter plot of Tdelay and Tsyscall (μs) for each packet
sent. Tests go from left to right, with each column being one
test with a total of 3 different machines (and thus three rows).
The first number in each legend is the packet payload size.

Results 35

LNIC =
sndbuf

payload + overhead
− Lqdisc ≈ 1.5 × 106

1442
− 427 = 563

WNIC =
LNIC

λNIC
=

563
4108

= 137 ms

Notice how WNIC determines that under a fully loaded scenario, it would
take more than 100 milliseconds to transmit 1 KB using UDP. Our definition
of overhead: IP + IEEE 802.11 + kernel bookkeeping.

5.3 Experiment 3
The final experiment was carried out on IEEE 802.11 n (2.4 GHz) and ac (5
GHz). In Figures 5.2 and 5.3 we present the total network throughput and
wireless_media_time for IEEE 802.11 n. Similary, test results for IEEE 802.11
ac are shown in Figures 5.4 and 5.5.

Varying between each test is the number of actively participating clients as
well as their payload size. No specific packet generation distribution was used,
each client sent packets “as fast as possible”.

It is important to note that, during this experiment, we could not control
the presence of nearby networks. However, the experiment was performed dur-
ing after-hours when no one was left at the office to run any traffic-heavy appli-
cations. Additionally, any signficant traffic caused by unmanaged software up-
dates should show up as a significant outlier (much less throughput, and higher
wireless_media_time) for during an affected experiment run.

In addition, running 60 tests (15 payload sizes × 4 host sizes) for IEEE 802.11
n and ac, takes a couple of hours and should therefore more easily show any
temporary network impacts ony a single test run (combination of active nodes
and payload size) in the throughput graphs.

5.4 ubus smoke test
The ubus smoke test did not yield any presentable results, since most of the test
focused on verifying that no invalid data was returned.

No malformed output was noticed during our tests.
Inconsistencies on 5 GHz modem were first reported to us by Telenor, the 32-bit

byte counter did not overflow correctly and will get “stuck” at 232−1. Our findings
initially showed similar behaviour for 2.4 GHz as well, but was later attributed to
a JSON conversion step (probably represented as signed 32 bit integers, instead
of unsigned) in our logging approach.

This has been mitigated in our experiments by using byte counter values from
iw instead.

36 Results

Figure 5.2: Experiment 3 - total network throughput (incl. UDP
overhead) using IEEE 802.11 n.

Results 37

Figure 5.3: Experiment 3 - wireless media tx time captured on two
devices using IEEE 802.11 n.

38 Results

Figure 5.4: Experiment 3 - total network throughput (incl. UDP
overhead) using IEEE 802.11 ac.

Results 39

Figure 5.5: Experiment 3 - wireless media tx time captured on two
devices using IEEE 802.11 ac.

5.5 RSSI
Our RSSI experiment results are shown in Figure 5.6 and 5.7. Graphs show RSSI
values as reported by the HF-6080 spectrum analyser, by sweeping the 802.11 ac
spectrum in 1 MHz resolution.

Figure 5.6 shows the frequencies of the 802.11 ac spectrum measurable by the
device whereas Figure 5.7 only shows frequencies for the (80 MHz) channel used.

RSSI values are corrected for attenuation caused by the cable, average of 6 dB
across 802.11 ac frequencies, obtained from a Rohde & Schwarz ZVL.

40 Results

Figure 5.6: RSSI baseline experiment, background activity.

Results 41

Figure 5.7: RSSI experiment under iperf3 saturation using one 80
MHz channel.

42 Results

Chapter 6
Discussion and Future Work

In this chapter we first discuss the experiments and their results. Then we proceed
to discuss the model based on experiments. Finally, we present some ideas on
interesting research opportunities and our closing thoughts.

6.1 Discussion of results
In this section we will comment on the results obtained, primarily from our exper-
iments. More importantly, we will also expand upon the discussion presented for
each experiment in the Chapter 4 where we explained our experimental approach.

6.1.1 Experiment 1: Wireshark
As revealed in Figure 4.1 (actual timing model), the design of this experiment
has a critical flaw which is not apparent without deeper insight into the network
stack. As explained earlier, the “packet tap” feature from which Wireshark ob-
tains packets is triggered when the packet exits the kernel queueing system (qdisc)
and handed over to the driver for transmission, rather than once the driver re-
ceives a transmission event from the hardware. This completely invalidates the
fundamental design model and thus the experiment as such.

Further exploration showed that the experiment design could work if pack-
ets could be timestamped in hardware and somehow captured after transmission.
There is support for this in Linux, and Wireshark, but unfortunately relies on
features not available in our hardware.

The presented results are mostly included for completeness and should not be
regarded as anything useful, except for measuring system call to pcap latencies.

6.1.2 Experiment 2: Queueing the Network System
As described in Section 4.4, there are some issues with the definition of WNIC
from Equation 4.4 due to a deferred memory release mechanism in the kernel.
Specifically, the definition of the NIC queuing system from Figure 4.2 includes a
note “kernel scheduler frees handled pkts”.

In order to increase throughput (at the expense of latency), Linux will free up
handled packets in batches. This part greatly impacts the sndbuf which is used

43

44 Discussion and Future Work

in Equation 4.2, implying that sent or dropped packets – but not yet freed – will
still count as enqueued in the NIC. In short, the modeled LNIC includes packets
in driver/firmware, in hardware and, crucially, in the kernel’s to-free list.

By increasing the sndbuf we could observe a corresponding increase in LNIC
(and WNIC) in our experiments. However, this fact does not imply that there are
not any more packets in the NIC. Recall that the NIC queueing system actually
consists of a driver/firmware queue and a hardware queue. The hardware queue
on most consumer chips is probably either fixed and very limited in size, or non-
existant (RAM is expensive).

After additional analysis of the source code of Intel’s open source Wi-Fi driver,
the driver/firmware queue length was determined to be 256 packets large. By
assuming a full sndbuf (i.e. K packets in the network system) and a full NIC, we
can model K as K = Lqdisc + 256 + hardware + to-be-free where hardware and
to-be-freed are unknowns.

One can argue that for the hardware queue to have any impact on the other
queues, it would have to be of similar size. Otherwise, it should be safe to assume
an interrupt-based solution: a driver manages known packets and hardware signals
which have been sent using (soft) interrupt requests (IRQ), i.e. no dedicated
hardware buffer. Thus the total queue size of the NIC is determined by the driver,
in our case 256 packets, simplifying K = Lqdisc +256+to-be-freed. This exposes
the core issue with the original queue model: there is no separation between “in
queue, waiting to be served” and “served, waiting to be freed”.

In the program which logged Lqdisc, we could observe how many packets were
fed into the driver “at once”. Our tests show that multiple, 10+, packets being
handed over to the driver between timestamps < 10μs. This confirms that the
driver is able to keep the internal buffer/queue fully saturated, but does not shed
any light on the size of to-be-freed.

We can estimate the range of to-be-freed to [K − Lqdisc, K − 256 − Lqdisc] =
[307, 563], depending on the amount of packets in the NIC waiting to be trans-
mitted. Reworking Table 5.1 (LNIC = [1, 256]) we now obtain a WNIC = 256

λNIC
≈

[240 μs, 62 ms], again depending on the amount of packets in the NIC waiting to
be transmitted.

In conclusion, this experiment, under assumption of saturation, no hardware
buffer on the NIC, LNIC = 256 packets, can estimate the range of WNIC. As
mentioned earlier, comparing the obtained values from our experiment with the
Felemban-Ekici model is prevented due to different network speeds and configura-
tions.

6.1.3 Experiment 3: Hacking on the driver
Since we could not find a concise definition of the wireless_media_time, and
ultimately argued that the value must include TBACKOF F if there is a positive
correlation with regards to the number of nodes, and include TF RAME if there is
a linear correlation with regards to the payload size.

The sampled wireless_media_time presented in Figure 5.3 (2.4 GHz) shows
an interesting behaviour: the timing data from the system under test (localhost)
clearly increase as the number of active raspberry pi nodes increases. This be-

Discussion and Future Work 45

haviour is not apparent in the control set (values sampled from another system
running the same kernel but with another NIC), as the timing values do not
strictly increase. A statistical analysis of the datasets could determine the level of
correlation.

It looks like the payload size is a contributing factor the media time on the
localhost dataset, but not on the control dataset. The relative media time factor is
around 2X while the payload size factor is between 64X to 8000X, and the absolute
difference is around 100 μs, which amounts to about 100 μS×144 Mbps = 14.4 Kb.
Thus we can immediately conclude that there is no linear correlation between
payload size and media time. Our best guess is that the NIC probably does about
100 μs worth of work between each (s)IRQ (which is when we sample). This guess
does not seem to hold for the control set, however.

Moving on to 5G, Figure 5.5 presents a completely different behavior and the
only similarity with 2G is the shared minimum media time, at around 100 μs.
There does not seem to be any immediate correlation between either payload size
and media time, nor number of nodes and media time. Even though we label
this test as inconclusive, at least both the localhost dataset and control dataset
show very similar behaviour. Comparing 2G and 5G modem behaviour is very
tricky, not only due to a difference in protocol but often also due to a difference
in hardware, firmware and kernel driver. It is worth noting that the difference
observed suggest that there is no silver bullet which works for both IEEE 802.11
n (2G) and IEEE 802.11 ac (5G).

Indeed, differences between IEEE 802.11 n and IEEE 802.11 ac can have dra-
matic effects on observable metrics. Recall that during the CSMA process, time
is quantized into time-slots, from 9 to 50 μs. At similar physical transmission
rates, with Tslot = 9 will attempt to decrement the Tbackoff more than 5 times as
quickly, compared with Tslot = 50. However, since transmission take exactly the
same amount of time, the only difference becomes the time spent waiting for the
DIFS and SIFS. Now consider that when Tslot = 9, the physical transmission rate
is 200 Mbps and 72.2 Mbps when Tslot = 50. This is IEEE 802.11 n compared to
IEEE 802.11 ac.

The insight here is that a IEEE 802.11 ac network can send frames a) faster
compared to n and b) decrements the backoff counter more rapidly, with the
implication that, network-wide, there will be more transmission attempts and,
consequently, packet collisions, compared to IEEE 802.11 n, assuming network
saturation and equal sample durations.

This behavior is implied in graphs, where the media time for small packets in
IEEE 802.11 ac is significantly higher compared to IEEE 802.11 n (a large media
time should primarily be caused by collisions and thus, by definition, frame drops).
We will continue to discuss the frame drop probability in the upcoming section.

In conclusion, we found that the experiment could show expected correlation
between TBACKOF F and media time for 802.11 n. This was, however, not observed
on our control system and therefore we have to conclude that our findings are too
inconclusive, with a saving clause that the experiment shows promise.

46 Discussion and Future Work

although

Figure 6.1: Our model reimplementation compared to values ex-
tracted from the original paper under similar network condi-
tions.

6.2 The Felemban-Ekici Model
As it turned out, evaluating the usefulness of the Felemban-Ekici model was an
incredibly difficult endeavour. Unfortunately, the first step of the thesis – gath-
ering data to evaluate the model with – turned out to be the real challenge, and
challenging problems have their own lure – they hook you in until they are solved,
or, as in our case, time runs out.

To our disappointment, we could not discover any combination of parameters
in our re-implementation of the Felemban-Ekici model which resulted in similar
throughput and access delay results as the original paper. As seen in Figure 6.1,
we could, however, accurately implement the conditional packet collision P .

To put this into perspective, at rougly 50 connected clients the conditional
packet collision probability reaches 40%, which results in a 0.4L+1 ≈ 0.06% prob-
ability to fail transmission L + 1 times and drop a packet. At 20 clients, which is
what we used during experiment 3, this falls to 0.27L+1 ≈ 0.003%.

Since clients are assumed to be identical, the packet drop probability for one
client and full network are equivalent. In Figure 6.2 we show the total number
of tx_fails (as reported to the kernel) relative to the total number of packets
transmitted, for 802.11 n. Data from 802.11 ac is shown in Figure 6.3. As seen
directly, the clients have a problem staying connected to the network throughout
the 802.11 n test (indicated by lack of plots) and only few or no packet drops were
detected. The 802.11 ac test, however, hovers around the 0.003, a full two orders
of magnitude larger than the model’s estimated 0.003%.

Finally, we tried to rescale and normalize the throughput by assuming that

Discussion and Future Work 47

Figure 6.2: Empirically obtained packet drop probability for 802.11
n.

the model was true. The model estimates about that at N = 5, normalized
throughput is at 68%, which puts channel capacity at throughput

0.68 . Figures 6.4
and 6.5 show the (rescaled) normalized network throughput (using the computed
channel capacity), for varying N and payload size. In both figures, the cyan curve
show the normalized throughput obtained from the Felemban-Ekici paper with 1
KB payload at 1 Mbps (over 802.11 n).

Figure 6.4 (802.11 n) shows an expected behavior. Larger payload sizes have
higher relative utilization and roughly follow the Felemban-Ekici curve. Lower
payload sizes fall behind very fast. This hints at a weakness in the model regarding
different traffic flows.

Seemingly in opposition, Figure 6.4 appears to imply that smaller payload
sizes incur no penalty as N increases. Figure 5.4 reveals why, the throughput is
already incredibly low. Moving on, the larger payload sizes show similar curves
compared to 802.11 n.

In conclusion, we cannot determine whether the predicted conditional packet
collision probability is correct or not. Although the model appears to predict
network throughput degredation as the number of connected nodes increase, it’s
certainly not an apples to apples comparison. Our 802.11n network was mostly
stable at 72.2 (for raspberri pi 4’s) and 200 Mbps on 802.11 ac, quite different
than model’s 1 Mbps channel. As we could not generate normalized throughput
values from our reimplementation we cannot know what the output of the model
would have been for our network configurations.

48 Discussion and Future Work

Figure 6.3: Empirically obtained packet drop probability for 802.11
ac.

Discussion and Future Work 49

Figure 6.4: Rescaled, (measured) normalized network throughput
for 802.11 n compared with Felemban-Ekici.

50 Discussion and Future Work

Figure 6.5: Rescaled, (measured) normalized network throughput
during 802.11 ac compared with Felemban-Ekici.

Discussion and Future Work 51

6.3 Future work
• As seen in the network overview (Figure 2.4) and noticed during experiment

2, system call overhead and the userland/kernel split have serious implica-
tions for latency-sensative measurements. An area worth exploring is known
as “userland networking” – a technique common in high-performance packet
processing in which a userland application is allowed exclusive access of a
network device. Bypassing the kernel removes potential bottlenecks such
as context switches, memory allocation and copying, scheduling and mul-
tithreading. In theory, this technique can reduce the number of system
calls of an application. More importantly, such an application can design
the communication between NIC and userland as a ring buffer, eliminating
the cost associated with memory allocation and deallocation experienced in
Experiment 2 (the unknown number of to-be-freed packets).

• An alternative approach to bypassing the kernel, is to bring the userland
program into the kernel. The Berkley Packet Filter (BPF) is a register-based
filter evaluator designed for packet filtering [11]. It has since been extended
and redesigned under the “extended BPF” (eBPF) moniker as an in-kernel
virtual machine with filters, taps and hooks all over the kernel. In short,
the eBPF machine can run arbitrary code inside the kernel, triggered by
specific events. In theory, this should allow for more accurate measurement
of the packet transmission process.

• Continuing on the started path with a modified Wi-Fi driver, it would be
useful to also perform similar tests where the jana server also has to reply
back to the clients. These tests should more closely mimic the TCP protocol
upon which most of today’s networking rely. Measuring the round trip time
(RTT) of packets and comparing the measured values with a modeled RTT (
based on IEEE 802.11 and TCP) could also lead to some interesting results.

• And as is common practice today: when in doubt, throw machine learn-
ing at the problem. While machine learning cannot enable more accurate
measurements, a machine-learning model could be trained to predict net-
work behaviour based on a large set of collected and labeled (as in, metric
X indicate outcome Y) metrics. A model may also be constructed for de-
termining possible user-friendly interventions (move device closer to router,
the channel is currently observing heavy interference so switch channel),
however an expert system (guided by real-time metrics) would probably be
sufficient. The system could be designed to run on each device (distributed)
or on a trusted machine (centralised). A centralised machine would have
more information to act on when issuing interventions back to users and,
potentially, directly to the Wi-Fi routers. Such a system could easily be ex-
tended to record the outcome of any interventions (e.g. significantly better
or worse), possibly allowing for collection of data for unsupervised machine
learning.
During our thesis work we were able to identify several interesting metrics,
available from ubus, such as number of connected clients, neighbouring net-
work data, medium availability, TX/RX PHY rates, RSSI, glitches and RTS

52 Discussion and Future Work

settings. See https://github.com/smeets/thesis/blob/master/paramlist.
md for more parameters and their descriptions.

6.4 Closing remarks & thoughts
This thesis primarily indicates that it currently is and most probably will become
increasingly difficult to evaluate and use existing models for practical Wi-Fi equip-
ment. As the IEEE 802.11 specification evolves, new Wi-Fi routers will have new
implementations and new features. At least, there are probably fewer chipset mak-
ers than router equipment manufacturers, so the expected variance (of the chipset
and driver) of these future devices should be similar to today’s devices.

Our attempts to obtain highly accurate packet timing data also show that
it requires a non-trivial amount of effort. It seems more likely that an overall
measurement using ML/AI system is easier to obtain for helping customers with
their routers than trying to develop a system that works from the inside out as
there are too many gaps between model and physical reality.

However, there is a kind of natural elegance to the way the Bianchi (and sub-
sequent models) approach network performance. By focusing on the (assumed)
bottleneck–the Distributed Coordination Function–most of the recent improve-
ments in throughput (e.g. batching, MI/MO, multi-user MI/MO) can simply be
abstracted as channel capacity (which can be reliably sampled from the driver).
In addition to this versatile way of modelling different performance features, the
models have excellent performance in Wi-Fi simulations. We therefore believe that
is is important to construct a functional implementation– which we weren’t able
to do–and run experiments in consumer networks.

References

[1] Ieee standard for wireless lan medium access control (mac) and physical layer
(phy) specifications. IEEE Std 802.11-1997, pages 1–445, Nov 1997.

[2] Ieee standard for information technology– local and metropolitan area
networks– specific requirements– part 11: Wireless lan medium access control
(mac)and physical layer (phy) specifications amendment 5: Enhancements for
higher throughput. IEEE Std 802.11n-2009 (Amendment to IEEE Std 802.11-
2007 as amended by IEEE Std 802.11k-2008, IEEE Std 802.11r-2008, IEEE
Std 802.11y-2008, and IEEE Std 802.11w-2009), pages 1–565, Oct 2009.

[3] Ieee standard for information technology– telecommunications and informa-
tion exchange between systemslocal and metropolitan area networks– specific
requirements–part 11: Wireless lan medium access control (mac) and phys-
ical layer (phy) specifications–amendment 4: Enhancements for very high
throughput for operation in bands below 6 ghz. IEEE Std 802.11ac-2013
(Amendment to IEEE Std 802.11-2012, as amended by IEEE Std 802.11ae-
2012, IEEE Std 802.11aa-2012, and IEEE Std 802.11ad-2012), pages 1–425,
Dec 2013.

[4] G. Bianchi. Performance analysis of the ieee 802.11 distributed coordination
function. IEEE Journal on Selected Areas in Communications, 18(3):535–547,
2000.

[5] P. Chatzimisios, A. C. Boucouvalas, and V. Vitsas. Ieee 802.11 packet delay-a
finite retry limit analysis. In GLOBECOM ’03. IEEE Global Telecommuni-
cations Conference (IEEE Cat. No.03CH37489), volume 2, pages 950–954
Vol.2, Dec 2003.

[6] E. Felemban and E. Ekici. Single hop ieee 802.11 dcf analysis revisited: Ac-
curate modeling of channel access delay and throughput for saturated and
unsaturated traffic cases,. IEEE Transactions on Wireless Communications,
10(10):3256–3266, 2011.

[7] G. Lui, T. Gallagher, B. Li, A. G. Dempster and C. Rizos. Differences in rssi
readings made by different wi-fi chipsets: A limitation of wlan localization.
International Conference on Localization and GNSS (ICL-GNSS), pages 53–
57, 2011.

53

54 References

[8] Haitao Wu, Yong Peng, Keping Long, Shiduan Cheng, and Jian Ma. Per-
formance of reliable transport protocol over ieee 802.11 wireless lan: analysis
and enhancement. In Proceedings.Twenty-First Annual Joint Conference of
the IEEE Computer and Communications Societies, volume 2, pages 599–607
vol.2, June 2002.

[9] Greg Kroah-Hartman Jonathan Corbet, Alessandro Rubini. Linux Device
Drivers, 3rd edition. O’Reilly Media, 2005.

[10] The kernel development community. The Linux Kernel/Linux Net-
working Documentation. https://www.kernel.org/doc/html/latest/
networking/index.html, 2019. [Online; accessed 15-May-2019].

[11] Steven McCanne and Van Jacobson. The bsd packet filter: A new architecture
for user-level packet capture. In Proceedings of the USENIX Winter 1993
Conference Proceedings on USENIX Winter 1993 Conference Proceedings,
USENIX’93, page 2, USA, 1993. USENIX Association.

[12] packagecloud. Monitoring and Tuning the Linux Networking Stack:
Sending Data. https://blog.packagecloud.io/eng/2017/02/06/
monitoring-tuning-linux-networking-stack-sending-data/, 2017.
[Online; accessed 15-May-2019].

[13] E. Smith. Global broadband and wlan (wi-fi) networked households forecast
2009-2018. Strategy Analytics, 2014.

[14] Yang Xiao. Performance analysis of priority schemes for ieee 802.11 and
ieee 802.11e wireless lans. IEEE Transactions on Wireless Communications,
4(4):1506–1515, July 2005.

[15] Liang Zhang, Yantai Shu, Oliver W. W. Yang, and Guang-Hong Wang. Study
of medium access delay in ieee 802.11 wireless networks. IEICE Transactions,
89-B:1284–1293, 04 2006.

[16] Huan Zhou, Hui Wang, and Xiuhua Li. A survey on mobile data offloading
technologies. IEEE Access, PP:1–1, 01 2018.

1 import math
2 import numpy as np
3
4 from scipy. special import binom as binomial
5 from numpy. linalg import norm
6
7 """
8 Solve the steady state via the power method .
9 """

10 def solve_steady_state (pi , epsilon =1e-8, max_iter =1 e5):
11 P = pi.T
12 size = P.shape [0]
13 A = np.zeros(size)
14 A[0] = 1

References 55

15 i = 0
16
17 while True:
18 A1 = P.dot(A)
19 A = P.dot(A1)
20
21 n = norm(A - A1 , 1)
22 i += 1
23 if n <= epsilon or i >= max_iter :
24 return A
25
26 def suml(fn , limits):
27 lo , hi = limits
28 val = 0
29 for i in range(lo , hi +1):
30 val = val + fn(i)
31 return val
32
33 class Felemban ():
34 """
35 Felemban distributed coordination function model.
36
37 from models . felemban import Felemban
38 x = Felemban ()
39 x.setup (*x. compute ())
40 x. simulate ()
41 """
42 def __init__ (self , L=7, N=3):
43 self.L = L
44 self.N = N
45 self. setup (tau =0, P=0, Pf =0)
46
47 def setup (self , tau , P, Pf):
48 """
49 Set model parameters .
50 Parameters can be derived from the compute

method .
51
52 Keyword arguments :
53 tau -- packet transmission probability
54 P -- packed dropped probability
55 Pf -- packet freeze probability
56 """
57
58 self.tau = tau
59 self.P = P
60 self.Pf = Pf

56 References

61
62 def compute (self , tau0 =0.0 , epsilon =1e-6,
63 CW_min =32, CW_max =1024) :
64 """
65 Calculate model parameters iteratively .
66
67 Keyword arguments :
68 tau0 -- initial guess for tau (0 < tau0 < 1,

default 0.0)
69 epsilon -- desired precision (default 1e -6)
70 CW_min -- ieee specified congestion window (

default =32)
71 CW_max -- ieee specified congestion window (

default =1024)
72 """
73
74 # Pe is defined to be 1 in the paper
75 pe = 1
76
77 # IEEE specification
78 m = int(math.log(CW_max /CW_min , 2))
79
80 L = self.L
81 N = self.N
82
83 # guess initial value of tau
84 tau = tau0
85
86 # alpha is specified in paper to 0.5
87 alpha = 0.5
88
89 def W(j):
90 assert (j >= 0)
91 assert (j <= L)
92 return 2**j* CW_min if j < m else CW_max
93
94 # Equation (6)
95 def Q(n):
96 return binomial (N-1, n) * (tau **n) * (1 -

tau)**(N - n - 1)
97
98 while True:
99 # Equation (2) - aka. p_tau (tau ,)

100 P = 1 - (1 - tau) ** (N - 1)
101 Pdrop = P**(L+1)
102 if Pdrop == 1:
103 print("warn␣Pdrop =1,␣tau ={},␣P={}\n".

References 57

format (tau , P))
104
105 pei = (1 - tau)**(N -1)
106
107 # Equation (3)
108 pes = binomial (N-1, 1) * tau * (1 - tau)**(N

-2)
109 pec = 1 - pei - pes
110
111 pss = 1/W(0)
112 psi = 1 - pss
113
114 # Equation (8)
115 CW_avg = suml(
116 lambda i: (1-P) * (P**i) * W(i)/(1- Pdrop

),
117 (0, L))
118
119 # Equation (7)
120 pci = suml(lambda n: Q(n) * (1 - 1/ CW_avg)**

n, (2, N -1))
121
122 # Equation (9)
123 pcs = suml(
124 lambda n: Q(n) * n * (1/ CW_avg) * (1 -

1/ CW_avg)**(n -1) ,
125 (2, N -1))
126
127 pcc = 1 - pci - pcs
128
129 # Equation (10)
130 pi = np.array ([
131 [pei , pes , pec],
132 [psi , pss , 0],
133 [pci , pcs , pcc]
134])
135
136 # A = [Pi Ps Pc]
137 A = solve_steady_state (pi , epsilon)
138 PI = A[0]
139
140 # Equation (4)
141 Pd = PI * pe
142
143 # Equation (5)
144 Pf = 1 - Pd
145

58 References

146 # Equation (1)
147 # tau_newp =(1 - P**(L+1)) / ((1 - P) * sum

([1 + (1/(1 - Pf)) * sum ([(W(j) - k)/W(j)
for k in range (1,W(j))]) * P**j for j in
range (0,L+1)]))

148 tau_new = (1 - P**(L+1)) / ((1 - P) * suml(
149 lambda j: (1 + (1/(1 - Pf)) * suml(
150 lambda k: (W(j) - k)/W(j),
151 (1, W(j) -1))
152) * P**j,
153 (0, L)))
154
155 # tau_i = alpha *tau_{i -1} + (1- alpha) *

tau_new
156 tau_old = tau
157 tau = alpha * tau_old + (1 - alpha) *

tau_new
158 if abs(tau - tau_old) <= epsilon :
159 break
160
161 return tau , P, Pf
162
163 def U(self , bps =1e6 , access_mode ="basic", payload

=8192 ,
164 slot_idle =50):
165 """
166 Normalized channel throughput .
167
168 Keyword arguments :
169 bps -- channel bit rate in bits per second (

default =1 Mbps)
170 access_mode -- either " basic " or "rts" (default

=" basic ")
171 payload -- packet payload , in bits (default

=8192)
172 slot_idle -- idle slot time , in microseconds (

default =50)
173 """
174 channel_bit_rate = bps
175
176 # IEEE frame sizes
177 MAC = 272 * 8 # bits
178 PHY = 128 * 8 # bits
179 ACK = 112 * 8 + PHY # bits
180 RTS = 160 * 8 + PHY # bits
181 CTS = 112 * 8 + PHY # bits
182

References 59

183 # IEEE guard times
184 DIFS = 128*1e -6 # s
185 SIFS = 28*1e-6 # s
186
187 # Transmission duration of RTS , CTS and ACK

packets
188 TRTS = RTS / channel_bit_rate # s
189 TCTS = CTS / channel_bit_rate # s
190 TACK = ACK / channel_bit_rate # s
191
192 # P(channel is busy)
193 Pb = 1 - (1 - self.tau)** self.N
194
195 # P(begin successful transmission)
196 Ps = self.N*self.tau *(1 - self.tau)**(self.N -1)
197
198 # Transmission duration of headers
199 Th = (MAC + PHY) / channel_bit_rate # s
200
201 # Transmission duration of payload
202 Tp = payload / channel_bit_rate # s
203
204 # Duration of idle time slot
205 Ti = slot_idle *1e-6 # s
206
207 if access_mode == "rts":
208 # use rts/cts access mechanism
209 Ts = DIFS + TRTS + SIFS + TCTS + SIFS + Th +

Tp + SIFS + TACK
210 Tc = DIFS + TRTS + SIFS + TCTS
211 elif access_mode == " basic ":
212 # basic access mechanism
213 Ts = Tc = DIFS + Th + Tp + SIFS + TACK
214 else:
215 # wat
216 pass
217 print("Pb ={}\ nPs ={}\ nTh ={}\ nTp ={}\ nTi ={}\n".

format (Pb , Ps , Th , Tp , Ti))
218 return (Ps*Tp)/((Ps*Ts) + (Pb -Ps)*Tc + (1-Pb)*Ti

)
219
220 def print_stats (self):
221 P = 1 - (1 - self.tau) ** (self.N - 1)
222 print("N={},␣tau ={} ,␣P={}\n". format (self.N, self

.tau , P))
223
224 for N in range (5 ,70 ,5):

60 References

225 x = Felemban (N=N, L=7)
226 x.setup (*x. compute ())
227 x. print_stats ()

Listing 1: Felemban-Ekici model implementation

Experiments in Obtaining Network Data For
Evaluation of Wi-Fi Performance Models

AXEL SMEETS
MASTER´S THESIS
DEPARTMENT OF ELECTRICAL AND INFORMATION TECHNOLOGY
FACULTY OF ENGINEERING | LTH | LUND UNIVERSITY

Printed by Tryckeriet i E-huset, Lund 2021

A
X

EL SM
EETS

Experim
ents in O

btaining N
etw

ork D
ata For Evaluation of W

i-Fi Perform
ance M

odels
LU

N
D

 2021

Series of Master’s theses
Department of Electrical and Information Technology

LU/LTH-EIT 2021-813
http://www.eit.lth.se

