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Abstract 
Is it possible to increase traffic flows and decrease stand stills in rush hour 
traffic by tweaking existing traffic light signals? A vehicle’s engine running 
on idle is not useful in physical terms and emits unnecessary exhausts. By 
investigating and observing signal phase times on site in Hangzhou, China, 
an effort was made to find out if it was possible to get better flow and thus 
lower emissions by changing the traffic signal programs. The Simulation of 
Urban MObility suite developed by the German Aerospace center, DLR, was 
used to simulate traffic. Three scenarios were simulated. Scenario one tried 
to find better and smoother flow by reducing the duration of the traffic signals’ 
phase times. Scenario two allowed both extended and reduced signal phases. 
Scenario three was based on already existing signal phase times. The findings 
will show that it is possible to obtain increased throughput of vehicles if some 
green signal phases and thus cycle times are shortened. This translates as 
shorter time spent in congested traffic, which results in lower emissions per 
vehicle. 
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Figure 0.1. The authors flanking Hanshan Shao ( .

 

Anders Holmberg (  

Louise Brandt ( ) 

 
Figure 0.2. The Logotype of the City of Hangzhou, Zhejiang, China.  

The Hangzhou logotype shown in Figure 0.2 was widely seen on public 
transportation and across the city in 2018 and 2019. 
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1 Introduction 
Large cities across the world suffer from rush hour traffic, meaning streets 
fully saturated where cars are mostly standing still in a bumper-to-bumper 
position. In a vehicle without engine auto-stop1 drivers do not tend to kill the 
engine while at a full stop, even if it lasts several minutes, resulting in a 
wasteful idle time for the car’s engine. This reasoning is based on fossil fuel 
driven vehicles. 

Unnecessary combustion outlets, whether fully combusted or not, 
worsens the negative impact that cars have on human health and on our 
climate. The question is if it is possible to create smoother traffic flow, thus 
reducing idle running time, by using a city’s already existing fixed-time 
traffic signal infrastructure? 

1.1 Background 
This project is an initiative of two students who on different occasions took 
part in a course about queuing systems. 

Much research has been done about traffic congestion since cities are 
growing all over the world. There exist clear frameworks on how to best build 
road networks and how regulating traffic should be done. In Sweden road 
constructors use TRVMB [1]. One of these traffic signal regulations is the 
“green wave”, which simply gives green light to traffic on a certain route 
utilizing interconnected traffic signals that change according to the approach 
of vehicles. Thus, making that route a priority at its consecutive intersections. 

There exist such things as “intelligent” traffic signal systems, like the 
Adaptive Traffic Control System (ATCS) [2], which is a traffic management 
strategy in which traffic signal timing changes, or adapts, based on actual 
traffic demand. In the USA systems like the ATCS have been deployed on 
less than 1% of the country’s existing traffic signals. 

It is fair to say that most or a great deal of existing traffic signals usually 
function according to local information. 

It is not known to the authors if it is possible to, either via time settings 
or via a remote device, impose control on the light phases of ordinary traffic 
signals. Such deployment is beyond the scope of this work, but it is most 
likely very accomplishable. Manually setting traffic signals to operate 

 
1 Automatically stops the engine from idling when the vehicle is stationary.  
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differently around the clock, would however be at a relatively low or no cost 
at all - assuming the traffic signals in an intersection have timing devices for 
different scenarios. 

By applying queuing theory on a rush hour traffic scenario, we want to 
find out if there exist realistic light phase settings that will create a nearly 
constant flow of traffic in a system of signal regulated intersections. For this 
we assume that traffic signals can be set to act according to a certain phase 
pattern either by a manually preset time setting or via remote control. Should 
we find this to be true, then the next question is if such a queue system is 
scalable to operate on a complete city. 

Is it possible to control the traffic flow on a large number of streets merely 
by the use of traffic signals that operate with respect to local data only? Well, 
in one way this is what actually happens on an even larger scale inside the 
world wide web, where routers and servers act as traffic signals. These routers 
and servers by default know nothing more than which is its closest 
neighboring server or router. Still the web functions well. 

1.2 Purpose 
The overall purpose is to find a simple way to reduce unnecessary emissions 
by using infrastructure already in place, namely the traffic signals. By 
creating a model that corresponds to a geographical part of Hangzhou’s road 
network, the aim is to simulate different scenarios for that specific area. As 
previously mentioned there already exist some traffic signal regulators that 
are supposed to reduce traffic congestions. The aim for this thesis is to see 
whether it is possible to reduce the idle waiting time for the chosen area by 
simulating different traffic light cycle times and compare the result to the 
actual traffic signal time phases that are being used. If the theory proves to be 
successful, this can help reduce the idle time for thousands of fossil driven 
vehicles and reduce the emissions from incomplete combustions, besides the 
obvious reduced time spent in urban traffic congestions. In a global 
perspective it is known that fossil fueled vehicles have a negative impact on 
the climate and that they also form serious health hazards. Therefore, the final 
goal and what fuels the authors is to reduce this negative impact. 

In this project the open-source traffic simulation program SUMO [3] is 
used to build scenarios according to the traffic observations made at one of 
the city’s areas which regularly has traffic congestion. To produce a basis for 
simulation, one must export geographical data from OpenStreetMap [4] and 
run a few premade Python scripts on it. In short, the processing is done by 
applying some logical rules. Depending on how detailed the maps are, the 
critical data needs to be corrected manually. In this case this required a visit 
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to the geographical location to collect data on signal phase times, speed limits, 
amount and types of vehicles and other local parameters that are not shown 
on OpenStreetMap. In this aspect it was crucial to detect which routes are 
used by what type of vehicles. The simulation itself is microscopic which 
means each vehicle and its dynamics are modeled individually. The 
simulation itself can be visualized on a very detailed graphical user interface. 

1.3 Goal 
The goal is to see if the traffic flow for an area in Hangzhou can be optimized 
by changing the traffic signal programs. The results will be obtained by 
comparing calculated vehicles for the different scenarios to the currently 
existing traffic signal programs. 

1.4 Problem 
There may exist many ways to try to increase traffic flows. Here we deemed 
it reasonable to look at the existing traffic signal programs and try to optimize 
it. Hence, we created an algorithm to calculate two traffic signal programs 
and compare their results with the existing program to answer the following 
questions. 

 Is it possible to increase traffic flow through the system? 

 Is it possible to reduce idling time for traffic in this area? 

 Will the algorithm come up with a better signal-regulation solution 
for optimizing the flow of traffic than the current traffic signal 
program? 

1.5 Motivation of thesis 
After attending a course on queueing systems, we saw a resemblance with 
cars queuing at traffic light regulated road networks. This gave us an idea to 
try to alter traffic light phases in order to get optimal flow. 

Much research has previously been done on traffic congestion and usage 
of traffic lights. See Section 1.7. Previous work on similar subjects, for more 
details. This thesis is based on a case study and usage of SUMO simulations 
to test how these calculated scenarios would work in a real-life environment. 
This differs from the previous thesis that has been reviewed. 
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1.6 Demarcation
The theoretical model is restricted to the six largest intersections, shown in
Figure 1.1 of the area because they are interconnected as well as having 
entries and exits to the system. In the SUMO model all intersections are 
implemented, i.e., 10 working traffic light intersections (TLI) as well as the 
3 separate pedestrian crossings and all other non-controlled intersections. 
Thus 6 intersections are modelled with 14 internal directions and 9 roads with 
bidirectional traffic going into and out of the system. This is a rough 
estimation, because there are at least double the number of entries and exits 
to and from this area.

Note that there may exist more lanes along the streets than is the case 
with their entrances. This is ignored in the theoretical model. Restrictions for 
the simulation model were made to omit smaller streets within residential 
areas.

Figure 1.1 The six TLIs in the reduced model.

1.7 Previous work on similar subjects
One of the most fundamental papers regarding traffic signals was written by 
F.V Webster back in 1957 [5]. It brought up the topic of how to determine 
the delay at traffic signals as well as how to determine the green time. The 
article is based on calculations, observations, and simulations for three 
intersections in London. It clearly describes how to perform calculations to 
reduce the delay and how to adjust the calculations based on the situation that 
may occur before the crossing. The calculations are based on actual flow, 
saturated flow and time cycles for the traffic signal system. With the collected 
data they came up with a formula nowadays being referred to as Webster’s 
minimum delay optimal cycle length formula. The paper and the approaches 
used in this paper is still very up to date.
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The Swedish traffic authority, Trafikverket [1] published a document in 
2013 that is supposed to be used as a guide for traffic planning in Sweden. It 
is based on earlier published research and is performed to describe and help 
solve capacity and accessibility issues in the road network. This document 
goes into detail how to calculate the minimum green time, the cycle time of 
the traffic signal, how to calculate the minimum crossing time for pedestrians 
and so forth. Webster’s formula is also referred to here when calculating the 
cycle time. It is of interest to this case study as a means of comparison when 
viewing the simulation results. 

There have been case studies carried out in both Florida, United States 
and in Beijing, China that have studied similar questions as us. Their main 
questions being similar to ours but their approaches being different. 
Simulation study of mixed traffic in China- a practice in Beijing [6] focused 
on how to use simulation software, Vissim, to create a realistic traffic model 
and then use optimized traffic signals as well as changing the original lane 
turning directions to increase the traffic flow in the model to reduce the travel 
time. 

The case study in Florida, Modeling Signalized Intersection Using 
Queuing Theory [7], focused on two approaches. One using queue theory to 
try to increase the throughput of the system by increasing the green time and 
by that also decreasing the waiting time for the traffic. The other being the 
effect of increasing the number of lanes. This study had more of a theoretical 
approach without the use of simulations. 

When doing research for what previous work has been done on traffic 
signal systems, we noticed that most of what we came across were for series 
connected road networks. The location that this case study is carried out in is 
more complex with a parallel road network. The choice of simulation tool is 
also different compared to the more well-known and older TRANSYT and 
PTV Vissim that the two case studies above have used. PTV Vissim is a 
microscopic simulation software, while TRANSYT is a macroscopic 
simulation software, where the traffic flow is the basic entity.
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2 Technical background and methodology 
After a course in Queuing Systems, an idea arose of resolving traffic 
congestions by changing the time phases of traffic signals within such an area. 
This idea came from looking at the phenomenon as a deterministic queueing 
network, where an intersection is a server node and time with green light is 
related to the service time. 

Reading earlier studies on traffic congestion revealed that it was a 
research area at the Department of Automatic Control at Lund Institute of 
Technology. One person at the department offered himself to become 
supervisor of this thesis, but since the work would interfere with his PhD 
thesis work, he withdrew his offer. He did however present some valuable 
angles of approach and suggested the SUMO simulation software to be a good 
choice of tool. 

2.1 Thesis fundamentals 
The authors have identified the following buildings blocks as fundamental in 
order to compile this thesis.  

2.1.1 Sampling of real TLS phase times  

The collection of traffic signal phase times on location in Hangzhou, China, 
is further described in section 2.3 Field work (data gathering). The 
compilation and analysis of the sampled data is described in Section 2.4 Data 
analysis. 

2.1.2 Calculate optimal traffic flow  

Section 2.5 Optimizing TLS phase times, explains the approach how to find a 
balance between resolving a traffic jam through evacuation of vehicles on 
streets and still having a comparatively steady flow among regulated streets. 

2.1.3 Create a simulation model  

Section 2.6 Simulation with SUMO, briefly explains how to build a network 
model and how to simulate road traffic by using SUMO simulation software. 
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2.1.4 Simulation of road traffic flow 

To control the simulations, detect values and compile data Python code has 
been used, which is briefly explained in Section 2.7 TraCI. 

2.1.5 Analysis, results, discussion and conclusion 

The simulations revealed a few things worth mentioning, which are covered 
in the Sections 3 Analysis, followed by the compiled results in Section 4 
Results. An elaboration based on the results is made in Section 0 Discussion. 
Finally, the answers to the original questions from Section 1.4. Problem is 
presented and further elaborated in Section 1 Conclusion. 

2.2 Preparations 
During the fall semester of 2012 the authors were students at Zhejiang 
University in Hangzhou, China. It came naturally to try to revisit the city and 
apply queueing theory there. A 10-week stay in Hangzhou during the time 
period December of 2018 - February of 2019 was planned. 

Professor Charlotta Johnsson is once more acknowledged for assisting in 
getting contact with and finding the important reference person needed in 
order to register as students at ZJU. Back in 2012 Professor Johnsson was 
collaborating with ZJU on location in Hangzhou and participated on an 
information meeting at the beginning of the autumn semester. Professor 
Johnsson helped us by contacting her Chinese colleague, Professor Hongye 
Su, who appointed one of his postgraduates, Hanshan Shao, to be our contact 
person. Mr Shao helped with preparing lodging inside ZJU:s Yuquan campus. 
Professor Hongye issued an official university invitation in order to obtain 
student visas. Luckily some vacant rooms on Yuquan Campus were found for 
us, due to other foreign students leaving campus at the end of each year. 

Before leaving for China and to get an idea of necessary equipment and 
work approach, three consecutive days (including a hotel stay) were spent 
around Södervärn in Malmö. 

A study in China requires time and money, to say the least. Therefore, 
two applications were made for a minor field study scholarship (MFS). They 
were both granted, which provided a welcomed financial help. An MFS 
scholarship imposes further restrictions such as a mandatory 3-day course at 
Sida2 in Härnösand. The preparation courses were attended in November 

 

2 Swedish International Development Cooperation Agency. 
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2018, each on two different occasions. After meeting at Shanghai airport on 
November 15, the authors continued by train to Hangzhou. 

2.3 Field work (data gathering) 
Before departure to China a shared Google Document folder was prepared. 
Therefore, a working Internet access was a key to this field work. But the 
solution including Google had to be abandoned in favor of Microsoft 
OneNote, Microsoft OneDrive and Microsoft Bing for online search. Google 
worked very poorly inside China. 

2.3.1 Start up 

“George” Xiaohang XU3 at the International College of ZJU gave the advice 
to buy student SIM-cards for an unlimited data traffic plan within the campus 
limits. This way the mobile phones can provide Internet access by sharing 
Wi-Fi to a laptop. The mobile phones were thus crucial instruments and 
without them the task would most likely be much harder. 

2.3.2 Course of action 

During the first couple of weeks, the data gathering consisted of sketches, 
general notes of findings and notes from measuring the time length of various 
traffic signals. The mobile phone’s built-in stopwatch was used. Figure 2.1 
and Figure 2.2 show examples of two of almost 50 sampling perspectives. 

 
3 Xiaohang XU was the contact person when Lund University held courses on ZJU 
Yuquan Campus. 
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Figure 2.1 View from a recording of the top western intersection S1.

It was often rainy and cold which made it a bit awkward to be accurate. 
Consequently, all intersections were later video recorded, still making use of 
our mobile phones. This way the data collection became more accurate and 
could be reviewed repeatedly. For the sake of the simulations a detailed map 
was needed. Therefore, parallel with data gathering a map for simulation was 
created manually from scratch.

Figure 2.2 View from a recording of the top eastern intersection S5.

2.4 Data analysis
From the recorded videos it was possible to acquire very accurate time 
measures for each signal phase from every traffic light intersection that were 
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documented. Many data tables were created from these details. For example, 
table 2.1 that shows a data table over the traffic light program at intersection 
S1.  

Video @ (s) Ns PxE ←/← ↑/↑ →/→ PxE/PxE 
0:25 -3 ← →  35/0 71/0 -3/34 74/0 
0:28 0 ← →  38/0 74/0 0/0 77/0 
1:26 58 ← →  96/0 132/0 58/0 135/0 
1:35 67 ← →  105/0 141/0 67/0 144/0 
1:45 77 ←   115/0 0/10 77/0 0/10 
2:02 94 ←   132/0 0/27 0/17 0/27 
2:05 97 ←   135/0 0/30 0/20 0/30 
2:11 103 ← →  141/0 -3/36 -3/26 0/36 
2:14 106 ← →  144/0 0/0 0/0 3/0 
2:39 131 ← →  0/25 25/0 25/0 28/0 
2:48 140 →  -2/34 34/0 34/0 37/0 
2:50 142 ← →  0/0 36/0 36/0 39/0 
2:51 143 ←   1/0 37/0 37/0 40/0 
3:25 177 ← →  35/0 71/0 -3/34 74/0 
3:28 180 ← →  38/0 74/0 0/0 77/0 

Table 2.1 Compilation of sampled signal phases for northbound traffic into 
intersection S1 and its eastern pedestrian crossing. 

The motto in Hangzhou was “better safe than sorry”. It would be regretful 
to later find out that every little detail of the chosen area was not mapped 
accurately. As a result, there now exist data regarding signal phases for 11 
intersections and three independent pedestrian crossings, intersection layouts, 
lane-configuration, street lengths, etc. In retrospect it can be established that 
the data gathering was too extensive. From the early start in this project, the 
approach was to find optimal signal phases with an analytic solution, like the 
one used for queueing systems. Then the idea of using SUMO to simulate 
different scenarios was introduced. This also meant that the authors, without 
any supervision or guidance, had to learn a completely new software and how 
to operate it. One benefit from that experience is an understanding of the 
principles of XML files which are used to feed SUMO. 

First while back in Sweden again, it was decided to reduce the number of 
traffic light intersections in the theoretical models to base the calculations 
upon. Basically, that means that this approach ignores traffic signals at the 
smaller intersection, as well as at the three pedestrian crossings. This model 



12 

 

subtracts the street distances these other places occupy at a red-light signal 
phase. For each intersection 50 m is deducted and for pedestrian crossings 12 
m. 

2.5  Optimizing TLS phase times 
In general terms road users are not interdependent of each other, whether they 
are motor vehicle drivers, bicyclists or pedestrians. Furthermore, it is 
normally not possible to predict at what time one road user will appear at a 
certain place in traffic. However, the number of all road users during a certain 
time period may be counted repeatedly, hence an average for any time period 
may be estimated. One could also argue that two members of the same group 
of road users, do not appear at the same place at the same time. Thus, vehicle 
arrivals in road traffic generally fulfills the criteria for a Poisson process. 

The Poisson process does not apply for areas where traffic becomes 
denser, ultimately forming a traffic jam and making a lane change 
consequently impossible to perform. Vehicles in the traffic lanes are like 
disposable cups in a cup holder, where the cups will be removed in order. 
When traffic moves like this and rely on a traffic signal, telling the driver 
when to move his or her vehicle in a certain direction, the process in such area 
is predictable or with another term deterministic. 

A jammed area with deterministic movements can grow, be stable or 
shrink. Outside such area there will be a zone to which vehicles arrive 
randomly like in a Poisson process and while slowing down, merge into the 
deterministic process. The circumference of this zone will typically grow or 
shrink over time to eventually cease to exist, has the jam been resolved. 

2.5.1 Computer code 

Most of the computer code is explained in the following sections. As a 
reference it is also found in the Appendix. However, all computer code is also 
found at: https://github.com/ada09aho/hangzhou. 

2.5.2 Algorithm 

An algorithm has been constructed in order to optimize dense traffic flow. 
MATLAB was chosen to perform that task. An analytical solution would 
probably result in an exact answer, but it is also more complex and much 
harder to grasp. Therefore, a numerical method was chosen to find out 
whether there exists a solution for evacuating traffic congested streets as 
smoothly and balanced as possible. What this algorithm does in short, is to 
create alternative settings of phase times, estimate the evacuation values of 
vehicles, compare all possible combinations of those values and their 
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respective variance value. From this the lowest possible value of standard 
deviation is found. 

The hypothesis is that the setting with lowest standard deviation 
regarding evacuation of vehicles, would perform the overall smoothest traffic 
flow. There is of course an awareness of that there may exist settings with 
lower average evacuation value than in the case with the lowest standard 
deviation value, but this would also mean higher traffic flow for some streets 
at the expense of traffic on the other streets. The following MATLAB code 
describes the algorithm schematically. 
Initialize matrices and parameters 

least = [1, 1] 

for s1 = 1:31 

  ... 

        ... 

            for s11 = 1:31 

              Z = (s1,s3,s5,s6,s9,s11) 

              [avgX, varX] = variation(X, Z, S, P, CI, C) 

              if varX < least(2) && avgX < 1 

                least = [avgX, varX] 

              end 

        ... 

  ... 

end 

disp('μ: ', least(1), 'd(μ): ', sqrt(least(2))) 

The very simplified pseudo code above symbolically shows the main 
feature of the algorithm, i.e., the six nested for loops in which the search for 
lowest average, avgX, and variance, varX, takes part and finally displaying 
it as μ and as d(μ). The general term for average is μ, and the standard 
deviation, d(μ), is expressed as , where V(μ) is the variance. 
The algorithm is further discussed throughout Section 2.5 Optimizing TLS 
phase times. 

All MATLAB code is shown in Section A.1 MATLAB code. 

2.5.3 Scenarios 

When simulating an alternative reality, a scenario with altered events plays 
out. A simulation scenario where the phase times from the G-matrix are left 
unaltered is here referred to as IRL, as in real life. G is also used as a notation 



14 

 

for IRL, which refers to a G-matrix containing all recorded phase times. G 
stands for green signal. The 100_33- and 50_150-scenario are alternatives 
with other variations of signal phases from the G-matrix. They are explained 
further in Section 2.5.11 Sets of cases. 

2.5.4 PCUs 

The concept of a passenger car unit, pcu is used. A pcu is of course the unit 
itself and is considered as an average car. A motorcycle is 0.4 - 0.5 pcu, being 
smaller than a car. A bus is approximately three pcu, since it is larger. This 
way one can model a system for pcus and make it valid for various 
combinations of all sorts of street vehicles. 

2.5.5 Mass of cars 

The starting scenario is all streets fully saturated by cars i.e., “bumper-to-
bumper” traffic to represent congestion during rush hours. From the map 
service at www.gaode.com one can see how traffic intensity in certain city 
areas get affected during hours and days of an average week. Figure 2.3 shows 
such traffic intensity map, where symbols for traffic light signals and 
pedestrian crossings have been superimposed. 

 
Figure 2.3. Road network of project area. Source: www.gaode.com 

Each street usually has parallel lanes. The number of lanes coming out of 
an adjacent intersection is a bottleneck which decides the possible flow of 
cars coming into that street. To calculate the number of cars coming into the 
intersection, we need the intermediate street length (see Figure 2.4), the 
number of lanes  at the street entry and a measurement of the vehicle’s 
density , .  . Here  is a 4x1-
matrix, which represents vehicles on streets from 4 directions.  
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Figure 2.4. The D-matrix with the distance of intermediate streets. 

Note that there may exist more lanes along the streets than is the case 
with their entrances. This is ignored in the model. Figure 2.5 shows , i.e., 
the calculated numbers of pcus that are possible to fit on each street. The 
values are not truncated, which they ought to be. The single 1 in column 3 
was put there manually, to avoid the original zero as a denominator. The 
values in C corresponds to prior vehicles in Section 2.5.18 Evacuation. 

 
Figure 2.5. The C-matrix with maximum numbers of pcus per street. 

Even if a street is fully saturated with vehicles, one still must consider 
some movements among cars and some safety space that each driver 
maintains around his or her vehicle. 150 % of the vehicle length may be a 
reasonable total road length used up by each vehicle, at least at a standstill 
and at slow speed. Some webpages gave information about Chinese 
passenger car lengths in the range 3.2 – 4.8 m, at the time the MATLAB 
algorithm was constructed. The average length tends to increase towards 
western standards over time. In January 2022 a rough estimate4 of the average 
Chinese passenger car length would be 4.2-4.5 m. This does not include larger 
SUVs and pickups, but well all tiny minivans. However, those and any sizes 
of trucks and buses can all be considered within the pcu concept. 

MATLAB calculations are based on an average car length of 4.0 m, 
which means every passenger car occupies a total of six m street lane length. 
For example, a three-lane 100 m long street would, with this reasoning, 
contain 50 passenger cars, i.e., pcus or any vehicle combination within this 
concept. This means 16 ⅔ cars per lane, which of course is difficult if each 
car is exactly four m long. But within this approach there are either 17 cars 
denser fitted in one lane or vehicles that have various lengths. Up to 21 cars 
may fit in a 100 m-lane within the pcu concept. 

 
4 https://en.wikipedia.org/wiki/Vehicle_size_class#China 
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2.5.6 Initial mass of cars

The green arrows in Figure 2.6 describes how the six TLIs are interconnected. 
Red arrows describe where traffic enters end exits the modelled system. This 
model is a rough estimation, since several minor streets exist as well.

Figure 2.6. Seven intermediate bidirectional roads of the system.

The -matrix symbolizes 14 street directions filled with cars. However, 
all streets have different lengths and number of lanes. Using the -columns 
would result in unfair comparison of the TLIs. Therefore, an initial distance 

for all incoming directions is set. So, in addition to there also 
is where is the TLI in question. Figure 2.7 shows the CI-
matrix.

Figure 2.7. Matrix CI with initial numbers of pcus.

2.5.7 Probabilities

Figure 2.8 shows a layout of the TLI S11, which is situated in the south-east 
corner of the modelled area intended for road traffic simulation. Beige 
colored fields are traffic lanes reserved for buses. In this case buses do not 
turn, and they move only from north to south and vice versa respectively.

Using classic probability, based on the notion that a great number of 
vehicles pass through over time, the number of incoming traffic lanes from 
one direction can specify what shares of the vehicles probable will make a 
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left turn, a U-turn, a right turn and will continue straight ahead. All such 
probability values can be gathered in a 4 x 4-matrix, here named . 

 
Figure 2.8. Traffic Light Intersection S11. 

To be consistent all over the model, directions are specified with the 
index numbers 1 for north, 2 for east, 3 for south and 4 for west. The 
probability for traffic from north (1), going straight forward, i.e., south (3), 
will be found at position in the matrix  and traffic from south (3) going 
to the west (4) will be in position  in . U-turns are found on the diagonal 
of . The formula for each index is:  

 

The probabilities for incoming traffic from north in S11 are explained as 
follows. Four lanes enter from north, i.e., index . No lane explicitly 
allows making U-turn, i.e., going back to the north or index . One lane 
is explicitly for left turns, which means . One lane allows both 
going straight to the south, , and turning left to the east, . This 
means that for this lane there are two values of probability, namely 

 and . Finally, there are two lanes from north that allow traffic 
going straight forward, a bus lane being one of them. For those two lanes the 
probability is . A right turn is not possible here, hence . 
Consequently, column 1 of the matrix P will be: , 
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,  and . The complete P-matrix 
for S11 is shown in Figure 2.9.  

 
Figure 2.9. The P-matrix for TLI S11. 

2.5.8 Phase times 

Traffic signals (TLS) usually consists of three different signal colors, red, 
yellow (or amber) and green for which the meaning may differ on various 
countries around the globe. The signals may also be combined in various 
ways. However, a single red light always means stop and a single green light 
always means go. 

While compiling fieldwork data it became obvious that the duration of a 
traffic signal was a multiple of three seconds. The duration for yellow signals 
were always three seconds long. A typical signal time length is , , 

 or  but not ,  s or  and so on. According to the Swedish 
regulation TRVMB [1] the shortest green light signal should be no less than 

, a rule which has been considered throughout the work. 
A phase time is the time period during which a signal is, or a combination 

of signals are lit. One signal may also be divided into multiple signal phases, 
e.g., when it is permitted to make a right turn in different combinations with 
other signals. In the MATLAB code phase times are stored in the G-matrix. 

The TLI S11 is a special case within the modelled system. The left matrix 
in Figure 2.14 represents the sampled phase times of S11. After the simulation 
process had begun and while correcting erroneous driving behaviors it was 
discovered that the traffic signals in this intersection must operate in a Round 
Robin style, i.e., where green signal is lit for traffic from only one direction 
at the time. The clue was given by the traffic lane arrows on the tarmac. This 
intersection is impossible to examine due to the fact it is an elevated non-
pedestrian zone. Originally it was assumed S11 operates in a case 1-2-3-4-
manner as explained in Section 2.5.9 Cases. 

2.5.9 Cases 

During a cycle time there are several signal phases, all of which occur at 
several different but chronologically ordered times. To minimize the number 
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of calculations, several signal phases were arranged according to these four
different cases.

Figure 2.10. The four cases of a TLI.

Figure 2.10 shows four different cases where traffic from and to specific 
directions are represented by red arrows, each corresponding to a green signal 
phase in each case. It is possible to combine a few other directions with the 
fixed cases. But none of the left turning cases 2 and 4 can be combined with 
traffic going straight forward in any direction. However, many cases must be 
combined with a right turn signal because the phase time for turning right 
often is longer than its equivalence for going straight ahead.

2.5.10 Binary truth table

Figure 2.11. A 4-bit binary truth table.

Have a look at the binary truth table in Figure 2.11. The values in column 
one represents case 1, i.e., traffic from north. Case 2, 3 and 4 are represented 
by column 2, 3 and 4 correspondingly. A truth table covers all possible 
configurations within its limits, which here is a 4-bit binary word. Having 
only two options per position, i.e., a 0 or a 1, the number of alternative 
configurations is or 16 in total. When the truth table acts as a matrix, it can 
be multiplied by a factor and a scalar can be added to it. Row number six in 
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Figure 2.11 is highlighted, because it relates to the example in Section 2.5.11
Sets of cases.

2.5.11 Sets of cases

Suppose that each case will contain three different sets of times phases. From 
the phase times in the G-matrix, the cases for scenario 50_150 can be 
constructed by letting one truth table represent the transition from 50 % of 
each phase time to 100 % of such time respectively. In addition, a second 
truth table that represent the transition from 100 % to 150 % must complete 
the example. The 1111-alternative for the range 50-100 % will coincide with 
the 0000-alternative for the range 100-150 %, thus it may be omitted, 
resulting in unique combinations. For the scenario 50_150 
MATLAB will basically produce a K-matrix with the following code:
K=[.5*i+.5; .5*i+1].

Figure 2.12. The truth table for scenario 50_150 split in two.

Figure 2.12 shows matrix K, separated into two 16x4-matrices and placed 
side by side. Note that position K(16,:) here appears twice. To understand 
the numbers, row 6 of this K-matrix is highlighted and taken as an example. 
Read the line such that all phase times in case 1 is to be multiplied by , in 
case 2 with , in case 3 with and in case 4 with .

Bear in mind that each representation of a case contains a set with several 
phase times in four directions. Therefore, each unique case is represented by 
a 4x4-matrix, where each index represents the phase time for traffic from 
direction to direction . One TLI is thus represented by a 4x4x31-matrix. To 
make it even more complex, a 4x4x31x6-matrix holds all the unique cases 
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for all six TLI for the MATLAB calculations. The MATLAB code constructs 
this and other matrices at start up and fetches and compares values during 
runtime. The observant reader may notice that there is a limitation within the 
same TLI, namely that the difference between phase times in a setting can 
never differ more than one step, i.e., either a combination of 0.5 and 1.0 or 
1.0 and 1.5.

The share values which to multiply with the binary truth table is the
crucial difference between scenario 50_150 and 100_33. For 100_33 the 
values in are either , or , i.e., 33.3, 66.7 or 100 %. This of 
course results in completely different phase time values in the 31 comparable 
sets of cases for each TLI.

Figure 2.13. Phase times setting 6 in S11 for 50_150.

When the MATLAB algorithm calls on X(:,:,6,6) it will get the 
matrix shown in Figure 2.13. This corresponds to the phase times in S11 and 
the four leftmost values on row 6, which were focused on in Figure 2.12. The 
four columns from left corresponds to traffic from north, from east, from 
south and from west. From the diagonal values there is no dedicated phase 
time for U-turn from any direction, which coincides with the intersection 
layout from Figure 2.8.

Figure 2.14. Phase times for S11 (left). Case 1 binary matrix (right).

To produce the phase time values in Figure 2.13 the following MATLAB 
operation is performed: G(:,21:24).*case1*K(6,1). The two 
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matrices in Figure 2.14 are multiplied elementwise and then with the scalar 
0.5 found in column 1 in row 6 of K (Figure 2.12). There are four case-
matrices that, when multiplied elementwise with a 4x4-portion of G, singles 
out the matrix values that corresponds to that case. When multiplied with its 
corresponding row and column value of K, a setting is compiled and put in 
the four-dimensional X-matrix. Values related to case 1 in Figure 2.13 and 
Figure 2.14 are highlighted. 

The purpose of having basically 6 libraries with 31 case settings is to 
facilitate for the algorithm to compare every possible combination during 
search for a better traffic flow. 

2.5.12 Cycle times 

A traffic light signals controlled intersection (TLI) is operating according to 
a beforehand decided pattern or cycles. Some intelligent TLIs equipped with 
ground sensors, though may skip one or multiple phases, based on the local 
traffic situation. Accordingly, a cycle is completed just before the TLS starts 
to repeat its programmed pattern. The time period for this is the cycle time. 
In the MATLAB code’s main algorithm cycle times are calculated and then 
put in S, a 31x6-matrix.  

As there are 31 different case combinations per TLI, there are also 
different cycle times along with those. Therefore, the S-matrix is a 31x6-
matrix containing all comparable cycle times. Figure 2.15 shows the general 
case of how to calculate the cycle time for each case setting (cs) and each TLI 
(tli) from a case matrix . In short, the formula adds together the longest 
phase times for going straight ahead with ditto for making left turns. 

 

 

Figure 2.15. Formula for calculating cycle time from an X-matrix. 

To find out the cycle time at case setting 6 for S11, which is examplified 
in Figure 2.13, the formula becomes: 
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2.5.13 Comparisons 

The method for finding best flow is a so called ‘brute force’ or ‘exhaustive 
search’ algorithm. As mentioned earlier the algorithm makes comparisons of 
estimated vehicle evacuations on system streets. 887,503,681 comparisons to 
be exact, which follows of it having  case settings. The modelled system 
has six TLIs, which in terms of computer code means implementing six 
nested for-statements, that each loop through its 31 indices. For each 
comparison all six indices are put in a 1x6-matrix, as 

, which is sent to the method for finding average and 
variance. One single run of the algorithm on a 10-year-old quad-core 
computer typically would consume 140,600 s, which means well over 39 h 
and roughly 6,300 comparisons per second. 

If all phase times had been split into four parts, the algorithm would have 
to deal with 9.5 billion iterations, which would take some 17 days to calculate. 
Instead, another numerical calculation was designed. Hence there are two 
numerical calculations, one with the levels 33.3 %, 66.7% and 100 % (100_33) 
and one with 50 %, 100 % and 150 % (50_150) of observed phase times. 

2.5.14 Ratios 

Each traffic lane direction in a TLI has a certain ratio of the complete cycle 
time, that is a quota of the phase time of that lane and the cycle time. A ratio 
matrix  is received simply by dividing each element of an -matrix with the 
scalar, , from the cycle time formula or as . 

This operation converts a time period of some seconds into a unitless 
fraction. However, the fraction represents the time from the case in question. 
To recreate the ratios for case 1 of the example in Figure 2.13 and Figure 2.14 
with MATLAB code, the following command can be run: 
R11_1=X(:,:,6,6).*case1/S(6,6). 

Figure 2.16 shows the resulting ratios for that case. Position (4,1) in 
R11_1 matrix is zero because turning west from north is not possible in S11. 
Figure 2.12 the complete R11-matrix for the case setting 6 above. 

 
Figure 2.16. Ratios of case 1, case setting 6, S11, scenario 50_150. 



24

Figure 2.17. All ratios in S11 at case setting 6 in scenario 50_150.

2.5.15 Incoming and outgoing

To obtain values for comparison, estimations of how many vehicles that 
can possibly enter and leave a street must be made. The main idea is to 
multiply the unitless probability, P, and ratio, R, with the initial mass of cars,
CI. This gets a value, TF, of the number of vehicles that have left one street 
lane and entered another street lane after the intersection. The MATLAB 
command is TF=P.*R.*CI, which performs elementwise multiplications. 

Figure 2.18. PCUs from north (left). PCUs to north (right).

The left part of Figure 2.18 shows traffic from north and the right part 
show traffic to the north. With respect to the intersection the sum of TF-values
of incoming lanes of one street, gives the number of vehicles leaving that 
street. The sum of TF-values from lanes that all enters the same street gives 
the number of vehicles entering that street. 

The whole operation is of course a rough estimation but being done in the 
same manner for all case settings. In the real world one must consider the law 
of inertia, driver’s response time and of course random obstructions in the 
form of pedestrians, bicycles, mopeds, and other vehicles. All values could 
have been multiplied by a factor to take the mentioned considerations into 
account. However, this would just be a linear down-scaling, resulting in the 
same results in the end.

Since the ratio, R, comes from dividing a phase time with a cycle time, 
the TF-values apply for the current cycle time. An estimation of flow, i.e., 
vehicles per second, would be to divide TF-values with the current cycle time 
from the S-matrix. This would get the average pcus per second in general and 
over a specified time period. To find out how many pcus that actually moves 
per second, one has to divide the TF-value sum from each street lane with the 



   
 

25 

 

phase time of that same lane individually. Note that this neither do consider 
the law of inertia, driver’s response time, and random obstructions. 

  

Figure 2.19. PR-matrix (left) and CI-matrix (right) for S11. 

By, for each TLI, multiplying the PR-matrix and the CI-matrix in two 
different ways the algorithm calculates time flow in (TFI) and time flow out 
(TFO). Figure 2.19 shows the PR- and CI-matrix for S11. 
 

2.5.16 Time flow in 

TFI is achieved by summing up each column of the PR-matrix to form a 1x4-
matrix, transposing it and then multiply it elementwise with the CI-matrix. 
The result is a 4x1-matrix. Figure 2.20 shows a MATLAB command to create 
TFI and the resulting 4x1-matrix, regarding the previous examples from S11. 

 
Figure 2.20. TFI for S11, case setting 6, scenario 50_150. 

2.5.17 Time flow out 

To get TFO, the PR-matrix and CI-matrix are multiplied. Figure 2.21 shows 
the MATLAB command and its resulting 4x1-matrix for the same example 
as with time flow in. 
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Figure 2.21. TFO for S11, case setting 6, scenario 50_150. 

2.5.18 Evacuation 

To estimate evacuation of vehicles, one must consider three amounts during 
a fixed time period, namely a) the number of vehicles on a street prior to a 
change, b) the number of vehicles going out of the street and c) the number 
of vehicles coming into the street. By dividing the sum of a, b and c with a, 
the quota will tell the degree of change and it helps to compare its evacuation 
with the other streets. A number less than 1 means an actual evacuation of 
vehicles and the opposite if the number is larger than 1. The rather simple 
formula for evacuation is: 

, where pcu refers to a personal 
car unit. The quota is unitless. The average of all evacuation quotas, , makes 
it possible to estimate the deviation, . 

TFI and TFO are 4x6-matrices built up from six consecutive calculations, 
which are done for every case setting. Next step is to estimate the evacuation. 
Given that TFO and TFI are ordered correct for the entire system, the formula 
for evacuation is in principle . However, that is not 
possible for several reasons, excessive information being one of them and 
matrix division rules being another reason. Therefore, firstly the TFO is 
rearranged into a new matrix, TFS, that can be reduced by TFI, i.e., where the 
street positions correspond to each other. Secondly a binary 4x6-matrix, SC, 
was used to single out the significant 14 streets. Thereafter it was possible for 
the algorithm to calculate an evacuation value by the following two rows of 
MATLAB code. 
DIFF = (TFS - TFI) .* SC; 
EVA = ((C + DIFF) ./ C) .* SC; 

2.5.19 Average evacuation and variance 

To find the average time flow and its variance the following four rows of 
MATLAB code was run before comparing it with the previous lowest value. 
The remarks are kept, due to their informative contents. 
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E = find(EVA); % finds indices of all nonzero elements 
WS = EVA(E); % column vector with nonzero values of EVA 
avgX = mean(WS); % mean value of WS 
varX = mean((WS-avgX).^2); % Variance of WS 

2.5.20 MATLAB plots 

For the sake of plotting the behavior of the algorithm a plot lists were made 
for each scenario. The matrix PLOTLIST has 29,791 rows and two columns. 
To avoid plotting some 887.5 million values, estimations via the average 
values of evacuations and variances were used. 29,791 values of each 
evacuation and variance were summed up and then the average value of the 
evacuations and the square root of the average variance values were saved, 
which were repeated also 29,791 times. As mentioned before the algorithm 
performs  iterations. This can also be written as  or 

 iterations. Figure 2.22 shows the average deviation in which a 
diagram of all the new smallest deviation values has been imposed. Figure 
2.23 shows the average evacuation values from PLOTLIST for scenario 
100_33. The corresponding plots for  scenario 50_150 are shown in Figure 
2.24 and Figure 2.25. The reason why scenario 50_150 finds the lowest 
deviation value in an earlier iteration index, is because it is run from 50 to 
150%, while the other scenario was run backwards, i.e., from 100 to 33.3%. 
However, both scenarios find the smallest deviation when 
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Figure 2.22. Lowest and average deviation for 100_33. 

 
Figure 2.23. Average evacuation in scenario 100_33. 
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Figure 2.24. Lowest and average deviation for 50_150. 

 
Figure 2.25. Average evacuation in scenario 50_150. 
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The matrix called TOP5DEV holds the top five lowest  and at what 
signal phase constellation. Below this paragraph are the TOP5DEV outputs 
for 100_to_33 and 50_to_150. The eight numbers on each row are from left: 
d(μ), Z and a plotindex. As earlier mentioned, Z contains the six index values 
of the nested for loops. Plotindex holds an x-value for plotting the found 
standard deviation values. Plotindex starts from zero and increases by one for 
every  comparison. 
100_to_33: 

0.0187926219180896 10  5 5 6 15 11 21013 

0.0190185897535813 10  5 5 6 15 26 21013 

0.0192886460232188 10  5 5 6 30 11 21013 

0.0193846127856764 10 20 5 6 15 11 20548 

0.0196039953793205 10 20 5 6 15 26 20548 

50_to_150: 

0.0187926219180896 10 5 5 6 15 11 8777 

0.0190911123177668 10 5 5 6  5 11 8777 

0.0191295710725981 10 5 5 5 15 11 8777 

0.0194100142013391 10 5 5 5  5 11 8777 

0.0199655055074297 10 5 5 5  5  1 8777 

Note that despite what interval that is fed into the algorithm, it homes in 
on the same value of deviation, , and at the same constellation, i.e., when 

. The approach differs because 100_to_33 was run from 
top to bottom and 50_to_150 was run from bottom to top of the constellation 
values held in . When this value of  was passed, no lower value of  
could be found - no matter in which direction the search was made. This is, 
however, logical. The 31 different constellations of each TLI are numbered 
from its lowest value and up. So, none of the values in  are over the middle, 
meaning below 67 % in 100_to_33 and below 100 % in 50_to_150. By 
checking corresponding rows in the matrix , one can interpret what the 
values in  mean. In the case of 100_to_33,  here is: 
10 - 0.67 0.33 0.33 0.67 

 5 - 0.33 0.67 0.33 0.33 

 5 - 0.33 0.67 0.33 0.33 

 6 - 0.33 0.67 0.33 0.67 

15 - 0.67 0.67 0.67 0.33 

11 - 0.67 0.33 0.67 0.33 
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K for the rows 5, 6, 10, 11 and 15 are ordered and once repeated to 
accurately reflect the value of . The top row 
corresponds to intersection S1. In S1 case 1 should last for 67 % of observed 
time, case 2 for 33 %, case 3 for 33 % and case 4 for 67 %. In the same way 
intersections S3, S5, S6, S9 and S11 follow. This is true for both scenarios 
100_to_33 and 50_to_150, since they both have the exact same lowest  
at the exact same iteration. The two calculations are the exact same things, 
but with different start values that are scaled differently. 

2.5.21 100_to_33 results 

To get the corresponding signal phases the following calls in MATLAB are 
made. 
OPTX_N = [X(:,:,10,1),X(:,:,5,2),X(:,:,5,3)]; 

OPTX_S = [X(:,:,6,4),X(:,:,15,5),X(:,:,11,6)]; 

 
OPTX_N = 

 0.0 26.0 26.0 30.0  0.0  0.0 17.0 13.0  0.0  0.0 27.0 15.0 

12.0  0.0 44.0 18.0 26.0 13.0 31.0 20.0  0.0  0.0  0.0  0.0 

26.0 24.0  0.0 25.0 17.0 13.0 26.0 31.0 27.0  0.0 34.0 15.0 

60.0 14.0 12.0 30.0 31.0 20.0 26.0 13.0 15.0  0.0 34.0 15.0 

OPTX_S = 

30.0 34.0 14.0 20.0  0.0 38.0 50.0 11.0  0.0 30.0 30.0 15.0 

30.0 20.0 14.0 14.0 16.0  0.0 50.0 28.0 15.0  0.0 30.0 30.0 

14.0 20.0  0.0 34.0 50.0 11.0  0.0 38.0 30.0 15.0  0.0  0.0 

34.0 14.0 30.0  0.0 50.0 28.0 16.0  0.0  0.0 30.0 15.0  0.0 

Three 4 x 4-matrices are put side by side and presented in one northern 
and one southern cluster, to make them more readable. However, the numbers 
are not factors of 3, so one final adjustment must be done, by calling the 
MATLAB function . Here . This gives the below 
matrices. Again, presented as two matrices for better readability. 
 0 27 27 30  0  0 18 12  0  0 27 15 

12  0 45 18 27 12 30 21  0  0  0  0 

27 24  0 24 18 12 27 30 27  0 33 15 

60 15 12 30 30 21 27 12 15  0 33 15 
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30 33 15 21 0 39 51 12  0 30 30 15

30 21 15 15 15 0 51 27 15  0 30 30

15 21 0 33 51 12  0 39 30 15  0  0

33 15 30 0 51 27 15  0  0 30 15  0

As an example, look at intersection S3, which is the middle 4x4-matrix 
in the northern cluster. The phase times in the matrix are interpreted as the 
figure below shows. An * after a number means that this signal time 
immediately precedes the one in the following phase. Here this affects phase 
2–3 and 4–1. Such adjustments must be made manually.

Figure 2.26 The four cases of S3 in scenario 100_33.

If the right turn phase time is longer than its equivalence for straight 
ahead, it will firstly begin in the previous case. If this is not enough, the signal 
for right turn, with respect to its own case, will span from the previous case 
until its subsequent case. A signal phase time that elongates like this in several 
cases, will stay in green mode until the last case, where it ends with a three 
second yellow signal. All cases, including phase times, are presented 
scenario-wise in Section A.1 Graphic view of time phases used in all 
simulation.

2.5.22 50_to_150 results
OPTX_N =

0.0 39.0 39.0 45.0  0.0  0.0 25.5 19.5  0.0  0.0 40.5 22.5

18.0  0.0 66.0 27.0 39.0 19.5 46.5 30.0  0.0  0.0  0.0  0.0

39.0 36.0  0.0 37.5 25.5 19.5 39.0 46.5 40.5  0.0 51.0 22.5

90.0 21.0 18.0 45.0 46.5 30.0 39.0 19.5 22.5  0.0 51.0 22.5

OPTX_S =

45.0 51.0 21.0 30.0  0.0 57.0 75.0 16.5  0.0 45.0 45.0 22.5

45.0 30.0 21.0 21.0 24.0  0.0 75.0 42.0 22.5  0.0 45.0 45.0

21.0 30.0 0.0 51.0 75.0 16.5  0.0 57.0 45.0 22.5  0.0  0.0

51.0 21.0 45.0  0.0 75.0 42.0 24.0  0.0  0.0 45.0 22.5  0.0
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After adjusting it to be nearest modulo 3, the matrices look like this:
0 39 39 45  0 0 27 21  0  0 42 24

18 0 66 27 39 21 48 30  0  0  0  0

39 36 0 39 27 21 39 48 42  0 51 24

90 21 18 45 48 30 39 21 24  0 51 24

45 51 21 30 0 57 75 18 0 45 45 24

45 30 21 21 24 0 75 42 24 0 45 45

21 30 0 51 75 18 0 57 45 24 0 0

51 21 45 0 75 42 24 0 0 45 24  0

The intersection S3 is again used as an example of a graphical view of 
the cases and time phases

Figure 2.27 The four cases of S3 in scenario 50_150.

But take a look at S1, which is the 4x4-matrix to the left of S3. Figure 
2.28 shows how extra right turns must be inserted in some of the four 
otherwise fixed cases.

Figure 2.28. The four cases of TLI S1 in scenario 50_150.

If the right turn phase time is longer than its equivalence for straight 
ahead, it will firstly begin in the previous case. If this is not enough, the signal 
for right turn, with respect to its own case, will span from the previous case 
until its subsequent case. A signal phase time that elongates like this in several 
cases, will stay in green mode until the last case, where it ends with a three 
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second yellow signal. All cases, including phase times, are presented 
scenario-wise in Section A.1 Graphic view of time phases in all simulations. 

2.6 Simulation with SUMO 
Simulation of Urban MObility (SUMO) is an open-source microscopic traffic 
simulation program created by The Institute of Transportation Systems in 
Berlin, Germany. It was first released in 2001. It is a package program which 
includes documentation and tutorials, tools for running a simulation, building 
the traffic network, generating different traffic flows and tools for analyzing 
the results with different tools. It can visualize different types of vehicles and 
pedestrians. SUMO version 1.0.1 was used for building the model and version 
1.9.0 for simulations. 

To create a traffic model that resembles the real-world can be quite time-
consuming. It is largely dependent on how big the model is supposed to be. 
In order to create the model and get the simulation running there are three key 
points to create or import. 

The first key point is to outline the network, with roads and intersections 
and its corresponding number of lanes and distances. The second key point is 
to add the traffic infrastructure with the rules that apply to the model including 
traffic light signals programs, stop signs etc. The final key point is the traffic 
demand. One can import traffic matrices if available or create traffic files for 
the types of vehicles that are desired. For this purpose, the SUMO package 
has several accommodating programs. 

SUMO can open already existing traffic maps when imported with the 
netconvert [8] command line application from websites such as 
OpenStreetMap [4]. This might lead to quick interaction between the 
simulation and the user, but it turned out not to give an accurate traffic 
model with respect to the number of lanes and intersection structure for the 
area that this thesis is about. Because of this it was easier to build the 
network from scratch in the program Netedit. Worth mentioning is that a 
map with geometrical shapes, area.poly.xml, was extracted from the 
www.openstreetmap.org with the help of SUMO’s command line 
application polyconvert [9]. This was very helpful when building the road 
network in Netedit, as it could be loaded into the program and guide one 
when drawing the road network.  

2.6.1 The selected area in Hangzhou 

The area chosen is inside the Xiacheng District, one of Hangzhou’s urban 
districts. The area has a connection to Zhong He Viaduct, an express- or 
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motorway, and is close to one of the city centers, with easy access to multiple 
tourist areas. It also contains schools, shopping district, sport hall, hospitals 
and is famous for its silk market. As many other urban areas in Hangzhou, it 
is packed with small shops and residential areas. 

 

 
Figure 2.29. The network built with Netedit. TLIs are marked. 

In the model there are six major intersections controlled by traffic light 
signals, numbers S1, S3, S5, S6, S9 and S11 as shown in Figure 2.29. In 
Appendix A.1 General layouts of TLI, the mapping of the different 
intersections is available. S1 being to the north-west, it is the biggest 
intersection with access to the expressway. S5 in north-east, is a three-way 
junction next to a river and lies below a main road connecting to another part 
of town. S6 in the south-west is a standard 4-way intersection. S11 in the 
south-east is a junction located up on a bridge, connecting traffic from four 
directions, with a small roundabout placed on the road below it. Traffic from 
north to west is directed to the roundabout, as well as traffic from west to 
south and back to the west. S3 and S9, were at the time of this thesis, building 
sites. The city was currently building a new metro line underground which 
caused some disturbances to the traffic network. The number of lanes were 
reduced in the south and north direction for S9, and only north incoming and 
outgoing lanes were reduced for S3. There are also seven other traffic signals 
present. Three of them are merely for the purpose of letting pedestrians and 
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cyclists cross the roads (see Ø1 - Ø3). The 4 others are smaller crossings, 
letting traffic enter and exit the residential areas. The main purpose of this 
thesis is to observe and optimize the traffic flow at the six major intersections. 
Therefore, the traffic light programs for the smaller intersections were noted 
and kept constant through all the simulations to maintain a realistic place-
based simulation. The decision to ignore the smaller streets in the residential 
areas was made because the areas were mostly surrounded by fences, 
restricting passage and entries, as well as being too time-consuming to model.

2.6.2 Building the SUMO model

Building the street map was conducted in different steps with the Netedit 
program from the SUMO package. Through internet pages maps.google.com
and maps.bing.com it was possible to measure the distances between the 
intersections and other adjacent roads. With the distances known it was easy 
to outline the road network. The major roads in the area had concrete barriers 
that carried grass and trees as two-way separators and/or roads that were
separated by fencing. Therefore, when outlining the major roads in Netedit, 
effort was made not to draw them as two-way roads but to draw the road for 
each direction individually. 
In Netedit roads are built with a tool for creating edges. An edge is created 
by drawing a line from point A to point B, where each edge segment 
represents a section of the road. As seen in Figure 2.30 an edge is represented 
by the black lanes between the red areas. The red dots seen there are called 
nodes, which are points where the x and y coordinates are stored. These nodes 
are automatically added when drawing the edge. The road itself can be 
represented by more than one edge. This is often the case when for example 
a road goes from three lanes to four lanes. If the road that is built passes an 
intersection, a junction will be introduced. This junction is a collection of 
nodes where multiple edges meet, as pictured by the dark red areas in Figure 
2.30. An edge may also contain several lanes. But an increase or decrease 
requires a new edge to be created.
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Figure 2.30. A one-way road with an intersection, built by several edges. 

Netedit automatically adds connections between the incoming lanes at 
the junction to the outgoing lanes from the junction. These had to be altered 
to match the traffic rules on site for every junction. Figure 2.31 shows an 
example on how these connections can look like for the intersection in Figure 
2.30. The connections between the incoming and outgoing lanes at the red 
nodes are visualized with white lines. 

 
Figure 2.31. Illustration of how edges connect via nodes. 

Restrictions were made as to not include the smaller streets inside the 
residential areas. All roads were given attributes to specify what kind of road 
it was, its priority rules, how many lanes it has, what kind of vehicles that are 
allowed and what traffic rules that apply. An attempt was made to include the 
pedestrian crossings existing in the area, but the attempts failed, which 
resulted in a few pedestrian crossings being visible in the model but of no use. 

 

2.6.3 Creating traffic light signals (TLS) 

When implementing a traffic light signal in Netedit the program 
automatically creates a TLS program suited for the number of lanes that goes 
into the intersection with regards to the turns that are allowed for each lane. 
The TLS also gets dedicated a name, a tlLogid id. The name is often related 
to the junction at which it is placed. By default, Netedit creates a static signal 
program that is 90 seconds long. To simply change the phases and times in 
the program one can save the TLS program and adjust it in a text editor. To 
program the TLS, one uses a combination of letters, one letter for each state 
or lane. G is a green signal without having to pay much attention to other 
vehicles, g for green but must yield for other traffic, y for yellow and r for red 
light. A TLS program for S9 is shown in the XML code below. By default 



38 

 

the programID for the TLS is set to zero. The programID for S9 is here set to 
two since an altered version was used. 
<!-- s9 --> 
<tlLogic id="gneJ666" type="static" programID="2" offset="0"> 
  <phase duration="72" 
state="ggrrrrrrrgggrgggrggrrrrrrrgggrgggr"/>  
  <phase duration="3" 
state="ggrrrrrrrggrryyyrggrrrrrrrggrryyyr"/>  
  <phase duration="12" 
state="ggrrrrrrrggrgrrrgggrrrrrrrggrgrrrg"/> 
  <phase duration="9" 
state="ggrrgrrrrggrgrrrgggrrgrrrrggrgrrrg"/> 
  <phase duration="3" 
state="ggrrgrrrrggrrrrryggrrgrrrrggrrrrry"/> 
  <phase duration="39" 
state="gggrgggrrggrrrrrrgggrgggrrggrrrrrr"/> 
  <phase duration="3" 
state="ggrryyyrrggrrrrrrggrryyyrrggrrrrrr"/> 
  <phase duration="30" 
state="ggrgrrrggggrrrrrrggrgrrrggggrrrrrr"/> 
  <phase duration="3" 
state="ggrrrrryyggrrrrrrggrrrrryyggrrrrrr"/> 
</tlLogic> 

A complete TLS program for a simulation scenario contains programs for 
all the TLIs in the network. This includes the six major intersections, as well 
as the minor intersections, S2, S7, S8, S10 and the signal regulated pedestrian 
crossings o1, o2, o3-1 and o3-2 shown in Figure 2.3. A simplification of a 
complete TLS program is shown below, where the id names are changed to 
the TLI names for easier understanding, as well as showing the structure but 
omitting all the states and phase durations for all the TLIs. 

 
<additional> 
  <tlLogic id="s1" type="static" programID="2" offset="0"> 
</tlLogic>   
  <tlLogic id="s2" type="static" programID="2" offset="0"> 
</tlLogic> 
  <tlLogic id="s3" type="static" programID="2" offset="0"> 
</tlLogic> 
  <tlLogic id="s5" type="static" programID="2" offset="0"> 
</tlLogic>  
  <tlLogic id="s6" type="static" programID="2" offset="0"> 
</tlLogic> 
  <tlLogic id="s7" type="static" programID="2" offset="0"> 
</tlLogic> 
  <tlLogic id="s8" type="static" programID="3" offset="0"> 
</tlLogic> 
  <tlLogic id="s9" type="static" programID="2" offset="0"> 
</tlLogic> 
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  <tlLogic id="s10" type="static" programID="2" offset="0"> 
</tlLogic> 
  <tlLogic id="s11" type="static" programID="2" offset="0"> 
</tlLogic>     
  <tlLogic id="o1" type="static" programID="2" offset="0"> 
</tlLogic> 
  <tlLogic id="o2" type="static" programID="2" offset="0"> 
</tlLogic> 
  <tlLogic id="o3-1" type="static" programID="2" offset="0"> 
</tlLogic> 
  <tlLogic id="o3-2" type="static" programID="2" offset="0"> 
</tlLogic>    
</additional> 

It is crucial to have made all the choices regarding what way different 
lanes can turn beforehand, as a later change in the program will make the TLS 
program that was altered unable to run because of state changes. This thesis 
focuses on two calculated signal programs for the scenarios 100_33 and 
50_150 as well as the existing traffic signal program on site, IRL. Netedit’s 
own generated traffic signal program is also incorporated and tested. There 
have been no alterations done to Netedit’s TLS. It is used as is. 

2.6.4 Netedit default traffic light signal program 

When a traffic light is placed in a junction, in Netedit, there will be an 
automated traffic light program created [10]. This program follows rules set 
by SUMO but may not be accurate to what is used in real life at that specific 
location. The general rules for the automated TLS program are based on a 
four-arm intersection, without regard to pedestrian crossings. There are four 
green phases that go as follows: 

1. Straight forward for traffic from north and south, along with right 
turning traffic. 

2. Left turns, for lanes that are dedicated to left turns specifically for 
traffic from north and south. 

3. Straight for west and east bound traffic, along with right turning 
traffic. 

4. Left turns for outgoing traffic from west and east. 
The traffic light cycles have a default cycle time of 90 seconds, and all 

green phases are followed by a yellow phase. If it is a four-arm intersection 
the straightforward phase has a green light for 31 seconds. The speed limit 
for this area is below 70km/h which makes left turns allowed during the same 
time as oncoming traffic can drive straight. The vehicles that want to turn left 
must yield to oncoming traffic. If there is a specific lane for left turns it will 
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get an additional six seconds of green light after the traffic going straight from 
the same direction has turned red. 

2.6.5 Detectors 

When the overall traffic map is done it is time to implement the detectors that 
will collect the data that is wanted out of the simulation. In SUMO there exist 
three different types of detectors, with different values collected.  In this case 
it was of importance to collect information about how many vehicles that 
passed a crossing given a certain time, as well as information about how long 
vehicles had to wait before they could pass. The detector that does this is 
called Detector_E2 [11], more specifically called the Lanearea detector. This 
detector can resemble a vehicle tracking camera. A lane area detector is given 
a length attribute, defined by a starting position, pos, and an end position, 
endPos. The detectors were placed on all incoming and outgoing lanes to the 
six main intersections of the system, which can be seen in Figure 2.33 as aqua 
blue rectangular shapes. On the incoming lanes they are set to begin slightly 
after where the road increases its number of lanes leading to the intersection 
and end at the stop line at the junction. If no such lanes are added, the 
detectors start between 20 to 50 meters away from the intersection depending 
on the overall layout around the intersection. The detectors on the outgoing 
lanes are placed so that they start at the beginning of the outgoing lanes and 
end a minimum of 10 meters away.  

The detectors can be specified to count different kinds of vehicles. In this 
case there were detectors to count vehicles and detectors to count only buses. 
The E2-detector counts vehicles that touch the start position of the detector, 
vehicles that start or end their route on the detector and vehicles that pass 
through the detector. The output given of an E2-detector keeps track of all 
vehicles that are currently running in its area and has attributes to help 
measure queues. 

2.6.6 Traffic Assignment Zone (TAZ) 

Traffic assignment zones are a collection of edges used to make route 
designation simpler. They are valuable when creating traffic in and between 
areas of the road network. Here TAZs are placed on all incoming and 
outgoing fringes leading to the TLS junctions. A total of 22 TAZs for this 
system. A TAZ must be selected to be either a sink or a source. A sink being 
an edge from where vehicles will depart from the system and source being 
where vehicles will arrive to the system. The XML code in this section shows 
how one ingoing and one outgoing TAZ are structured.  

Each TAZ has an id and a list of depart and destination edges. The edges 
are given a weight representing a probability, to determine how much traffic 
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that shall enter or leave the map from them. The shape and color parameters 
are optional.  
<taz id="street_in" shape="x and y coorinates" color="green"> 
  <tazSource id="gneE###" weight="1.00"/> 
  ... further source edges ... 
  <tazSink id="gneE###" weight="0.00"/> 
  ... further destination edges ... 
</taz> 
<taz id="street_out" shape="x and y coorinates" color="red"> 
  <tazSource id="gneE###" weight="0.00"/> 
  <tazSink id="gneE###" weight="1.00"/> 
</taz> 

2.6.7 Creating traffic 

When thinking of rush hour traffic, the first thought is of queues with a lot of 
vehicles and little movement. In this case it was attractive to focus on three 
different kinds of transportations when creating traffic for the network. The 
everyday drivers, the commuters driving to or from work and the public buses, 
with their set routes and timetables. 

2.6.8 RandomTrips 

SUMO has a predefined python script that helps create vehicles with random 
routes called randomTrips.py [12]. With this it was possible to generate a lot 
of vehicles that enter and leave the simulation randomly and with random 
routes. This randomness was useful to represent everyday drivers out and 
about in the network. RandomTrips can also be given a set of information to 
create traffic with a more desirable distribution. Even though the randomness 
was wanted it was still desirable to make traffic drive through the bigger 
streets that lead to the six TLS junctions. 

By running the script with a set of selected attributes, see tables in Section 
A.3 Attributes for XML code, it is possible to create a route-file with many 
vehicles taking random routes through the network. The routes created are 
static. All edges from start to finish are stated in each route. Because of this 
it is possible that one later alteration of the network will make the routes 
invalid and the simulation unable to run. With the help of the attributes 
available for randomTrips it is possible to affect the distribution of the routes. 
One wanted behavior was to make vehicles choose routes along bigger roads 
as well as entering and exit the system through the fringes associated with the 
six big intersections. 

Running the Python command randomTrips.py, will create routes 
where vehicles are required to drive a minimum of 500 meters in the system. 
To get a bigger number of vehicles to enter and/or exit the network from the 
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fringe the fringe-factor value was set to 40. This value increases the 
probability of creating routes that begin and/or end with an edge at the fringe 
40 times. To make most vehicles drive through any of the major TLS 
intersections the three attributes, L, fringe-threshold, and speed-exponent 
were used to weigh the traffic to use roads with more lanes and with speed-
limits equal to or above 40 km/h which translates to 11.11 m/s. To create 
more than one simulation for each scenario it was decided to create two other 
randomTrips files. The difference between them is the use of seeds. If not 
changed the routes created would be the same as the one first created. Seeds 
help generate pseudo-randomness to the distribution of vehicles. To keep it 
simple the seeds 33, 66 and 99 were chosen. Below is an example of the 
command used to generate vehicles with the randomTrips script. 
python randomTrips.py -n v5_7.net.xml -r seed33Random.rou.xml 
--seed=33 -b 0 -e 7200 --period 1.0 --binomial 400 --vclass 
passenger --vehicle class passenger --min-distance 500.0 --
fringe-factor 40.0 -L --fringe-threshold 11.00 --speed-
exponent 11.11 --fringe-start-attributes “color=\”255,0,0\”” -
-trip-attributes=”departLane=\”free\” departSpeed=\”random\” 
departPos=\”random_free\” color=\”0,255,0\” length=\”4.00\” 
minGap=\”2.00\” maxSpeed=\”25.00\” speedDev=\”0.1\” 
accel=\”2.6\” decel=\”4.5\” sigma=\”0.2\” minGapLat=\”0.5\” 
laneChangeModel=\”SL2015\”” 

The depart attributes following trip attributes decide where vehicles will 
be implemented on a road section. The values chosen as inputs are there to 
increase the number of vehicles that are inserted on roads with multiple lanes. 
Other attributes used are the ones for describing the vehicles. Their length, 
what type of vehicles they are, how fast they can accelerate, brake, as well as 
the maximum speed they can reach. The attributes sigma, minGapLat and 
laneChangeModel describe the behavior of the drivers. Sigma tells how likely 
the driver is to follow the rules, with 0 being always and 1 being never. The 
minGapLat decides the minimum distance for how close vehicles can be next 
to each other in meters. The laneChangeModel SL2015 [13] is an available 
script from the SUMO package that is created to resemble how Chinese 
drivers use and change lanes. 

2.6.9 Flow for cars 

Flow [14] is another way of implementing vehicles in the simulation. Instead 
of creating a set route for the vehicle, flows can be more dynamic. Here flows 
are created to drive between different traffic assignment zones (TAZ) [15], to 
represent commuters that travel across the network. At least one TAZ for 
incoming traffic and one TAZ for outgoing were created for each TLI. Every 
TAZ represents edges at the fringe in connection to the TLI. Some flows also 
have via-edges specified to better control which streets to use. Through trial 
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and error, a satisfactory flow of rush hour commuting traffic was constructed. 
SUMO has a Python script to make an XML file with flow from a so-called 
OD-matrix which basically is an origin-destination table. After getting used 
to the process, it became clear that vehicles in flows are set off by the help of 
classic probability. Hence there is no magic formula in the Python script. The 
XML file may be constructed much more easily using a spreadsheet and then 
let the built-in functions produce the XML code. The spreadsheet table that 
was used is shown in the appendix. 

Below the XML code to produce commuter 9 is shown. It is one single 
line of code of almost 100 in total. These lines of code are wrapped inside 
tags just like in html code. Commuter 9 is a set of vehicles that starts, ends, 
and passes the same via edge between begin and end time values. So, its first 
vehicle starts at  and enters the network from a fringe edge on the 
ramp north of S1 and exits at a fringe edge south of S6. 
<flow id="commuter9" begin="900" end="8100" 
probability="0.013889" type="commuter" fromTaz="taz_s1r_in" 
via="gneE408.17" toTaz="taz_s6s_out" departLane="best" 
departSpeed="random" color="orange" /> 

The attributes used for flows are primarily the same as for randomTrips 
with the exception that flows will choose its route by itself, with help of the 
start, end and via-edges given. The route it takes to get there is not specified. 
Flows are therefore more dynamic in the way that they will change their 
routes if for example, there are queues ahead. Therefore, flows are used to 
represent drivers that are regular commuters in the area. 

2.6.10 Public transport 

When creating the public buses flows were used again. Flows allowed 
different bus lines to traffic the roads and make stops according to their time 
schedule. All buses were given the same parameters for speed, acceleration, 
deceleration, length, gap and random speed variation. To guide the bus at 
least three or more edges had to be stated, i.e., edge to enter, edge to exit and 
edges where there are bus stops for that bus line. The duration for stops is set 
to 15 s for all buses. With <flow> each vehicle must individually choose its 
own path, which suggests there will be some variation of paths. The tendency 
to change lanes seems to be higher among flow vehicles compared to 
randomTrips-vehicles. 
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Figure 2.32. All bus stops, each marked with the Hangzhou logotype. 

Figure 2.32 shows all bus stops within the modelled area. The example 
below shows bus line 68 which enters the network north of S3 and exits south 
of S7 and has green color. Line 68 has a total of 12 buses per hour between 

 and . 
<routes> 
  <vType id="BUS" vClass="bus" accel="2.6" decel="4.5" 
sigma="0" length="12" minGap="3" maxSpeed="70" guiShape="bus" 
speedFactor="normc(1,0.1,0.2,2)" /> 
  <flow id="68s3s7" color="green" begin="60" end="3360" 
number="12" type="BUS" from="gneE532" to="gneE510"> 
    <stop busStop="busStop_gneE532_0_22" duration="15" /> 
    <stop busStop="busStop_gneE629_0_24" duration="15" /> 
    <stop busStop="busStop_-gneE115_0_0" duration="15" /> 
    <stop busStop="busStop_gneE509_0_20" duration="15" /> 
  </flow> 
</routes> 
 
The final step before running the simulation is to create a main settings file, 
which is called the sumocfg which stands for sumo configuration file. In 
this file one specifies the road map to be used as well as the traffic-route 
files and additional files as can be seen in the XML code after this section. 
The additional files here used are a map of geometrical shapes in the area, 
area.poly.xml, a file where the busstops have been marked, 
busstopsV5.add.xml, as well as the TLS program and files with the 
detectors to be used. All files used are XML files. 
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<configuration> 
  <input> 
    <net-file value="v5_HZmap.net.xml"/> 
    <route-files-value="busFlow7200sV5sorted.rou.xml, 
commuters_flow.rou.xml, randomTrips.rou.xml"/> 
    <additional-files value="area.poly.xml, 
busStopsV5.add.xml, TLSfinal_100_33.add.xml, 
AllDetectors.add.xml, v5_TAZ.taz.xml"/> 
  </input> 
 
  <time> 
  <!-- Set start and end time --> 
    <begin value="0"/> 
    <end value="10800"/> 
  </time> 
 
</configuration> 

2.7 TraCI 
SUMO simulation can be controlled via a traffic control interface called 
TraCI [16]. By importing traci in Python the simulation can be controlled 
for example with the command traci.simulationsStep() inside a 
for-loop, which for every iteration advances the simulation process one 
second. Python’s traci module has several methods to keep track of what kind 
of vehicles that have been on what street (set of edges) and even what lane.  

As previously mentioned, traffic detectors were used during 
simulations, these can be seen in every direction close to the intersections in 
Figure 2.33. A detector keeps track of which vehicle currently is on it. 
Therefore, each detector must be represented by a set in which new vehicles 
are added on each timestep (i.e., second). On given intervals the total 
amount in each detector set must be saved for report and emptied for a new 
time interval. 
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Figure 2.33 SUMO during run. Detectors show as turquoise field.

With a set of combined method calls, the control program could get 
instant information on a certain street’s traffic saturation. There are methods 
to check which vehicle id’s that are on a certain lane, the lane’s length and 
through the given vehicle id also the vehicle length and what kind of vehicle 
it is. By adding all lanes on each edge on a street, a traffic density can be 
calculated. In a similar manner the traci module has methods for 
checking which specific vehicle id’s that have not been able to be loaded 
into the system via a fringe edge. This gives information on the total 
number and what kind of vehicles that are queuing to enter onto which 
street, thus creating a hunch of the level of overload. However, all vehicles 
do not enter and exit through the fringe. Approximately 150 vehicles start 
and end inside the fringe.

The above methods and several new created ones were used to control 
both the simulation process and to compile its output. The outputs produced 
by the code were: a useful terminal text, a compiled copy of the terminal 
output written into a text file and a JSON5 file representing the detector 
data.

5 JavaScript Object Notation
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3 Analysis 
Running the simulations in SUMO revealed some troublesome 

behaviors. Here are some of them explained as well as possible solutions 
mentioned. 

3.1 Several XML files vs TraCI JSON output 
SUMO’s default detector output is an XML file containing a lot of data with 
some of it being irrelevant for this report. The data in turn need to be 
converted to an Excel file to improve the reading comprehension. Each 
intersection had one detector file for incoming and one for outgoing traffic. 
In total 12 XML files had to be converted to 12 XLS files and thereafter 
compiled in order to calculate each intersection’s specific traffic flow in each 
time interval. This is a time consuming and confusing process. If for some 
reason new simulations were to be undertaken, it will then be followed by 
such a time-consuming conversion and compiling process. 

Consequently, it felt useful to invest more time on SUMO’s traffic 
control interface and the Python code needed to put it into action. It can be 
discussed whether implementing Python code did reduce the total amount of 
time spent on simulation and compiling the results. However, both tasks 
were neatly automated, which made it possible to perform far more 
simulations than would otherwise be the case. 

As previously mentioned, the Python code produced a JSON file. To 
compile the detector data in this JSON file, yet another Python code was 
constructed, which can read and compile from multiple JSON files and 
write the same number of JSON files as output in a few seconds. This part 
automated and saved time. 

All Python code are shown in A.1 Python code. 

3.2 Trouble with driving patterns. 
When introducing many vehicles to the simulation there were several weird 
driving behaviors noted. The ones mentioned below were the ones that were 
most important to correct. 

The use of randomTrips.py generated many vehicles driving on random 
routes. It is excellent when it is important to quickly introduce traffic to the 
simulation. But the routes are static and the routes that are created can cause 
trouble since they do not identify areas that might not be suited to make U-
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turns at. A vehicle will not have a driver's sense in that matter. In this case 
many vehicles wanted to make U-turns on a road right after a traffic light 
intersection. This caused undesired queues because of the vehicle that stood 
still in its lane waiting for a gap to open to the next edge on its route. To 
work around this issue many vehicle routes were altered to make their turns 
at the nearest TLI. 

A general problem that was noticed during the trial simulations was that 
even if two parallel roads could be utilized for a right turn in a junction, 
only one was used. This problem caused trouble specifically for the vehicles 
arriving at the S1 junction from the north fringe, since the queue that grew 
hindered other vehicles taking different routes from entering the system. 
Here the solution was to redirect several vehicles to use the otherwise 
unused road. 

Since the road network built is quite complex, with multiple lanes and 
edges with their own set of regulations, it seems like all rules for use of way 
were not followed when routes were created. It could be seen a lot at the S1 
junction where vehicles that did not enter the right lane could not continue 
their route because that specific lane did not allow turns to their desired 
direction. For flows it was possible to go around this issue by adding via-
edges. A via-edge tells flows that if the vehicle wants to go from A to B it 
has to drive by this edge to get there. For vehicles created from the 
randomTrips-script the solution was to change the faltering edge in the 
XML file to the desired one. 

3.3 Teleportation 
Teleportation [17] is a built-in feature that is used to move vehicles that for 
some reason are stuck. It can be that there are queues that will not move 
because of a vehicle that blocks the front position in a lane or a scenario where 
a collision has occurred. Often the reason that prohibits a vehicle to continue 
its route is one of three scenarios: 

 It has ended up on a lane that has no connection to the next 
edge on its route. 

 If the vehicle is coming from a road that must yield before 
entering a higher prioritized road but cannot find a gap to do so. 

 It is stuck in a traffic jam with no possibility to continue its 
route, as can be seen in Figure 3.1. 

To keep the simulation running, SUMO will force a teleportation of the 
vehicle causing the block. This teleportation occurs when a vehicle has a 
velocity below 0.1 m/s for 300 seconds. When a vehicle teleports, it is 
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removed from the network only to be inserted again, when possible, at the 
next step of its route. Figure 3.1 shows two instances during a timestep in 
the simulation that traffic jams have occurred at intersection S3, the center 
picture in the top row, and S6, the left picture in the bottom row. These 
types of traffic jams with multiple vehicles involved can require vehicles to 
teleport to be able to solve the jam.

Figure 3.1 A SUMO run with two jams at t = 3,643 s.

3.4 SUMO versions update
After the initial network map was built and the creation of traffic began it was 
noted that SUMO was released in an updated version. This release was 
attractive because it enabled further options when for example implementing 
traffic.

3.5 Netedit’s program not an option
Netedit creates a default traffic light program as soon as a TLS is 
implemented. At first this program was supposed to be used as one TLS 
scenario to be compared to the three scenarios previously mentioned. When 
looking at the TLS program Netedit created, it was evidently not a program
that could be used in real life. At many of the TLS intersection it was evident 
that the TLS programs would cause conflicts between drivers and directions 
as can be seen for S1 in Figure 3.2. Therefore, the Netedit scenario was 
omitted.
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Figure 3.2 Netedit’s TLS program overview for S1.



51

4 Results
Each simulation has been conducted three times, using the random pseudo 
seeds 33, 66 and 99. The only difference between the simulation scenarios 
IRL, 100_33 and 50_150 are their traffic light operating programs. To create 
traffic jams to be handled, intended overloads of the system were 
implemented in the form of loading too many vehicles. Despite the 
intersection parameter called keep clear being set to true, meaning that the 
junction should not allow vehicles to enter if there is a possibility for a queue 
inside the junction itself, cumbersome jams occurred inside intersection areas 
which led to complete stops. These were typically resolved by SUMO 
teleporting vehicles to the next available edge.

All results are an average of the three pseudo random simulations. 
Variances are calculated with Bessel’s correction. Average of deviations, 
d(μ), are calculated according to the RMS formula.

4.1 Departed vehicles
Every simulation loads on average 20,439 vehicles. However not all of them 
get implemented, i.e., departed. Almost 6 800 of them end up in a queue 
outside a fringe entry. There is simply no available free space on which to 
enter in accordance with their dedicated routes. The 100_33 scenario has the 
highest value of departed vehicles, which may suggest the traffic light signals 
during this simulation worked more efficiently. It differs 2.9 percentage 
points, corresponding to 593 vehicles, between scenarios 100_33 and 50_150, 
which has the lowest level of actual departed vehicles. See Figure 4.1.

Figure 4.1. Departed vehicles as a percentage of loaded vehicles.

4.2 Arrivals, collisions and teleportations
Since all simulations were cut off at t = 10 800 s, some 26 - 28 % of the 
departed vehicles were still en route, i.e., had not yet reached their 
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destinations. While 465 vehicles (3.47 % of departed) in IRL are involved in 
collisions, the numbers for 100_33 and 50_150 are 432 (3.15 %) respective 
451 (3.44 %). The number of teleports gives an idea of how cumbersome the 
traffic environment was. Figure 4.2 shows vehicles that have arrived at their 
destinations, the number of teleports and the number of collisions as a share 
of all departed vehicles. The scenario 100_33 simulation also excels with the 
least number of teleports. In real numbers it means 100_33 has 674 teleports 
less than IRL, which has the most occurrences.

Figure 4.2. Vehicles that have arrived, been in collisions and teleported.

Note that all percentages in Figure 4.2. Vehicles that have arrived, been 
in collisions and teleported. are with respect to the departed number of 
vehicles in that simulation scenario.

4.3 Resolving traffic jams through street evacuation
Figure 4.3, Figure 4.4 and Figure 4.5 each shows the corresponding average 
street evacuation, μ, and deviation, d(μ), during each 900 s interval within the 
system during simulation. All values are the average of three simulations of 
each scenario.
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Figure 4.3. System evacuation and standard deviations of IRL.

Figure 4.4. System evacuation and standard deviations of 100_33.

Figure 4.5. System evacuation and standard deviations of 50_150.
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Table 4.1 E(μ) and d(μ) for each 900 s interval, on which figures 4.3 – 4.5 are based. 
The column ‘Avg’ refers to the overall average values of each entire simulation.

Here evacuation value is calculated as:

An evacuation value below 1 means actual evacuation. In the above 
evacuation formula, there is a risk of zero division if one street is completely 
empty. To prevent this, the factor is an actual average of vehicle 
counts performed every 150 s interval within each 900 s interval. Exact values 
are found in Table 4.1. The interval counts also make evacuation values 
relative to average street occupancies rather than the full street capacities.

Figure 4.6. Average vehicle evacuation during t = 75 - 135 min.

Figure 4.6 shows average evacuation value and standard deviation during 
the last full hour with vehicles being loaded into the simulation. After 2 h 15 
min there are no new vehicles put into the simulation, meaning that the ones 
already in place or pending at the fringe will be the ones that will run until all 
final destinations have been reached. During this time period the 100_33 
simulation has the lowest average evacuation value, . None of the 
simulated scenarios at this time period has actual average evacuation, because
the values are all above 1. Scenario 100_33 also has the lowest deviation , 
which mean it also have the smallest evacuation differences among the 14 
streets.
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Figure 4.7. Average vehicle evacuation during t = 0 - 180 min.

If the entire simulation’s average evacuation values are compared it can 
be seen, in Figure 4.7, that scenario 50_150 has the lowest value for as 
well as for . The scenario 100_33 also has lower compared to IRL, 
however with a higher . The latter is most likely due to the high initial 
value as is shown in Figure 4.4.

Figure 4.8.Average vehicle evacuation during t = 45 - 180 min.

In Figure 4.8 the first 45 min of simulation is deducted from the total 
simulations. In this case 50_150 still has the lowest overall average 
evacuation value. It also shows that 100_33 has the lowest deviation value.

4.4 Average street occupancy
Figure 4.9 shows that streets in scenario 100_33 on average fill up slightly 
faster, but then also empty earlier and a bit more than in the other scenarios. 
It is also seen that streets in scenario IRL fill up slower and for longer time, 
before they slowly are emptied - compared to both 100_33 and 50_150.
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Figure 4.9. Average street occupancies during simulations.

4.5 Evacuation seen as a quota of incoming and outgoing 
vehicles

Another way to interpret evacuation is to, per intersection, calculate the quota 

.

Again, values below 1 mean actual evacuation. This interpretation is 
shown in Figure 4.10. The average quota from each simulation is seen in
Figure 4.11, as an average per time interval of all intersections and per 
simulation scenario. This perspective does not seem to show any evacuations 
at all. Over a time period, more vehicles enter an intersection than leave the
intersection, if viewed this way. We all know that in a sense this is not 
possible.
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Figure 4.10. The average quota of incoming/outgoing traffic.

Figure 4.11. Average quota of the entire simulations.

4.6 Problematic streets
For some reason collisions in the simulations occur more frequently on some 
streets compared to other streets. Some very busy streets have “only” one or 
no collision. Figure 4.12 shows collisions per street and scenario. The sums 
per scenario are IRL: 180, 100_33: 164 and 50_150: 166 collisions. Each 
collision includes one or two vehicles. It i seen that the same pattern applies 
for all three scenarios. This may indicate some built-in flaws in either the 
model or in real traffic, since the model reflects traffic situations from the real 
city of Hangzhou. It is worth emphasizing that the collision results of the 
simulations do not correspond to reality.

In the simulations the vast number of teleports are not reported as detailed 
as the collisions. Nor are data on departures and arrivals compiled other than 
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as total sums. These data can, however, be examined with a few more lines 
of Python code.

Figure 4.12. Number of collisions on each street.
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5 Discussion 
The results from the chosen simulation application, SUMO, is as close as they 
get to reality without changing all affected traffic signals, even with the flaws 
in SUMO. Thus, the simulation results are as realistic as is currently possible. 

5.1 Are TLIs already optimized? 
One obvious and possible problem with our trials is that we did only record 
the signal programs during rush hour traffic. It might be possible that the city 
has already applied specific signal phases at this time compared with other 
time periods during a day or a week. 

5.2 Possible incorrect observation on site 
The TLI S11 is elevated and restricted from pedestrians, which makes it hard 
to observe. We had to record signal lights with a tele zoom lens from a 
distance. This intersection’s layout could be found mainly from satellite maps 
online. First after simulations and while writing this report, it became clear 
that the before mentioned four cases of TLI flow are not applicable in S11. 
The layout for S11 can be seen in Section A.1 General layouts of TLI. There 
exists one incoming lane, for three different directions, that allows traffic 
going straight and turning left at the same time. Hence it is not possible for 
traffic from opposite sides to have a green light at the same time. Traffic can 
thus only flow from one direction at a time e.g., like round-robin format. From 
the start this TLI should have a phase pattern of its own within the MATLAB 
calculation of optimal flow. However, it did not, and as such this may have 
an impact on the modelled traffic. 

5.3 Dismissal of SUMO’s built-in solution 
During early analyses of simulations, it was discovered that the traffic signal 
patterns made automatically by SUMO software, Netedit, were unrealistic 
and cannot be put into real action. In just one phase there are several 
conflicting vehicle paths. So even if this simulation performed the best flow 
at the time in terms of numbers, it had to be disqualified from the comparisons 
of these trials. The reason for the chaotic traffic light subprograms that 
Netedit came up with are believed to be caused by the non-standard four-way 
intersections that are present in the model. It might have been better if the 
network map was further simplified. But the aim was to build a network map 
that represented the real and present structures that were observed on location. 
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Hence the logic for Netedit could not be properly applied here, see Section 
2.6.4 Netedit default traffic light signal program. 

5.4 Strange traffic behavior 
The SUMO simulations produce strange traffic behavior repeatedly. If this 
strange behavior occurs due to inexperience with the program or if the 
program currently does not have a way to handle these behavior patterns are 
unknown. What happens often is that a vehicle stops and as a result blocks 
other vehicles, who’s drivers in turn are not inventive enough to steer pass 
the obstructor. 

A common blocking is for example when a driver intends to change lanes 
and there is not an available space gap. As a result, the driver simply stands 
still and waits for a gap, which of course effectively stops all traffic on the 
vehicle’s current lane. Another example is when all vehicles in the same 
direction choose the same lane, despite the existence of available empty 
adjacent lanes. If vehicles were to spread out more even among available 
lanes, queues would in a sense be shorter, which in turn would allow more 
vehicles to enter the street. In many cases a teleport will resolve an 
obstruction due to excessive wait. A smoother driver’s behavior would be 
desirable. 

Some of the problems experienced may have to do with behavior settings 
for driving in intersection, lane changes and overtaking. Perhaps the authors 
do not master these settings fully. By chance it was discovered that setting all 
traffic in intersection in yield mode, prevents and faster resolves otherwise 
blocking conflicts. There may also exist solutions for obstructive driving 
behavior along street lanes, which are yet to be discovered. 

5.5 Yielding behavior at TLI’s 
During the SUMO simulations another strange behavior was noted. At the 
intersections many vehicles stopped inside the TLI even if the signal showed 
green. A lot of james occurred and did not resolve themselves until a 
teleportation was don even if there was enough space for the vehicles to undo 
the jams themselves. A multitude of changes were done to try to solve these 
problems. In the final hour a a solution was found.  By making changes in the 
TLS programs it was seen that the bavior changed. First, all the g’s were 
changed to G, meaning that all vehicles driving into the crossing had the right 
of way. This change made the problem worse, but it had an effect. Therefore 
another approach was made. By changing the G in the TLS program to a g, 
many traffic jams and odd stand stills were resolved. That is, by making all 
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the drivers have to look out for each other none took the right of way for 
granted.  

5.6 Empty streets 
The evacuation formula is based on streets fully saturated with vehicles. It 
may produce negative values if there are no, or few vehicles and a larger 
number of vehicles leave than enter the street. The traffic density on some 
streets were close to zero at some time intervals during all simulations. The 
reason seems to be both jammed intersections and that the script 
randomTrips.py did a poor job spreading out random cars and routes 
everywhere. Therefore, another measure called quota was calculated. This is 
simply the quota of incoming and outgoing vehicles. 

As mentioned in Section 4.3 Resolving traffic jams through street 
evacuation, the variable existing, which acts both as a term and a denominator, 
has been calculated on each street during each entire simulation at every 150 
s interval within the larger 900 s interval. Each count, except for all zero 
counts, were put in a list from which the average was finally used as the 
variable existing. The probability of all existing counts being zero is also 
close to zero. This way divisions with zero were avoided. 

5.7 SUMO script inadequacy 
The SUMO simulation software package also has software to occupy the 
model with desired forms of traffic. The Python code randomTrips.py gave 
us a notion that it would be able to deploy cars randomly across the model 
and as such having various destinations. We tweaked the existing parameters, 
to make it as random as needed. But many vehicles with roughly the same 
origin have the same destination and at the same time. In one perspective this 
is what forms digested traffic, but it may as well be that a certain area will be 
forming a hub of digested traffic merely because too many drivers at the same 
time chooses to pass through that same area. 

5.8 High numbers of collisions and teleports 
Finding the reason for the relative high number of collisions and teleports, is 
beyond the scope of this report. Still, it raises many questions that one does 
want to find the answer to. So far it is only known that collisions are 
overrepresented on at least five of the 14 streets. If the model were to be 
further refined, surely the high number of collisions on those streets were to 
be investigated and if possible, resolved with other settings. The high number 
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of teleports are also worth investigating, in order to further enhance the model 
and the simulation of traffic. 

5.9 Determine what resolves congested traffic 
The level of departures and arrivals ought to show the efficiency of the service 
nodes, i.e., the traffic signal intersections. Comparatively 100_33 has the best 
throughput, followed by IRL and then 50_150. The difference between 
100_33 and IRL is more than 5%, in terms of number of vehicles, so 100_33 
has a significant advantage over IRL. 

The number of collisions and teleports point toward complex problems, 
which are likely to worsen the congestions that arise. All scenarios show the 
same tendencies for on which streets collisions occur. Still 100_33 has 
significantly lower occurrences of collisions (  > 7 %) as well as teleports 
(  > 14 %) compared to IRL. 

The vehicle saturation (occupancy) on streets from one time interval to 
another shows if an increase or decrease has occurred. During these 
simulations a pcu (personal car unit) is thought to occupy 150 % of its length 
during standstills, i.e., including a longitudinal safety gap. The quota 100/150 
shows that a 66.7 % occupancy can be considered as full saturation. The 
average occupancy exceeds 35 % at some point in all simulations. Some 
streets have occupancy levels close to 60 % at the time of count, while some 
barely makes it over 10 %. 

The street evacuation formula, shown and explained in Section 4.3 
Resolving traffic jams through street evacuation, indeed gives a value to 
whether the number of vehicles is increasing or decreasing on a street. All 
simulation scenarios mostly show an increase of vehicle amounts. At some 
point after t = 2 h 15 min (8100 s) a decrease is expected, since no new 
vehicles are loaded into the simulation. Comparing the three figures 4.3, 4.4 
and 4.5, shows that the 100_33 scenario has a strict decrease from t = 1 h 15 
min and until t = 2 h from which it actually evacuates streets of vehicles 
throughout the remainder of the simulation. The deviation also follows this 
trend and stays steadily low until last 15 min where deviation of average 
evacuations in all scenarios slightly increase. 

If the total average evacuations are compared it will show that 50_150 
performs the lowest evacuation value and lowest deviation. Even if the first 
simulation hour is deducted, shown in Figure 4.8, 50_150 will show the 
lowest average evacuation value, but in this case 100_33 has the lowest 
deviation value. This can be explained by the high initial values of evacuation, 
μ, and deviation, d(μ), in scenario 100_33. 
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When focusing on the last full hour with vehicles still being loaded into 
the simulation model, as Figure 4.6 does, scenario 100_33 undoubtedly has 
the lowest evacuation and deviation values. This also coincides with the time 
interval when 100_33 starts to increase evacuation and at the same time 
decrease deviation among its 14 streets. The difference is significant from 
both IRL and 50_150. This hour may be regarded as the peak pressure period. 

5.10 SUMO as a simulation software 
In earlier sections there have already been a few points regarding the troubles 
we faced with SUMO during the simulations. It is easy to conclude that the 
software doesn’t work perfectly. But there are many things to take into 
consideration here. None of us have worked with traffic simulation programs 
before hence we have nothing to compare SUMO with. That said, it might be 
well possible that the network map would have worked better if more 
simplifications were done. Since the network map was built to accurately 
represent the traffic network seen on location it requires more processing and 
more choices to be made during simulation. The complexity of the network 
map that we used may be the cause of some of the traffic jams that occur as 
well as collisions and teleportations. It might also be one of the reasons that 
the Netedit default TLS did not manage to create a program that would work 
for the individual intersections. 

Working in Netedit to build the network was straight forward when 
outlining the roads. The area we chose to replicate were a small part of 
Hangzhou, but it was still very time-consuming to build. Much time was spent 
on adding the traffic rules to follow on each edge as well as what types of 
vehicles that were allowed. The newer version of SUMO made it possible to 
create flows and trips without having to manually write the XML file. 
However, there still existed the need to add some of the attributes to get the 
desired behavior and driving patterns. Our knowledge here is limited which 
resulted in the usage of randomTrips. It might be possible with further 
knowledge to create traffic that reacts to the environment. Still, the traffic 
behavior observed in the simulations were similar to one owns experience in 
Hangzhou with quick lane changes, accelerations and deaccelerations.  

Looking at the simulations and the overall performance we would say 
that SUMO works well as a simulation program. The results that we got were 
easy to understand and simulations gave believable results. 
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6 Conclusion 
In this report we got acquainted with the software Simulation of Urban 
MObility, SUMO, and did a case study for a specific area in Hangzhou, China. 
For this case study we gathered TLS phase times on location during the 
afternoon rush hours and used videorecording to get accurate measurements. 
We created an algorithm with the intent to create TLS programs that 
optimized the traffic flow, by reducing the standard deviation D(X) and 
evaluating the expected value E(X). The algorithm used the TLS recordings 
as a base for calculations which created two possible TLS program scenarios. 
We built a network model representing the selected area in Hangzhou with 
the Netedit program included in the SUMO program package. Further we 
created traffic for the simulation and used TraCI to control, evaluate and 
gather data from the simulations. In total three simulations per scenario were 
performed. Each TLS scenario had the same setup for each of its simulations.  

The simulation results shows that it is possible to find a significant 
improvement of traffic throughput by shortening several green signal phases. 
The shorter signal phases also seem to have a soothing effect on deviation 
values. To recapitulate the beforementioned problems, they are once again 
repeated, but also answered orderly. 

Is it possible to increase traffic flow through the system? Yes, it is. The 
results in Section 4.1 Departed vehicles,  and Sections 4.2 Arrivals, collisions 
and teleportations, show that scenario 100_33 has a higher number of 
departed vehicles and a higher number of arrived vehicles. In addition, this 
scenario has lower number of teleports, which indicates a smoother running 
traffic in general. Scenario 100_33 even has a slightly lower degree of 
recorded collisions. In terms of simulations results, scenario 100_33 performs 
better than both the scenarios IRL and 50_150. 

Is it possible to reduce idling time for traffic in this area? Yes. Since 
shorter green signal phases result in shorter total phase cycles, each individual 
signal phase is occurring more often. This means shorter time in standstill. 
The vehicle also moves more often, making better use of a combustion engine 
that is otherwise kept on idle throughout the traffic congestion. 

The lower levels of deviation in the 100_33 scenario, translates into less 
differences among the 14 interacting streets, which ought to decrease 
frustrations and feelings of having chosen the wrong street. 

Will the algorithm come up with a better signal-regulation solution for 
optimizing the flow of traffic than the current traffic signal program? The 
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short answer is yes. The long answer is that there may exist a better solution 
for traffic jams, if realistic simulation scenarios show it.  

It should also be mentioned that no matter how alternative realities are 
constructed, whether they are numerical or analytic, there may not exist a 
better prediction than the outcome from a simulation. Of course, the quality 
of the simulation determines the granularity of such an outcome. 
The findings serve several purposes. Efficiency and throughput increase, 
which in turn lower emissions due to less time in standstill.  In turn it is 
possible to decrease the drivers frustration by implementing a system with 
signal phases that provide a more even traffic flow, since the feeling of steady 
movement would be enhanced. 

6.1 Algorithm 
Brute force was chosen because an analytic solution seemed too complex. A 
recursive algorithm would be likely to shorten the calculation time notably, 
given the computer has enough working memory. Such gain in speed may 
open for a larger comparison table, which would make an increased phase 
time diversity within each TLI possible. This could also be used for dividing 
current signal phases into even smaller sections. Another improvement may 
be to use Gray Code ordered truth tables, to change only one value in each 
comparison. For comparison reasons all phase time values ought to be 
adjusted to be a factor of 3 s already from start. This fact may or may not have 
affected which combination of case settings that were seen to perform optimal 
flow. In retrospect it is obvious that many math operations are repeated 
multiple times, which should be able to resolve with even more precalculated 
value matrices where these repeated values are stored. Surely there exists a 
better algorithm to find optimized signal times. It is yet to be proven by 
someone. 

6.2 Combustion engines 
Given the scale of the global carbon dioxide emission problem, in which 
combustion engines of cars among other emissions play an important role, 
one may predict a future where combustion engines running on idle in traffic 
jams, will merely be a memory. Vehicles in the future are supposed not to 
emit any dangerous levels of carbon dioxide, be electric or use a fuel where 
the carbon dioxide is kept as a recycled constant. So, if there would exist time 
consuming traffic jams, one can expect very few people who would pay 
attention to or arguing about idling engines spewing out emissions. 
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Appendix A 
All computer code that has been used in this work can be found at the address 
https://github.com/ada09aho/hangzhou. This appendix contains crucial bases 
with the aim for successful traffic simulations. Some tables are long and 
perhaps not meaningful to study in a book format. Such table has been 
shortened and is better read online at the above URL. 

The appendix contains the following sections. 
A.1 MATLAB code 
A.1 Graphic view of time phases used in all simulations 
A.3 Attributes for XML code 
A.1 Python code 
A.1 General layouts of TLIs 
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A.1 MATLAB code 
Originally the MATLAB code contained these remark snippets, to help 
understand the context in which the code should work. 
% Hangzhou Traffic Signal Intersections (S) in a system with 6 
intersections. 

 

% Directions are to/from; North=1, East=2, South=3, West=4. 

%           1 

%           | 

%      4 -- + -- 2 

%           | 

%           3 

% TLS: traffic light signal, TLI: traffic light intersection 

 

% ************** System Map ************* 

%    |               |               | 

% --S1--------S2----S3----Ø3-----S4--S5 

%    |               |               | 

%    |               |               | 

%    |               Ø2              | 

%    |               |               | 

% --S6-Ø1---S7--S8--S9-----S10------S11-- 

%    |               |               | 

% 

% *** S = TLI, Ø = ped crossing, S4 is not in function *** 

A.1.1 Main algorithm 
Below is the main algorithm with start-up values and the 6 nested for-loops. 
For every iteration the subroutine variation is called. It takes 6 arguments. 
The code for variation follows below. In this case it goes backwards from 
150% to 50 % of original phase times. 

But how are the arguments for variation being produced? A closer look 
at the main method will tell. It is also good to know, while reading the 
MATLAB code, that there exist 11 TLIs and three pedestrian crossings within 
the boundaries of the system. Out of these 11, only six were chosen to base 
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calculations on. These TLIs have initially been numbered 1, 3, 5, 6, 9 and 11, 
which are kept when forming the matrices. 

 
001: timerVal=tic; 

002: pcu=4.0; 

003: d=1.5; 

004: vpm=1/(d*pcu); % vehicles per meter (vpm=1/6 as initial 
value) 

005: % Start and stop of gren phases as percentage of real 
sampled time value 

006: percBase = 50; percTop = 150; 

007: % Iteration range 

008: start = 31; step = -3; stop = 1; 

009: % Variable for calculation and display purposes 

010: roof = (max(start, stop)-1)/abs(step) + 1; 

011: % Lowest deviation value / Highest index in LIST 

012: least = 1; last = 200; 

013: % Table with values of deviation and indices of X, i.e. 
each green phase 

014: LIST = zeros(last, 8); 

015: % Initial inbound distance for each intersection, di 

016: di=200; 

017:  

018: % D is a vector with distance to/from neighbour TLI (S). 

019: D1=[470; 890; 570; 395]; 

020: D3=[520; 670; 630; 890]; 

021: D5=[530; 0; 760; 670]; 

022: D6=[570; 915; 735; 230]; 

023: D9=[630; 690; 725; 915]; 

024: D11=[760; 305; 670; 690]; 

025: % Deduction of intermediate TLI (50 m) and pedestrian 
crossings (12 m) 

026: D1=D1-[0; 50; 0; 0]; 

027: D3=D3-[0; 12; 12; 50]; 

028: D5=D5-[0; 0; 0; 12]; 

029: D6=D6-[0; 12+50+50; 0; 0]; 
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030: D9=D9-[12; 50; 0; 12+50+50]; 

031: D11=D11-[0; 0; 0; 50]; 

032: D=[D1 D3 D5 D6 D9 D11]; 

033:  

034: % DI is a vector with initializing distance di to/from 
neighbour TLI (S). 

035: DI1=di*[1; 1; 1; 1]; 

036: DI3=di*[1; 1; 1; 1]; 

037: DI5=di*[1; 0; 1; 1]; 

038: DI6=di*[1; 1; 1; 1]; 

039: DI9=di*[1; 1; 1; 1]; 

040: DI11=di*[1; 1; 1; 1]; 

041: DI=[DI1 DI3 DI5 DI6 DI9 DI11]; 

042:  

043: % L is a vector with the number of lanes inbound from 
neighbour TLI. 

044: L1=[2; 3; 3; 3]; 

045: L3=[3; 3; 2; 2]; 

046: L5=[3; 0; 3; 3]; 

047: L6=[2; 3; 4; 3]; 

048: L9=[2; 3; 2; 3]; 

049: L11=[4; 2; 3; 3]; 

050: L=[L1 L3 L5 L6 L9 L11]; 

051:  

052: % C is a "mass"-vector with vehicles going into each 
intersection. 

053: C1=vpm*(D1.*L1); 

054: C3=vpm*(D3.*L3); 

055: C5=vpm*(D5.*L5); C5(2)=1; % To avoid later division by 
zero. 

056: C6=vpm*(D6.*L6); 

057: C9=vpm*(D9.*L9); 

058: C11=vpm*(D11.*L11); 

059: C=[C1 C3 C5 C6 C9 C11]; 

060:  

061: % CI is an initial "mass"-vector with vehicles going into 
each intersection. 
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062: CI1=vpm*(DI1.*L1); 

063: CI3=vpm*(DI3.*L3); 

064: CI5=vpm*(DI5.*L5); CI5(2)=1; % To avoid later division by 
zero. 

065: CI6=vpm*(DI6.*L6); 

066: CI9=vpm*(DI9.*L9); 

067: CI11=vpm*(DI11.*L11); 

068: CI=[CI1 CI3 CI5 CI6 CI9 CI11]; 

069:  

070: % P is a matrix with directional ratio relative to 
inbound number of lanes. 

071: P1=[0 1/6 2/5 3/10; 3/7 0 1/5 5/10; 5/14 2/6 0 1/10; 3/14 
3/6 2/5 1/10]; 

072: P3=[0 0 2/5 1/10; 1/6 1/10 1/5 3/5; 3/6 3/10 1/10 1/5; 
2/6 3/5 3/10 1/10]; 

073: P5=[0 0 3/4 9/8; 0 0 0 0; 5/8 0 1/8 1/4; 3/8 0 1/8 1/8]; 

074: P6=[1/10 1/5 5/8 2/5; 3/10 1/10 1/8 2/5; 2/5 3/10 0 1/5; 
1/5 2/5 1/4 0]; 

075: P9=[0 1/5 1/3 2/5; 1/3 0 1/3 2/5; 3/6 2/5 0 1/5; 1/6 2/5 
1/3 0]; 

076: P11=[0 1/3 3/5 1/4; 3/8 0 1/5 3/4; 5/8 1/6 0 0; 0 3/6 1/5 
0]; 

077: P=[P1 P3 P5 P6 P9 P11]; 

078:  

079: % G is the green light time (incl 3 s of yellow) in each 
direction per TLI 

080: G1=[0 78 39 45; 36 0 66 54; 39 36 0 75; 90 42 36 45]; 

081: G3=[0 0 51 39; 39 39 93 60; 51 39 39 93; 93 60 39 39]; 

082: G5=[0 0 81 45; 0 0 0 0; 81 0 51 45; 45 0 51 45]; 

083: G6=[45 102 42 30; 45 30 42 42; 42 30 0 102; 102 42 45 0]; 

084: G9=[0 57 75 33; 24 0 75 42; 75 33 0 57; 75 42 24 0]; 

085: G11=[0 45 45 45; 45 0 45 45; 45 45 0 0; 0 45 45 0]; 

086: G=[G1 G3 G5 G6 G9 G11]; 

087:  

088: % i is a 4-bit truth table, i.e. a 16x4 binary matrix, 
multiplied by ... 

089: i=((percTop-percBase)/200)*[0 0 0 0; 0 0 0 1; 0 0 1 0; 0 
0 1 1; 0 1 0 0; 0 1 0 1; 0 1 1 0; 0 1 1 1; 
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090:   1 0 0 0; 1 0 0 1; 1 0 1 0; 1 0 1 1; 1 1 0 0; 1 1 0 1; 1 
1 1 0; 1 1 1 1]; 

091: % K contains all possible combinations in one TLI, given 
the 4 phases below. 

092: K=zeros(31,4); % To avoid repetitive values the original 
K(16) are reduced below 

093: K(1:16,:)=(percBase/100)*ones(16,4)+i; 

094: K(16:31,:)=(((percTop-
percBase)/2+percBase)/100)*ones(16,4)+i; 

095: % A case is 1 of 4 green light phases. There are more 
phases IRL. 

096: case1=[0 0 1 0; 0 0 1 0; 1 0 0 0; 1 0 0 0]; 

097: case2=[1 0 0 0; 1 0 0 0; 0 0 1 0; 0 0 1 0]; 

098: case3=[0 1 0 0; 0 0 0 1; 0 0 0 1; 0 1 0 0]; 

099: case4=[0 0 0 1; 0 1 0 0; 0 1 0 0; 0 0 0 1]; 

100: % X contains all various G as X=[G(:,:), i(m)*cases, 
TLI(s)] 

101: X=zeros(4,4,31,6); 

102: % S contains the calculated cycle time of every TLI and 
actual case as of i 

103: S=zeros(31,6); 

104: % X(in,out,scenario,TLI) contains all scenarios for all 
TLIs. It's based on 

105: % 4 cases. All combinations of cases decide every cycle 
time, S. To avoid 

106: % car crashes, too long right turns are adjusted before 
saving to X. 

107: for m=1:31 % number of scenarios 

108:   for s=0:5 % number of TLIs 

109:     Gs=G(:,s*4+1:s*4+4); % selection of G 

110:     
x=Gs.*(K(m,1)*case1+K(m,2)*case2+K(m,3)*case3+K(m,4)*case4); 

111:     tempS = 
max(x(3,1),x(1,3))+max(x(2,1),x(4,3))+max(x(4,2),x(2,4))+max(x
(3,2),x(1,4)); 

112:     S(m,s+1)= tempS; 

113:     corrR = tempS - [x(1,3); x(2,4); x(3,1); x(4,2)]; 

114:     x(1,2) = min( x(1,2), corrR(1) ); 

115:     x(2,3) = min( x(2,3), corrR(2) ); 
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116:     x(3,4) = min( x(3,4), corrR(3) ); 

117:     x(4,1) = min( x(4,1), corrR(4) ); 

118:     X(:,:,m,s+1) = x; 

119:   end 

120: end 

121:  

122: plotIndex=0; 

123: avgSum=0; 

124: varSum=0; 

125: index = 1; % of LIST 

126: updates = 1; % LIST updates 

127: s2Round = roof^4; 

128: plotRound = roof^3; 

129: LOWAVG = zeros(10,8); 

130: lowestAvg = 0.996; 

131: avgIndex = 1; 

132: PLOTLIST=zeros(plotRound,2); 

133: disp(['This run starts at ', num2str(K(start,1)*100), ' % 
and ends at ', num2str(K(stop,4)*100), ' % of the measured 
phasetimes.']); 

134: for s1 = start:step:stop 

135:   for s2 = start:step:stop 

136:     tic 

137:     for s3 = start:step:stop 

138:       for s4 = start:step:stop 

139:         for s5 = start:step:stop 

140:           for s6 = start:step:stop 

141:             Z = [s1, s2, s3, s4, s5, s6]; 

142:             [var, avg] = variation(X, Z, S, P, CI, C); 

143:             avgSum = avgSum + avg; 

144:             varSum = varSum + var; 

145:             if avg < lowestAvg 

146:               row = mod(avgIndex,10)+1; 

147:               LOWAVG(row,:) = [avg Z avgIndex]; 

148:               disp(['E(X) = ', num2str(avg), ' at Z = [ 
', num2str(Z), ' ].']); 
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149:               lowestAvg = avg; 

150:               avgIndex = avgIndex + 1; 

151:             end 

152:             if var < least && avg < 1 

153:               dev = sqrt(var); 

154:               if index < last 

155:                 LIST(index,:) = [dev Z plotIndex]; 

156:                 least = var; 

157:                 index = index + 1; 

158:               else 

159:                 LIST(last,:) = [dev Z plotIndex]; 

160:                 least = var; 

161:                 sortrows(LIST); 

162:               end 

163:               disp(['Update: ', num2str(updates),'. E(X) 
= ',num2str(avg),', d(X) = ', num2str(dev), '. Z = [ ', 
num2str(Z), ' ].']); 

164:               updates = updates + 1; 

165:             end 

166:           end 

167:         end 

168:       end 

169:       plotIndex = plotIndex + 1; 

170:       PLOTLIST(plotIndex,1) = sqrt(varSum / plotRound); 

171:       PLOTLIST(plotIndex,2) = avgSum / plotRound; 

172:       avgSum = 0; 

173:       varSum = 0; 

174:     end 

175:     disp(['This round with s1/s2 = ', num2str(s1), '/', 
num2str(s2), ' and ', num2str(s2Round), ' comparisons took: ', 
num2str(toc), ' s. E(X) = ', num2str(PLOTLIST(plotIndex,2)), 
', d(X) = ', num2str(PLOTLIST(plotIndex,1))]); 

176:   end 

177: end 

178:  

179: TOP5DEV = sortrows(LIST(find(LIST(:,1)),:)); 

180: disp(TOP5DEV(1:5,:)) 
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181: TOP5AVG = sortrows(LOWAVG(find(LOWAVG(:,1)),:)); 

182: disp(TOP5AVG(1:5,:)); 

183: toc(timerVal) 

184:  

185: plot (LIST(:,8),LIST(:,1),'b'); 

A.1.2 Variation function 
The MATLAB code in this section is the help function which calculates a 
street average of vehicle evacuation values and their variance value. The main 
algorithm calls this function continuously to compare every possible case 
setting against each other. Among the arguments only Z has a different value 
for each call. Z is a 1x6-matrix that hold the indices of the six nested for-
loops. The other arguments are prewritten matrices. 

 
01: function [varX, avgX] = variation (X, Z, S, P, CI, C) 

02: % Computation of variance as of how many vehicles that are 
either a 

03: % decrease or an increase of the amount of cars of each 
street within the system. 

04: % In: X is the green phase time of every TLI. S holds 
cycle times. 

05: % Z has the particular index for each TLI-composition in 
X. 

06: % Out: varX is the variance of the average evacuation of 
street cars. 

07:  

08: TFO = zeros(4,6); 

09: TFI = zeros(4,6); 

10: for i=0:5 

11:   R(:,i*4+1:i*4+4) = X(:,:,Z(i+1),i+1) / S(Z(i+1), i+1); % 
creates green phase ratio of full cycle 

12:   PR(:,i*4+1:i*4+4) = P(:,i*4+1:i*4+4) .* 
R(:,i*4+1:i*4+4); % total probability for each direction 

13:   TFO(:,i+1) = PR(:,i*4+1:i*4+4) * CI(:,i+1); % number of 
pcus going out of TLI 

14:   TFI(:,i+1) = sum(PR(:,i*4+1:i*4+4))' .* CI(:,i+1); % 
number of pcus going into TLI (out of streets) 

15: end 

16:  
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17: % SC is a binary control matrix to decide which streets 
belong to system. 

18: SC=[0 0 0 1 1 1; 

19:   1 1 0 1 1 0; 

20:   1 1 1 0 0 0; 

21:   0 1 1 0 1 1]; 

22:  

23: % TFS is a rearranged TFO (onto streets) in order to fit 
subtraction with TFI 

24: TFS =   [0 0 0 TFO(3) TFO(6) TFO(11); 

25:   TFO(8) TFO(12) 0 TFO(20) TFO(24) 0; 

26:   TFO(13) TFO(17) TFO(21) 0 0 0; 

27:   0 TFO(2) TFO(6) 0 TFO(14) TFO(18)]; 

28:  

29: DIR = (TFS - TFI) .* SC; 

30: EVA = ((C + DIR) ./ C) .* SC; % EVAcuation of streets 
respectively 

31:  

32: E = find(EVA); % finds indices of all nonzero elements 

33: WS = EVA(E); % column vector with nonzero values of EVA 

34: avgX = mean(WS); % mean value of WS 

35: varX = mean((WS-avgX).^2); % Variance of WS 

36:  

37: return 

38: end 

A.1.2.1 Explanation of variation function 

X is a 4-dimensional array which contains 31 beforehand calculated TLS 
scenario for each of the 6 TLIs, thus giving a matrix with the dimensions 
4x4x31x6. 

Z is an array that holds each index number of the 6 for-loops. 
Consequently, Z will have 31^6 different configurations. By calling 
X(:,:,Z(i),i) the function will have the exact phase time of each TLI at that 
precise scenario. 

S is a 31x6-matrix with beforehand calculated phase cycle times for each 
TLI scenario. The cycle time is reached by calling S(Z(i)). 
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P consists of 6 joined 4x4-matrices which with classical probability holds 
the probability in each direction through the TLI. If for example a TLI has 5 
incoming lanes from one direction, where 1 lane is for left turns, 2 goes 
straight forward, 1 is both for going straight and to the right and 1 is for right 
turns only, then the probability for those possibilities is calculated as 1/5, 5/10 
and 3/10. If the left lane would also be holding a U-turn possibility, then U-
turn and left turn would have a probability of 1/10 each. 

CI consists of 6 joined column arrays that each hold the number of 
possible cars within 200 m from the 4 directions of each TLI. This is for 
priming the algorithm with a certain number of cars in order to have a 
measurement of the capacity of each TLI. 

C similarly consists of 6 joined column vectors, which each hold the total 
amount of cars on each of the 14 intermediate directions within the system 
that is modelled. 

The function variation uses a 6-iteration loop - one for each TLI - to 
calculate the following variables. 

R contains the ratios of green light with respect to the certain cycle time 
of this particular state. 

PR is an element-wise product of P and R (P.*R). 
TFO contains 6 joined column vectors with the time-flow out of a TLI 

and the product of PR and CI. 
TFI is the time-flow into a TLI and is also calculated with the help of PR 

and CI, but in a manner to capture incoming traffic. Each column in PR is 
summed up, which produces a row vector. This is transposed to get a column 
vector which is element-wise multiplied with CI. 

The matrix SC is a 4x6 binary matrix that tells which streets (and 
corresponding values) that are essential for these calculations. The column 
index decides the TLI in question and the row index decides what direction 
traffic flow is taken into consideration. Row index 1 corresponds to going 
north, 2 to east, 3 to south and 4 to west. Notice that there are 14 ones, which 
coincides with the number of street directions the model considers. 

Thereafter TFO (flow out of TLI, onto street) will be reduced by TFI 
(flow into TLI, from street). But TFO must first be rearranged to a TFS-
matrix, so both it and TFI have the same arrangement as the SC matrix. 

DIR is the difference TFS - TFO multiplied with SC, to just contain 
essential directions. If TFS < TFO then DIR will be negative. 
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The degree of evacuation per street is put in EVA by elementwise 
dividing the sum of DIR and C with C. 

E is a vector with all indices in EVA that contains nonzero values. 
WS is a vector corresponding to the indices kept in E. 
E(X) and V(X) for 1 of 31^6 iterations can now be calculated and 

returned as avgX and varX to the main method. 

A.1.3 Phase times adjusting function 
Before using the MATLAB result all phase times must be adjusted to be a 
factor of 3. This is done by setting k = 3 in the below MATLAB function. 
01: % Makes each position in G-matrix a multiple of k 

02: function [aG] = adjGreen (XG, k) 

03: [m, n] = size(XG); 

04: aG = zeros(m, n); 

05: for i = 1:m 

06:   for j = 1:n 

07:     rest = mod(XG(i,j),k); 

08:     if rest >= k/2 

09:       aG(i,j) = XG(i,j) - rest + k; 

10:     else 

11:       aG(i,j) = XG(i,j) - rest; 

12:     end 

13:   end 

14: end 
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A.2 Graphic view of simulation time phases
The following section’s simple layouts present the four phases used both in 
MATLAB calculations and in SUMO simulations. The numbers represent the 
time period with green signal including a final 3 s period with yellow signal. 
Many of the time periods for right turns extend into one to two other phases. 
If a green signal period seamlessly extends into next phase, it is indicated 
with an asterisk * after the time number for that time period. Hence there is 
no final 3 s of yellow signal before extending into next phase.

While concluding data from Hangzhou field work, multiple green signal 
periods during one cycle were accumulated to one long time signal. Most of 
these green signal periods had a final 3 s of yellow signal. Therefore, 
concatenated green signal periods have as a rule an extra 3 s yellow signal 
period, i.e., a total of 6 s.

In Figure A2.1 the MATLAB matrix with turn duration times is shown. 
To easier compare right turn durations for S1 with the equivalence in section 
A.2.1 IRL, the right turn values has been circled.

Figure A2.1 Sampled phase times from intersection S1.

All intersections were calculated as a standard 4 phase cycle, i.e., where 
a green signal phase would have a corresponding green signal from the 
opposite direction. Since S11 was changed to a round robin pattern, late in 
the process, its TLS matrix does not comply with its signal phases.

A.2.1 Scenario IRL phase times
Figure A2.2 – Figure A2.7 shows all signal phases within the four cases 
during scenario IRL in intersections S1, S3, S5, S6, S9, and S11 respectively.
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Figure A2.2. Signal phases at intersection S1 for scenario IRL.

Figure A2.3. Signal phases at intersection S3 for scenario IRL.

Figure A2.4. Signal phases at intersection S5 for scenario IRL.

Figure A2.5. Signal phases at intersection S6 for scenario IRL.
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Figure A2.6. Signal phases at intersection S9 for scenario IRL.

Figure A2.7. Signal phases at intersection S11 for scenario IRL.

A.2.2 Scenario 100_33 phase times
Figure A2.8 – Figure A2.13 shows all signal phases within the four cases 
during scenario 100_33 in intersections S1, S3, S5, S6, S9, and S11 
respectively.

Figure A2.8. Signal phases at intersection S1 for scenario 100_33.
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Figure A2.9. Signal phases at intersection S3 for scenario 100_33.

Figure A2.10. Signal phases at intersection S5 for scenario 100_33.

Figure A2.11. Signal phases at intersection S6 for scenario 100_33.

Figure A2.12. Signal phases at intersection S9 for scenario 100_33.
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Figure A2.13. Signal phases at intersection S11 for scenario 100_33.

A.2.3 Scenario 50_150 phase times
Figure A2.14 - Figure A2.19 shows all signal phases within the four cases 
during scenario 50_150 in intersections S1, S3, S5, S6, S9, and S11 
respectively.

Figure A2.14. Signal phases at intersection S1 for scenario 50_150.

Figure A2.15. Signal phases at intersection S3 for scenario 50_150.
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Figure A2.16. Signal phases at intersection S5 for scenario 50_150.

Figure A2.17. Signal phases at intersection S6 for scenario 50_150.

Figure A2.18. Signal phases at intersection S9 for scenario 50_150.

Figure A2.19. Signal phases at intersection S11 for scenario 50_150.
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A.3 Attributes for XML code 
The application SUMO requires several XML files gathered in a 
configuration script, in order to run a simulation. Besides the map upon which 
to simulate traffic, the traffic itself is required. This work has mainly used 
vehicles in the form of passenger cars and buses. Different types of scripts 
are used to create the various vehicle types. The following subsections show 
tables with attributes that specifies the vehicles and their driver’s behavior. 
The attributes are used as terminal commands, which then creates and writes 
an XML file to disc. The first five tables show attributes used for passenger 
cars and the last section shows two tables with the attributes used to create 
commute vehicles across the system. 

A.3.1 Insertions and choice of way  

name used value description 

n v5_7.net.xml specifies the map that the routes will be 
created for. 

b 0 vehicle routes will be created from timestep 
0. 

e 7200 no more vehicle routes will be created after 
7200. 

r seed33random.rou.xml name of route- file created. 

min-
distance 

500 the route from start to finish-edge must be at 
least 500 meters long. 

fringe-
factor 

40.0 the probability that vehicles will enter/exit 
the system via the fringe. 

L n/a increases the probability that roads with 
multiple lanes are chosen. 

fringe-
threshold 

11.00 considers edges with speed above 
value[m/s] as fringes. 

speed-
exponent 

11.11 increases the probability that edges with this 
speed [m/s] are chosen. 
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A.3.2 Creation numbers and distribution. 

name used value description 

seed 33, 66 & 99 generates a repeatable pseudo-randomness to the 
distribution of vehicles. 

period 1.0 generates vehicles with equally distanced departure 
times, if combined with binomial it will set the arrival 
rate to 1/period. 

binomial 400 will create a binomial distribution for the number of 
departures per second from the number given and the 
value given for the argument period. 

A.3.3 Trip-attributes 

name value description 

departLane free the lane that is least occupied is chosen. 

departSpeed random a depart speed between 0 and the maxSpeed will 
be applied. Can be adapted to maintain a safe 
distance to vehicles in front. 

departPos random_free ten random positions are tried. If they are 
unsuccessful a free space will be searched for and 
used on that lane. 

A.3.4 Descriptions 

name value description 

vclass passenger specifies the type of vehicles that will be created. 

length 4.00 vehicle length in meters. 

minGap 2.00 minimum distance in meters to vehicle in front. 

maxSpeed 25.0 maximum speed vehicle can drive in meter per second. 

speedDev 0.1 speed deviation where default = 0.1. 

accel 2.6 acceleration ability for the vehicle type in m/s2. 
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decel 4.5 deceleration ability for the vehicle type in m/s2. 

A.3.5 Driving behaviors 

name value description 

sigma 0.2 how good the driver is. 0 indicates perfect driving. 

minGapLat 0.5 the minimum sideway distance between vehicles 
in meters. 

laneChangeModel SL2015 the lane change model used. 

A.3.6 Commuter flow 
Commuting vehicles were created from the values in the table as parameters. 

Type Start time 
End 
time Run time Factor 

$OR;D2 900 8100 7200 100 
fromTaz toTaz nbr probability commuter via edges via color 
taz_s1n_in taz_s1n_out 0.00 0.000000    white 
taz_s1n_in taz_s1r_out 0.00 0.000000    white 
taz_s1n_in taz_s1w_out 0.00 0.000000    white 
taz_s1n_in taz_s3n_out 0.00 0.000000    cyan 
taz_s1n_in taz_s5n_out 0.00 0.000000    magenta 
taz_s1n_in taz_s5r_out 0.25 0.003472 commuter0   magenta 
taz_s1n_in taz_s6w_out 0.50 0.006944 commuter1   orange 
taz_s1n_in taz_s6s_out 1.00 0.013889 commuter2   orange 
taz_s1n_in taz_s9s_out 1.00 0.013889 commuter3 "gneE25" s6 gray 
taz_s1n_in taz_s11e_out 1.00 0.013889 commuter4 "gneE25 gneE128" s6-s9 yellow 
taz_s1n_in taz_s11s_out 0.50 0.006944 commuter5 "gneE25 gneE128" s6-s9 yellow 
taz_s1r_in taz_s1n_out 0.00 0.000000    white 
taz_s1r_in taz_s1r_out 0.00 0.000000    white 
taz_s1r_in taz_s1w_out 0.00 0.000000  "gneE409"  white 
taz_s1r_in taz_s3n_out 0.00 0.000000    cyan 
taz_s1r_in taz_s5n_out 0.25 0.003472 commuter6 "gneE408.17"  magenta 
taz_s1r_in taz_s5r_out 0.50 0.006944 commuter7 "gneE408.17"  magenta 
taz_s1r_in taz_s6w_out 0.50 0.006944 commuter8 "gneE408.17"  orange 
taz_s1r_in taz_s6s_out 1.00 0.013889 commuter9 "gneE408.17"  orange 

taz_s1r_in taz_s9s_out 1.00 0.013889 commuter10 
"gneE408.17 
gneE628" s3 gray 

taz_s1r_in taz_s11e_out 1.00 0.013889 commuter11 
"gneE408.17 gneE25 
gneE128" s6-s9 yellow 
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taz_s1r_in taz_s11s_out 0.50 0.006944 commuter12 
"gneE408.17 gneE25 
gneE128" s6-s9 yellow 

taz_s1w_in taz_s1n_out 0.25 0.003472 commuter13   white 
taz_s1w_in taz_s1r_out 0.25 0.003472 commuter14   white 
taz_s1w_in taz_s1w_out 0.00 0.000000    white 
taz_s1w_in taz_s3n_out 0.00 0.000000    cyan 
taz_s1w_in taz_s5n_out 1.00 0.013889 commuter15   magenta 
taz_s1w_in taz_s5r_out 1.00 0.013889 commuter16   magenta 
taz_s1w_in taz_s6w_out 1.00 0.013889 commuter17   orange 
taz_s1w_in taz_s6s_out 3.00 0.041667 commuter18   orange 
taz_s1w_in taz_s9s_out 2.50 0.034722 commuter19 "gneE628" s3 gray 
taz_s1w_in taz_s11e_out 1.50 0.020833 commuter20 "gneE25 gneE128" s6-s9 yellow 
taz_s1w_in taz_s11s_out 1.50 0.020833 commuter21 "gneE25 gneE128" s6-s9 yellow 
taz_s3n_in taz_s1n_out 0.25 0.003472 commuter22   white 
taz_s3n_in taz_s1r_out 0.25 0.003472 commuter23   white 
taz_s3n_in taz_s1w_out 0.50 0.006944 commuter24   white 
taz_s3n_in taz_s3n_out 0.00 0.000000    cyan 
taz_s3n_in taz_s5n_out 0.50 0.006944 commuter25   magenta 
taz_s3n_in taz_s5r_out 1.00 0.013889 commuter26   magenta 
taz_s3n_in taz_s6w_out 2.50 0.034722 commuter27 "-gneE121" s9 orange 
taz_s3n_in taz_s6s_out 2.50 0.034722 commuter28 "gneE413" s1 orange 
taz_s3n_in taz_s9s_out 6.00 0.083333 commuter29   gray 
taz_s3n_in taz_s11e_out 3.50 0.048611 commuter30 "gneE128" s9 yellow 
taz_s3n_in taz_s11s_out 2.50 0.034722 commuter31 "gneE331" s5 yellow 
taz_s5n_in taz_s1n_out 0.00 0.000000    white 
taz_s5n_in taz_s1r_out 0.00 0.000000    white 
taz_s5n_in taz_s1w_out 0.50 0.006944 commuter32   white 
taz_s5n_in taz_s3n_out 0.00 0.000000    cyan 
taz_s5n_in taz_s5n_out 0.00 0.000000    magenta 
taz_s5n_in taz_s5r_out 0.00 0.000000    magenta 
taz_s5n_in taz_s6w_out 0.50 0.006944 commuter33 "gneE256 gneE413" s3-s1 orange 

taz_s5n_in taz_s6s_out 0.75 0.010417 commuter34 "gneE551 -gneE121" 
s11-
s9 orange 

taz_s5n_in taz_s9s_out 3.50 0.048611 commuter35 "gneE551" s11 gray 
taz_s5n_in taz_s11e_out 6.00 0.083333 commuter36   yellow 
taz_s5n_in taz_s11s_out 6.00 0.083333 commuter37   yellow 
taz_s5r_in taz_s1n_out 0.50 0.006944 commuter38   white 
taz_s5r_in taz_s1r_out 0.50 0.006944 commuter39   white 
taz_s5r_in taz_s1w_out 0.75 0.010417 commuter40   white 
taz_s5r_in taz_s3n_out 0.00 0.000000    cyan 
taz_s5r_in taz_s5n_out 0.50 0.006944 commuter41   magenta 
taz_s5r_in taz_s5r_out 1.00 0.013889 commuter42   magenta 
taz_s5r_in taz_s6w_out 1.00 0.013889 commuter43 "gneE256 gneE413" s3-s1 orange 
taz_s5r_in taz_s6s_out 0.75 0.010417 commuter44 "gneE628 -gneE121" s3-s9 orange 
taz_s5r_in taz_s9s_out 2.50 0.034722 commuter45 "gneE628" s3 gray 
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taz_s5r_in taz_s11e_out 0.00 0.000000    yellow 
taz_s5r_in taz_s11s_out 0.00 0.000000    yellow 
taz_s6w_in taz_s1n_out 2.00 0.027778 commuter46   white 
taz_s6w_in taz_s1r_out 2.00 0.027778 commuter47   white 
taz_s6w_in taz_s1w_out 1.50 0.020833 commuter48   white 
taz_s6w_in taz_s3n_out 1.00 0.013889 commuter49 "-gneE406" s1 cyan 
taz_s6w_in taz_s5n_out 1.25 0.017361 commuter50 "-gneE406 gneE262" s1-s3 magenta 

taz_s6w_in taz_s5r_out 1.25 0.017361 commuter51 "gneE128 gneE555" 
s9-
s11 magenta 

taz_s6w_in taz_s6w_out 0.00 0.000000    orange 
taz_s6w_in taz_s6s_out 0.25 0.003472 commuter52   orange 
taz_s6w_in taz_s9s_out 4.50 0.062500 commuter53   gray 
taz_s6w_in taz_s11e_out 2.00 0.027778 commuter54   yellow 
taz_s6w_in taz_s11s_out 2.00 0.027778 commuter55   yellow 
taz_s6s_in taz_s1n_out 2.00 0.027778 commuter56   white 
taz_s6s_in taz_s1r_out 2.00 0.027778 commuter57   white 
taz_s6s_in taz_s1w_out 1.50 0.020833 commuter58   white 
taz_s6s_in taz_s3n_out 1.00 0.013889 commuter59 "gneE131" s9 cyan 
taz_s6s_in taz_s5n_out 1.25 0.017361 commuter60 "-gneE406 gneE262" s1-s3 magenta 

taz_s6s_in taz_s5r_out 1.25 0.017361 commuter61 "gneE128 gneE555" 
s9-
s11 magenta 

taz_s6s_in taz_s6w_out 0.25 0.003472 commuter62   orange 
taz_s6s_in taz_s6s_out 0.00 0.000000    orange 
taz_s6s_in taz_s9s_out 3.50 0.048611 commuter63   gray 
taz_s6s_in taz_s11e_out 2.00 0.027778 commuter64   yellow 
taz_s6s_in taz_s11s_out 2.00 0.027778 commuter65   yellow 
taz_s9s_in taz_s1n_out 1.00 0.013889 commuter66 "gneE20" s6 white 
taz_s9s_in taz_s1r_out 0.50 0.006944 commuter67 "gneE256" s3 white 
taz_s9s_in taz_s1w_out 0.50 0.006944 commuter68 "gneE20" s6 white 
taz_s9s_in taz_s3n_out 5.00 0.069444 commuter69   cyan 
taz_s9s_in taz_s5n_out 2.50 0.034722 commuter70 "gneE555" s11 magenta 
taz_s9s_in taz_s5r_out 5.00 0.069444 commuter71 "gneE555" s11 magenta 
taz_s9s_in taz_s6w_out 0.25 0.003472 commuter72   orange 
taz_s9s_in taz_s6s_out 0.25 0.003472 commuter73   orange 
taz_s9s_in taz_s9s_out 0.00 0.000000    gray 
taz_s9s_in taz_s11e_out 2.00 0.027778 commuter74   yellow 
taz_s9s_in taz_s11s_out 0.25 0.003472 commuter75   yellow 

taz_s11e_in taz_s1n_out 0.50 0.006944 commuter76 "-gneE121 gneE20" 
 s9-
s6 white 

taz_s11e_in taz_s1r_out 0.50 0.006944 commuter77 "-gneE121 gneE20" 
 s9-
s6 white 

taz_s11e_in taz_s1w_out 0.50 0.006944 commuter78 "gneE322 gneE256" 
 s5-
s3 white 

taz_s11e_in taz_s3n_out 1.25 0.017361 commuter79 "gneE131"  s9 cyan 
taz_s11e_in taz_s5n_out 2.00 0.027778 commuter80   magenta 
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taz_s11e_in taz_s5r_out 0.50 0.006944 commuter81   magenta 
taz_s11e_in taz_s6w_out 1.25 0.017361 commuter82   orange 
taz_s11e_in taz_s6s_out 1.25 0.017361 commuter83   orange 
taz_s11e_in taz_s9s_out 0.25 0.003472 commuter84   gray 
taz_s11e_in taz_s11e_out 0.00 0.000000    yellow 
taz_s11e_in taz_s11s_out 0.25 0.003472 commuter85   yellow 

taz_s11s_in taz_s1n_out 0.50 0.006944 commuter86 "-gneE121 gneE20" 
 s9-
s6 white 

taz_s11s_in taz_s1r_out 0.50 0.006944 commuter87 "-gneE121 gneE20" 
 s9-
s6 white 

taz_s11s_in taz_s1w_out 0.50 0.006944 commuter88 "gneE322 gneE256" 
 s5-
s3 white 

taz_s11s_in taz_s3n_out 1.25 0.017361 commuter89 "gneE131"  s9 cyan 
taz_s11s_in taz_s5n_out 2.00 0.027778 commuter90   magenta 
taz_s11s_in taz_s5r_out 2.00 0.027778 commuter91   magenta 
taz_s11s_in taz_s6w_out 1.25 0.017361 commuter92   orange 
taz_s11s_in taz_s6s_out 1.25 0.017361 commuter93   orange 
taz_s11s_in taz_s9s_out 0.00 0.000000    gray 
taz_s11s_in taz_s11e_out 0.25 0.003472 commuter94   yellow 
taz_s11s_in taz_s11s_out 0.00 0.000000    yellow 

A.3.7 Bus flow 
Public transport that run on schedule and on specified routes is represented 
by an XML file with the name busFlow7200sV5sorted.rou.xml. The code 
snippet below is shortened and can be found in its entirety online at the URL 
mentioned in the Appendix’ introduction. 
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<routes> 
 
<vType id="BUS" vClass="bus" accel="1.3" decel="2.3" 
sigma="0.1" length="12.0" minGap="4.0" maxSpeed="19.5" 
speedFactor="normc(1,0.1,0.2,2)" laneChangeModel="SL2015" 
maxSpeedLat="1.0" minGapLat="0.6" latAlignment="nice"/> 
 
<flow id="bus3s1s6" color="255,127,80" begin="0" end="6900" 
number ="12" type="BUS" from="gneE660" to="gneE53"> 
</flow> 
<flow id="bus13s6s6w" color="255,127,80" begin="0" end="6480" 
number ="5" type="BUS" from="-gneE10" to="gneE53"> 
</flow> 
<flow id="bus21s6s11" color="255,127,80" begin="0" end="6600" 
number ="6" type="BUS" from="-gneE10" to="gneE553"> 
<stop busStop="busStop_gneE26_0_13" duration="15"/> 
<stop busStop="busStop_gneE79_0_25" duration="15"/> 
<stop busStop="busStop_-gneE136_0_3" duration="15"/> 
<stop busStop="busStop_gneE142_0_8" duration="15"/> 
</flow> 
<flow id="bus151s1s6" color="255,215,0" begin="0" end="6600" 
number ="6" type="BUS" from="gneE412" to="gneE53"> 
<stop busStop="busStop_gneE469_1_19" duration="15"/> 
</flow> 
<flow id="bus187s3s9" color="255,215,0" begin="0" end="6900" 
number ="12" type="BUS" from="gneE532" to="gneE133"> 
<stop busStop="busStop_gneE532_0_22" duration="15"/> 
</flow> 
<flow id="bus208s3s9" color="176,196,222" begin="0" end="6900"
number ="12" type="BUS" from="gneE532" to="gneE133"> 
<stop busStop="busStop_gneE532_0_22" duration="15"/> 
<stop busStop="busStop_gneE629_0_24" duration="15"/> 
<stop busStop="busStop_gneE133_0_7" duration="15"/> 
</flow> 
<flow id="bus274s1s6" color="176,196,222" begin="0" end="6600"
number ="6" type="BUS" from="gneE660" to="gneE53"> 
<stop busStop="busStop_gneE469_1_19" duration="15"/> 
</flow> 
 
</routes> 
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A.4 Python code 
The SUMO application was controlled by using Traffic Control Interface 
(TraCI). By using the add-on traci, Python code was used to build a 
simulation control program and a data output compiler.  

A.4.1 Simulation control code 
001: from pathlib import Path 
002: from numpy import mean as mean 
003: import traci, os, datetime, json, sys, csv 
004: programstart = datetime.datetime.now() 
005: filesuffix = programstart.isoformat().replace('-', 
'_').replace(':', '_').replace('.', '_').replace('/', '_') 
006:  
007: sumoBinary = "/usr/local/opt/sumo/share/sumo/bin/sumo-
gui" 
008: sumoCmd = [sumoBinary, "-c", "simu_traci_02.sumocfg"] 
#simu_traci_01.sumocfg, simu_v5-6orig2-1.sumocfg 
009: folder = 'REPORT/' 
010: reportFile = "summary" + filesuffix + ".txt" 
011: detectorFile = "pcuReport" + filesuffix + ".json" 
012: dataFile = "data" + filesuffix + ".csv" 
013:  
014: start, end = 0, 8100 
015: process_time = [int(arg) for arg in sys.argv[1:]] 
016: if len(process_time) > 1: 
017:   start = min(process_time) 
018:   end = max(process_time) 
019: print(start, end) 
020: warning = False 
021:  
022: streets = { 
023: "s1_s3" : ["-gneE406", "-gneE290", "-gneE291", "-
gneE293", "-gneE294", "-gneE295", "-gneE296", "gneE252", 
"gneE253", "gneE255", "gneE297", "gneE396", "gneE611"], 
024: "s1_s6" : ["gneE17", "gneE413", "gneE440", "gneE443", 
"gneE469", "gneE470", "gneE471"], 
025: "s3_s1" : ["-gneE297", "gneE256", "gneE257", "gneE261", 
"gneE290", "gneE291", "gneE293", "gneE294", "gneE295", 
"gneE296", "gneE406", "gneE425", "gneE428", "gneE430", 
"gneE434", "gneE618", "gneE621"], 
026: "s3_s5" : ["gneE262", "gneE270", "gneE274", "gneE279", 
"gneE320", "gneE321"], 
027: "s3_s9" : ["-gneE131", "gneE248", "gneE374", "gneE375", 
"gneE628", "gneE629"], 
028: "s5_s3" : ["gneE263", "gneE268", "gneE269", "gneE271", 
"gneE272", "gneE273", "gneE311", "gneE322", "gneE688"], 



98 

 

029: "s5_s11" : ["-gneE555", "gneE210", "gneE331", "gneE332", 
"gneE333", "gneE334", "gneE336", "gneE648", "gneE649", 
"gneE651"], 
030: "s6_s1" : ["-gneE413", "-gneE440", "-gneE441", "gneE20", 
"gneE414", "gneE415", "gneE436", "gneE444"], 
031: "s6_s9" : ["-gneE71", "gneE115", "gneE116", "gneE120", 
"gneE121", "gneE25", "gneE26", "gneE70", "gneE72", "gneE73", 
"gneE79"], 
032: "s9_s3" : ["gneE131", "gneE376", "gneE377", "gneE378", 
"gneE626", "gneE627"], 
033: "s9_s6" : ["-gneE115", "-gneE116", "-gneE120", "-
gneE121", "-gneE25", "-gneE26", "-gneE70", "-gneE72", "-
gneE73", "-gneE79", "gneE71"], 
034: "s9_s11" : ["-gneE136", "gneE128", "gneE137", "gneE140", 
"gneE142", "gneE552"], 
035: "s11_s5" : ["-gneE210", "gneE337", "gneE343", "gneE344", 
"gneE346", "gneE399", "gneE400", "gneE404", "gneE555"], 
036: "s11_s9" : ["-gneE128", "-gneE137", "-gneE140", "-
gneE142", "-gneE552", "gneE136"] 
037: } 
038:  
039: detectors = ["e2Detector_s1eOut1", "e2Detector_s1eOut2", 
"e2Detector_s1en", "e2Detector_s1es1", "e2Detector_s1es2", 
"e2Detector_s1ew1", "e2Detector_s1ew2", "e2Detector_s1ew3", 
"e2Detector_s1nOut1", "e2Detector_s1nOut2", 
"e2Detector_s1nOut3", "e2Detector_s1ne1", "e2Detector_s1ne2", 
"e2Detector_s1ne3", "e2Detector_s1ns1", "e2Detector_s1ns2", 
"e2Detector_s1nw1", "e2Detector_s1nw2", "e2Detector_s1sOut1", 
"e2Detector_s1sOut2", "e2Detector_s1se", "e2Detector_s1sn1", 
"e2Detector_s1sn2", "e2Detector_s1sw1", "e2Detector_s1sw2", 
"e2Detector_s1wOut1", "e2Detector_s1wOut2", 
"e2Detector_s1wOut3", "e2Detector_s1we1", "e2Detector_s1we2", 
"e2Detector_s1wn1", "e2Detector_s1wn2", "e2Detector_s1ws", 
"e2Detector_s3eOut1", "e2Detector_s3eOut2", 
"e2Detector_s3eOut3", "e2Detector_s3es1", "e2Detector_s3es2", 
"e2Detector_s3ew1", "e2Detector_s3ew2", "e2Detector_s3ew3", 
"e2Detector_s3nOut", "e2Detector_s3ne", "e2Detector_s3ns1", 
"e2Detector_s3ns2", "e2Detector_s3ns3", "e2Detector_s3nw1", 
"e2Detector_s3nw2", "e2Detector_s3sOut1", 
"e2Detector_s3sOut2", "e2Detector_s3se", "e2Detector_s3sn1", 
"e2Detector_s3sn2", "e2Detector_s3sw1", "e2Detector_s3sw2", 
"e2Detector_s3wOut1", "e2Detector_s3wOut2", 
"e2Detector_s3wOut3", "e2Detector_s3we", "e2Detector_s3we1", 
"e2Detector_s3we2", "e2Detector_s3we3", "e2Detector_s3ws", 
"e2Detector_s5busnws", "e2Detector_s5nOut1", 
"e2Detector_s5nOut2", "e2Detector_s5nbusOut", 
"e2Detector_s5ns1", "e2Detector_s5ns2", "e2Detector_s5nw", 
"e2Detector_s5sOut1", "e2Detector_s5sOut2", 
"e2Detector_s5sOut3", "e2Detector_s5sbusOut", 
"e2Detector_s5sn1", "e2Detector_s5sn2", "e2Detector_s5sn3", 
"e2Detector_s5sw", "e2Detector_s5wOut1", "e2Detector_s5wOut2", 
"e2Detector_s5wOut3", "e2Detector_s5wn1", "e2Detector_s5wn2", 
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"e2Detector_s5wn3", "e2Detector_s5ws", "e2Detector_s6eOut1", 
"e2Detector_s6eOut2", "e2Detector_s6eOut3", "e2Detector_s6en", 
"e2Detector_s6es1", "e2Detector_s6es2", "e2Detector_s6ew1", 
"e2Detector_s6ew2", "e2Detector_s6nOut1", 
"e2Detector_s6nOut2", "e2Detector_s6nOut3", 
"e2Detector_s6ne1", "e2Detector_s6ne2", "e2Detector_s6ns1", 
"e2Detector_s6ns2", "e2Detector_s6nw", "e2Detector_s6sOut1", 
"e2Detector_s6sbusOut", "e2Detector_s6se", "e2Detector_s6sn1", 
"e2Detector_s6sn2", "e2Detector_s6sw1", "e2Detector_s6sw2", 
"e2Detector_s6wOut1", "e2Detector_s6wOut2", 
"e2Detector_s6wOut3", "e2Detector_s6we1", "e2Detector_s6we2", 
"e2Detector_s6wn1", "e2Detector_s6wn2", "e2Detector_s6ws", 
"e2Detector_s9eOut1", "e2Detector_s9eOut2", 
"e2Detector_s9eOut3", "e2Detector_s9en", "e2Detector_s9es1", 
"e2Detector_s9es2", "e2Detector_s9ew1", "e2Detector_s9ew2", 
"e2Detector_s9nOut1", "e2Detector_s9nOut2", "e2Detector_s9ne", 
"e2Detector_s9ns", "e2Detector_s9nw", "e2Detector_s9sOut1", 
"e2Detector_s9sOut2", "e2Detector_s9se", "e2Detector_s9sn", 
"e2Detector_s9sw", "e2Detector_s9wOut1", "e2Detector_s9wOut2", 
"e2Detector_s9wOut3", "e2Detector_s9we1", "e2Detector_s9we2", 
"e2Detector_s9wn1", "e2Detector_s9wn2", "e2Detector_s9ws1", 
"e2Detector_s11nwBus", "e2Detector_s11eOut1", 
"e2Detector_s11eOut2", "e2Detector_s11en", "e2Detector_s11es", 
"e2Detector_s11ew", "e2Detector_s11nBusOut", 
"e2Detector_s11nOut1", "e2Detector_s11nOut2", 
"e2Detector_s11ne", "e2Detector_s11ns1", "e2Detector_s11ns2", 
"e2Detector_s11sBusOut", "e2Detector_s11sOut1", 
"e2Detector_s11sOut2", "e2Detector_s11se", 
"e2Detector_s11sn1", "e2Detector_s11sn2", 
"e2Detector_s11snbus", "e2Detector_s11sw", 
"e2Detector_s11wOut1", "e2Detector_s11wOut2", 
"e2Detector_s11wOut3", "e2Detector_s11we1", 
"e2Detector_s11we2", "taz_s1n0", "taz_s1n1", "taz_s1n3", 
"taz_s1r0", "taz_s1w0", "taz_s1w1", "taz_s1w2", "taz_s1w3", 
"taz_s1w4", "taz_s3n0", "taz_s3n1", "taz_s5n0", "taz_s5n1", 
"taz_s5n2", "taz_s5n3", "taz_s5r0", "taz_s6w0", "taz_s6w1", 
"taz_s6w2", "taz_s6s0", "taz_s6s1", "taz_s6s2", "taz_s9s0", 
"taz_s9s1", "taz_s9s2", "taz_s11s0", "taz_s11s1", 
"taz_s11s2" , "taz_s11e0", "taz_s11e1", "taz_s11e2"] 
040:  
041: fringeEdges = {'s1n': ["taz_s1n0", "taz_s1n1", 
"taz_s1n3"], 's1r': ["taz_s1r0"], 's1w': ["taz_s1w0", 
"taz_s1w1", "taz_s1w2", "taz_s1w3", "taz_s1w4"], 's3n': 
["taz_s3n0", "taz_s3n1"], 's5n': ["taz_s5n0", "taz_s5n1", 
"taz_s5n2", "taz_s5n3"], 's5r': ["taz_s5r0"], 's6w': 
["taz_s6w0", "taz_s6w1", "taz_s6w2"], 's6s': ["taz_s6s0", 
"taz_s6s1", "taz_s6s2"], 's9s': ["taz_s9s0", "taz_s9s1", 
"taz_s9s2"], 's11s': ["taz_s11s0", "taz_s11s1", "taz_s11s2"], 
's11e': ["taz_s11e0", "taz_s11e1", "taz_s11e2"]} 
042: pcuOnStreets = {'s1_s3': [[], []], 's1_s6': [[], []], 
's3_s1': [[], []], 's3_s5': [[], []], 's3_s9': [[], []], 
's5_s3': [[], []], 's5_s11': [[], []], 's6_s1': [[], []], 
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's6_s9': [[], []], 's9_s3': [[], []], 's9_s6': [[], []], 
's9_s11': [[], []], 's11_s5': [[], []], 's11_s9': [[], []]} 
043: collisions = {'s1_s3': 0, 's1_s6': 0, 's3_s1': 0, 
's3_s5': 0, 's3_s9': 0, 's5_s3': 0, 's5_s11': 0, 's6_s1': 0, 
's6_s9': 0, 's9_s3': 0, 's9_s6': 0, 's9_s11': 0, 's11_s5': 0, 
's11_s9': 0} 
044: statistics = {'sumLoaded': 0, 'sumDeparted': 0, 
'sumArrived': 0, 'sumTeleports': 0, 'sumCollisions': 0, 
'collisions': []} 
045: csv_header = {'fringe' : True, 'pending' : True, 
'occupancy' : True} 
046: map, intervals, streetLanes = {}, {}, {} # [pcu, 
avg_occupancy], {t: {detector: pcu, ...}, ...}, [laneID, ...] 
047: csv_fringe, csv_pending, csv_occupancy = {}, {}, {} 
048: fringe, laneStreets = {}, {} 
049: old = {'t': start} 
050: for entry in fringeEdges.keys(): 
051:   fringe[entry] = 0 
052:  
053: def resetDetected(detected): 
054:   for detector in detectors: 
055:     detected.update({detector: set()}) 
056:   return detected 
057:  
058: def resetDictionary(iterable, value): 
059:   for item in iterable: 
060:     iterable[item] = value 
061:  
062: def countVehicleTypes(idList, count_pcu): 
063:   randoms, commuters, buses = [0, 0, 0] 
064:   if count_pcu: 
065:     busFactor = 3 
066:   else: 
067:     busFactor = 1 
068:   for id in idList: 
069:     if 'bus' in id: 
070:       buses += busFactor 
071:     elif 'commuter' in id: 
072:       commuters += 1 
073:     else: 
074:       randoms += 1 
075:   return [randoms, commuters, buses] 
076:  
077: def countPCUsOnDetector(vhcLeftDetector): 
078:   PCU = {} 
079:   for detector in vhcLeftDetector: 
080:     PCU[detector] = 
sum(countVehicleTypes(vhcLeftDetector[detector], True)) 
081:   return PCU 
082:  
083: def setStreetLanes(streetLanes): 
084:   for street in streets: 
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085:     streetLanes[street] = [] 
086:     for edge in streets[street]: 
087:       lanes = traci.edge.getLaneNumber(edge) 
088:       for lane in range(lanes): 
089:         laneID = edge + '_' + str(lane) 
090:         allowed = traci.lane.getAllowed(laneID) 
091:         unprotected = ['moped', 'bicycle', 'pedestrian'] 
092:         if not any(category in allowed  for category in 
unprotected): 
093:           streetLanes[street].append(laneID) 
094:  
095: def setLaneStreets(streetLanes, laneStreets): 
096:   for street in streetLanes: 
097:     for laneID in streetLanes[street]: 
098:       laneStreets[laneID] = street 
099:  
100: def update_pcuOnStreets(streetLanes): 
101:   for street in streetLanes: 
102:     vehicles = [] 
103:     occupancy = [] 
104:     for laneID in streetLanes[street]: 
105:       
vehicles.extend(traci.lane.getLastStepVehicleIDs(laneID)) 
106:       
occupancy.append(traci.lane.getLastStepOccupancy(laneID)) 
107:     if sum(occupancy) != 0: 
108:       
pcuOnStreets[street][0].append(sum(countVehicleTypes(vehicles, 
True))) 
109:       pcuOnStreets[street][1].append(mean(occupancy)) 
110:  
111: def pop_pcuOnStreets(street): 
112:   vhc, occ = pcuOnStreets[street] 
113:   pcuOnStreets[street] = [[], []] 
114:   return int(mean(vhc)), mean(occ) 
115:  
116: def getFringeVehicles(intervals, t): 
117:   vhcAtFringe = {} 
118:   entriesAtFringe = '' 
119:   period = t - old['t'] 
120:   for entry in fringeEdges: 
121:     nbr = 0 
122:     for detector in fringeEdges[entry]: 
123:       nbr += intervals[detector] 
124:     vhcAtFringe[entry] = nbr 
125:     fringe[entry] += nbr 
126:   values = vhcAtFringe.values() 
127:   entriesAtFringe += 'Number of PCUs that entered thru 
fringe from {} s to {} s ({} s).\n'.format(old['t'], t, 
period) 
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128:   entriesAtFringe += '{0:^5s} {1:^5s} {2:^5s} {3:^5s} 
{4:^5s} {5:^5s} {6:^5s} {7:^5s} {8:^5s} {9:^5s} {10:^5s} 
{11:^5s}\n'.format('sum', *vhcAtFringe.keys()) 
129:   entriesAtFringe += '{0:^5.0f} {1:^5.0f} {2:^5.0f} 
{3:^5.0f} {4:^5.0f} {5:^5.0f} {6:^5.0f} {7:^5.0f} {8:^5.0f} 
{9:^5.0f} {10:^5.0f} {11:^5.0f}\n'.format(sum(values), 
*values) 
130:   old['t'] = t 
131:   if csv_header['fringe']: 
132:     csv_fringe[0] = ['time', 'sum', *vhcAtFringe.keys()] 
133:     csv_header['fringe'] = False 
134:   csv_fringe[t] = [t, sum(values), *values] 
135:   return entriesAtFringe 
136:  
137: def findConfig(sumoCfg): 
138:   configFiles = {} 
139:   values = ['<net-file', '<lateral-resolution', '<gui-
settings-file', '<route-files', '<additional-files'] 
140:   with open(sumoCfg, 'r', encoding='utf-8') as aFile: 
141:     cfgText = aFile.read() 
142:   for value in values: 
143:     i = cfgText.find(value) 
144:     if i > 0: 
145:       j = cfgText.find('/>', i) 
146:     configFiles[value[1:]] = cfgText[i+1:j] 
147:   return configFiles 
148:  
149: def getPendings(t): 
150:   origins = { 
151:   's1n':['gneE660'], 's1ramp':['-gneE659'], 's1w':['-
gneE411', 'gneE412'], 
152:   's3n':['gneE532'], 's5n':['gneE666', 'gneE667'], 
's5ramp':['-gneE675'], 
153:   's6w':['-gneE10'], 's6s':['-gneE657'], 's9s':['-
gneE133'], 
154:   's11s':['-gneE669'], 's11e':['-gneE553'] 
155:   } 
156:   M = [[0] * 12 for i in range(3)] 
157:   col = 1 
158:   thisMap = {} 
159:   for entry in origins: 
160:     for edge in origins[entry]: 
161:       idList = traci.edge.getPendingVehicles(edge) 
162:       thisMap[entry] = len(idList) 
163:       M[0][col], M[1][col], M[2][col] = 
countVehicleTypes(idList, False) 
164:     col +=1 
165:   map[t].update(thisMap) 
166:   headline = '{0:^5s} {1:^5s} {2:^5s} {3:^5s} {4:^5s} 
{5:^5s} {6:^5s} {7:^5s} {8:^5s} {9:^5s} {10:^5s} {11:^5s}\n' 
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167:   resultline = '{0:^5s} {1:^5.0f} {2:^5.0f} {3:^5.0f} 
{4:^5.0f} {5:^5.0f} {6:^5.0f} {7:^5.0f} {8:^5.0f} {9:^5.0f} 
{10:^5.0f} {11:^5.0f} \n' 
168:   sumOfPenders = [sum(M[0]), sum(M[1]), sum(M[2])] 
169:   pendings = 'At t = {} min {} vehicles are pending to 
enter via the fringe. \n'.format(t/60, sum(sumOfPenders)) 
170:   pendings += headline.format('vTyp', 's1n', 's1r', 
's1w', 's3n', 's5n', 's5r', 's6w', 's6s', 's9s', 's11s', 
's11e') 
171:   pendings += resultline.format('rand', *M[0][1:12]) 
172:   pendings += resultline.format('comm', *M[1][1:12]) 
173:   pendings += resultline.format('bus', *M[2][1:12]) 
174:   if csv_header['pending']: 
175:     csv_pending[0] = ['time', 'vTyp', 's1n', 's1r', 
's1w', 's3n', 's5n', 's5r', 's6w', 's6s', 's9s', 's11s', 
's11e'] 
176:     csv_header['pending'] = False 
177:   csv_pending[t] = [[t, 'rand', *M[0][1:12]], [t, 'comm', 
*M[1][1:12]], [t, 'bus', *M[2][1:12]]] 
178:   return pendings 
179:  
180: def getSystemOccupancy(streetLanes): 
181:   streetKeys = streets.keys() 
182:   systemOccupancy = 'System occupancy:\n' 
183:   systemOccupancy += '{0:5s} {1:5s} {2:5s} {3:5s} {4:5s} 
{5:5s} {6:5s} {7:6s} {8:5s} {9:5s} {10:5s} {11:5s} {12:6s} 
{13:6s} {14:6s}\n'.format('avg', *streetKeys) 
184:   streetOccupancy = {} 
185:   for street in streetLanes: 
186:     streetOccupancy[street] = pop_pcuOnStreets(street) 
187:     if streetOccupancy[street][0] == 0: 
188:       warning = True 
189:   map[t].update(streetOccupancy) 
190:   occupancy_format = [mean([v[1] for v in 
streetOccupancy.values()]), *[streetOccupancy[street][1] for 
street in streetKeys]] 
191:   systemOccupancy += '{0:^5.1%} {1:^5.1%} {2:^5.1%} 
{3:^5.1%} {4:^5.1%} {5:^5.1%} {6:^5.1%} {7:^6.1%} {8:^5.1%} 
{9:^5.1%} {10:^5.1%} {11:^5.1%} {12:^6.1%} {13:^6.1%} 
{14:^6.1%}\n'.format(*occupancy_format) 
192:   if csv_header['occupancy']: 
193:     csv_occupancy[0] = ['time', 'avg', *streetKeys] 
194:     csv_header['occupancy'] = False 
195:   csv_occupancy[t] = [t, mean([v[1] for v in 
streetOccupancy.values()]), *[streetOccupancy[street][1] for 
street in streetKeys]] 
196:   return systemOccupancy 
197:  
198: def updateStatistics(t, summarize): 
199:   statistics['sumLoaded'] += 
traci.simulation.getLoadedNumber() 
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200:   statistics['sumDeparted'] += 
traci.simulation.getDepartedNumber() 
201:   statistics['sumArrived'] += 
traci.simulation.getArrivedNumber() 
202:   statistics['sumTeleports'] += 
traci.simulation.getEndingTeleportNumber() 
203:   statistics['sumCollisions'] += 
traci.simulation.getCollidingVehiclesNumber() 
204:   
statistics['collisions'].extend(traci.simulation.getCollisions
()) 
205:   if summarize: 
206:     for collision in statistics.pop('collisions'): 
207:       laneID = str(collision.lane) 
208:       street = laneStreets.get(laneID) 
209:       if street: 
210:         collisions[street] += 1 
211:     intervals[t].update(statistics) 
212:     resetDictionary(statistics, 0) 
213:     statistics['collisions'] = [] 
214:  
215: # Run code: 
216: detected =  resetDetected({}) # Dictionary of sets 
{detector: {vehicle, ...}, ...} 
217: traci.start(sumoCmd) 
218: summary = 'Start = {} s. Stop = {} s.\n'.format(start, 
end) 
219: print(summary) 
220: setStreetLanes(streetLanes) 
221: setLaneStreets(streetLanes, laneStreets) 
222: checkframe = [900, 1800, 2700, 3600, 4500, 5400, 6300, 
7200, 8100, 9000, 9900, 10800, end] # time in s 
223: all_pending_cars = '' 
224: for t in range(start, end+1): 
225:   traci.simulationStep() 
226:   if t % 150 == 0 and t > 0: 
227:     update_pcuOnStreets(streetLanes) 
228:   if t not in checkframe: 
229:     updateStatistics(t, False) 
230:     for detector in detected: 
231:       vehiclesOnDetector = 
traci.lanearea.getLastStepVehicleIDs(detector) 
232:       detected[detector].update(vehiclesOnDetector) 
233:   else: 
234:     vehiclesLeftDetector = {} 
235:     map[t], intervals[t] = {}, {} 
236:     updateStatistics(t, True) 
237:     for detector in detected: 
238:       vehiclesOnDetector = 
traci.lanearea.getLastStepVehicleIDs(detector) 
239:       detected[detector].update(vehiclesOnDetector) 
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240:       vehiclesLeftDetector[detector] = 
set(detected[detector].difference(vehiclesOnDetector)) 
241:       detected[detector] = set(vehiclesOnDetector) 
242:     
intervals[t].update(countPCUsOnDetector(vehiclesLeftDetector)) 
243:     fringeVehicles = getFringeVehicles(intervals[t], t) 
244:     pending_cars = getPendings(t) 
245:     systemOccupancy = getSystemOccupancy(streetLanes) 
246:     all_pending_cars += '\n' + fringeVehicles + '\n' + 
pending_cars + '\n' + systemOccupancy + '\n' 
247:     print(fringeVehicles) 
248:     print(pending_cars) 
249:     print(systemOccupancy) 
250: vehicles = {} 
251: system_occupancy = [] 
252: sums = [0, 0, 0, 0, 0, 0, 0] # car, pcu, sum-%, random, 
commuter, bus, occupancy 
253: occupancy_report = '' 
254: for street in streetLanes: 
255:   random_cars, commuters, buses, pcu = 0, 0, 0, 0 
256:   idList, occupancy = [], [] 
257:   for laneID in streetLanes[street]: 
258:     
idList.extend(traci.lane.getLastStepVehicleIDs(laneID)) 
259:     
occupancy.append(traci.lane.getLastStepOccupancy(laneID)) 
260:   random_cars, commuters, buses = 
countVehicleTypes(idList, False) 
261:   carsum = commuters + random_cars + buses 
262:   pcu = commuters + random_cars + 3 * buses 
263:   avg_occupancy = mean(occupancy) 
264:   vehicles[street] = [carsum, pcu, 0, random_cars, 
commuters, buses, avg_occupancy] 
265:   sums = [sums[i] + vehicles[street][i] for i in 
range(len(sums))] 
266: sums[-1] = sums[-1] / len(streets) # create average 
occupancy 
267: endtime = 'Time = {} min.'.format(t/60) 
268: summary += endtime + '\n' 
269: print(endtime) 
270: header ='{0:7s} {1:>7s} {2:>7s} {3:>7s} {4:>7s} {5:>7s} 
{6:>7s} {7:>7s} {8:>7s}'.format('Street', 'CarSum', 'PCU', 
'Sum-%', 'Random', 'Commute', 'Bus', 'Occ-%', 'Coll') 
271: summary += header + '\n' 
272: print(header) 
273: for street in vehicles: 
274:   carsum, pcu, perc, ran, com, bus, occ = 
vehicles[street] # nbrList 
275:   if sums[0] > 0: 
276:     perc = float(carsum)/sums[0] # percentage 
277:     sums[2] += perc 
278:   else: 
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279:     perc = 0 
280:   coll = collisions[street] 
281:   line = '{0:7s} {1:7.0f} {2:7.0f} {3:7.1%} {4:7.0f} 
{5:7.0f} {6:7.0f} {7:7.1%} {8:7.0f}'.format(street, carsum, 
pcu, perc, ran, com, bus, occ, coll) 
282:   print(line) 
283:   summary += line + '\n' 
284: sumline = '{0:7s} {1:7.0f} {2:7.0f} {3:7.1%} {4:7.0f} 
{5:7.0f} {6:7.0f} {7:7.1%} {8:7.0f}'.format('TOTAL', *sums, 
sum(collisions.values())) 
285: summary += sumline + '\n' 
286: print(sumline) 
287: programend = datetime.datetime.now() 
288: runtime = programend - programstart 
289: print('Program runtime:', runtime, '\n') 
290: sumFromFringe = 'Total number of PCUs that entered thru 
fringe during entire simulation ({} s).\n'.format(t - start) 
291: sumFromFringe += '{0:^5s} {1:^5s} {2:^5s} {3:^5s} {4:^5s} 
{5:^5s} {6:^5s} {7:^5s} {8:^5s} {9:^5s} {10:^5s} 
{11:^5s}\n'.format('sum', *fringe.keys()) 
292: sumFromFringe += '{0:^5.0f} {1:^5.0f} {2:^5.0f} {3:^5.0f} 
{4:^5.0f} {5:^5.0f} {6:^5.0f} {7:^5.0f} {8:^5.0f} {9:^5.0f} 
{10:^5.0f} {11:^5.0f}\n'.format(sum(fringe.values()), 
*fringe.values()) 
293: # filePath = Path(os.getcwd() + '/REPORT/') 
294: if not os.path.exists(folder): 
295:   os.makedirs(folder) 
296: json_configFiles = json.dumps(findConfig(sumoCmd[2]), 
indent=4) 
297: with open(folder+reportFile, 'w') as aFile: 
298:   aFile.write(json_configFiles + '\n') 
299:   aFile.write('Program runtime:' + str(runtime) + '\n') 
300:   aFile.write(summary) 
301:   aFile.write(all_pending_cars) 
302:   aFile.write(sumFromFringe) 
303: print('Above report has been written to 
{}\n'.format(os.path.abspath(folder + reportFile))) 
304: print(sumFromFringe) 
305: if warning: 
306:   print('------ *** WARNING! Check for zeros. *** ------
') 
307: with open(folder+detectorFile, 'w') as bFile: 
308:   bFile.write(json_configFiles + '\n\n') 
309:   bFile.write(json.dumps(collisions, indent=2) + '\n\n') 
310:   bFile.write(json.dumps(map, indent=2) + '\n\n') 
311:   bFile.write(json.dumps(intervals, indent=2)) 
312: with open(folder+dataFile, 'w') as cFile: 
313:   for data in [csv_fringe, csv_pending, csv_occupancy]: 
314:     header = data[0] 
315:     writer = csv.writer(cFile) 
316:     writer.writerow(header) 
317:     for t in data: 
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318:       if t > 0: 
319:         if len(data[t]) < 4: 
320:           for row in data[t]: 
321:             writer.writerow(row) 
322:         else: 
323:           writer.writerow(data[t]) 
324:     writer.writerow(['' for x in data[t]]) 
325: traci.close() 

A.4.2 Simulation output process code 
001: import json, csv, sys 
002: from numpy import mean as mean 
003:  
004: folder = 'REPORT' 
005: filename = 'pcuReport2021_06_06T17_26_26_836291.json' # 
default filename 
006:  
007: # Call file with optional arguments: filename.json -junc  
--> filename.csv 
008: # Run as: <codename>.py <filename1>.json 
[<filename2>.json ‚…] [-junc] 
009: # Argument -junc will sort table in junction order. 
Default: period order. 
010:  
011: filesToProcess = sys.argv[1:] 
012: sortJunction = False 
013: maxDivisor = False 
014: if '-junc' in filesToProcess: 
015:   filesToProcess.remove('-junc') 
016:   sortJunction = True 
017: if '-maxdiv' in filesToProcess: 
018:   filesToProcess.remove('-maxdiv') 
019:   maxDivisor = True 
020: nbrOfFiles = len(filesToProcess) 
021: if not nbrOfFiles > 0: 
022:   filesToProcess.append(filename) 
023:  
024: detectors = { 
025: 's1' : {'fromNorth' : ["e2Detector_s1ne1", 
"e2Detector_s1ne2", "e2Detector_s1ne3", "e2Detector_s1ns1", 
"e2Detector_s1ns2", "e2Detector_s1nw1", "e2Detector_s1nw2"], 
'fromEast' : ["e2Detector_s1en", "e2Detector_s1es1", 
"e2Detector_s1es2", "e2Detector_s1ew1", "e2Detector_s1ew2", 
"e2Detector_s1ew3"], 'fromSouth' : ["e2Detector_s1se", 
"e2Detector_s1sn1", "e2Detector_s1sn2", "e2Detector_s1sw1", 
"e2Detector_s1sw2"], 'fromWest' : ["e2Detector_s1we1", 
"e2Detector_s1we2", "e2Detector_s1wn1", "e2Detector_s1wn2", 
"e2Detector_s1ws"], 'toNorth' : ["e2Detector_s1nOut1", 
"e2Detector_s1nOut2", "e2Detector_s1nOut3"], 'toEast' : 
["e2Detector_s1eOut1", "e2Detector_s1eOut2"], 'toSouth' : 
["e2Detector_s1sOut1", "e2Detector_s1sOut2"], 'toWest' : 
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["e2Detector_s1wOut1", "e2Detector_s1wOut2", 
"e2Detector_s1wOut3"]}, 
026: 's3' : {'fromNorth' : ["e2Detector_s3ne", 
"e2Detector_s3ns1", "e2Detector_s3ns2", "e2Detector_s3ns3", 
"e2Detector_s3nw1", "e2Detector_s3nw2"], 'fromEast' : 
["e2Detector_s3es1", "e2Detector_s3es2", "e2Detector_s3ew1", 
"e2Detector_s3ew2", "e2Detector_s3ew3"], 'fromSouth' : 
["e2Detector_s3se", "e2Detector_s3sn1", "e2Detector_s3sn2", 
"e2Detector_s3sw1", "e2Detector_s3sw2"], 'fromWest' : 
["e2Detector_s3we", "e2Detector_s3we1", "e2Detector_s3we2", 
"e2Detector_s3we3", "e2Detector_s3ws"], 'toNorth' : 
["e2Detector_s3nOut"], 'toEast' : ["e2Detector_s3eOut1", 
"e2Detector_s3eOut2", "e2Detector_s3eOut3"], 'toSouth' : 
["e2Detector_s3sOut1", "e2Detector_s3sOut2"], 'toWest' : 
["e2Detector_s3wOut1", "e2Detector_s3wOut2", 
"e2Detector_s3wOut3"]}, 
027: 's5' : {'fromNorth' : ["e2Detector_s5busnws", 
"e2Detector_s5ns1", "e2Detector_s5ns2", "e2Detector_s5nw"], 
'fromEast' : [], 'fromSouth' : ["e2Detector_s5sn1", 
"e2Detector_s5sn2", "e2Detector_s5sn3", "e2Detector_s5sw"], 
'fromWest' : ["e2Detector_s5wn1", "e2Detector_s5wn2", 
"e2Detector_s5wn3", "e2Detector_s5ws"], 'toNorth' : 
["e2Detector_s5nOut1", "e2Detector_s5nOut2", 
"e2Detector_s5nbusOut"], 'toEast' : [], 'toSouth' : 
["e2Detector_s5sOut1", "e2Detector_s5sOut2", 
"e2Detector_s5sOut3", "e2Detector_s5sbusOut"], 'toWest' : 
["e2Detector_s5wOut1", "e2Detector_s5wOut2", 
"e2Detector_s5wOut3"]}, 
028: 's6' : {'fromNorth' : ["e2Detector_s6ne1", 
"e2Detector_s6ne2", "e2Detector_s6ns1", "e2Detector_s6ns2", 
"e2Detector_s6nw"], 'fromEast' : ["e2Detector_s6en", 
"e2Detector_s6es1", "e2Detector_s6es2", "e2Detector_s6ew1", 
"e2Detector_s6ew2"], 'fromSouth' : ["e2Detector_s6se", 
"e2Detector_s6sn1", "e2Detector_s6sn2", "e2Detector_s6sw1", 
"e2Detector_s6sw2"], 'fromWest' : ["e2Detector_s6we1", 
"e2Detector_s6we2", "e2Detector_s6wn1", "e2Detector_s6wn2", 
"e2Detector_s6ws"], 'toNorth' : ["e2Detector_s6nOut1", 
"e2Detector_s6nOut2", "e2Detector_s6nOut3"], 'toEast' : 
["e2Detector_s6eOut1", "e2Detector_s6eOut2", 
"e2Detector_s6eOut3"], 'toSouth' : ["e2Detector_s6sOut1", 
"e2Detector_s6sbusOut"], 'toWest' : ["e2Detector_s6wOut1", 
"e2Detector_s6wOut2", "e2Detector_s6wOut3"]}, 
029: 's9' : {'fromNorth' : ["e2Detector_s9ne", 
"e2Detector_s9ns", "e2Detector_s9nw"], 'fromEast' : 
["e2Detector_s9en", "e2Detector_s9es1", "e2Detector_s9es2", 
"e2Detector_s9ew1", "e2Detector_s9ew2"], 'fromSouth' : 
["e2Detector_s9se", "e2Detector_s9sn", "e2Detector_s9sw"], 
'fromWest' : ["e2Detector_s9we1", "e2Detector_s9we2", 
"e2Detector_s9wn1", "e2Detector_s9wn2", "e2Detector_s9ws1", 
"e2Detector_s11nwBus"], 'toNorth' : ["e2Detector_s9nOut1", 
"e2Detector_s9nOut2"], 'toEast' : ["e2Detector_s9eOut1", 
"e2Detector_s9eOut2", "e2Detector_s9eOut3"], 'toSouth' : 
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["e2Detector_s9sOut1", "e2Detector_s9sOut2"], 'toWest' : 
["e2Detector_s9wOut1", "e2Detector_s9wOut2", 
"e2Detector_s9wOut3"]}, 
030: 's11' : {'fromNorth' : ["e2Detector_s11ne", 
"e2Detector_s11ns1", "e2Detector_s11ns2"], 'fromEast' : 
["e2Detector_s11en", "e2Detector_s11es", "e2Detector_s11ew"], 
'fromSouth' : ["e2Detector_s11se", "e2Detector_s11sn1", 
"e2Detector_s11sn2", "e2Detector_s11snbus", 
"e2Detector_s11sw"], 'fromWest' : ["e2Detector_s11we1", 
"e2Detector_s11we2"], 'toNorth' : ["e2Detector_s11nBusOut", 
"e2Detector_s11nOut1", "e2Detector_s11nOut2"], 'toEast' : 
["e2Detector_s11eOut1", "e2Detector_s11eOut2"], 'toSouth' : 
["e2Detector_s11sBusOut", "e2Detector_s11sOut1", 
"e2Detector_s11sOut2"], 'toWest' : ["e2Detector_s11wOut1", 
"e2Detector_s11wOut2", "e2Detector_s11wOut3"]} 
031: } 
032:  
033: pcu_capacity = {'s1_s3': 0, 's1_s6': 0, 's3_s1': 0, 
's3_s5': 0, 's3_s9': 0, 's5_s3': 0, 's5_s11': 0, 's6_s1': 0, 
's6_s9': 0, 's9_s3': 0, 's9_s6': 0, 's9_s11': 0, 's11_s5': 0, 
's11_s9': 0} 
034:  
035: def findDivisor(pcuOnStreets, direction): 
036:   div = [] 
037:   for t in pcuOnStreets: 
038:     div.append(t[direction][0]) 
039:   return int(mean(div)) 
040:  
041: def getDeviation(N, pcuOnStreets): 
042:   dev_order = { 
043:   's1_s3' : {'s1' : 'toEast', 's3' : 'fromWest'}, 
's3_s1' : {'s3' : 'toWest', 's1' : 'fromEast'}, 
044:   's1_s6' : {'s1' : 'toSouth', 's6' : 'fromNorth'}, 
's6_s1' : {'s6' : 'toNorth', 's1' : 'fromSouth'}, 
045:   's3_s5' : {'s3' : 'toEast', 's5' : 'fromWest'}, 
's5_s3' : {'s5' : 'toWest', 's3' : 'fromEast'}, 
046:   's3_s9' : {'s3' : 'toSouth', 's9': 'fromNorth'}, 
's9_s3' : {'s9' : 'toNorth', 's3' : 'fromSouth'}, 
047:   's5_s11' : {'s5' : 'toSouth', 's11' : 'fromNorth'}, 
's11_s5' : {'s11' : 'toNorth', 's5' : 'fromSouth'}, 
048:   's6_s9' : {'s6' : 'toEast', 's9' : 'fromWest'}, 
's9_s6' : {'s9' : 'toWest', 's6' : 'fromEast'}, 
049:   's9_s11' : {'s9' : 'toEast', 's11' : 'fromWest'}, 
's11_s9' : {'s11' : 'toWest', 's9' : 'fromEast'} 
050:   } 
051:   efficiency = {} 
052:   headerMuStdev = '{0:>5s} {1:^4s} {2:^4s} {3:^11s} 
{4:^11s} {5:^11s}  {6:^11s} {7:^11s} {8:^11s} {9:^11s}\n' 
053:   muAndStdev = headerMuStdev.format('time', '¬μ', 'd(X)', 
's1/s3', 's3/s5', 's1/s6', 's3/s9', 's5/s11', 's6/s9', 
's9/s11') 
054:   for t in N: 
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055:     evac = {} 
056:     streets = N[t] 
057:     pcu_occupancy = pcuOnStreets[t] 
058:     divisors = [] 
059:     for direction, parts in dev_order.items(): 
060:       divisor = int(pcu_occupancy[direction][0]) 
061:       if maxDivisor: 
062:         divisor = int(pcu_occupancy[direction][0] / 
pcu_occupancy[direction][1]) 
063:       if divisor == 0: 
064:         warning = True 
065:         divisor = findDivisor(pcuOnStreets, direction) 
066:         print('divisor corrected to', divisor, '@ t=', t, 
'on', direction) 
067:       divisors.append(divisor) 
068:       startNode, endNode = parts.keys() 
069:       toWhere, fromWhere = parts.values() 
070:       toAdd = streets[startNode].get(toWhere) 
071:       toSubtract = streets[endNode].get(fromWhere) 
072:       evac[direction] = round((divisor+toAdd-
toSubtract)/divisor, 6) 
073:     mu = sum(evac.values())/len(evac) 
074:     stdev = (sum([(x-mu)**2 for x in 
evac.values()])/(len(evac.values())-1))**0.5 
075:     evac['¬μ'] = round(mu, 6) 
076:     evac['d(X)'] = round(stdev, 6) 
077:     efficiency[t] = evac 
078:     valueMuStdev = '{0:>5s} {1:4.2f} {2:4.2f} 
{3:5.2f}/{4:5.2f} {5:5.2f}/{6:5.2f} {7:5.2f}/{8:5.2f} 
{9:5.2f}/{10:5.2f} {11:5.2f}/{12:5.2f} {13:5.2f}/{14:5.2f} 
{15:5.2f}/{16:5.2f}\n' 
079:     muAndStdev += valueMuStdev.format(t, mu, stdev, 
evac['s1_s3'], evac['s3_s1'], evac['s3_s5'], evac['s5_s3'], 
evac['s1_s6'], evac['s6_s1'], evac['s3_s9'], evac['s9_s3'], 
evac['s5_s11'], evac['s11_s5'], evac['s6_s9'], evac['s9_s6'], 
evac['s9_s11'], evac['s11_s9']) 
080:   return efficiency, muAndStdev 
081:  
082: def getStatistics(intervals): 
083:   statistics = 'Statistics:\n' 
084:   S = [] 
085:   tStats = [0, 0, '', 0, '', 0, '', 0, ''] 
086:   header2 = ['time', 'loaded', 'departed', 'dep-%', 
'arrived', 'arr-%', 'teleports', 'tele-%', 'collisions', 
'coll-%'] 
087:   statistics += 
'{0:6s}{1:>7s}{2:>9s}{3:>7s}{4:>8s}{5:>7s}{6:>11s}{7:>8s}{8:>1
1s}{9:>7s}\n'.format(*header2) 
088:   statLine = 
'{0:6s}{1:7.0f}{2:9.0f}{3:7s}{4:8.0f}{5:7s}{6:11.0f}{7:8s}{8:1
1.0f}{9:7s}\n' 
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089:   sumLine = 
'{0:6s}{1:7.0f}{2:9.0f}{3:7.2%}{4:8.0f}{5:7.2%}{6:11.0f}{7:8.2
%}{8:11.0f}{9:7.2%}\n' 
090:   S.append(header2) 
091:   for time in intervals: 
092:     interval = intervals[time] 
093:     stats = [interval['sumLoaded'], 
interval['sumDeparted'], '', interval['sumArrived'], '', 
interval['sumTeleports'], '', interval['sumCollisions'], ''] 
094:     S.append([time, *stats]) 
095:     statistics += statLine.format(time, *stats) 
096:     for i in range(len(stats)): 
097:       if stats[i] != '': 
098:         tStats[i] += stats[i] 
099:   tStats[2], tStats[4], tStats[6], tStats[8] = 
tStats[1]/tStats[0], tStats[3]/tStats[1], tStats[5]/tStats[1], 
tStats[7]/tStats[1] 
100:   statistics += sumLine.format('sum',*tStats) 
101:   S.append(['sum', *tStats]) 
102:   print(statistics) 
103:   return S 
104:  
105: def getTotalCollisions(collisions): 
106:   header3 = ['totColl', 'sum', 'avg', 's1_s3', 's3_s1', 
's1_s6', 's6_s1', 's3_s5', 's5_s3', 's3_s9', 's9_s3', 
's5_s11', 's11_s5', 's6_s9', 's9_s6', 's9_s11', 's11_s9'] 
107:   allCollisions = ['', sum(collisions.values()), 
round(mean([*collisions.values()]),1), *collisions.values()] 
108:   coll_headerline = 
'{0:>7s}{1:>6s}{2:>6s}{3:>6s}{4:>6s}{5:>6s}{6:>6s}{7:>6s}{8:>6
s}{9:>6s}{10:>6s}{11:>6s}{12:>6s}{13:>6s}{14:>6s}{15:>7s}{16:>
7s}\n' 
109:   coll_line = 
'{0:7s}{1:6.0f}{2:6.1f}{3:6.0f}{4:6.0f}{5:6.0f}{6:6.0f}{7:6.0f
}{8:6.0f}{9:6.0f}{10:6.0f}{11:6.0f}{12:6.0f}{13:6.0f}{14:6.0f}
{15:7.0f}{16:7.0f}\n' 
110:   print('Total nbr of collisions:\n' + 
coll_headerline.format(*header3) + 
coll_line.format(*allCollisions)) 
111:   csv_collisions = [header3, allCollisions] 
112:   return csv_collisions 
113:  
114: # Run code 
115: warning = False 
116: for jsonFile in filesToProcess: 
117:   fileToRead = folder + '/' + jsonFile 
118:   if maxDivisor: 
119:     jsonFile = 'maxdiv_' + jsonFile 
120:   fileToWrite = folder + '/' + jsonFile.split('.')[0] + 
'.csv' 
121:   summary = '' 
122:   M = [] 



112 

 

123:   N = {} 
124:   with open(fileToRead) as aFile: 
125:     text = aFile.read() 
126:     config, collision_data, pcu_data, detector_data = 
text.split('\n\n', 3) 
127:   collisions = json.loads(collision_data) 
128:   pcuOnStreets = json.loads(pcu_data) 
129:   intervals = json.loads(detector_data) 
130:   header = ['junc', 't-per', 'start', 'end', 'fr N', 'fr 
E', 'fr S', 'fr W', 'sumIN', 'to N', 'to E', 'to S', 'to W', 
'sumOUT', 'I/O'] 
131:   summary += 
'{0:>6s}{1:>6s}{2:>6s}{3:>6s}{4:>6s}{5:>6s}{6:>6s}{7:>6s}{8:>6
s}{9:>6s}{10:>6s}{11:>6s}{12:>6s}{13:>7s}{14:>8s}\n'.format(*h
eader) 
132:   period = 0 
133:   periods = [0 , *[int(key) for key in intervals.keys()]] 
134:   for time, interval in intervals.items(): 
135:     Junc = {} 
136:     for junction, directions in detectors.items(): 
137:       results = {} 
138:       m = ['', 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0.0] 
139:       m[0:4] = [junction, period, periods[period], 
periods[period+1]] 
140:       for direction, detector in directions.items(): 
141:         pcu = 0 
142:         for aDetector in detector: 
143:           pcu += interval[aDetector] 
144:         results[direction] = pcu 
145:       m[4:8] = [results['fromNorth'], 
results['fromEast'], results['fromSouth'], 
results['fromWest']] 
146:       m[8] = sum(m[4:8]) 
147:       m[9:13] = [results['toNorth'], results['toEast'], 
results['toSouth'], results['toWest']] 
148:       m[13] = sum(m[9:13]) 
149:       m[14] = round(m[8] / m[13], 6) 
150:       M.append(m) 
151:       Junc[junction] = results 
152:     N[time] = Junc 
153:     period += 1 
154:   if sortJunction: 
155:     M.sort(key=lambda x: int(x[0][1:])) # Sort in 
Junction order instead of period order 
156:   for row in M: 
157:     summary += 
'{0:>6s}{1:6.0f}{2:6.0f}{3:6.0f}{4:6.0f}{5:6.0f}{6:6.0f}{7:6.0
f}{8:6.0f}{9:6.0f}{10:6.0f}{11:6.0f}{12:6.0f}{13:7.0f}{14:8.4f
}\n'.format(*row) 
158:   print(summary) 
159:   for direction in pcu_capacity: 
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160:     nbrOfVehicles = [] 
161:     occupancies = [] 
162:     for t in pcuOnStreets: 
163:       vehicles, occupancy = pcuOnStreets[t][direction] 
164:       if vehicles != 0: 
165:         nbrOfVehicles.append(vehicles) 
166:       if occupancy != 0: 
167:         occupancies.append(occupancy) 
168:     pcu_capacity[direction] = round(mean(nbrOfVehicles) / 
mean(occupancies), 0) 
169:   efficiency, muAndStdev = getDeviation(N, pcuOnStreets) 
170:   print(muAndStdev) 
171:   fieldnames1 = ['time', '¬μ', 'd(X)', 's1_s3', 's3_s1', 
's1_s6', 's6_s1', 's3_s5', 's5_s3', 's3_s9', 's9_s3', 
's5_s11', 's11_s5', 's6_s9', 's9_s6', 's9_s11', 's11_s9'] 
172:   with open(fileToWrite, 'w', encoding='UTF8', 
newline='') as bFile: 
173:     writer = csv.writer(bFile) 
174:     writer.writerow(header) 
175:     writer.writerows(M) 
176:     writer.writerow(['' for x in fieldnames1]) 
177:     writer = csv.DictWriter(bFile, fieldnames1) 
178:     writer.writeheader() 
179:     evac = [] 
180:     for t in efficiency: 
181:       efficiency[t].update({'time' : t}) 
182:       evac = efficiency[t] 
183:       writer.writerow(evac) 
184:     writer = csv.writer(bFile) 
185:     writer.writerow(['' for x in fieldnames1]) 
186:     writer.writerows(getTotalCollisions(collisions)) 
187:     writer.writerow(['' for x in fieldnames1]) 
188:     writer.writerows(getStatistics(intervals)) 
189: if warning: 
190:   print('----- ***** WARNING! Check divisors and 
occupancies. ***** -----') 
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A.5 General layouts of TLIs 
These layouts were in fact crucial for developing this entire work. Thus, 
overlooking important details were prevented. As a convenience for the 
reader matrices with turn probability P and green light times G are also shown 
for the six TLIs where alternative phase times were simulated. The 
implementations of each item in Netedit and SUMO are shown underneath 
each layout. The location of every intersection and pedestrian crossing is 
shown on the map in Figure A 5.1. The layouts are not exactly to scale. 

 
Figure A 5.1 The TLIs and pedestrian crossings across the system. 
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A.5.1 Layout of traffic light intersection S1
P1=
0   1/6 2/5 3/10
3/7   0  1/5 5/10
5/14 2/6  0  1/10
3/14 3/6 2/5 1/10

G1=
0 78 39 45
36  0 66 54
39 36  0 75
90 42 36 45
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A.5.2 Layout of traffic light intersection S2
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A.5.3 Layout of traffic light intersection S3
P3=
0   0   2/5  1/10
1/6 1/10 1/5  3/5
3/6 3/10 1/10 1/5
2/6 3/5  3/10 1/10

G3=
0  0 51 39
39 39 93 60
51 39 39 93
93 60 39 39
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A.5.4 Layout of traffic light intersection S4

This TLS was not active.
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A.5.5 Layout of traffic light intersection S5
P5=
0    0   3/4  9/8
0    0    0    0
5/8   0   1/8  1/4
3/8   0   1/8  1/8

G5=
0  0 81 45
0  0  0  0
81  0 51 45
45  0 51 45
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A.5.6 Layout of traffic light intersection S6
P6=
1/10 1/5  5/8  2/5
3/10 1/10 1/8  2/5
2/5  3/10  0   1/5
1/5  2/5  1/4   0

G6=
45 102 42  30
45  30 42  42
42  30  0 102
102  42 45   0
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A.5.7 Layout of traffic light intersection S7
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A.5.8 Layout of traffic light intersection S8
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A.5.9 Layout of traffic light intersection S9
P9=
0   1/5  1/3  2/5
1/3   0   1/3  2/5
3/6  2/5   0   1/5
1/6  2/5  1/3   0

G9=
0 57 75 33
24  0 75 42
75 33  0 57
75 42 24  0
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A.5.10 Layout of traffic light intersection S10
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A.5.11 Layout of traffic light intersection S11
P11=
0   1/3  3/5  1/4
3/8   0   1/5  3/4
5/8  1/6   0    0
0   3/6  1/5   0

G11=
0 45 45 45
45  0 45 45
45 45  0  0
0 45 45  0
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A.5.12 Layout of regulated pedestrian crossing Ø1
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A.5.13 Layout of regulated pedestrian crossing Ø2
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A.5.14 Layout of regulated pedestrian crossing Ø3
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