
Simulation of road traffic flow in Hangzhou

ANDERS HOLMBERG AND LOUISE BRANDT
BACHELOR´S THESIS
DEPARTMENT OF ELECTRICAL AND INFORMATION TECHNOLOGY |
FACULTY OF ENGINEERING | LTH | LUND UNIVERSITY

Printed by Tryckeriet i E-huset, Lund 2022

A
N

D
ER

S H
O

LM
B

ER
G

 A
N

D
 LO

U
ISE B

R
A

N
D

T
Sim

ulation of road traffi
c flow

 in H
angzhou

LU
N

D
 2022

Series of Bachelor’s theses
Department of Electrical and Information Technology

LU/LTH-EIT 2022-862
http://www.eit.lth.se

Simulation of road traffic flow
in Hangzhou

Bachelor’s Thesis

by

Anders Holmberg and Louise Brandt

Department of Electrical and Information Technology
Faculty of Engineering, LTH, Lund University

SE-221 00 Lund, Sweden

2022

ii

iii

Abstract
Is it possible to increase traffic flows and decrease stand stills in rush hour
traffic by tweaking existing traffic light signals? A vehicle’s engine running
on idle is not useful in physical terms and emits unnecessary exhausts. By
investigating and observing signal phase times on site in Hangzhou, China,
an effort was made to find out if it was possible to get better flow and thus
lower emissions by changing the traffic signal programs. The Simulation of
Urban MObility suite developed by the German Aerospace center, DLR, was
used to simulate traffic. Three scenarios were simulated. Scenario one tried
to find better and smoother flow by reducing the duration of the traffic signals’
phase times. Scenario two allowed both extended and reduced signal phases.
Scenario three was based on already existing signal phase times. The findings
will show that it is possible to obtain increased throughput of vehicles if some
green signal phases and thus cycle times are shortened. This translates as
shorter time spent in congested traffic, which results in lower emissions per
vehicle.

iv

Acknowledgments

Swedish International Development Cooperation Agency
(Sida)

Sida granted us a US$ 3,000 scholarship each for our Minor Field Study. It
made the research feasible. This was a great help for both of us.

Lund University, Lund, Sweden (LU)
Professor Charlotta Jonsson got us in crucial contact with her Chinese
counterpart Professor Hongye SU. The institution of Automatic Control
provided us with gifts to all helpful friends at Yuquan Campus, Zhejiang
University, Hangzhou, China. Our supervisors, Associate Professor Christian
Nyberg and Professor Karl-Erik Årzen have dedicated us their time and
shown a lot of patience. We are very grateful for the efforts showed by these
individuals.

Zhejiang University, Hangzhou, China (ZJU)
Professor Hongye SU, Institute of Cyber-Systems and Control, ZJU, made
the official and very important invitation for studies at ZJU. This was crucial
in order to obtain Chinese entry visas for our 10 weeks stay.

Postgraduate Hanshan SHAO, was appointed by Professor SU as our
contact person at ZJU. Hanshan skillfully took care of practical matters like
documents for visas and general advice for our stay on campus. He also
presented the CSC department and parts of Yuquan campus to us upon arrival.
Hanshan is seen standing between the authors of this report in Figure 0.1.

‘George’ Xiaohang XU, Office of Admission Affairs, International
College, ZJU, helped us with lodging during our stay on Yuquan campus.
George has been a contact person for the China specialization option for civil
engineering students at LU. Three mandatory courses were earlier held at ZJU.
George is experienced and very helpful. He offered to assist with extending
ours visas, should we want to travel abroad during Chinese New Year break.

In general, we thank the good and striving people at Yuquan Campus,
ZJU, who were kind enough to host us for 10 weeks around the turn of the
years 2018 and 2019.

v

Figure 0.1. The authors flanking Hanshan Shao (.

Anders Holmberg (

Louise Brandt ()

Figure 0.2. The Logotype of the City of Hangzhou, Zhejiang, China.

The Hangzhou logotype shown in Figure 0.2 was widely seen on public
transportation and across the city in 2018 and 2019.

vi

Contents
List of figures ... viii

List of tables .. x

Acronyms and terminology .. xi

1 Introduction ... 1

1.1 Background ... 1

1.2 Purpose .. 2

1.3 Goal ... 3

1.4 Problem ... 3

1.5 Motivation of thesis ... 3

1.6 Demarcation .. 4

1.7 Previous work on similar subjects ... 4

2 Technical background and methodology ... 7

2.1 Thesis fundamentals .. 7

2.2 Preparations ... 8

2.3 Field work (data gathering) ... 9

2.4 Data analysis.. 10

2.5 Optimizing TLS phase times ... 12

2.6 Simulation with SUMO ... 34

2.7 TraCI ... 45

3 Analysis ... 47

3.1 Several XML files vs TraCI JSON output 47

3.2 Trouble with driving patterns. ... 47

3.3 Teleportation ... 48

3.4 SUMO versions update ... 49

3.5 Netedit’s program not an option .. 49

4 Results ... 51

vii

4.1 Departed vehicles .. 51

4.2 Arrivals, collisions and teleportations ... 51

4.3 Resolving traffic jams through street evacuation 52

4.4 Average street occupancy .. 55

4.5 Evacuation seen as a quota of incoming and outgoing vehicles .. 56

4.6 Problematic streets .. 57

5 Discussion ... 59

5.1 Are TLIs already optimized? ... 59

5.2 Possible incorrect observation on site ... 59

5.3 Dismissal of SUMO’s built-in solution 59

5.4 Strange traffic behavior ... 60

5.5 Yielding behavior at TLI’s .. 60

5.6 Empty streets ... 61

5.7 SUMO script inadequacy .. 61

5.8 High numbers of collisions and teleports 61

5.9 Determine what resolves congested traffic 62

5.10 SUMO as a simulation software .. 63

6 Conclusion ... 65

6.1 Algorithm .. 66

6.2 Combustion engines .. 66

7 Bibliography .. 67

A.1 MATLAB code.. 71

A.2 Graphic view of simulation time phases 83

A.3 Attributes for XML code ... 89

A.4 Python code ... 97

A.5 General layouts of TLIs ... 115

viii

List of figures

Figure 0.1. The authors flanking Hanshan Shao (. v
Figure 0.2. The Logotype of the City of Hangzhou, Zhejiang, China. v
Figure 1.1 The six TLIs in the reduced model. ... 4
Figure 2.1 View from a recording of the top western intersection S1. 10
Figure 2.2 View from a recording of the top eastern intersection S5. 10
Figure 2.3. Road network of project area. Source: www.gaode.com 14
Figure 2.4. The D-matrix with the distance of intermediate streets. 15
Figure 2.5. The C-matrix with maximum numbers of pcus per street. 15
Figure 2.6. Seven intermediate bidirectional roads of the system. 16
Figure 2.7. Matrix CI with initial numbers of pcus. 16
Figure 2.8. Traffic Light Intersection S11. .. 17
Figure 2.9. The P-matrix for TLI S11. .. 18
Figure 2.10. The four cases of a TLI. .. 19
Figure 2.11. A 4-bit binary truth table. .. 19
Figure 2.12. The truth table for scenario 50_150 split in two. 20
Figure 2.13. Phase times setting 6 in S11 for 50_150. 21
Figure 2.14. Phase times for S11 (left). Case 1 binary matrix (right). 21
Figure 2.15. Formula for calculating cycle time from an X-matrix. 22
Figure 2.16. Ratios of case 1, case setting 6, S11, scenario 50_150. 23
Figure 2.17. All ratios in S11 at case setting 6 in scenario 50_150. 24
Figure 2.18. PCUs from north (left). PCUs to north (right). 24
Figure 2.19. PR-matrix (left) and CI-matrix (right) for S11. 25
Figure 2.20. TFI for S11, case setting 6, scenario 50_150. 25
Figure 2.21. TFO for S11, case setting 6, scenario 50_150. 26
Figure 2.22. Lowest and average deviation for 100_33. 28
Figure 2.23. Average evacuation in scenario 100_33. 28
Figure 2.24. Lowest and average deviation for 50_150. 29
Figure 2.25. Average evacuation in scenario 50_150. 29
Figure 2.26 The four cases of S3 in scenario 100_33. 32
Figure 2.27 The four cases of S3 in scenario 50_150. 33
Figure 2.28. The four cases of TLI S1 in scenario 50_150. 33
Figure 2.29. The network built with Netedit. TLIs are marked................... 35
Figure 2.30. A one-way road with an intersection, built by several edges. . 37
Figure 2.31. Illustration of how edges connect via nodes. 37

ix

Figure 2.32. All bus stops, each marked with the Hangzhou logotype. 44
Figure 2.33 SUMO during run. Detectors show as turquoise field. 46
Figure 3.1 A SUMO run with two jams at t = 3,643 s. 49
Figure 3.2 Netedit’s TLS program overview for S1. 50
Figure 4.1. Departed vehicles as a percentage of loaded vehicles. 51
Figure 4.2. Vehicles that have arrived, been in collisions and teleported. .. 52
Figure 4.3. System evacuation and standard deviations of IRL. 53
Figure 4.4. System evacuation and standard deviations of 100_33. 53
Figure 4.5. System evacuation and standard deviations of 50_150. 53
Figure 4.6. Average vehicle evacuation during t = 75 - 135 min. 54
Figure 4.7. Average vehicle evacuation during t = 0 - 180 min. 55
Figure 4.8.Average vehicle evacuation during t = 45 - 180 min. 55
Figure 4.9. Average street occupancies during simulations. 56
Figure 4.10. The average quota of incoming/outgoing traffic. 57
Figure 4.11. Average quota of the entire simulations. 57
Figure 4.12. Number of collisions on each street. 58

Figure A2.1. Sampled phase times from intersection S1…………………..83
Figure A2.2. Signal phases at intersection S1 for scenario IRL ……………84
Figure A2.3. Signal phases at intersection S3 for scenario IRL ...………...84
Figure A2.4. Signal phases at intersection S5 for scenario IRL ……………84
Figure A2.5. Signal phases at intersection S6 for scenario IRL ……………84
Figure A2.6. Signal phases at intersection S9 for scenario IRL……….85
Figure A2.7. Signal phases at intersection S11 for scenario IRL ………….85
Figure A2.8. Signal phases at intersection S1 for scenario 100_33………..85
Figure A2.9. Signal phases at intersection S3 for scenario 100_33………..86
Figure A2.10. Signal phases at intersection S5 for scenario 100_33………86
Figure A2.11. Signal phases at intersection S6 for scenario 100_33………86
Figure A2.12. Signal phases at intersection S9 for scenario 100_33………86
Figure A2.13. Signal phases at intersection S11 for scenario 100_33.…….87
Figure A2.14. Signal phases at intersection S1 for scenario 50_150……....87
Figure A2.15. Signal phases at intersection S3 for scenario 50_150..……..87
Figure A2.16. Signal phases at intersection S5 for scenario 50_150………88
Figure A2.17. Signal phases at intersection S6 for scenario 50_150………88
Figure A2.18. Signal phases at intersection S9 for scenario 50_150………88
Figure A2.19. Signal phases at intersection S11 for scenario 50_150.…….88
Figure A5.1. The TLIs and pedestrian crossings across the system ..…….115

x

List of tables

Table 2.1 Compilation of sampled signal phases for northbound traffic into
intersection S1 and its eastern pedestrian crossing. 11
Table 4.1 E(μ) and d(μ) for each 900 s interval, on which figures 4.3 – 4.5
are based. The column ‘Avg’ refers to the overall average values of each
entire simulation. ... 54

xi

Acronyms and terminology

100_33 simulation scenario with 100 to 33 % of sampled phase
times

50_150 simulation scenario with phase times in range 50-150 %

cycle time time period for all phases to occur once in a TLI

edge network edge representing a piece of road

gui graphical user interface

IRL simulation scenario representing real (100 %) phase times

MATLAB high performance technical computing application

Netedit gui network editor bundled with SUMO

phase time time period for one and the same signal (color)

Python high level open source programming language

S1, S3, … name of signal-controlled intersection 1, 3, …

SUMO Simulation of Urban Mobility

sumo terminal application with or without gui

TLI traffic light intersection

TLS traffic light signal

TRVMB Trafikverkets metodbeskrivning för beräkning av kapacitet
och framkomlighetseffekter i vägtrafikanläggningar
(Swedish regulation)

XML Extensible Markup Language

ZJU Zhejiang University, Hangzhou, Zhejiang, China

Ø1, Ø2, Ø3 pedestrian crossing 1, 2 and 3

1

1 Introduction
Large cities across the world suffer from rush hour traffic, meaning streets
fully saturated where cars are mostly standing still in a bumper-to-bumper
position. In a vehicle without engine auto-stop1 drivers do not tend to kill the
engine while at a full stop, even if it lasts several minutes, resulting in a
wasteful idle time for the car’s engine. This reasoning is based on fossil fuel
driven vehicles.

Unnecessary combustion outlets, whether fully combusted or not,
worsens the negative impact that cars have on human health and on our
climate. The question is if it is possible to create smoother traffic flow, thus
reducing idle running time, by using a city’s already existing fixed-time
traffic signal infrastructure?

1.1 Background
This project is an initiative of two students who on different occasions took
part in a course about queuing systems.

Much research has been done about traffic congestion since cities are
growing all over the world. There exist clear frameworks on how to best build
road networks and how regulating traffic should be done. In Sweden road
constructors use TRVMB [1]. One of these traffic signal regulations is the
“green wave”, which simply gives green light to traffic on a certain route
utilizing interconnected traffic signals that change according to the approach
of vehicles. Thus, making that route a priority at its consecutive intersections.

There exist such things as “intelligent” traffic signal systems, like the
Adaptive Traffic Control System (ATCS) [2], which is a traffic management
strategy in which traffic signal timing changes, or adapts, based on actual
traffic demand. In the USA systems like the ATCS have been deployed on
less than 1% of the country’s existing traffic signals.

It is fair to say that most or a great deal of existing traffic signals usually
function according to local information.

It is not known to the authors if it is possible to, either via time settings
or via a remote device, impose control on the light phases of ordinary traffic
signals. Such deployment is beyond the scope of this work, but it is most
likely very accomplishable. Manually setting traffic signals to operate

1 Automatically stops the engine from idling when the vehicle is stationary.

2

differently around the clock, would however be at a relatively low or no cost
at all - assuming the traffic signals in an intersection have timing devices for
different scenarios.

By applying queuing theory on a rush hour traffic scenario, we want to
find out if there exist realistic light phase settings that will create a nearly
constant flow of traffic in a system of signal regulated intersections. For this
we assume that traffic signals can be set to act according to a certain phase
pattern either by a manually preset time setting or via remote control. Should
we find this to be true, then the next question is if such a queue system is
scalable to operate on a complete city.

Is it possible to control the traffic flow on a large number of streets merely
by the use of traffic signals that operate with respect to local data only? Well,
in one way this is what actually happens on an even larger scale inside the
world wide web, where routers and servers act as traffic signals. These routers
and servers by default know nothing more than which is its closest
neighboring server or router. Still the web functions well.

1.2 Purpose
The overall purpose is to find a simple way to reduce unnecessary emissions
by using infrastructure already in place, namely the traffic signals. By
creating a model that corresponds to a geographical part of Hangzhou’s road
network, the aim is to simulate different scenarios for that specific area. As
previously mentioned there already exist some traffic signal regulators that
are supposed to reduce traffic congestions. The aim for this thesis is to see
whether it is possible to reduce the idle waiting time for the chosen area by
simulating different traffic light cycle times and compare the result to the
actual traffic signal time phases that are being used. If the theory proves to be
successful, this can help reduce the idle time for thousands of fossil driven
vehicles and reduce the emissions from incomplete combustions, besides the
obvious reduced time spent in urban traffic congestions. In a global
perspective it is known that fossil fueled vehicles have a negative impact on
the climate and that they also form serious health hazards. Therefore, the final
goal and what fuels the authors is to reduce this negative impact.

In this project the open-source traffic simulation program SUMO [3] is
used to build scenarios according to the traffic observations made at one of
the city’s areas which regularly has traffic congestion. To produce a basis for
simulation, one must export geographical data from OpenStreetMap [4] and
run a few premade Python scripts on it. In short, the processing is done by
applying some logical rules. Depending on how detailed the maps are, the
critical data needs to be corrected manually. In this case this required a visit

3

to the geographical location to collect data on signal phase times, speed limits,
amount and types of vehicles and other local parameters that are not shown
on OpenStreetMap. In this aspect it was crucial to detect which routes are
used by what type of vehicles. The simulation itself is microscopic which
means each vehicle and its dynamics are modeled individually. The
simulation itself can be visualized on a very detailed graphical user interface.

1.3 Goal
The goal is to see if the traffic flow for an area in Hangzhou can be optimized
by changing the traffic signal programs. The results will be obtained by
comparing calculated vehicles for the different scenarios to the currently
existing traffic signal programs.

1.4 Problem
There may exist many ways to try to increase traffic flows. Here we deemed
it reasonable to look at the existing traffic signal programs and try to optimize
it. Hence, we created an algorithm to calculate two traffic signal programs
and compare their results with the existing program to answer the following
questions.

 Is it possible to increase traffic flow through the system?

 Is it possible to reduce idling time for traffic in this area?

 Will the algorithm come up with a better signal-regulation solution
for optimizing the flow of traffic than the current traffic signal
program?

1.5 Motivation of thesis
After attending a course on queueing systems, we saw a resemblance with
cars queuing at traffic light regulated road networks. This gave us an idea to
try to alter traffic light phases in order to get optimal flow.

Much research has previously been done on traffic congestion and usage
of traffic lights. See Section 1.7. Previous work on similar subjects, for more
details. This thesis is based on a case study and usage of SUMO simulations
to test how these calculated scenarios would work in a real-life environment.
This differs from the previous thesis that has been reviewed.

4

1.6 Demarcation
The theoretical model is restricted to the six largest intersections, shown in
Figure 1.1 of the area because they are interconnected as well as having
entries and exits to the system. In the SUMO model all intersections are
implemented, i.e., 10 working traffic light intersections (TLI) as well as the
3 separate pedestrian crossings and all other non-controlled intersections.
Thus 6 intersections are modelled with 14 internal directions and 9 roads with
bidirectional traffic going into and out of the system. This is a rough
estimation, because there are at least double the number of entries and exits
to and from this area.

Note that there may exist more lanes along the streets than is the case
with their entrances. This is ignored in the theoretical model. Restrictions for
the simulation model were made to omit smaller streets within residential
areas.

Figure 1.1 The six TLIs in the reduced model.

1.7 Previous work on similar subjects
One of the most fundamental papers regarding traffic signals was written by
F.V Webster back in 1957 [5]. It brought up the topic of how to determine
the delay at traffic signals as well as how to determine the green time. The
article is based on calculations, observations, and simulations for three
intersections in London. It clearly describes how to perform calculations to
reduce the delay and how to adjust the calculations based on the situation that
may occur before the crossing. The calculations are based on actual flow,
saturated flow and time cycles for the traffic signal system. With the collected
data they came up with a formula nowadays being referred to as Webster’s
minimum delay optimal cycle length formula. The paper and the approaches
used in this paper is still very up to date.

5

The Swedish traffic authority, Trafikverket [1] published a document in
2013 that is supposed to be used as a guide for traffic planning in Sweden. It
is based on earlier published research and is performed to describe and help
solve capacity and accessibility issues in the road network. This document
goes into detail how to calculate the minimum green time, the cycle time of
the traffic signal, how to calculate the minimum crossing time for pedestrians
and so forth. Webster’s formula is also referred to here when calculating the
cycle time. It is of interest to this case study as a means of comparison when
viewing the simulation results.

There have been case studies carried out in both Florida, United States
and in Beijing, China that have studied similar questions as us. Their main
questions being similar to ours but their approaches being different.
Simulation study of mixed traffic in China- a practice in Beijing [6] focused
on how to use simulation software, Vissim, to create a realistic traffic model
and then use optimized traffic signals as well as changing the original lane
turning directions to increase the traffic flow in the model to reduce the travel
time.

The case study in Florida, Modeling Signalized Intersection Using
Queuing Theory [7], focused on two approaches. One using queue theory to
try to increase the throughput of the system by increasing the green time and
by that also decreasing the waiting time for the traffic. The other being the
effect of increasing the number of lanes. This study had more of a theoretical
approach without the use of simulations.

When doing research for what previous work has been done on traffic
signal systems, we noticed that most of what we came across were for series
connected road networks. The location that this case study is carried out in is
more complex with a parallel road network. The choice of simulation tool is
also different compared to the more well-known and older TRANSYT and
PTV Vissim that the two case studies above have used. PTV Vissim is a
microscopic simulation software, while TRANSYT is a macroscopic
simulation software, where the traffic flow is the basic entity.

7

2 Technical background and methodology
After a course in Queuing Systems, an idea arose of resolving traffic
congestions by changing the time phases of traffic signals within such an area.
This idea came from looking at the phenomenon as a deterministic queueing
network, where an intersection is a server node and time with green light is
related to the service time.

Reading earlier studies on traffic congestion revealed that it was a
research area at the Department of Automatic Control at Lund Institute of
Technology. One person at the department offered himself to become
supervisor of this thesis, but since the work would interfere with his PhD
thesis work, he withdrew his offer. He did however present some valuable
angles of approach and suggested the SUMO simulation software to be a good
choice of tool.

2.1 Thesis fundamentals
The authors have identified the following buildings blocks as fundamental in
order to compile this thesis.

2.1.1 Sampling of real TLS phase times

The collection of traffic signal phase times on location in Hangzhou, China,
is further described in section 2.3 Field work (data gathering). The
compilation and analysis of the sampled data is described in Section 2.4 Data
analysis.

2.1.2 Calculate optimal traffic flow

Section 2.5 Optimizing TLS phase times, explains the approach how to find a
balance between resolving a traffic jam through evacuation of vehicles on
streets and still having a comparatively steady flow among regulated streets.

2.1.3 Create a simulation model

Section 2.6 Simulation with SUMO, briefly explains how to build a network
model and how to simulate road traffic by using SUMO simulation software.

8

2.1.4 Simulation of road traffic flow

To control the simulations, detect values and compile data Python code has
been used, which is briefly explained in Section 2.7 TraCI.

2.1.5 Analysis, results, discussion and conclusion

The simulations revealed a few things worth mentioning, which are covered
in the Sections 3 Analysis, followed by the compiled results in Section 4
Results. An elaboration based on the results is made in Section 0 Discussion.
Finally, the answers to the original questions from Section 1.4. Problem is
presented and further elaborated in Section 1 Conclusion.

2.2 Preparations
During the fall semester of 2012 the authors were students at Zhejiang
University in Hangzhou, China. It came naturally to try to revisit the city and
apply queueing theory there. A 10-week stay in Hangzhou during the time
period December of 2018 - February of 2019 was planned.

Professor Charlotta Johnsson is once more acknowledged for assisting in
getting contact with and finding the important reference person needed in
order to register as students at ZJU. Back in 2012 Professor Johnsson was
collaborating with ZJU on location in Hangzhou and participated on an
information meeting at the beginning of the autumn semester. Professor
Johnsson helped us by contacting her Chinese colleague, Professor Hongye
Su, who appointed one of his postgraduates, Hanshan Shao, to be our contact
person. Mr Shao helped with preparing lodging inside ZJU:s Yuquan campus.
Professor Hongye issued an official university invitation in order to obtain
student visas. Luckily some vacant rooms on Yuquan Campus were found for
us, due to other foreign students leaving campus at the end of each year.

Before leaving for China and to get an idea of necessary equipment and
work approach, three consecutive days (including a hotel stay) were spent
around Södervärn in Malmö.

A study in China requires time and money, to say the least. Therefore,
two applications were made for a minor field study scholarship (MFS). They
were both granted, which provided a welcomed financial help. An MFS
scholarship imposes further restrictions such as a mandatory 3-day course at
Sida2 in Härnösand. The preparation courses were attended in November

2 Swedish International Development Cooperation Agency.

9

2018, each on two different occasions. After meeting at Shanghai airport on
November 15, the authors continued by train to Hangzhou.

2.3 Field work (data gathering)
Before departure to China a shared Google Document folder was prepared.
Therefore, a working Internet access was a key to this field work. But the
solution including Google had to be abandoned in favor of Microsoft
OneNote, Microsoft OneDrive and Microsoft Bing for online search. Google
worked very poorly inside China.

2.3.1 Start up

“George” Xiaohang XU3 at the International College of ZJU gave the advice
to buy student SIM-cards for an unlimited data traffic plan within the campus
limits. This way the mobile phones can provide Internet access by sharing
Wi-Fi to a laptop. The mobile phones were thus crucial instruments and
without them the task would most likely be much harder.

2.3.2 Course of action

During the first couple of weeks, the data gathering consisted of sketches,
general notes of findings and notes from measuring the time length of various
traffic signals. The mobile phone’s built-in stopwatch was used. Figure 2.1
and Figure 2.2 show examples of two of almost 50 sampling perspectives.

3 Xiaohang XU was the contact person when Lund University held courses on ZJU
Yuquan Campus.

10

Figure 2.1 View from a recording of the top western intersection S1.

It was often rainy and cold which made it a bit awkward to be accurate.
Consequently, all intersections were later video recorded, still making use of
our mobile phones. This way the data collection became more accurate and
could be reviewed repeatedly. For the sake of the simulations a detailed map
was needed. Therefore, parallel with data gathering a map for simulation was
created manually from scratch.

Figure 2.2 View from a recording of the top eastern intersection S5.

2.4 Data analysis
From the recorded videos it was possible to acquire very accurate time
measures for each signal phase from every traffic light intersection that were

11

documented. Many data tables were created from these details. For example,
table 2.1 that shows a data table over the traffic light program at intersection
S1.

Video @ (s) Ns PxE ←/← ↑/↑ →/→ PxE/PxE
0:25 -3 ← → 35/0 71/0 -3/34 74/0
0:28 0 ← → 38/0 74/0 0/0 77/0
1:26 58 ← → 96/0 132/0 58/0 135/0
1:35 67 ← → 105/0 141/0 67/0 144/0
1:45 77 ← 115/0 0/10 77/0 0/10
2:02 94 ← 132/0 0/27 0/17 0/27
2:05 97 ← 135/0 0/30 0/20 0/30
2:11 103 ← → 141/0 -3/36 -3/26 0/36
2:14 106 ← → 144/0 0/0 0/0 3/0
2:39 131 ← → 0/25 25/0 25/0 28/0
2:48 140 → -2/34 34/0 34/0 37/0
2:50 142 ← → 0/0 36/0 36/0 39/0
2:51 143 ← 1/0 37/0 37/0 40/0
3:25 177 ← → 35/0 71/0 -3/34 74/0
3:28 180 ← → 38/0 74/0 0/0 77/0

Table 2.1 Compilation of sampled signal phases for northbound traffic into
intersection S1 and its eastern pedestrian crossing.

The motto in Hangzhou was “better safe than sorry”. It would be regretful
to later find out that every little detail of the chosen area was not mapped
accurately. As a result, there now exist data regarding signal phases for 11
intersections and three independent pedestrian crossings, intersection layouts,
lane-configuration, street lengths, etc. In retrospect it can be established that
the data gathering was too extensive. From the early start in this project, the
approach was to find optimal signal phases with an analytic solution, like the
one used for queueing systems. Then the idea of using SUMO to simulate
different scenarios was introduced. This also meant that the authors, without
any supervision or guidance, had to learn a completely new software and how
to operate it. One benefit from that experience is an understanding of the
principles of XML files which are used to feed SUMO.

First while back in Sweden again, it was decided to reduce the number of
traffic light intersections in the theoretical models to base the calculations
upon. Basically, that means that this approach ignores traffic signals at the
smaller intersection, as well as at the three pedestrian crossings. This model

12

subtracts the street distances these other places occupy at a red-light signal
phase. For each intersection 50 m is deducted and for pedestrian crossings 12
m.

2.5 Optimizing TLS phase times
In general terms road users are not interdependent of each other, whether they
are motor vehicle drivers, bicyclists or pedestrians. Furthermore, it is
normally not possible to predict at what time one road user will appear at a
certain place in traffic. However, the number of all road users during a certain
time period may be counted repeatedly, hence an average for any time period
may be estimated. One could also argue that two members of the same group
of road users, do not appear at the same place at the same time. Thus, vehicle
arrivals in road traffic generally fulfills the criteria for a Poisson process.

The Poisson process does not apply for areas where traffic becomes
denser, ultimately forming a traffic jam and making a lane change
consequently impossible to perform. Vehicles in the traffic lanes are like
disposable cups in a cup holder, where the cups will be removed in order.
When traffic moves like this and rely on a traffic signal, telling the driver
when to move his or her vehicle in a certain direction, the process in such area
is predictable or with another term deterministic.

A jammed area with deterministic movements can grow, be stable or
shrink. Outside such area there will be a zone to which vehicles arrive
randomly like in a Poisson process and while slowing down, merge into the
deterministic process. The circumference of this zone will typically grow or
shrink over time to eventually cease to exist, has the jam been resolved.

2.5.1 Computer code

Most of the computer code is explained in the following sections. As a
reference it is also found in the Appendix. However, all computer code is also
found at: https://github.com/ada09aho/hangzhou.

2.5.2 Algorithm

An algorithm has been constructed in order to optimize dense traffic flow.
MATLAB was chosen to perform that task. An analytical solution would
probably result in an exact answer, but it is also more complex and much
harder to grasp. Therefore, a numerical method was chosen to find out
whether there exists a solution for evacuating traffic congested streets as
smoothly and balanced as possible. What this algorithm does in short, is to
create alternative settings of phase times, estimate the evacuation values of
vehicles, compare all possible combinations of those values and their

13

respective variance value. From this the lowest possible value of standard
deviation is found.

The hypothesis is that the setting with lowest standard deviation
regarding evacuation of vehicles, would perform the overall smoothest traffic
flow. There is of course an awareness of that there may exist settings with
lower average evacuation value than in the case with the lowest standard
deviation value, but this would also mean higher traffic flow for some streets
at the expense of traffic on the other streets. The following MATLAB code
describes the algorithm schematically.
Initialize matrices and parameters

least = [1, 1]

for s1 = 1:31

 ...

 ...

 for s11 = 1:31

 Z = (s1,s3,s5,s6,s9,s11)

 [avgX, varX] = variation(X, Z, S, P, CI, C)

 if varX < least(2) && avgX < 1

 least = [avgX, varX]

 end

 ...

 ...

end

disp('μ: ', least(1), 'd(μ): ', sqrt(least(2)))

The very simplified pseudo code above symbolically shows the main
feature of the algorithm, i.e., the six nested for loops in which the search for
lowest average, avgX, and variance, varX, takes part and finally displaying
it as μ and as d(μ). The general term for average is μ, and the standard
deviation, d(μ), is expressed as , where V(μ) is the variance.
The algorithm is further discussed throughout Section 2.5 Optimizing TLS
phase times.

All MATLAB code is shown in Section A.1 MATLAB code.

2.5.3 Scenarios

When simulating an alternative reality, a scenario with altered events plays
out. A simulation scenario where the phase times from the G-matrix are left
unaltered is here referred to as IRL, as in real life. G is also used as a notation

14

for IRL, which refers to a G-matrix containing all recorded phase times. G
stands for green signal. The 100_33- and 50_150-scenario are alternatives
with other variations of signal phases from the G-matrix. They are explained
further in Section 2.5.11 Sets of cases.

2.5.4 PCUs

The concept of a passenger car unit, pcu is used. A pcu is of course the unit
itself and is considered as an average car. A motorcycle is 0.4 - 0.5 pcu, being
smaller than a car. A bus is approximately three pcu, since it is larger. This
way one can model a system for pcus and make it valid for various
combinations of all sorts of street vehicles.

2.5.5 Mass of cars

The starting scenario is all streets fully saturated by cars i.e., “bumper-to-
bumper” traffic to represent congestion during rush hours. From the map
service at www.gaode.com one can see how traffic intensity in certain city
areas get affected during hours and days of an average week. Figure 2.3 shows
such traffic intensity map, where symbols for traffic light signals and
pedestrian crossings have been superimposed.

Figure 2.3. Road network of project area. Source: www.gaode.com

Each street usually has parallel lanes. The number of lanes coming out of
an adjacent intersection is a bottleneck which decides the possible flow of
cars coming into that street. To calculate the number of cars coming into the
intersection, we need the intermediate street length (see Figure 2.4), the
number of lanes at the street entry and a measurement of the vehicle’s
density , . . Here is a 4x1-
matrix, which represents vehicles on streets from 4 directions.

15

Figure 2.4. The D-matrix with the distance of intermediate streets.

Note that there may exist more lanes along the streets than is the case
with their entrances. This is ignored in the model. Figure 2.5 shows , i.e.,
the calculated numbers of pcus that are possible to fit on each street. The
values are not truncated, which they ought to be. The single 1 in column 3
was put there manually, to avoid the original zero as a denominator. The
values in C corresponds to prior vehicles in Section 2.5.18 Evacuation.

Figure 2.5. The C-matrix with maximum numbers of pcus per street.

Even if a street is fully saturated with vehicles, one still must consider
some movements among cars and some safety space that each driver
maintains around his or her vehicle. 150 % of the vehicle length may be a
reasonable total road length used up by each vehicle, at least at a standstill
and at slow speed. Some webpages gave information about Chinese
passenger car lengths in the range 3.2 – 4.8 m, at the time the MATLAB
algorithm was constructed. The average length tends to increase towards
western standards over time. In January 2022 a rough estimate4 of the average
Chinese passenger car length would be 4.2-4.5 m. This does not include larger
SUVs and pickups, but well all tiny minivans. However, those and any sizes
of trucks and buses can all be considered within the pcu concept.

MATLAB calculations are based on an average car length of 4.0 m,
which means every passenger car occupies a total of six m street lane length.
For example, a three-lane 100 m long street would, with this reasoning,
contain 50 passenger cars, i.e., pcus or any vehicle combination within this
concept. This means 16 ⅔ cars per lane, which of course is difficult if each
car is exactly four m long. But within this approach there are either 17 cars
denser fitted in one lane or vehicles that have various lengths. Up to 21 cars
may fit in a 100 m-lane within the pcu concept.

4 https://en.wikipedia.org/wiki/Vehicle_size_class#China

16

2.5.6 Initial mass of cars

The green arrows in Figure 2.6 describes how the six TLIs are interconnected.
Red arrows describe where traffic enters end exits the modelled system. This
model is a rough estimation, since several minor streets exist as well.

Figure 2.6. Seven intermediate bidirectional roads of the system.

The -matrix symbolizes 14 street directions filled with cars. However,
all streets have different lengths and number of lanes. Using the -columns
would result in unfair comparison of the TLIs. Therefore, an initial distance

for all incoming directions is set. So, in addition to there also
is where is the TLI in question. Figure 2.7 shows the CI-
matrix.

Figure 2.7. Matrix CI with initial numbers of pcus.

2.5.7 Probabilities

Figure 2.8 shows a layout of the TLI S11, which is situated in the south-east
corner of the modelled area intended for road traffic simulation. Beige
colored fields are traffic lanes reserved for buses. In this case buses do not
turn, and they move only from north to south and vice versa respectively.

Using classic probability, based on the notion that a great number of
vehicles pass through over time, the number of incoming traffic lanes from
one direction can specify what shares of the vehicles probable will make a

17

left turn, a U-turn, a right turn and will continue straight ahead. All such
probability values can be gathered in a 4 x 4-matrix, here named .

Figure 2.8. Traffic Light Intersection S11.

To be consistent all over the model, directions are specified with the
index numbers 1 for north, 2 for east, 3 for south and 4 for west. The
probability for traffic from north (1), going straight forward, i.e., south (3),
will be found at position in the matrix and traffic from south (3) going
to the west (4) will be in position in . U-turns are found on the diagonal
of . The formula for each index is:

The probabilities for incoming traffic from north in S11 are explained as
follows. Four lanes enter from north, i.e., index . No lane explicitly
allows making U-turn, i.e., going back to the north or index . One lane
is explicitly for left turns, which means . One lane allows both
going straight to the south, , and turning left to the east, . This
means that for this lane there are two values of probability, namely

 and . Finally, there are two lanes from north that allow traffic
going straight forward, a bus lane being one of them. For those two lanes the
probability is . A right turn is not possible here, hence .
Consequently, column 1 of the matrix P will be: ,

18

, and . The complete P-matrix
for S11 is shown in Figure 2.9.

Figure 2.9. The P-matrix for TLI S11.

2.5.8 Phase times

Traffic signals (TLS) usually consists of three different signal colors, red,
yellow (or amber) and green for which the meaning may differ on various
countries around the globe. The signals may also be combined in various
ways. However, a single red light always means stop and a single green light
always means go.

While compiling fieldwork data it became obvious that the duration of a
traffic signal was a multiple of three seconds. The duration for yellow signals
were always three seconds long. A typical signal time length is , ,

 or but not , s or and so on. According to the Swedish
regulation TRVMB [1] the shortest green light signal should be no less than

, a rule which has been considered throughout the work.
A phase time is the time period during which a signal is, or a combination

of signals are lit. One signal may also be divided into multiple signal phases,
e.g., when it is permitted to make a right turn in different combinations with
other signals. In the MATLAB code phase times are stored in the G-matrix.

The TLI S11 is a special case within the modelled system. The left matrix
in Figure 2.14 represents the sampled phase times of S11. After the simulation
process had begun and while correcting erroneous driving behaviors it was
discovered that the traffic signals in this intersection must operate in a Round
Robin style, i.e., where green signal is lit for traffic from only one direction
at the time. The clue was given by the traffic lane arrows on the tarmac. This
intersection is impossible to examine due to the fact it is an elevated non-
pedestrian zone. Originally it was assumed S11 operates in a case 1-2-3-4-
manner as explained in Section 2.5.9 Cases.

2.5.9 Cases

During a cycle time there are several signal phases, all of which occur at
several different but chronologically ordered times. To minimize the number

19

of calculations, several signal phases were arranged according to these four
different cases.

Figure 2.10. The four cases of a TLI.

Figure 2.10 shows four different cases where traffic from and to specific
directions are represented by red arrows, each corresponding to a green signal
phase in each case. It is possible to combine a few other directions with the
fixed cases. But none of the left turning cases 2 and 4 can be combined with
traffic going straight forward in any direction. However, many cases must be
combined with a right turn signal because the phase time for turning right
often is longer than its equivalence for going straight ahead.

2.5.10 Binary truth table

Figure 2.11. A 4-bit binary truth table.

Have a look at the binary truth table in Figure 2.11. The values in column
one represents case 1, i.e., traffic from north. Case 2, 3 and 4 are represented
by column 2, 3 and 4 correspondingly. A truth table covers all possible
configurations within its limits, which here is a 4-bit binary word. Having
only two options per position, i.e., a 0 or a 1, the number of alternative
configurations is or 16 in total. When the truth table acts as a matrix, it can
be multiplied by a factor and a scalar can be added to it. Row number six in

20

Figure 2.11 is highlighted, because it relates to the example in Section 2.5.11
Sets of cases.

2.5.11 Sets of cases

Suppose that each case will contain three different sets of times phases. From
the phase times in the G-matrix, the cases for scenario 50_150 can be
constructed by letting one truth table represent the transition from 50 % of
each phase time to 100 % of such time respectively. In addition, a second
truth table that represent the transition from 100 % to 150 % must complete
the example. The 1111-alternative for the range 50-100 % will coincide with
the 0000-alternative for the range 100-150 %, thus it may be omitted,
resulting in unique combinations. For the scenario 50_150
MATLAB will basically produce a K-matrix with the following code:
K=[.5*i+.5; .5*i+1].

Figure 2.12. The truth table for scenario 50_150 split in two.

Figure 2.12 shows matrix K, separated into two 16x4-matrices and placed
side by side. Note that position K(16,:) here appears twice. To understand
the numbers, row 6 of this K-matrix is highlighted and taken as an example.
Read the line such that all phase times in case 1 is to be multiplied by , in
case 2 with , in case 3 with and in case 4 with .

Bear in mind that each representation of a case contains a set with several
phase times in four directions. Therefore, each unique case is represented by
a 4x4-matrix, where each index represents the phase time for traffic from
direction to direction . One TLI is thus represented by a 4x4x31-matrix. To
make it even more complex, a 4x4x31x6-matrix holds all the unique cases

21

for all six TLI for the MATLAB calculations. The MATLAB code constructs
this and other matrices at start up and fetches and compares values during
runtime. The observant reader may notice that there is a limitation within the
same TLI, namely that the difference between phase times in a setting can
never differ more than one step, i.e., either a combination of 0.5 and 1.0 or
1.0 and 1.5.

The share values which to multiply with the binary truth table is the
crucial difference between scenario 50_150 and 100_33. For 100_33 the
values in are either , or , i.e., 33.3, 66.7 or 100 %. This of
course results in completely different phase time values in the 31 comparable
sets of cases for each TLI.

Figure 2.13. Phase times setting 6 in S11 for 50_150.

When the MATLAB algorithm calls on X(:,:,6,6) it will get the
matrix shown in Figure 2.13. This corresponds to the phase times in S11 and
the four leftmost values on row 6, which were focused on in Figure 2.12. The
four columns from left corresponds to traffic from north, from east, from
south and from west. From the diagonal values there is no dedicated phase
time for U-turn from any direction, which coincides with the intersection
layout from Figure 2.8.

Figure 2.14. Phase times for S11 (left). Case 1 binary matrix (right).

To produce the phase time values in Figure 2.13 the following MATLAB
operation is performed: G(:,21:24).*case1*K(6,1). The two

22

matrices in Figure 2.14 are multiplied elementwise and then with the scalar
0.5 found in column 1 in row 6 of K (Figure 2.12). There are four case-
matrices that, when multiplied elementwise with a 4x4-portion of G, singles
out the matrix values that corresponds to that case. When multiplied with its
corresponding row and column value of K, a setting is compiled and put in
the four-dimensional X-matrix. Values related to case 1 in Figure 2.13 and
Figure 2.14 are highlighted.

The purpose of having basically 6 libraries with 31 case settings is to
facilitate for the algorithm to compare every possible combination during
search for a better traffic flow.

2.5.12 Cycle times

A traffic light signals controlled intersection (TLI) is operating according to
a beforehand decided pattern or cycles. Some intelligent TLIs equipped with
ground sensors, though may skip one or multiple phases, based on the local
traffic situation. Accordingly, a cycle is completed just before the TLS starts
to repeat its programmed pattern. The time period for this is the cycle time.
In the MATLAB code’s main algorithm cycle times are calculated and then
put in S, a 31x6-matrix.

As there are 31 different case combinations per TLI, there are also
different cycle times along with those. Therefore, the S-matrix is a 31x6-
matrix containing all comparable cycle times. Figure 2.15 shows the general
case of how to calculate the cycle time for each case setting (cs) and each TLI
(tli) from a case matrix . In short, the formula adds together the longest
phase times for going straight ahead with ditto for making left turns.

Figure 2.15. Formula for calculating cycle time from an X-matrix.

To find out the cycle time at case setting 6 for S11, which is examplified
in Figure 2.13, the formula becomes:

23

2.5.13 Comparisons

The method for finding best flow is a so called ‘brute force’ or ‘exhaustive
search’ algorithm. As mentioned earlier the algorithm makes comparisons of
estimated vehicle evacuations on system streets. 887,503,681 comparisons to
be exact, which follows of it having case settings. The modelled system
has six TLIs, which in terms of computer code means implementing six
nested for-statements, that each loop through its 31 indices. For each
comparison all six indices are put in a 1x6-matrix, as

, which is sent to the method for finding average and
variance. One single run of the algorithm on a 10-year-old quad-core
computer typically would consume 140,600 s, which means well over 39 h
and roughly 6,300 comparisons per second.

If all phase times had been split into four parts, the algorithm would have
to deal with 9.5 billion iterations, which would take some 17 days to calculate.
Instead, another numerical calculation was designed. Hence there are two
numerical calculations, one with the levels 33.3 %, 66.7% and 100 % (100_33)
and one with 50 %, 100 % and 150 % (50_150) of observed phase times.

2.5.14 Ratios

Each traffic lane direction in a TLI has a certain ratio of the complete cycle
time, that is a quota of the phase time of that lane and the cycle time. A ratio
matrix is received simply by dividing each element of an -matrix with the
scalar, , from the cycle time formula or as .

This operation converts a time period of some seconds into a unitless
fraction. However, the fraction represents the time from the case in question.
To recreate the ratios for case 1 of the example in Figure 2.13 and Figure 2.14
with MATLAB code, the following command can be run:
R11_1=X(:,:,6,6).*case1/S(6,6).

Figure 2.16 shows the resulting ratios for that case. Position (4,1) in
R11_1 matrix is zero because turning west from north is not possible in S11.
Figure 2.12 the complete R11-matrix for the case setting 6 above.

Figure 2.16. Ratios of case 1, case setting 6, S11, scenario 50_150.

24

Figure 2.17. All ratios in S11 at case setting 6 in scenario 50_150.

2.5.15 Incoming and outgoing

To obtain values for comparison, estimations of how many vehicles that
can possibly enter and leave a street must be made. The main idea is to
multiply the unitless probability, P, and ratio, R, with the initial mass of cars,
CI. This gets a value, TF, of the number of vehicles that have left one street
lane and entered another street lane after the intersection. The MATLAB
command is TF=P.*R.*CI, which performs elementwise multiplications.

Figure 2.18. PCUs from north (left). PCUs to north (right).

The left part of Figure 2.18 shows traffic from north and the right part
show traffic to the north. With respect to the intersection the sum of TF-values
of incoming lanes of one street, gives the number of vehicles leaving that
street. The sum of TF-values from lanes that all enters the same street gives
the number of vehicles entering that street.

The whole operation is of course a rough estimation but being done in the
same manner for all case settings. In the real world one must consider the law
of inertia, driver’s response time and of course random obstructions in the
form of pedestrians, bicycles, mopeds, and other vehicles. All values could
have been multiplied by a factor to take the mentioned considerations into
account. However, this would just be a linear down-scaling, resulting in the
same results in the end.

Since the ratio, R, comes from dividing a phase time with a cycle time,
the TF-values apply for the current cycle time. An estimation of flow, i.e.,
vehicles per second, would be to divide TF-values with the current cycle time
from the S-matrix. This would get the average pcus per second in general and
over a specified time period. To find out how many pcus that actually moves
per second, one has to divide the TF-value sum from each street lane with the

25

phase time of that same lane individually. Note that this neither do consider
the law of inertia, driver’s response time, and random obstructions.

Figure 2.19. PR-matrix (left) and CI-matrix (right) for S11.

By, for each TLI, multiplying the PR-matrix and the CI-matrix in two
different ways the algorithm calculates time flow in (TFI) and time flow out
(TFO). Figure 2.19 shows the PR- and CI-matrix for S11.

2.5.16 Time flow in

TFI is achieved by summing up each column of the PR-matrix to form a 1x4-
matrix, transposing it and then multiply it elementwise with the CI-matrix.
The result is a 4x1-matrix. Figure 2.20 shows a MATLAB command to create
TFI and the resulting 4x1-matrix, regarding the previous examples from S11.

Figure 2.20. TFI for S11, case setting 6, scenario 50_150.

2.5.17 Time flow out

To get TFO, the PR-matrix and CI-matrix are multiplied. Figure 2.21 shows
the MATLAB command and its resulting 4x1-matrix for the same example
as with time flow in.

26

Figure 2.21. TFO for S11, case setting 6, scenario 50_150.

2.5.18 Evacuation

To estimate evacuation of vehicles, one must consider three amounts during
a fixed time period, namely a) the number of vehicles on a street prior to a
change, b) the number of vehicles going out of the street and c) the number
of vehicles coming into the street. By dividing the sum of a, b and c with a,
the quota will tell the degree of change and it helps to compare its evacuation
with the other streets. A number less than 1 means an actual evacuation of
vehicles and the opposite if the number is larger than 1. The rather simple
formula for evacuation is:

, where pcu refers to a personal
car unit. The quota is unitless. The average of all evacuation quotas, , makes
it possible to estimate the deviation, .

TFI and TFO are 4x6-matrices built up from six consecutive calculations,
which are done for every case setting. Next step is to estimate the evacuation.
Given that TFO and TFI are ordered correct for the entire system, the formula
for evacuation is in principle . However, that is not
possible for several reasons, excessive information being one of them and
matrix division rules being another reason. Therefore, firstly the TFO is
rearranged into a new matrix, TFS, that can be reduced by TFI, i.e., where the
street positions correspond to each other. Secondly a binary 4x6-matrix, SC,
was used to single out the significant 14 streets. Thereafter it was possible for
the algorithm to calculate an evacuation value by the following two rows of
MATLAB code.
DIFF = (TFS - TFI) .* SC;
EVA = ((C + DIFF) ./ C) .* SC;

2.5.19 Average evacuation and variance

To find the average time flow and its variance the following four rows of
MATLAB code was run before comparing it with the previous lowest value.
The remarks are kept, due to their informative contents.

27

E = find(EVA); % finds indices of all nonzero elements
WS = EVA(E); % column vector with nonzero values of EVA
avgX = mean(WS); % mean value of WS
varX = mean((WS-avgX).^2); % Variance of WS

2.5.20 MATLAB plots

For the sake of plotting the behavior of the algorithm a plot lists were made
for each scenario. The matrix PLOTLIST has 29,791 rows and two columns.
To avoid plotting some 887.5 million values, estimations via the average
values of evacuations and variances were used. 29,791 values of each
evacuation and variance were summed up and then the average value of the
evacuations and the square root of the average variance values were saved,
which were repeated also 29,791 times. As mentioned before the algorithm
performs iterations. This can also be written as or

 iterations. Figure 2.22 shows the average deviation in which a
diagram of all the new smallest deviation values has been imposed. Figure
2.23 shows the average evacuation values from PLOTLIST for scenario
100_33. The corresponding plots for scenario 50_150 are shown in Figure
2.24 and Figure 2.25. The reason why scenario 50_150 finds the lowest
deviation value in an earlier iteration index, is because it is run from 50 to
150%, while the other scenario was run backwards, i.e., from 100 to 33.3%.
However, both scenarios find the smallest deviation when

28

Figure 2.22. Lowest and average deviation for 100_33.

Figure 2.23. Average evacuation in scenario 100_33.

29

Figure 2.24. Lowest and average deviation for 50_150.

Figure 2.25. Average evacuation in scenario 50_150.

30

The matrix called TOP5DEV holds the top five lowest and at what
signal phase constellation. Below this paragraph are the TOP5DEV outputs
for 100_to_33 and 50_to_150. The eight numbers on each row are from left:
d(μ), Z and a plotindex. As earlier mentioned, Z contains the six index values
of the nested for loops. Plotindex holds an x-value for plotting the found
standard deviation values. Plotindex starts from zero and increases by one for
every comparison.
100_to_33:

0.0187926219180896 10 5 5 6 15 11 21013

0.0190185897535813 10 5 5 6 15 26 21013

0.0192886460232188 10 5 5 6 30 11 21013

0.0193846127856764 10 20 5 6 15 11 20548

0.0196039953793205 10 20 5 6 15 26 20548

50_to_150:

0.0187926219180896 10 5 5 6 15 11 8777

0.0190911123177668 10 5 5 6 5 11 8777

0.0191295710725981 10 5 5 5 15 11 8777

0.0194100142013391 10 5 5 5 5 11 8777

0.0199655055074297 10 5 5 5 5 1 8777

Note that despite what interval that is fed into the algorithm, it homes in
on the same value of deviation, , and at the same constellation, i.e., when

. The approach differs because 100_to_33 was run from
top to bottom and 50_to_150 was run from bottom to top of the constellation
values held in . When this value of was passed, no lower value of
could be found - no matter in which direction the search was made. This is,
however, logical. The 31 different constellations of each TLI are numbered
from its lowest value and up. So, none of the values in are over the middle,
meaning below 67 % in 100_to_33 and below 100 % in 50_to_150. By
checking corresponding rows in the matrix , one can interpret what the
values in mean. In the case of 100_to_33, here is:
10 - 0.67 0.33 0.33 0.67

 5 - 0.33 0.67 0.33 0.33

 5 - 0.33 0.67 0.33 0.33

 6 - 0.33 0.67 0.33 0.67

15 - 0.67 0.67 0.67 0.33

11 - 0.67 0.33 0.67 0.33

31

K for the rows 5, 6, 10, 11 and 15 are ordered and once repeated to
accurately reflect the value of . The top row
corresponds to intersection S1. In S1 case 1 should last for 67 % of observed
time, case 2 for 33 %, case 3 for 33 % and case 4 for 67 %. In the same way
intersections S3, S5, S6, S9 and S11 follow. This is true for both scenarios
100_to_33 and 50_to_150, since they both have the exact same lowest
at the exact same iteration. The two calculations are the exact same things,
but with different start values that are scaled differently.

2.5.21 100_to_33 results

To get the corresponding signal phases the following calls in MATLAB are
made.
OPTX_N = [X(:,:,10,1),X(:,:,5,2),X(:,:,5,3)];

OPTX_S = [X(:,:,6,4),X(:,:,15,5),X(:,:,11,6)];

OPTX_N =

 0.0 26.0 26.0 30.0 0.0 0.0 17.0 13.0 0.0 0.0 27.0 15.0

12.0 0.0 44.0 18.0 26.0 13.0 31.0 20.0 0.0 0.0 0.0 0.0

26.0 24.0 0.0 25.0 17.0 13.0 26.0 31.0 27.0 0.0 34.0 15.0

60.0 14.0 12.0 30.0 31.0 20.0 26.0 13.0 15.0 0.0 34.0 15.0

OPTX_S =

30.0 34.0 14.0 20.0 0.0 38.0 50.0 11.0 0.0 30.0 30.0 15.0

30.0 20.0 14.0 14.0 16.0 0.0 50.0 28.0 15.0 0.0 30.0 30.0

14.0 20.0 0.0 34.0 50.0 11.0 0.0 38.0 30.0 15.0 0.0 0.0

34.0 14.0 30.0 0.0 50.0 28.0 16.0 0.0 0.0 30.0 15.0 0.0

Three 4 x 4-matrices are put side by side and presented in one northern
and one southern cluster, to make them more readable. However, the numbers
are not factors of 3, so one final adjustment must be done, by calling the
MATLAB function . Here . This gives the below
matrices. Again, presented as two matrices for better readability.
 0 27 27 30 0 0 18 12 0 0 27 15

12 0 45 18 27 12 30 21 0 0 0 0

27 24 0 24 18 12 27 30 27 0 33 15

60 15 12 30 30 21 27 12 15 0 33 15

32

30 33 15 21 0 39 51 12 0 30 30 15

30 21 15 15 15 0 51 27 15 0 30 30

15 21 0 33 51 12 0 39 30 15 0 0

33 15 30 0 51 27 15 0 0 30 15 0

As an example, look at intersection S3, which is the middle 4x4-matrix
in the northern cluster. The phase times in the matrix are interpreted as the
figure below shows. An * after a number means that this signal time
immediately precedes the one in the following phase. Here this affects phase
2–3 and 4–1. Such adjustments must be made manually.

Figure 2.26 The four cases of S3 in scenario 100_33.

If the right turn phase time is longer than its equivalence for straight
ahead, it will firstly begin in the previous case. If this is not enough, the signal
for right turn, with respect to its own case, will span from the previous case
until its subsequent case. A signal phase time that elongates like this in several
cases, will stay in green mode until the last case, where it ends with a three
second yellow signal. All cases, including phase times, are presented
scenario-wise in Section A.1 Graphic view of time phases used in all
simulation.

2.5.22 50_to_150 results
OPTX_N =

0.0 39.0 39.0 45.0 0.0 0.0 25.5 19.5 0.0 0.0 40.5 22.5

18.0 0.0 66.0 27.0 39.0 19.5 46.5 30.0 0.0 0.0 0.0 0.0

39.0 36.0 0.0 37.5 25.5 19.5 39.0 46.5 40.5 0.0 51.0 22.5

90.0 21.0 18.0 45.0 46.5 30.0 39.0 19.5 22.5 0.0 51.0 22.5

OPTX_S =

45.0 51.0 21.0 30.0 0.0 57.0 75.0 16.5 0.0 45.0 45.0 22.5

45.0 30.0 21.0 21.0 24.0 0.0 75.0 42.0 22.5 0.0 45.0 45.0

21.0 30.0 0.0 51.0 75.0 16.5 0.0 57.0 45.0 22.5 0.0 0.0

51.0 21.0 45.0 0.0 75.0 42.0 24.0 0.0 0.0 45.0 22.5 0.0

33

After adjusting it to be nearest modulo 3, the matrices look like this:
0 39 39 45 0 0 27 21 0 0 42 24

18 0 66 27 39 21 48 30 0 0 0 0

39 36 0 39 27 21 39 48 42 0 51 24

90 21 18 45 48 30 39 21 24 0 51 24

45 51 21 30 0 57 75 18 0 45 45 24

45 30 21 21 24 0 75 42 24 0 45 45

21 30 0 51 75 18 0 57 45 24 0 0

51 21 45 0 75 42 24 0 0 45 24 0

The intersection S3 is again used as an example of a graphical view of
the cases and time phases

Figure 2.27 The four cases of S3 in scenario 50_150.

But take a look at S1, which is the 4x4-matrix to the left of S3. Figure
2.28 shows how extra right turns must be inserted in some of the four
otherwise fixed cases.

Figure 2.28. The four cases of TLI S1 in scenario 50_150.

If the right turn phase time is longer than its equivalence for straight
ahead, it will firstly begin in the previous case. If this is not enough, the signal
for right turn, with respect to its own case, will span from the previous case
until its subsequent case. A signal phase time that elongates like this in several
cases, will stay in green mode until the last case, where it ends with a three

34

second yellow signal. All cases, including phase times, are presented
scenario-wise in Section A.1 Graphic view of time phases in all simulations.

2.6 Simulation with SUMO
Simulation of Urban MObility (SUMO) is an open-source microscopic traffic
simulation program created by The Institute of Transportation Systems in
Berlin, Germany. It was first released in 2001. It is a package program which
includes documentation and tutorials, tools for running a simulation, building
the traffic network, generating different traffic flows and tools for analyzing
the results with different tools. It can visualize different types of vehicles and
pedestrians. SUMO version 1.0.1 was used for building the model and version
1.9.0 for simulations.

To create a traffic model that resembles the real-world can be quite time-
consuming. It is largely dependent on how big the model is supposed to be.
In order to create the model and get the simulation running there are three key
points to create or import.

The first key point is to outline the network, with roads and intersections
and its corresponding number of lanes and distances. The second key point is
to add the traffic infrastructure with the rules that apply to the model including
traffic light signals programs, stop signs etc. The final key point is the traffic
demand. One can import traffic matrices if available or create traffic files for
the types of vehicles that are desired. For this purpose, the SUMO package
has several accommodating programs.

SUMO can open already existing traffic maps when imported with the
netconvert [8] command line application from websites such as
OpenStreetMap [4]. This might lead to quick interaction between the
simulation and the user, but it turned out not to give an accurate traffic
model with respect to the number of lanes and intersection structure for the
area that this thesis is about. Because of this it was easier to build the
network from scratch in the program Netedit. Worth mentioning is that a
map with geometrical shapes, area.poly.xml, was extracted from the
www.openstreetmap.org with the help of SUMO’s command line
application polyconvert [9]. This was very helpful when building the road
network in Netedit, as it could be loaded into the program and guide one
when drawing the road network.

2.6.1 The selected area in Hangzhou

The area chosen is inside the Xiacheng District, one of Hangzhou’s urban
districts. The area has a connection to Zhong He Viaduct, an express- or

35

motorway, and is close to one of the city centers, with easy access to multiple
tourist areas. It also contains schools, shopping district, sport hall, hospitals
and is famous for its silk market. As many other urban areas in Hangzhou, it
is packed with small shops and residential areas.

Figure 2.29. The network built with Netedit. TLIs are marked.

In the model there are six major intersections controlled by traffic light
signals, numbers S1, S3, S5, S6, S9 and S11 as shown in Figure 2.29. In
Appendix A.1 General layouts of TLI, the mapping of the different
intersections is available. S1 being to the north-west, it is the biggest
intersection with access to the expressway. S5 in north-east, is a three-way
junction next to a river and lies below a main road connecting to another part
of town. S6 in the south-west is a standard 4-way intersection. S11 in the
south-east is a junction located up on a bridge, connecting traffic from four
directions, with a small roundabout placed on the road below it. Traffic from
north to west is directed to the roundabout, as well as traffic from west to
south and back to the west. S3 and S9, were at the time of this thesis, building
sites. The city was currently building a new metro line underground which
caused some disturbances to the traffic network. The number of lanes were
reduced in the south and north direction for S9, and only north incoming and
outgoing lanes were reduced for S3. There are also seven other traffic signals
present. Three of them are merely for the purpose of letting pedestrians and

36

cyclists cross the roads (see Ø1 - Ø3). The 4 others are smaller crossings,
letting traffic enter and exit the residential areas. The main purpose of this
thesis is to observe and optimize the traffic flow at the six major intersections.
Therefore, the traffic light programs for the smaller intersections were noted
and kept constant through all the simulations to maintain a realistic place-
based simulation. The decision to ignore the smaller streets in the residential
areas was made because the areas were mostly surrounded by fences,
restricting passage and entries, as well as being too time-consuming to model.

2.6.2 Building the SUMO model

Building the street map was conducted in different steps with the Netedit
program from the SUMO package. Through internet pages maps.google.com
and maps.bing.com it was possible to measure the distances between the
intersections and other adjacent roads. With the distances known it was easy
to outline the road network. The major roads in the area had concrete barriers
that carried grass and trees as two-way separators and/or roads that were
separated by fencing. Therefore, when outlining the major roads in Netedit,
effort was made not to draw them as two-way roads but to draw the road for
each direction individually.
In Netedit roads are built with a tool for creating edges. An edge is created
by drawing a line from point A to point B, where each edge segment
represents a section of the road. As seen in Figure 2.30 an edge is represented
by the black lanes between the red areas. The red dots seen there are called
nodes, which are points where the x and y coordinates are stored. These nodes
are automatically added when drawing the edge. The road itself can be
represented by more than one edge. This is often the case when for example
a road goes from three lanes to four lanes. If the road that is built passes an
intersection, a junction will be introduced. This junction is a collection of
nodes where multiple edges meet, as pictured by the dark red areas in Figure
2.30. An edge may also contain several lanes. But an increase or decrease
requires a new edge to be created.

37

Figure 2.30. A one-way road with an intersection, built by several edges.

Netedit automatically adds connections between the incoming lanes at
the junction to the outgoing lanes from the junction. These had to be altered
to match the traffic rules on site for every junction. Figure 2.31 shows an
example on how these connections can look like for the intersection in Figure
2.30. The connections between the incoming and outgoing lanes at the red
nodes are visualized with white lines.

Figure 2.31. Illustration of how edges connect via nodes.

Restrictions were made as to not include the smaller streets inside the
residential areas. All roads were given attributes to specify what kind of road
it was, its priority rules, how many lanes it has, what kind of vehicles that are
allowed and what traffic rules that apply. An attempt was made to include the
pedestrian crossings existing in the area, but the attempts failed, which
resulted in a few pedestrian crossings being visible in the model but of no use.

2.6.3 Creating traffic light signals (TLS)

When implementing a traffic light signal in Netedit the program
automatically creates a TLS program suited for the number of lanes that goes
into the intersection with regards to the turns that are allowed for each lane.
The TLS also gets dedicated a name, a tlLogid id. The name is often related
to the junction at which it is placed. By default, Netedit creates a static signal
program that is 90 seconds long. To simply change the phases and times in
the program one can save the TLS program and adjust it in a text editor. To
program the TLS, one uses a combination of letters, one letter for each state
or lane. G is a green signal without having to pay much attention to other
vehicles, g for green but must yield for other traffic, y for yellow and r for red
light. A TLS program for S9 is shown in the XML code below. By default

38

the programID for the TLS is set to zero. The programID for S9 is here set to
two since an altered version was used.
<!-- s9 -->
<tlLogic id="gneJ666" type="static" programID="2" offset="0">
 <phase duration="72"
state="ggrrrrrrrgggrgggrggrrrrrrrgggrgggr"/>
 <phase duration="3"
state="ggrrrrrrrggrryyyrggrrrrrrrggrryyyr"/>
 <phase duration="12"
state="ggrrrrrrrggrgrrrgggrrrrrrrggrgrrrg"/>
 <phase duration="9"
state="ggrrgrrrrggrgrrrgggrrgrrrrggrgrrrg"/>
 <phase duration="3"
state="ggrrgrrrrggrrrrryggrrgrrrrggrrrrry"/>
 <phase duration="39"
state="gggrgggrrggrrrrrrgggrgggrrggrrrrrr"/>
 <phase duration="3"
state="ggrryyyrrggrrrrrrggrryyyrrggrrrrrr"/>
 <phase duration="30"
state="ggrgrrrggggrrrrrrggrgrrrggggrrrrrr"/>
 <phase duration="3"
state="ggrrrrryyggrrrrrrggrrrrryyggrrrrrr"/>
</tlLogic>

A complete TLS program for a simulation scenario contains programs for
all the TLIs in the network. This includes the six major intersections, as well
as the minor intersections, S2, S7, S8, S10 and the signal regulated pedestrian
crossings o1, o2, o3-1 and o3-2 shown in Figure 2.3. A simplification of a
complete TLS program is shown below, where the id names are changed to
the TLI names for easier understanding, as well as showing the structure but
omitting all the states and phase durations for all the TLIs.

<additional>
 <tlLogic id="s1" type="static" programID="2" offset="0">
</tlLogic>
 <tlLogic id="s2" type="static" programID="2" offset="0">
</tlLogic>
 <tlLogic id="s3" type="static" programID="2" offset="0">
</tlLogic>
 <tlLogic id="s5" type="static" programID="2" offset="0">
</tlLogic>
 <tlLogic id="s6" type="static" programID="2" offset="0">
</tlLogic>
 <tlLogic id="s7" type="static" programID="2" offset="0">
</tlLogic>
 <tlLogic id="s8" type="static" programID="3" offset="0">
</tlLogic>
 <tlLogic id="s9" type="static" programID="2" offset="0">
</tlLogic>

39

 <tlLogic id="s10" type="static" programID="2" offset="0">
</tlLogic>
 <tlLogic id="s11" type="static" programID="2" offset="0">
</tlLogic>
 <tlLogic id="o1" type="static" programID="2" offset="0">
</tlLogic>
 <tlLogic id="o2" type="static" programID="2" offset="0">
</tlLogic>
 <tlLogic id="o3-1" type="static" programID="2" offset="0">
</tlLogic>
 <tlLogic id="o3-2" type="static" programID="2" offset="0">
</tlLogic>
</additional>

It is crucial to have made all the choices regarding what way different
lanes can turn beforehand, as a later change in the program will make the TLS
program that was altered unable to run because of state changes. This thesis
focuses on two calculated signal programs for the scenarios 100_33 and
50_150 as well as the existing traffic signal program on site, IRL. Netedit’s
own generated traffic signal program is also incorporated and tested. There
have been no alterations done to Netedit’s TLS. It is used as is.

2.6.4 Netedit default traffic light signal program

When a traffic light is placed in a junction, in Netedit, there will be an
automated traffic light program created [10]. This program follows rules set
by SUMO but may not be accurate to what is used in real life at that specific
location. The general rules for the automated TLS program are based on a
four-arm intersection, without regard to pedestrian crossings. There are four
green phases that go as follows:

1. Straight forward for traffic from north and south, along with right
turning traffic.

2. Left turns, for lanes that are dedicated to left turns specifically for
traffic from north and south.

3. Straight for west and east bound traffic, along with right turning
traffic.

4. Left turns for outgoing traffic from west and east.
The traffic light cycles have a default cycle time of 90 seconds, and all

green phases are followed by a yellow phase. If it is a four-arm intersection
the straightforward phase has a green light for 31 seconds. The speed limit
for this area is below 70km/h which makes left turns allowed during the same
time as oncoming traffic can drive straight. The vehicles that want to turn left
must yield to oncoming traffic. If there is a specific lane for left turns it will

40

get an additional six seconds of green light after the traffic going straight from
the same direction has turned red.

2.6.5 Detectors

When the overall traffic map is done it is time to implement the detectors that
will collect the data that is wanted out of the simulation. In SUMO there exist
three different types of detectors, with different values collected. In this case
it was of importance to collect information about how many vehicles that
passed a crossing given a certain time, as well as information about how long
vehicles had to wait before they could pass. The detector that does this is
called Detector_E2 [11], more specifically called the Lanearea detector. This
detector can resemble a vehicle tracking camera. A lane area detector is given
a length attribute, defined by a starting position, pos, and an end position,
endPos. The detectors were placed on all incoming and outgoing lanes to the
six main intersections of the system, which can be seen in Figure 2.33 as aqua
blue rectangular shapes. On the incoming lanes they are set to begin slightly
after where the road increases its number of lanes leading to the intersection
and end at the stop line at the junction. If no such lanes are added, the
detectors start between 20 to 50 meters away from the intersection depending
on the overall layout around the intersection. The detectors on the outgoing
lanes are placed so that they start at the beginning of the outgoing lanes and
end a minimum of 10 meters away.

The detectors can be specified to count different kinds of vehicles. In this
case there were detectors to count vehicles and detectors to count only buses.
The E2-detector counts vehicles that touch the start position of the detector,
vehicles that start or end their route on the detector and vehicles that pass
through the detector. The output given of an E2-detector keeps track of all
vehicles that are currently running in its area and has attributes to help
measure queues.

2.6.6 Traffic Assignment Zone (TAZ)

Traffic assignment zones are a collection of edges used to make route
designation simpler. They are valuable when creating traffic in and between
areas of the road network. Here TAZs are placed on all incoming and
outgoing fringes leading to the TLS junctions. A total of 22 TAZs for this
system. A TAZ must be selected to be either a sink or a source. A sink being
an edge from where vehicles will depart from the system and source being
where vehicles will arrive to the system. The XML code in this section shows
how one ingoing and one outgoing TAZ are structured.

Each TAZ has an id and a list of depart and destination edges. The edges
are given a weight representing a probability, to determine how much traffic

41

that shall enter or leave the map from them. The shape and color parameters
are optional.
<taz id="street_in" shape="x and y coorinates" color="green">
 <tazSource id="gneE###" weight="1.00"/>
 ... further source edges ...
 <tazSink id="gneE###" weight="0.00"/>
 ... further destination edges ...
</taz>
<taz id="street_out" shape="x and y coorinates" color="red">
 <tazSource id="gneE###" weight="0.00"/>
 <tazSink id="gneE###" weight="1.00"/>
</taz>

2.6.7 Creating traffic

When thinking of rush hour traffic, the first thought is of queues with a lot of
vehicles and little movement. In this case it was attractive to focus on three
different kinds of transportations when creating traffic for the network. The
everyday drivers, the commuters driving to or from work and the public buses,
with their set routes and timetables.

2.6.8 RandomTrips

SUMO has a predefined python script that helps create vehicles with random
routes called randomTrips.py [12]. With this it was possible to generate a lot
of vehicles that enter and leave the simulation randomly and with random
routes. This randomness was useful to represent everyday drivers out and
about in the network. RandomTrips can also be given a set of information to
create traffic with a more desirable distribution. Even though the randomness
was wanted it was still desirable to make traffic drive through the bigger
streets that lead to the six TLS junctions.

By running the script with a set of selected attributes, see tables in Section
A.3 Attributes for XML code, it is possible to create a route-file with many
vehicles taking random routes through the network. The routes created are
static. All edges from start to finish are stated in each route. Because of this
it is possible that one later alteration of the network will make the routes
invalid and the simulation unable to run. With the help of the attributes
available for randomTrips it is possible to affect the distribution of the routes.
One wanted behavior was to make vehicles choose routes along bigger roads
as well as entering and exit the system through the fringes associated with the
six big intersections.

Running the Python command randomTrips.py, will create routes
where vehicles are required to drive a minimum of 500 meters in the system.
To get a bigger number of vehicles to enter and/or exit the network from the

42

fringe the fringe-factor value was set to 40. This value increases the
probability of creating routes that begin and/or end with an edge at the fringe
40 times. To make most vehicles drive through any of the major TLS
intersections the three attributes, L, fringe-threshold, and speed-exponent
were used to weigh the traffic to use roads with more lanes and with speed-
limits equal to or above 40 km/h which translates to 11.11 m/s. To create
more than one simulation for each scenario it was decided to create two other
randomTrips files. The difference between them is the use of seeds. If not
changed the routes created would be the same as the one first created. Seeds
help generate pseudo-randomness to the distribution of vehicles. To keep it
simple the seeds 33, 66 and 99 were chosen. Below is an example of the
command used to generate vehicles with the randomTrips script.
python randomTrips.py -n v5_7.net.xml -r seed33Random.rou.xml
--seed=33 -b 0 -e 7200 --period 1.0 --binomial 400 --vclass
passenger --vehicle class passenger --min-distance 500.0 --
fringe-factor 40.0 -L --fringe-threshold 11.00 --speed-
exponent 11.11 --fringe-start-attributes “color=\”255,0,0\”” -
-trip-attributes=”departLane=\”free\” departSpeed=\”random\”
departPos=\”random_free\” color=\”0,255,0\” length=\”4.00\”
minGap=\”2.00\” maxSpeed=\”25.00\” speedDev=\”0.1\”
accel=\”2.6\” decel=\”4.5\” sigma=\”0.2\” minGapLat=\”0.5\”
laneChangeModel=\”SL2015\””

The depart attributes following trip attributes decide where vehicles will
be implemented on a road section. The values chosen as inputs are there to
increase the number of vehicles that are inserted on roads with multiple lanes.
Other attributes used are the ones for describing the vehicles. Their length,
what type of vehicles they are, how fast they can accelerate, brake, as well as
the maximum speed they can reach. The attributes sigma, minGapLat and
laneChangeModel describe the behavior of the drivers. Sigma tells how likely
the driver is to follow the rules, with 0 being always and 1 being never. The
minGapLat decides the minimum distance for how close vehicles can be next
to each other in meters. The laneChangeModel SL2015 [13] is an available
script from the SUMO package that is created to resemble how Chinese
drivers use and change lanes.

2.6.9 Flow for cars

Flow [14] is another way of implementing vehicles in the simulation. Instead
of creating a set route for the vehicle, flows can be more dynamic. Here flows
are created to drive between different traffic assignment zones (TAZ) [15], to
represent commuters that travel across the network. At least one TAZ for
incoming traffic and one TAZ for outgoing were created for each TLI. Every
TAZ represents edges at the fringe in connection to the TLI. Some flows also
have via-edges specified to better control which streets to use. Through trial

43

and error, a satisfactory flow of rush hour commuting traffic was constructed.
SUMO has a Python script to make an XML file with flow from a so-called
OD-matrix which basically is an origin-destination table. After getting used
to the process, it became clear that vehicles in flows are set off by the help of
classic probability. Hence there is no magic formula in the Python script. The
XML file may be constructed much more easily using a spreadsheet and then
let the built-in functions produce the XML code. The spreadsheet table that
was used is shown in the appendix.

Below the XML code to produce commuter 9 is shown. It is one single
line of code of almost 100 in total. These lines of code are wrapped inside
tags just like in html code. Commuter 9 is a set of vehicles that starts, ends,
and passes the same via edge between begin and end time values. So, its first
vehicle starts at and enters the network from a fringe edge on the
ramp north of S1 and exits at a fringe edge south of S6.
<flow id="commuter9" begin="900" end="8100"
probability="0.013889" type="commuter" fromTaz="taz_s1r_in"
via="gneE408.17" toTaz="taz_s6s_out" departLane="best"
departSpeed="random" color="orange" />

The attributes used for flows are primarily the same as for randomTrips
with the exception that flows will choose its route by itself, with help of the
start, end and via-edges given. The route it takes to get there is not specified.
Flows are therefore more dynamic in the way that they will change their
routes if for example, there are queues ahead. Therefore, flows are used to
represent drivers that are regular commuters in the area.

2.6.10 Public transport

When creating the public buses flows were used again. Flows allowed
different bus lines to traffic the roads and make stops according to their time
schedule. All buses were given the same parameters for speed, acceleration,
deceleration, length, gap and random speed variation. To guide the bus at
least three or more edges had to be stated, i.e., edge to enter, edge to exit and
edges where there are bus stops for that bus line. The duration for stops is set
to 15 s for all buses. With <flow> each vehicle must individually choose its
own path, which suggests there will be some variation of paths. The tendency
to change lanes seems to be higher among flow vehicles compared to
randomTrips-vehicles.

44

Figure 2.32. All bus stops, each marked with the Hangzhou logotype.

Figure 2.32 shows all bus stops within the modelled area. The example
below shows bus line 68 which enters the network north of S3 and exits south
of S7 and has green color. Line 68 has a total of 12 buses per hour between

 and .
<routes>
 <vType id="BUS" vClass="bus" accel="2.6" decel="4.5"
sigma="0" length="12" minGap="3" maxSpeed="70" guiShape="bus"
speedFactor="normc(1,0.1,0.2,2)" />
 <flow id="68s3s7" color="green" begin="60" end="3360"
number="12" type="BUS" from="gneE532" to="gneE510">
 <stop busStop="busStop_gneE532_0_22" duration="15" />
 <stop busStop="busStop_gneE629_0_24" duration="15" />
 <stop busStop="busStop_-gneE115_0_0" duration="15" />
 <stop busStop="busStop_gneE509_0_20" duration="15" />
 </flow>
</routes>

The final step before running the simulation is to create a main settings file,
which is called the sumocfg which stands for sumo configuration file. In
this file one specifies the road map to be used as well as the traffic-route
files and additional files as can be seen in the XML code after this section.
The additional files here used are a map of geometrical shapes in the area,
area.poly.xml, a file where the busstops have been marked,
busstopsV5.add.xml, as well as the TLS program and files with the
detectors to be used. All files used are XML files.

45

<configuration>
 <input>
 <net-file value="v5_HZmap.net.xml"/>
 <route-files-value="busFlow7200sV5sorted.rou.xml,
commuters_flow.rou.xml, randomTrips.rou.xml"/>
 <additional-files value="area.poly.xml,
busStopsV5.add.xml, TLSfinal_100_33.add.xml,
AllDetectors.add.xml, v5_TAZ.taz.xml"/>
 </input>

 <time>
 <!-- Set start and end time -->
 <begin value="0"/>
 <end value="10800"/>
 </time>

</configuration>

2.7 TraCI
SUMO simulation can be controlled via a traffic control interface called
TraCI [16]. By importing traci in Python the simulation can be controlled
for example with the command traci.simulationsStep() inside a
for-loop, which for every iteration advances the simulation process one
second. Python’s traci module has several methods to keep track of what kind
of vehicles that have been on what street (set of edges) and even what lane.

As previously mentioned, traffic detectors were used during
simulations, these can be seen in every direction close to the intersections in
Figure 2.33. A detector keeps track of which vehicle currently is on it.
Therefore, each detector must be represented by a set in which new vehicles
are added on each timestep (i.e., second). On given intervals the total
amount in each detector set must be saved for report and emptied for a new
time interval.

46

Figure 2.33 SUMO during run. Detectors show as turquoise field.

With a set of combined method calls, the control program could get
instant information on a certain street’s traffic saturation. There are methods
to check which vehicle id’s that are on a certain lane, the lane’s length and
through the given vehicle id also the vehicle length and what kind of vehicle
it is. By adding all lanes on each edge on a street, a traffic density can be
calculated. In a similar manner the traci module has methods for
checking which specific vehicle id’s that have not been able to be loaded
into the system via a fringe edge. This gives information on the total
number and what kind of vehicles that are queuing to enter onto which
street, thus creating a hunch of the level of overload. However, all vehicles
do not enter and exit through the fringe. Approximately 150 vehicles start
and end inside the fringe.

The above methods and several new created ones were used to control
both the simulation process and to compile its output. The outputs produced
by the code were: a useful terminal text, a compiled copy of the terminal
output written into a text file and a JSON5 file representing the detector
data.

5 JavaScript Object Notation

47

3 Analysis
Running the simulations in SUMO revealed some troublesome

behaviors. Here are some of them explained as well as possible solutions
mentioned.

3.1 Several XML files vs TraCI JSON output
SUMO’s default detector output is an XML file containing a lot of data with
some of it being irrelevant for this report. The data in turn need to be
converted to an Excel file to improve the reading comprehension. Each
intersection had one detector file for incoming and one for outgoing traffic.
In total 12 XML files had to be converted to 12 XLS files and thereafter
compiled in order to calculate each intersection’s specific traffic flow in each
time interval. This is a time consuming and confusing process. If for some
reason new simulations were to be undertaken, it will then be followed by
such a time-consuming conversion and compiling process.

Consequently, it felt useful to invest more time on SUMO’s traffic
control interface and the Python code needed to put it into action. It can be
discussed whether implementing Python code did reduce the total amount of
time spent on simulation and compiling the results. However, both tasks
were neatly automated, which made it possible to perform far more
simulations than would otherwise be the case.

As previously mentioned, the Python code produced a JSON file. To
compile the detector data in this JSON file, yet another Python code was
constructed, which can read and compile from multiple JSON files and
write the same number of JSON files as output in a few seconds. This part
automated and saved time.

All Python code are shown in A.1 Python code.

3.2 Trouble with driving patterns.
When introducing many vehicles to the simulation there were several weird
driving behaviors noted. The ones mentioned below were the ones that were
most important to correct.

The use of randomTrips.py generated many vehicles driving on random
routes. It is excellent when it is important to quickly introduce traffic to the
simulation. But the routes are static and the routes that are created can cause
trouble since they do not identify areas that might not be suited to make U-

48

turns at. A vehicle will not have a driver's sense in that matter. In this case
many vehicles wanted to make U-turns on a road right after a traffic light
intersection. This caused undesired queues because of the vehicle that stood
still in its lane waiting for a gap to open to the next edge on its route. To
work around this issue many vehicle routes were altered to make their turns
at the nearest TLI.

A general problem that was noticed during the trial simulations was that
even if two parallel roads could be utilized for a right turn in a junction,
only one was used. This problem caused trouble specifically for the vehicles
arriving at the S1 junction from the north fringe, since the queue that grew
hindered other vehicles taking different routes from entering the system.
Here the solution was to redirect several vehicles to use the otherwise
unused road.

Since the road network built is quite complex, with multiple lanes and
edges with their own set of regulations, it seems like all rules for use of way
were not followed when routes were created. It could be seen a lot at the S1
junction where vehicles that did not enter the right lane could not continue
their route because that specific lane did not allow turns to their desired
direction. For flows it was possible to go around this issue by adding via-
edges. A via-edge tells flows that if the vehicle wants to go from A to B it
has to drive by this edge to get there. For vehicles created from the
randomTrips-script the solution was to change the faltering edge in the
XML file to the desired one.

3.3 Teleportation
Teleportation [17] is a built-in feature that is used to move vehicles that for
some reason are stuck. It can be that there are queues that will not move
because of a vehicle that blocks the front position in a lane or a scenario where
a collision has occurred. Often the reason that prohibits a vehicle to continue
its route is one of three scenarios:

 It has ended up on a lane that has no connection to the next
edge on its route.

 If the vehicle is coming from a road that must yield before
entering a higher prioritized road but cannot find a gap to do so.

 It is stuck in a traffic jam with no possibility to continue its
route, as can be seen in Figure 3.1.

To keep the simulation running, SUMO will force a teleportation of the
vehicle causing the block. This teleportation occurs when a vehicle has a
velocity below 0.1 m/s for 300 seconds. When a vehicle teleports, it is

49

removed from the network only to be inserted again, when possible, at the
next step of its route. Figure 3.1 shows two instances during a timestep in
the simulation that traffic jams have occurred at intersection S3, the center
picture in the top row, and S6, the left picture in the bottom row. These
types of traffic jams with multiple vehicles involved can require vehicles to
teleport to be able to solve the jam.

Figure 3.1 A SUMO run with two jams at t = 3,643 s.

3.4 SUMO versions update
After the initial network map was built and the creation of traffic began it was
noted that SUMO was released in an updated version. This release was
attractive because it enabled further options when for example implementing
traffic.

3.5 Netedit’s program not an option
Netedit creates a default traffic light program as soon as a TLS is
implemented. At first this program was supposed to be used as one TLS
scenario to be compared to the three scenarios previously mentioned. When
looking at the TLS program Netedit created, it was evidently not a program
that could be used in real life. At many of the TLS intersection it was evident
that the TLS programs would cause conflicts between drivers and directions
as can be seen for S1 in Figure 3.2. Therefore, the Netedit scenario was
omitted.

50

Figure 3.2 Netedit’s TLS program overview for S1.

51

4 Results
Each simulation has been conducted three times, using the random pseudo
seeds 33, 66 and 99. The only difference between the simulation scenarios
IRL, 100_33 and 50_150 are their traffic light operating programs. To create
traffic jams to be handled, intended overloads of the system were
implemented in the form of loading too many vehicles. Despite the
intersection parameter called keep clear being set to true, meaning that the
junction should not allow vehicles to enter if there is a possibility for a queue
inside the junction itself, cumbersome jams occurred inside intersection areas
which led to complete stops. These were typically resolved by SUMO
teleporting vehicles to the next available edge.

All results are an average of the three pseudo random simulations.
Variances are calculated with Bessel’s correction. Average of deviations,
d(μ), are calculated according to the RMS formula.

4.1 Departed vehicles
Every simulation loads on average 20,439 vehicles. However not all of them
get implemented, i.e., departed. Almost 6 800 of them end up in a queue
outside a fringe entry. There is simply no available free space on which to
enter in accordance with their dedicated routes. The 100_33 scenario has the
highest value of departed vehicles, which may suggest the traffic light signals
during this simulation worked more efficiently. It differs 2.9 percentage
points, corresponding to 593 vehicles, between scenarios 100_33 and 50_150,
which has the lowest level of actual departed vehicles. See Figure 4.1.

Figure 4.1. Departed vehicles as a percentage of loaded vehicles.

4.2 Arrivals, collisions and teleportations
Since all simulations were cut off at t = 10 800 s, some 26 - 28 % of the
departed vehicles were still en route, i.e., had not yet reached their

52

destinations. While 465 vehicles (3.47 % of departed) in IRL are involved in
collisions, the numbers for 100_33 and 50_150 are 432 (3.15 %) respective
451 (3.44 %). The number of teleports gives an idea of how cumbersome the
traffic environment was. Figure 4.2 shows vehicles that have arrived at their
destinations, the number of teleports and the number of collisions as a share
of all departed vehicles. The scenario 100_33 simulation also excels with the
least number of teleports. In real numbers it means 100_33 has 674 teleports
less than IRL, which has the most occurrences.

Figure 4.2. Vehicles that have arrived, been in collisions and teleported.

Note that all percentages in Figure 4.2. Vehicles that have arrived, been
in collisions and teleported. are with respect to the departed number of
vehicles in that simulation scenario.

4.3 Resolving traffic jams through street evacuation
Figure 4.3, Figure 4.4 and Figure 4.5 each shows the corresponding average
street evacuation, μ, and deviation, d(μ), during each 900 s interval within the
system during simulation. All values are the average of three simulations of
each scenario.

53

Figure 4.3. System evacuation and standard deviations of IRL.

Figure 4.4. System evacuation and standard deviations of 100_33.

Figure 4.5. System evacuation and standard deviations of 50_150.

54

Table 4.1 E(μ) and d(μ) for each 900 s interval, on which figures 4.3 – 4.5 are based.
The column ‘Avg’ refers to the overall average values of each entire simulation.

Here evacuation value is calculated as:

An evacuation value below 1 means actual evacuation. In the above
evacuation formula, there is a risk of zero division if one street is completely
empty. To prevent this, the factor is an actual average of vehicle
counts performed every 150 s interval within each 900 s interval. Exact values
are found in Table 4.1. The interval counts also make evacuation values
relative to average street occupancies rather than the full street capacities.

Figure 4.6. Average vehicle evacuation during t = 75 - 135 min.

Figure 4.6 shows average evacuation value and standard deviation during
the last full hour with vehicles being loaded into the simulation. After 2 h 15
min there are no new vehicles put into the simulation, meaning that the ones
already in place or pending at the fringe will be the ones that will run until all
final destinations have been reached. During this time period the 100_33
simulation has the lowest average evacuation value, . None of the
simulated scenarios at this time period has actual average evacuation, because
the values are all above 1. Scenario 100_33 also has the lowest deviation ,
which mean it also have the smallest evacuation differences among the 14
streets.

55

Figure 4.7. Average vehicle evacuation during t = 0 - 180 min.

If the entire simulation’s average evacuation values are compared it can
be seen, in Figure 4.7, that scenario 50_150 has the lowest value for as
well as for . The scenario 100_33 also has lower compared to IRL,
however with a higher . The latter is most likely due to the high initial
value as is shown in Figure 4.4.

Figure 4.8.Average vehicle evacuation during t = 45 - 180 min.

In Figure 4.8 the first 45 min of simulation is deducted from the total
simulations. In this case 50_150 still has the lowest overall average
evacuation value. It also shows that 100_33 has the lowest deviation value.

4.4 Average street occupancy
Figure 4.9 shows that streets in scenario 100_33 on average fill up slightly
faster, but then also empty earlier and a bit more than in the other scenarios.
It is also seen that streets in scenario IRL fill up slower and for longer time,
before they slowly are emptied - compared to both 100_33 and 50_150.

56

Figure 4.9. Average street occupancies during simulations.

4.5 Evacuation seen as a quota of incoming and outgoing
vehicles

Another way to interpret evacuation is to, per intersection, calculate the quota

.

Again, values below 1 mean actual evacuation. This interpretation is
shown in Figure 4.10. The average quota from each simulation is seen in
Figure 4.11, as an average per time interval of all intersections and per
simulation scenario. This perspective does not seem to show any evacuations
at all. Over a time period, more vehicles enter an intersection than leave the
intersection, if viewed this way. We all know that in a sense this is not
possible.

57

Figure 4.10. The average quota of incoming/outgoing traffic.

Figure 4.11. Average quota of the entire simulations.

4.6 Problematic streets
For some reason collisions in the simulations occur more frequently on some
streets compared to other streets. Some very busy streets have “only” one or
no collision. Figure 4.12 shows collisions per street and scenario. The sums
per scenario are IRL: 180, 100_33: 164 and 50_150: 166 collisions. Each
collision includes one or two vehicles. It i seen that the same pattern applies
for all three scenarios. This may indicate some built-in flaws in either the
model or in real traffic, since the model reflects traffic situations from the real
city of Hangzhou. It is worth emphasizing that the collision results of the
simulations do not correspond to reality.

In the simulations the vast number of teleports are not reported as detailed
as the collisions. Nor are data on departures and arrivals compiled other than

58

as total sums. These data can, however, be examined with a few more lines
of Python code.

Figure 4.12. Number of collisions on each street.

59

5 Discussion
The results from the chosen simulation application, SUMO, is as close as they
get to reality without changing all affected traffic signals, even with the flaws
in SUMO. Thus, the simulation results are as realistic as is currently possible.

5.1 Are TLIs already optimized?
One obvious and possible problem with our trials is that we did only record
the signal programs during rush hour traffic. It might be possible that the city
has already applied specific signal phases at this time compared with other
time periods during a day or a week.

5.2 Possible incorrect observation on site
The TLI S11 is elevated and restricted from pedestrians, which makes it hard
to observe. We had to record signal lights with a tele zoom lens from a
distance. This intersection’s layout could be found mainly from satellite maps
online. First after simulations and while writing this report, it became clear
that the before mentioned four cases of TLI flow are not applicable in S11.
The layout for S11 can be seen in Section A.1 General layouts of TLI. There
exists one incoming lane, for three different directions, that allows traffic
going straight and turning left at the same time. Hence it is not possible for
traffic from opposite sides to have a green light at the same time. Traffic can
thus only flow from one direction at a time e.g., like round-robin format. From
the start this TLI should have a phase pattern of its own within the MATLAB
calculation of optimal flow. However, it did not, and as such this may have
an impact on the modelled traffic.

5.3 Dismissal of SUMO’s built-in solution
During early analyses of simulations, it was discovered that the traffic signal
patterns made automatically by SUMO software, Netedit, were unrealistic
and cannot be put into real action. In just one phase there are several
conflicting vehicle paths. So even if this simulation performed the best flow
at the time in terms of numbers, it had to be disqualified from the comparisons
of these trials. The reason for the chaotic traffic light subprograms that
Netedit came up with are believed to be caused by the non-standard four-way
intersections that are present in the model. It might have been better if the
network map was further simplified. But the aim was to build a network map
that represented the real and present structures that were observed on location.

60

Hence the logic for Netedit could not be properly applied here, see Section
2.6.4 Netedit default traffic light signal program.

5.4 Strange traffic behavior
The SUMO simulations produce strange traffic behavior repeatedly. If this
strange behavior occurs due to inexperience with the program or if the
program currently does not have a way to handle these behavior patterns are
unknown. What happens often is that a vehicle stops and as a result blocks
other vehicles, who’s drivers in turn are not inventive enough to steer pass
the obstructor.

A common blocking is for example when a driver intends to change lanes
and there is not an available space gap. As a result, the driver simply stands
still and waits for a gap, which of course effectively stops all traffic on the
vehicle’s current lane. Another example is when all vehicles in the same
direction choose the same lane, despite the existence of available empty
adjacent lanes. If vehicles were to spread out more even among available
lanes, queues would in a sense be shorter, which in turn would allow more
vehicles to enter the street. In many cases a teleport will resolve an
obstruction due to excessive wait. A smoother driver’s behavior would be
desirable.

Some of the problems experienced may have to do with behavior settings
for driving in intersection, lane changes and overtaking. Perhaps the authors
do not master these settings fully. By chance it was discovered that setting all
traffic in intersection in yield mode, prevents and faster resolves otherwise
blocking conflicts. There may also exist solutions for obstructive driving
behavior along street lanes, which are yet to be discovered.

5.5 Yielding behavior at TLI’s
During the SUMO simulations another strange behavior was noted. At the
intersections many vehicles stopped inside the TLI even if the signal showed
green. A lot of james occurred and did not resolve themselves until a
teleportation was don even if there was enough space for the vehicles to undo
the jams themselves. A multitude of changes were done to try to solve these
problems. In the final hour a a solution was found. By making changes in the
TLS programs it was seen that the bavior changed. First, all the g’s were
changed to G, meaning that all vehicles driving into the crossing had the right
of way. This change made the problem worse, but it had an effect. Therefore
another approach was made. By changing the G in the TLS program to a g,
many traffic jams and odd stand stills were resolved. That is, by making all

61

the drivers have to look out for each other none took the right of way for
granted.

5.6 Empty streets
The evacuation formula is based on streets fully saturated with vehicles. It
may produce negative values if there are no, or few vehicles and a larger
number of vehicles leave than enter the street. The traffic density on some
streets were close to zero at some time intervals during all simulations. The
reason seems to be both jammed intersections and that the script
randomTrips.py did a poor job spreading out random cars and routes
everywhere. Therefore, another measure called quota was calculated. This is
simply the quota of incoming and outgoing vehicles.

As mentioned in Section 4.3 Resolving traffic jams through street
evacuation, the variable existing, which acts both as a term and a denominator,
has been calculated on each street during each entire simulation at every 150
s interval within the larger 900 s interval. Each count, except for all zero
counts, were put in a list from which the average was finally used as the
variable existing. The probability of all existing counts being zero is also
close to zero. This way divisions with zero were avoided.

5.7 SUMO script inadequacy
The SUMO simulation software package also has software to occupy the
model with desired forms of traffic. The Python code randomTrips.py gave
us a notion that it would be able to deploy cars randomly across the model
and as such having various destinations. We tweaked the existing parameters,
to make it as random as needed. But many vehicles with roughly the same
origin have the same destination and at the same time. In one perspective this
is what forms digested traffic, but it may as well be that a certain area will be
forming a hub of digested traffic merely because too many drivers at the same
time chooses to pass through that same area.

5.8 High numbers of collisions and teleports
Finding the reason for the relative high number of collisions and teleports, is
beyond the scope of this report. Still, it raises many questions that one does
want to find the answer to. So far it is only known that collisions are
overrepresented on at least five of the 14 streets. If the model were to be
further refined, surely the high number of collisions on those streets were to
be investigated and if possible, resolved with other settings. The high number

62

of teleports are also worth investigating, in order to further enhance the model
and the simulation of traffic.

5.9 Determine what resolves congested traffic
The level of departures and arrivals ought to show the efficiency of the service
nodes, i.e., the traffic signal intersections. Comparatively 100_33 has the best
throughput, followed by IRL and then 50_150. The difference between
100_33 and IRL is more than 5%, in terms of number of vehicles, so 100_33
has a significant advantage over IRL.

The number of collisions and teleports point toward complex problems,
which are likely to worsen the congestions that arise. All scenarios show the
same tendencies for on which streets collisions occur. Still 100_33 has
significantly lower occurrences of collisions (> 7 %) as well as teleports
(> 14 %) compared to IRL.

The vehicle saturation (occupancy) on streets from one time interval to
another shows if an increase or decrease has occurred. During these
simulations a pcu (personal car unit) is thought to occupy 150 % of its length
during standstills, i.e., including a longitudinal safety gap. The quota 100/150
shows that a 66.7 % occupancy can be considered as full saturation. The
average occupancy exceeds 35 % at some point in all simulations. Some
streets have occupancy levels close to 60 % at the time of count, while some
barely makes it over 10 %.

The street evacuation formula, shown and explained in Section 4.3
Resolving traffic jams through street evacuation, indeed gives a value to
whether the number of vehicles is increasing or decreasing on a street. All
simulation scenarios mostly show an increase of vehicle amounts. At some
point after t = 2 h 15 min (8100 s) a decrease is expected, since no new
vehicles are loaded into the simulation. Comparing the three figures 4.3, 4.4
and 4.5, shows that the 100_33 scenario has a strict decrease from t = 1 h 15
min and until t = 2 h from which it actually evacuates streets of vehicles
throughout the remainder of the simulation. The deviation also follows this
trend and stays steadily low until last 15 min where deviation of average
evacuations in all scenarios slightly increase.

If the total average evacuations are compared it will show that 50_150
performs the lowest evacuation value and lowest deviation. Even if the first
simulation hour is deducted, shown in Figure 4.8, 50_150 will show the
lowest average evacuation value, but in this case 100_33 has the lowest
deviation value. This can be explained by the high initial values of evacuation,
μ, and deviation, d(μ), in scenario 100_33.

63

When focusing on the last full hour with vehicles still being loaded into
the simulation model, as Figure 4.6 does, scenario 100_33 undoubtedly has
the lowest evacuation and deviation values. This also coincides with the time
interval when 100_33 starts to increase evacuation and at the same time
decrease deviation among its 14 streets. The difference is significant from
both IRL and 50_150. This hour may be regarded as the peak pressure period.

5.10 SUMO as a simulation software
In earlier sections there have already been a few points regarding the troubles
we faced with SUMO during the simulations. It is easy to conclude that the
software doesn’t work perfectly. But there are many things to take into
consideration here. None of us have worked with traffic simulation programs
before hence we have nothing to compare SUMO with. That said, it might be
well possible that the network map would have worked better if more
simplifications were done. Since the network map was built to accurately
represent the traffic network seen on location it requires more processing and
more choices to be made during simulation. The complexity of the network
map that we used may be the cause of some of the traffic jams that occur as
well as collisions and teleportations. It might also be one of the reasons that
the Netedit default TLS did not manage to create a program that would work
for the individual intersections.

Working in Netedit to build the network was straight forward when
outlining the roads. The area we chose to replicate were a small part of
Hangzhou, but it was still very time-consuming to build. Much time was spent
on adding the traffic rules to follow on each edge as well as what types of
vehicles that were allowed. The newer version of SUMO made it possible to
create flows and trips without having to manually write the XML file.
However, there still existed the need to add some of the attributes to get the
desired behavior and driving patterns. Our knowledge here is limited which
resulted in the usage of randomTrips. It might be possible with further
knowledge to create traffic that reacts to the environment. Still, the traffic
behavior observed in the simulations were similar to one owns experience in
Hangzhou with quick lane changes, accelerations and deaccelerations.

Looking at the simulations and the overall performance we would say
that SUMO works well as a simulation program. The results that we got were
easy to understand and simulations gave believable results.

65

6 Conclusion
In this report we got acquainted with the software Simulation of Urban
MObility, SUMO, and did a case study for a specific area in Hangzhou, China.
For this case study we gathered TLS phase times on location during the
afternoon rush hours and used videorecording to get accurate measurements.
We created an algorithm with the intent to create TLS programs that
optimized the traffic flow, by reducing the standard deviation D(X) and
evaluating the expected value E(X). The algorithm used the TLS recordings
as a base for calculations which created two possible TLS program scenarios.
We built a network model representing the selected area in Hangzhou with
the Netedit program included in the SUMO program package. Further we
created traffic for the simulation and used TraCI to control, evaluate and
gather data from the simulations. In total three simulations per scenario were
performed. Each TLS scenario had the same setup for each of its simulations.

The simulation results shows that it is possible to find a significant
improvement of traffic throughput by shortening several green signal phases.
The shorter signal phases also seem to have a soothing effect on deviation
values. To recapitulate the beforementioned problems, they are once again
repeated, but also answered orderly.

Is it possible to increase traffic flow through the system? Yes, it is. The
results in Section 4.1 Departed vehicles, and Sections 4.2 Arrivals, collisions
and teleportations, show that scenario 100_33 has a higher number of
departed vehicles and a higher number of arrived vehicles. In addition, this
scenario has lower number of teleports, which indicates a smoother running
traffic in general. Scenario 100_33 even has a slightly lower degree of
recorded collisions. In terms of simulations results, scenario 100_33 performs
better than both the scenarios IRL and 50_150.

Is it possible to reduce idling time for traffic in this area? Yes. Since
shorter green signal phases result in shorter total phase cycles, each individual
signal phase is occurring more often. This means shorter time in standstill.
The vehicle also moves more often, making better use of a combustion engine
that is otherwise kept on idle throughout the traffic congestion.

The lower levels of deviation in the 100_33 scenario, translates into less
differences among the 14 interacting streets, which ought to decrease
frustrations and feelings of having chosen the wrong street.

Will the algorithm come up with a better signal-regulation solution for
optimizing the flow of traffic than the current traffic signal program? The

66

short answer is yes. The long answer is that there may exist a better solution
for traffic jams, if realistic simulation scenarios show it.

It should also be mentioned that no matter how alternative realities are
constructed, whether they are numerical or analytic, there may not exist a
better prediction than the outcome from a simulation. Of course, the quality
of the simulation determines the granularity of such an outcome.
The findings serve several purposes. Efficiency and throughput increase,
which in turn lower emissions due to less time in standstill. In turn it is
possible to decrease the drivers frustration by implementing a system with
signal phases that provide a more even traffic flow, since the feeling of steady
movement would be enhanced.

6.1 Algorithm
Brute force was chosen because an analytic solution seemed too complex. A
recursive algorithm would be likely to shorten the calculation time notably,
given the computer has enough working memory. Such gain in speed may
open for a larger comparison table, which would make an increased phase
time diversity within each TLI possible. This could also be used for dividing
current signal phases into even smaller sections. Another improvement may
be to use Gray Code ordered truth tables, to change only one value in each
comparison. For comparison reasons all phase time values ought to be
adjusted to be a factor of 3 s already from start. This fact may or may not have
affected which combination of case settings that were seen to perform optimal
flow. In retrospect it is obvious that many math operations are repeated
multiple times, which should be able to resolve with even more precalculated
value matrices where these repeated values are stored. Surely there exists a
better algorithm to find optimized signal times. It is yet to be proven by
someone.

6.2 Combustion engines
Given the scale of the global carbon dioxide emission problem, in which
combustion engines of cars among other emissions play an important role,
one may predict a future where combustion engines running on idle in traffic
jams, will merely be a memory. Vehicles in the future are supposed not to
emit any dangerous levels of carbon dioxide, be electric or use a fuel where
the carbon dioxide is kept as a recycled constant. So, if there would exist time
consuming traffic jams, one can expect very few people who would pay
attention to or arguing about idling engines spewing out emissions.

67

7 Bibliography

[1] Trafikverket, "TRVMB Kapacitet och framkomlighetseffekter (TRV
2013:64343)," 04 2014. [Online]. Available:
https://www.trafikverket.se/contentassets/32ce05ecc3ac458bb8ecb8
02e8e2da54/trvmb_kapacitet_och_framkomlighetseffekter.pdf.
[Accessed 17 09 2019].

[2] Federal Highway Administration of the U.S Department of
Transportation, "Adeptive Signal Control Technology," 2017.
[Online]. Available:
https//:www.fhwa.dot.gov/innovation/everydaycounts/edc-1asct.cfm.
[Accessed 09 2019].

[3] "Simulation of Urban MObility," German Aerospace Center, 2001.
[Online]. Available: https://sumo.dlr.de/about. [Accessed 09 2019].

[4] "OpenStreetMap," 09 08 2004. [Online]. Available:
https://www.openstreetmap.org. [Accessed 09 2019].

[5] Department of Scientific and Industrial Research, "Traffic Signal
Settings," 1957. [Online]. Available:
https://www.sinaldetransito.com.br/artigos/traffic_signals_webster.p
df. [Accessed 14 09 2019].

[6] Y. D. J. W. a. S. Y. Guo Min, "Simulation Study of Mixed Traffic in
China- a Practice in Beijing.," 12 10 2008. [Online]. Available:
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4732680
. [Accessed 14 09 2019].

68

[7] "Modeling Signalized Intersection Using Queueing Theory," 2009.
[Online]. Available:
https://pdfs.semanticscholar.org/9a9e/9d9d49c28d93fdfbcbbf657567
ea414a368d.pdf. [Accessed 14 09 2019].

[8] "netconvert," German Aerospace Center, 2001. [Online]. Available:
https://sumo.dlr.de/docs/netconvert.html. [Accessed 09 2019].

[9] "polyconvert," German Aerospace Center, 2001. [Online].
Available: https://sumo.dlr.de/docs/polyconvert.html. [Accessed 09
2019].

[10] "Traffic Lights," German Aerospace Center, 2001. [Online].
Available: https://sumo.dlr.de/docs/Simulation/Traffic_Lights.html .
[Accessed 09 2019].

[11] "Lanearea Detectors(E2)," German Aerospace Center, 2001.
[Online]. Available:
https://sumo.dlr.de/docs/Simulation/Output/Lanearea_Detectors_(E2
).html. [Accessed 10 2019].

[12] "Trip," German Aerospace Center, 2001. [Online]. Available:
https://sumo.dlr.de/docs/Tools/Trip.html. [Accessed 10 2019].

[13] "Lane-Changing," German Aerospace Center, 2001. [Online].
Available:
https://sumo.dlr.de/docs/Simulation/SublaneModel.html#lane-
changing. [Accessed 01 2020].

[14] "Definition of Vehicles, Vehicle Types, and Routes," German
Aerospace Center, 2001. [Online]. Available:
https://sumo.dlr.de/docs/Definition_of_Vehicles%2C_Vehicle_Type
s%2C_and_Routes.html#repeated_vehicles_flows. [Accessed 11
2019].

69

[15] "Describing the TAZ," German Aerospace Center, 2001. [Online].
Available:
https://sumo.dlr.de/docs/Demand/Importing_O/D_Matrices.html#des
cribing_the_taz. [Accessed 01 2020].

[16] "TraCI," German Aerospace Center, 2001. [Online]. Available:
https://sumo.dlr.de/docs/TraCI.html. [Accessed 01 2021].

[17] "Why Vehicles are teleporting," German Aerospace Center, 2001.
[Online].
Available: :https://sumo.dlr.de/docs/Simulation/Why_Vehicles_are_t
eleporting.html. [Accessed 01 2020].

70

Appendix A
All computer code that has been used in this work can be found at the address
https://github.com/ada09aho/hangzhou. This appendix contains crucial bases
with the aim for successful traffic simulations. Some tables are long and
perhaps not meaningful to study in a book format. Such table has been
shortened and is better read online at the above URL.

The appendix contains the following sections.
A.1 MATLAB code
A.1 Graphic view of time phases used in all simulations
A.3 Attributes for XML code
A.1 Python code
A.1 General layouts of TLIs

71

A.1 MATLAB code
Originally the MATLAB code contained these remark snippets, to help
understand the context in which the code should work.
% Hangzhou Traffic Signal Intersections (S) in a system with 6
intersections.

% Directions are to/from; North=1, East=2, South=3, West=4.

% 1

% |

% 4 -- + -- 2

% |

% 3

% TLS: traffic light signal, TLI: traffic light intersection

% ************** System Map *************

% | | |

% --S1--------S2----S3----Ø3-----S4--S5

% | | |

% | | |

% | Ø2 |

% | | |

% --S6-Ø1---S7--S8--S9-----S10------S11--

% | | |

%

% *** S = TLI, Ø = ped crossing, S4 is not in function ***

A.1.1 Main algorithm
Below is the main algorithm with start-up values and the 6 nested for-loops.
For every iteration the subroutine variation is called. It takes 6 arguments.
The code for variation follows below. In this case it goes backwards from
150% to 50 % of original phase times.

But how are the arguments for variation being produced? A closer look
at the main method will tell. It is also good to know, while reading the
MATLAB code, that there exist 11 TLIs and three pedestrian crossings within
the boundaries of the system. Out of these 11, only six were chosen to base

72

calculations on. These TLIs have initially been numbered 1, 3, 5, 6, 9 and 11,
which are kept when forming the matrices.

001: timerVal=tic;

002: pcu=4.0;

003: d=1.5;

004: vpm=1/(d*pcu); % vehicles per meter (vpm=1/6 as initial
value)

005: % Start and stop of gren phases as percentage of real
sampled time value

006: percBase = 50; percTop = 150;

007: % Iteration range

008: start = 31; step = -3; stop = 1;

009: % Variable for calculation and display purposes

010: roof = (max(start, stop)-1)/abs(step) + 1;

011: % Lowest deviation value / Highest index in LIST

012: least = 1; last = 200;

013: % Table with values of deviation and indices of X, i.e.
each green phase

014: LIST = zeros(last, 8);

015: % Initial inbound distance for each intersection, di

016: di=200;

017:

018: % D is a vector with distance to/from neighbour TLI (S).

019: D1=[470; 890; 570; 395];

020: D3=[520; 670; 630; 890];

021: D5=[530; 0; 760; 670];

022: D6=[570; 915; 735; 230];

023: D9=[630; 690; 725; 915];

024: D11=[760; 305; 670; 690];

025: % Deduction of intermediate TLI (50 m) and pedestrian
crossings (12 m)

026: D1=D1-[0; 50; 0; 0];

027: D3=D3-[0; 12; 12; 50];

028: D5=D5-[0; 0; 0; 12];

029: D6=D6-[0; 12+50+50; 0; 0];

73

030: D9=D9-[12; 50; 0; 12+50+50];

031: D11=D11-[0; 0; 0; 50];

032: D=[D1 D3 D5 D6 D9 D11];

033:

034: % DI is a vector with initializing distance di to/from
neighbour TLI (S).

035: DI1=di*[1; 1; 1; 1];

036: DI3=di*[1; 1; 1; 1];

037: DI5=di*[1; 0; 1; 1];

038: DI6=di*[1; 1; 1; 1];

039: DI9=di*[1; 1; 1; 1];

040: DI11=di*[1; 1; 1; 1];

041: DI=[DI1 DI3 DI5 DI6 DI9 DI11];

042:

043: % L is a vector with the number of lanes inbound from
neighbour TLI.

044: L1=[2; 3; 3; 3];

045: L3=[3; 3; 2; 2];

046: L5=[3; 0; 3; 3];

047: L6=[2; 3; 4; 3];

048: L9=[2; 3; 2; 3];

049: L11=[4; 2; 3; 3];

050: L=[L1 L3 L5 L6 L9 L11];

051:

052: % C is a "mass"-vector with vehicles going into each
intersection.

053: C1=vpm*(D1.*L1);

054: C3=vpm*(D3.*L3);

055: C5=vpm*(D5.*L5); C5(2)=1; % To avoid later division by
zero.

056: C6=vpm*(D6.*L6);

057: C9=vpm*(D9.*L9);

058: C11=vpm*(D11.*L11);

059: C=[C1 C3 C5 C6 C9 C11];

060:

061: % CI is an initial "mass"-vector with vehicles going into
each intersection.

74

062: CI1=vpm*(DI1.*L1);

063: CI3=vpm*(DI3.*L3);

064: CI5=vpm*(DI5.*L5); CI5(2)=1; % To avoid later division by
zero.

065: CI6=vpm*(DI6.*L6);

066: CI9=vpm*(DI9.*L9);

067: CI11=vpm*(DI11.*L11);

068: CI=[CI1 CI3 CI5 CI6 CI9 CI11];

069:

070: % P is a matrix with directional ratio relative to
inbound number of lanes.

071: P1=[0 1/6 2/5 3/10; 3/7 0 1/5 5/10; 5/14 2/6 0 1/10; 3/14
3/6 2/5 1/10];

072: P3=[0 0 2/5 1/10; 1/6 1/10 1/5 3/5; 3/6 3/10 1/10 1/5;
2/6 3/5 3/10 1/10];

073: P5=[0 0 3/4 9/8; 0 0 0 0; 5/8 0 1/8 1/4; 3/8 0 1/8 1/8];

074: P6=[1/10 1/5 5/8 2/5; 3/10 1/10 1/8 2/5; 2/5 3/10 0 1/5;
1/5 2/5 1/4 0];

075: P9=[0 1/5 1/3 2/5; 1/3 0 1/3 2/5; 3/6 2/5 0 1/5; 1/6 2/5
1/3 0];

076: P11=[0 1/3 3/5 1/4; 3/8 0 1/5 3/4; 5/8 1/6 0 0; 0 3/6 1/5
0];

077: P=[P1 P3 P5 P6 P9 P11];

078:

079: % G is the green light time (incl 3 s of yellow) in each
direction per TLI

080: G1=[0 78 39 45; 36 0 66 54; 39 36 0 75; 90 42 36 45];

081: G3=[0 0 51 39; 39 39 93 60; 51 39 39 93; 93 60 39 39];

082: G5=[0 0 81 45; 0 0 0 0; 81 0 51 45; 45 0 51 45];

083: G6=[45 102 42 30; 45 30 42 42; 42 30 0 102; 102 42 45 0];

084: G9=[0 57 75 33; 24 0 75 42; 75 33 0 57; 75 42 24 0];

085: G11=[0 45 45 45; 45 0 45 45; 45 45 0 0; 0 45 45 0];

086: G=[G1 G3 G5 G6 G9 G11];

087:

088: % i is a 4-bit truth table, i.e. a 16x4 binary matrix,
multiplied by ...

089: i=((percTop-percBase)/200)*[0 0 0 0; 0 0 0 1; 0 0 1 0; 0
0 1 1; 0 1 0 0; 0 1 0 1; 0 1 1 0; 0 1 1 1;

75

090: 1 0 0 0; 1 0 0 1; 1 0 1 0; 1 0 1 1; 1 1 0 0; 1 1 0 1; 1
1 1 0; 1 1 1 1];

091: % K contains all possible combinations in one TLI, given
the 4 phases below.

092: K=zeros(31,4); % To avoid repetitive values the original
K(16) are reduced below

093: K(1:16,:)=(percBase/100)*ones(16,4)+i;

094: K(16:31,:)=(((percTop-
percBase)/2+percBase)/100)*ones(16,4)+i;

095: % A case is 1 of 4 green light phases. There are more
phases IRL.

096: case1=[0 0 1 0; 0 0 1 0; 1 0 0 0; 1 0 0 0];

097: case2=[1 0 0 0; 1 0 0 0; 0 0 1 0; 0 0 1 0];

098: case3=[0 1 0 0; 0 0 0 1; 0 0 0 1; 0 1 0 0];

099: case4=[0 0 0 1; 0 1 0 0; 0 1 0 0; 0 0 0 1];

100: % X contains all various G as X=[G(:,:), i(m)*cases,
TLI(s)]

101: X=zeros(4,4,31,6);

102: % S contains the calculated cycle time of every TLI and
actual case as of i

103: S=zeros(31,6);

104: % X(in,out,scenario,TLI) contains all scenarios for all
TLIs. It's based on

105: % 4 cases. All combinations of cases decide every cycle
time, S. To avoid

106: % car crashes, too long right turns are adjusted before
saving to X.

107: for m=1:31 % number of scenarios

108: for s=0:5 % number of TLIs

109: Gs=G(:,s*4+1:s*4+4); % selection of G

110:
x=Gs.*(K(m,1)*case1+K(m,2)*case2+K(m,3)*case3+K(m,4)*case4);

111: tempS =
max(x(3,1),x(1,3))+max(x(2,1),x(4,3))+max(x(4,2),x(2,4))+max(x
(3,2),x(1,4));

112: S(m,s+1)= tempS;

113: corrR = tempS - [x(1,3); x(2,4); x(3,1); x(4,2)];

114: x(1,2) = min(x(1,2), corrR(1));

115: x(2,3) = min(x(2,3), corrR(2));

76

116: x(3,4) = min(x(3,4), corrR(3));

117: x(4,1) = min(x(4,1), corrR(4));

118: X(:,:,m,s+1) = x;

119: end

120: end

121:

122: plotIndex=0;

123: avgSum=0;

124: varSum=0;

125: index = 1; % of LIST

126: updates = 1; % LIST updates

127: s2Round = roof^4;

128: plotRound = roof^3;

129: LOWAVG = zeros(10,8);

130: lowestAvg = 0.996;

131: avgIndex = 1;

132: PLOTLIST=zeros(plotRound,2);

133: disp(['This run starts at ', num2str(K(start,1)*100), ' %
and ends at ', num2str(K(stop,4)*100), ' % of the measured
phasetimes.']);

134: for s1 = start:step:stop

135: for s2 = start:step:stop

136: tic

137: for s3 = start:step:stop

138: for s4 = start:step:stop

139: for s5 = start:step:stop

140: for s6 = start:step:stop

141: Z = [s1, s2, s3, s4, s5, s6];

142: [var, avg] = variation(X, Z, S, P, CI, C);

143: avgSum = avgSum + avg;

144: varSum = varSum + var;

145: if avg < lowestAvg

146: row = mod(avgIndex,10)+1;

147: LOWAVG(row,:) = [avg Z avgIndex];

148: disp(['E(X) = ', num2str(avg), ' at Z = [
', num2str(Z), '].']);

77

149: lowestAvg = avg;

150: avgIndex = avgIndex + 1;

151: end

152: if var < least && avg < 1

153: dev = sqrt(var);

154: if index < last

155: LIST(index,:) = [dev Z plotIndex];

156: least = var;

157: index = index + 1;

158: else

159: LIST(last,:) = [dev Z plotIndex];

160: least = var;

161: sortrows(LIST);

162: end

163: disp(['Update: ', num2str(updates),'. E(X)
= ',num2str(avg),', d(X) = ', num2str(dev), '. Z = [',
num2str(Z), '].']);

164: updates = updates + 1;

165: end

166: end

167: end

168: end

169: plotIndex = plotIndex + 1;

170: PLOTLIST(plotIndex,1) = sqrt(varSum / plotRound);

171: PLOTLIST(plotIndex,2) = avgSum / plotRound;

172: avgSum = 0;

173: varSum = 0;

174: end

175: disp(['This round with s1/s2 = ', num2str(s1), '/',
num2str(s2), ' and ', num2str(s2Round), ' comparisons took: ',
num2str(toc), ' s. E(X) = ', num2str(PLOTLIST(plotIndex,2)),
', d(X) = ', num2str(PLOTLIST(plotIndex,1))]);

176: end

177: end

178:

179: TOP5DEV = sortrows(LIST(find(LIST(:,1)),:));

180: disp(TOP5DEV(1:5,:))

78

181: TOP5AVG = sortrows(LOWAVG(find(LOWAVG(:,1)),:));

182: disp(TOP5AVG(1:5,:));

183: toc(timerVal)

184:

185: plot (LIST(:,8),LIST(:,1),'b');

A.1.2 Variation function
The MATLAB code in this section is the help function which calculates a
street average of vehicle evacuation values and their variance value. The main
algorithm calls this function continuously to compare every possible case
setting against each other. Among the arguments only Z has a different value
for each call. Z is a 1x6-matrix that hold the indices of the six nested for-
loops. The other arguments are prewritten matrices.

01: function [varX, avgX] = variation (X, Z, S, P, CI, C)

02: % Computation of variance as of how many vehicles that are
either a

03: % decrease or an increase of the amount of cars of each
street within the system.

04: % In: X is the green phase time of every TLI. S holds
cycle times.

05: % Z has the particular index for each TLI-composition in
X.

06: % Out: varX is the variance of the average evacuation of
street cars.

07:

08: TFO = zeros(4,6);

09: TFI = zeros(4,6);

10: for i=0:5

11: R(:,i*4+1:i*4+4) = X(:,:,Z(i+1),i+1) / S(Z(i+1), i+1); %
creates green phase ratio of full cycle

12: PR(:,i*4+1:i*4+4) = P(:,i*4+1:i*4+4) .*
R(:,i*4+1:i*4+4); % total probability for each direction

13: TFO(:,i+1) = PR(:,i*4+1:i*4+4) * CI(:,i+1); % number of
pcus going out of TLI

14: TFI(:,i+1) = sum(PR(:,i*4+1:i*4+4))' .* CI(:,i+1); %
number of pcus going into TLI (out of streets)

15: end

16:

79

17: % SC is a binary control matrix to decide which streets
belong to system.

18: SC=[0 0 0 1 1 1;

19: 1 1 0 1 1 0;

20: 1 1 1 0 0 0;

21: 0 1 1 0 1 1];

22:

23: % TFS is a rearranged TFO (onto streets) in order to fit
subtraction with TFI

24: TFS = [0 0 0 TFO(3) TFO(6) TFO(11);

25: TFO(8) TFO(12) 0 TFO(20) TFO(24) 0;

26: TFO(13) TFO(17) TFO(21) 0 0 0;

27: 0 TFO(2) TFO(6) 0 TFO(14) TFO(18)];

28:

29: DIR = (TFS - TFI) .* SC;

30: EVA = ((C + DIR) ./ C) .* SC; % EVAcuation of streets
respectively

31:

32: E = find(EVA); % finds indices of all nonzero elements

33: WS = EVA(E); % column vector with nonzero values of EVA

34: avgX = mean(WS); % mean value of WS

35: varX = mean((WS-avgX).^2); % Variance of WS

36:

37: return

38: end

A.1.2.1 Explanation of variation function

X is a 4-dimensional array which contains 31 beforehand calculated TLS
scenario for each of the 6 TLIs, thus giving a matrix with the dimensions
4x4x31x6.

Z is an array that holds each index number of the 6 for-loops.
Consequently, Z will have 31^6 different configurations. By calling
X(:,:,Z(i),i) the function will have the exact phase time of each TLI at that
precise scenario.

S is a 31x6-matrix with beforehand calculated phase cycle times for each
TLI scenario. The cycle time is reached by calling S(Z(i)).

80

P consists of 6 joined 4x4-matrices which with classical probability holds
the probability in each direction through the TLI. If for example a TLI has 5
incoming lanes from one direction, where 1 lane is for left turns, 2 goes
straight forward, 1 is both for going straight and to the right and 1 is for right
turns only, then the probability for those possibilities is calculated as 1/5, 5/10
and 3/10. If the left lane would also be holding a U-turn possibility, then U-
turn and left turn would have a probability of 1/10 each.

CI consists of 6 joined column arrays that each hold the number of
possible cars within 200 m from the 4 directions of each TLI. This is for
priming the algorithm with a certain number of cars in order to have a
measurement of the capacity of each TLI.

C similarly consists of 6 joined column vectors, which each hold the total
amount of cars on each of the 14 intermediate directions within the system
that is modelled.

The function variation uses a 6-iteration loop - one for each TLI - to
calculate the following variables.

R contains the ratios of green light with respect to the certain cycle time
of this particular state.

PR is an element-wise product of P and R (P.*R).
TFO contains 6 joined column vectors with the time-flow out of a TLI

and the product of PR and CI.
TFI is the time-flow into a TLI and is also calculated with the help of PR

and CI, but in a manner to capture incoming traffic. Each column in PR is
summed up, which produces a row vector. This is transposed to get a column
vector which is element-wise multiplied with CI.

The matrix SC is a 4x6 binary matrix that tells which streets (and
corresponding values) that are essential for these calculations. The column
index decides the TLI in question and the row index decides what direction
traffic flow is taken into consideration. Row index 1 corresponds to going
north, 2 to east, 3 to south and 4 to west. Notice that there are 14 ones, which
coincides with the number of street directions the model considers.

Thereafter TFO (flow out of TLI, onto street) will be reduced by TFI
(flow into TLI, from street). But TFO must first be rearranged to a TFS-
matrix, so both it and TFI have the same arrangement as the SC matrix.

DIR is the difference TFS - TFO multiplied with SC, to just contain
essential directions. If TFS < TFO then DIR will be negative.

81

The degree of evacuation per street is put in EVA by elementwise
dividing the sum of DIR and C with C.

E is a vector with all indices in EVA that contains nonzero values.
WS is a vector corresponding to the indices kept in E.
E(X) and V(X) for 1 of 31^6 iterations can now be calculated and

returned as avgX and varX to the main method.

A.1.3 Phase times adjusting function
Before using the MATLAB result all phase times must be adjusted to be a
factor of 3. This is done by setting k = 3 in the below MATLAB function.
01: % Makes each position in G-matrix a multiple of k

02: function [aG] = adjGreen (XG, k)

03: [m, n] = size(XG);

04: aG = zeros(m, n);

05: for i = 1:m

06: for j = 1:n

07: rest = mod(XG(i,j),k);

08: if rest >= k/2

09: aG(i,j) = XG(i,j) - rest + k;

10: else

11: aG(i,j) = XG(i,j) - rest;

12: end

13: end

14: end

83

A.2 Graphic view of simulation time phases
The following section’s simple layouts present the four phases used both in
MATLAB calculations and in SUMO simulations. The numbers represent the
time period with green signal including a final 3 s period with yellow signal.
Many of the time periods for right turns extend into one to two other phases.
If a green signal period seamlessly extends into next phase, it is indicated
with an asterisk * after the time number for that time period. Hence there is
no final 3 s of yellow signal before extending into next phase.

While concluding data from Hangzhou field work, multiple green signal
periods during one cycle were accumulated to one long time signal. Most of
these green signal periods had a final 3 s of yellow signal. Therefore,
concatenated green signal periods have as a rule an extra 3 s yellow signal
period, i.e., a total of 6 s.

In Figure A2.1 the MATLAB matrix with turn duration times is shown.
To easier compare right turn durations for S1 with the equivalence in section
A.2.1 IRL, the right turn values has been circled.

Figure A2.1 Sampled phase times from intersection S1.

All intersections were calculated as a standard 4 phase cycle, i.e., where
a green signal phase would have a corresponding green signal from the
opposite direction. Since S11 was changed to a round robin pattern, late in
the process, its TLS matrix does not comply with its signal phases.

A.2.1 Scenario IRL phase times
Figure A2.2 – Figure A2.7 shows all signal phases within the four cases
during scenario IRL in intersections S1, S3, S5, S6, S9, and S11 respectively.

84

Figure A2.2. Signal phases at intersection S1 for scenario IRL.

Figure A2.3. Signal phases at intersection S3 for scenario IRL.

Figure A2.4. Signal phases at intersection S5 for scenario IRL.

Figure A2.5. Signal phases at intersection S6 for scenario IRL.

85

Figure A2.6. Signal phases at intersection S9 for scenario IRL.

Figure A2.7. Signal phases at intersection S11 for scenario IRL.

A.2.2 Scenario 100_33 phase times
Figure A2.8 – Figure A2.13 shows all signal phases within the four cases
during scenario 100_33 in intersections S1, S3, S5, S6, S9, and S11
respectively.

Figure A2.8. Signal phases at intersection S1 for scenario 100_33.

86

Figure A2.9. Signal phases at intersection S3 for scenario 100_33.

Figure A2.10. Signal phases at intersection S5 for scenario 100_33.

Figure A2.11. Signal phases at intersection S6 for scenario 100_33.

Figure A2.12. Signal phases at intersection S9 for scenario 100_33.

87

Figure A2.13. Signal phases at intersection S11 for scenario 100_33.

A.2.3 Scenario 50_150 phase times
Figure A2.14 - Figure A2.19 shows all signal phases within the four cases
during scenario 50_150 in intersections S1, S3, S5, S6, S9, and S11
respectively.

Figure A2.14. Signal phases at intersection S1 for scenario 50_150.

Figure A2.15. Signal phases at intersection S3 for scenario 50_150.

88

Figure A2.16. Signal phases at intersection S5 for scenario 50_150.

Figure A2.17. Signal phases at intersection S6 for scenario 50_150.

Figure A2.18. Signal phases at intersection S9 for scenario 50_150.

Figure A2.19. Signal phases at intersection S11 for scenario 50_150.

89

A.3 Attributes for XML code
The application SUMO requires several XML files gathered in a
configuration script, in order to run a simulation. Besides the map upon which
to simulate traffic, the traffic itself is required. This work has mainly used
vehicles in the form of passenger cars and buses. Different types of scripts
are used to create the various vehicle types. The following subsections show
tables with attributes that specifies the vehicles and their driver’s behavior.
The attributes are used as terminal commands, which then creates and writes
an XML file to disc. The first five tables show attributes used for passenger
cars and the last section shows two tables with the attributes used to create
commute vehicles across the system.

A.3.1 Insertions and choice of way

name used value description

n v5_7.net.xml specifies the map that the routes will be
created for.

b 0 vehicle routes will be created from timestep
0.

e 7200 no more vehicle routes will be created after
7200.

r seed33random.rou.xml name of route- file created.

min-
distance

500 the route from start to finish-edge must be at
least 500 meters long.

fringe-
factor

40.0 the probability that vehicles will enter/exit
the system via the fringe.

L n/a increases the probability that roads with
multiple lanes are chosen.

fringe-
threshold

11.00 considers edges with speed above
value[m/s] as fringes.

speed-
exponent

11.11 increases the probability that edges with this
speed [m/s] are chosen.

90

A.3.2 Creation numbers and distribution.

name used value description

seed 33, 66 & 99 generates a repeatable pseudo-randomness to the
distribution of vehicles.

period 1.0 generates vehicles with equally distanced departure
times, if combined with binomial it will set the arrival
rate to 1/period.

binomial 400 will create a binomial distribution for the number of
departures per second from the number given and the
value given for the argument period.

A.3.3 Trip-attributes

name value description

departLane free the lane that is least occupied is chosen.

departSpeed random a depart speed between 0 and the maxSpeed will
be applied. Can be adapted to maintain a safe
distance to vehicles in front.

departPos random_free ten random positions are tried. If they are
unsuccessful a free space will be searched for and
used on that lane.

A.3.4 Descriptions

name value description

vclass passenger specifies the type of vehicles that will be created.

length 4.00 vehicle length in meters.

minGap 2.00 minimum distance in meters to vehicle in front.

maxSpeed 25.0 maximum speed vehicle can drive in meter per second.

speedDev 0.1 speed deviation where default = 0.1.

accel 2.6 acceleration ability for the vehicle type in m/s2.

91

decel 4.5 deceleration ability for the vehicle type in m/s2.

A.3.5 Driving behaviors

name value description

sigma 0.2 how good the driver is. 0 indicates perfect driving.

minGapLat 0.5 the minimum sideway distance between vehicles
in meters.

laneChangeModel SL2015 the lane change model used.

A.3.6 Commuter flow
Commuting vehicles were created from the values in the table as parameters.

Type Start time
End
time Run time Factor

$OR;D2 900 8100 7200 100
fromTaz toTaz nbr probability commuter via edges via color
taz_s1n_in taz_s1n_out 0.00 0.000000 white
taz_s1n_in taz_s1r_out 0.00 0.000000 white
taz_s1n_in taz_s1w_out 0.00 0.000000 white
taz_s1n_in taz_s3n_out 0.00 0.000000 cyan
taz_s1n_in taz_s5n_out 0.00 0.000000 magenta
taz_s1n_in taz_s5r_out 0.25 0.003472 commuter0 magenta
taz_s1n_in taz_s6w_out 0.50 0.006944 commuter1 orange
taz_s1n_in taz_s6s_out 1.00 0.013889 commuter2 orange
taz_s1n_in taz_s9s_out 1.00 0.013889 commuter3 "gneE25" s6 gray
taz_s1n_in taz_s11e_out 1.00 0.013889 commuter4 "gneE25 gneE128" s6-s9 yellow
taz_s1n_in taz_s11s_out 0.50 0.006944 commuter5 "gneE25 gneE128" s6-s9 yellow
taz_s1r_in taz_s1n_out 0.00 0.000000 white
taz_s1r_in taz_s1r_out 0.00 0.000000 white
taz_s1r_in taz_s1w_out 0.00 0.000000 "gneE409" white
taz_s1r_in taz_s3n_out 0.00 0.000000 cyan
taz_s1r_in taz_s5n_out 0.25 0.003472 commuter6 "gneE408.17" magenta
taz_s1r_in taz_s5r_out 0.50 0.006944 commuter7 "gneE408.17" magenta
taz_s1r_in taz_s6w_out 0.50 0.006944 commuter8 "gneE408.17" orange
taz_s1r_in taz_s6s_out 1.00 0.013889 commuter9 "gneE408.17" orange

taz_s1r_in taz_s9s_out 1.00 0.013889 commuter10
"gneE408.17
gneE628" s3 gray

taz_s1r_in taz_s11e_out 1.00 0.013889 commuter11
"gneE408.17 gneE25
gneE128" s6-s9 yellow

92

taz_s1r_in taz_s11s_out 0.50 0.006944 commuter12
"gneE408.17 gneE25
gneE128" s6-s9 yellow

taz_s1w_in taz_s1n_out 0.25 0.003472 commuter13 white
taz_s1w_in taz_s1r_out 0.25 0.003472 commuter14 white
taz_s1w_in taz_s1w_out 0.00 0.000000 white
taz_s1w_in taz_s3n_out 0.00 0.000000 cyan
taz_s1w_in taz_s5n_out 1.00 0.013889 commuter15 magenta
taz_s1w_in taz_s5r_out 1.00 0.013889 commuter16 magenta
taz_s1w_in taz_s6w_out 1.00 0.013889 commuter17 orange
taz_s1w_in taz_s6s_out 3.00 0.041667 commuter18 orange
taz_s1w_in taz_s9s_out 2.50 0.034722 commuter19 "gneE628" s3 gray
taz_s1w_in taz_s11e_out 1.50 0.020833 commuter20 "gneE25 gneE128" s6-s9 yellow
taz_s1w_in taz_s11s_out 1.50 0.020833 commuter21 "gneE25 gneE128" s6-s9 yellow
taz_s3n_in taz_s1n_out 0.25 0.003472 commuter22 white
taz_s3n_in taz_s1r_out 0.25 0.003472 commuter23 white
taz_s3n_in taz_s1w_out 0.50 0.006944 commuter24 white
taz_s3n_in taz_s3n_out 0.00 0.000000 cyan
taz_s3n_in taz_s5n_out 0.50 0.006944 commuter25 magenta
taz_s3n_in taz_s5r_out 1.00 0.013889 commuter26 magenta
taz_s3n_in taz_s6w_out 2.50 0.034722 commuter27 "-gneE121" s9 orange
taz_s3n_in taz_s6s_out 2.50 0.034722 commuter28 "gneE413" s1 orange
taz_s3n_in taz_s9s_out 6.00 0.083333 commuter29 gray
taz_s3n_in taz_s11e_out 3.50 0.048611 commuter30 "gneE128" s9 yellow
taz_s3n_in taz_s11s_out 2.50 0.034722 commuter31 "gneE331" s5 yellow
taz_s5n_in taz_s1n_out 0.00 0.000000 white
taz_s5n_in taz_s1r_out 0.00 0.000000 white
taz_s5n_in taz_s1w_out 0.50 0.006944 commuter32 white
taz_s5n_in taz_s3n_out 0.00 0.000000 cyan
taz_s5n_in taz_s5n_out 0.00 0.000000 magenta
taz_s5n_in taz_s5r_out 0.00 0.000000 magenta
taz_s5n_in taz_s6w_out 0.50 0.006944 commuter33 "gneE256 gneE413" s3-s1 orange

taz_s5n_in taz_s6s_out 0.75 0.010417 commuter34 "gneE551 -gneE121"
s11-
s9 orange

taz_s5n_in taz_s9s_out 3.50 0.048611 commuter35 "gneE551" s11 gray
taz_s5n_in taz_s11e_out 6.00 0.083333 commuter36 yellow
taz_s5n_in taz_s11s_out 6.00 0.083333 commuter37 yellow
taz_s5r_in taz_s1n_out 0.50 0.006944 commuter38 white
taz_s5r_in taz_s1r_out 0.50 0.006944 commuter39 white
taz_s5r_in taz_s1w_out 0.75 0.010417 commuter40 white
taz_s5r_in taz_s3n_out 0.00 0.000000 cyan
taz_s5r_in taz_s5n_out 0.50 0.006944 commuter41 magenta
taz_s5r_in taz_s5r_out 1.00 0.013889 commuter42 magenta
taz_s5r_in taz_s6w_out 1.00 0.013889 commuter43 "gneE256 gneE413" s3-s1 orange
taz_s5r_in taz_s6s_out 0.75 0.010417 commuter44 "gneE628 -gneE121" s3-s9 orange
taz_s5r_in taz_s9s_out 2.50 0.034722 commuter45 "gneE628" s3 gray

93

taz_s5r_in taz_s11e_out 0.00 0.000000 yellow
taz_s5r_in taz_s11s_out 0.00 0.000000 yellow
taz_s6w_in taz_s1n_out 2.00 0.027778 commuter46 white
taz_s6w_in taz_s1r_out 2.00 0.027778 commuter47 white
taz_s6w_in taz_s1w_out 1.50 0.020833 commuter48 white
taz_s6w_in taz_s3n_out 1.00 0.013889 commuter49 "-gneE406" s1 cyan
taz_s6w_in taz_s5n_out 1.25 0.017361 commuter50 "-gneE406 gneE262" s1-s3 magenta

taz_s6w_in taz_s5r_out 1.25 0.017361 commuter51 "gneE128 gneE555"
s9-
s11 magenta

taz_s6w_in taz_s6w_out 0.00 0.000000 orange
taz_s6w_in taz_s6s_out 0.25 0.003472 commuter52 orange
taz_s6w_in taz_s9s_out 4.50 0.062500 commuter53 gray
taz_s6w_in taz_s11e_out 2.00 0.027778 commuter54 yellow
taz_s6w_in taz_s11s_out 2.00 0.027778 commuter55 yellow
taz_s6s_in taz_s1n_out 2.00 0.027778 commuter56 white
taz_s6s_in taz_s1r_out 2.00 0.027778 commuter57 white
taz_s6s_in taz_s1w_out 1.50 0.020833 commuter58 white
taz_s6s_in taz_s3n_out 1.00 0.013889 commuter59 "gneE131" s9 cyan
taz_s6s_in taz_s5n_out 1.25 0.017361 commuter60 "-gneE406 gneE262" s1-s3 magenta

taz_s6s_in taz_s5r_out 1.25 0.017361 commuter61 "gneE128 gneE555"
s9-
s11 magenta

taz_s6s_in taz_s6w_out 0.25 0.003472 commuter62 orange
taz_s6s_in taz_s6s_out 0.00 0.000000 orange
taz_s6s_in taz_s9s_out 3.50 0.048611 commuter63 gray
taz_s6s_in taz_s11e_out 2.00 0.027778 commuter64 yellow
taz_s6s_in taz_s11s_out 2.00 0.027778 commuter65 yellow
taz_s9s_in taz_s1n_out 1.00 0.013889 commuter66 "gneE20" s6 white
taz_s9s_in taz_s1r_out 0.50 0.006944 commuter67 "gneE256" s3 white
taz_s9s_in taz_s1w_out 0.50 0.006944 commuter68 "gneE20" s6 white
taz_s9s_in taz_s3n_out 5.00 0.069444 commuter69 cyan
taz_s9s_in taz_s5n_out 2.50 0.034722 commuter70 "gneE555" s11 magenta
taz_s9s_in taz_s5r_out 5.00 0.069444 commuter71 "gneE555" s11 magenta
taz_s9s_in taz_s6w_out 0.25 0.003472 commuter72 orange
taz_s9s_in taz_s6s_out 0.25 0.003472 commuter73 orange
taz_s9s_in taz_s9s_out 0.00 0.000000 gray
taz_s9s_in taz_s11e_out 2.00 0.027778 commuter74 yellow
taz_s9s_in taz_s11s_out 0.25 0.003472 commuter75 yellow

taz_s11e_in taz_s1n_out 0.50 0.006944 commuter76 "-gneE121 gneE20"
 s9-
s6 white

taz_s11e_in taz_s1r_out 0.50 0.006944 commuter77 "-gneE121 gneE20"
 s9-
s6 white

taz_s11e_in taz_s1w_out 0.50 0.006944 commuter78 "gneE322 gneE256"
 s5-
s3 white

taz_s11e_in taz_s3n_out 1.25 0.017361 commuter79 "gneE131" s9 cyan
taz_s11e_in taz_s5n_out 2.00 0.027778 commuter80 magenta

94

taz_s11e_in taz_s5r_out 0.50 0.006944 commuter81 magenta
taz_s11e_in taz_s6w_out 1.25 0.017361 commuter82 orange
taz_s11e_in taz_s6s_out 1.25 0.017361 commuter83 orange
taz_s11e_in taz_s9s_out 0.25 0.003472 commuter84 gray
taz_s11e_in taz_s11e_out 0.00 0.000000 yellow
taz_s11e_in taz_s11s_out 0.25 0.003472 commuter85 yellow

taz_s11s_in taz_s1n_out 0.50 0.006944 commuter86 "-gneE121 gneE20"
 s9-
s6 white

taz_s11s_in taz_s1r_out 0.50 0.006944 commuter87 "-gneE121 gneE20"
 s9-
s6 white

taz_s11s_in taz_s1w_out 0.50 0.006944 commuter88 "gneE322 gneE256"
 s5-
s3 white

taz_s11s_in taz_s3n_out 1.25 0.017361 commuter89 "gneE131" s9 cyan
taz_s11s_in taz_s5n_out 2.00 0.027778 commuter90 magenta
taz_s11s_in taz_s5r_out 2.00 0.027778 commuter91 magenta
taz_s11s_in taz_s6w_out 1.25 0.017361 commuter92 orange
taz_s11s_in taz_s6s_out 1.25 0.017361 commuter93 orange
taz_s11s_in taz_s9s_out 0.00 0.000000 gray
taz_s11s_in taz_s11e_out 0.25 0.003472 commuter94 yellow
taz_s11s_in taz_s11s_out 0.00 0.000000 yellow

A.3.7 Bus flow
Public transport that run on schedule and on specified routes is represented
by an XML file with the name busFlow7200sV5sorted.rou.xml. The code
snippet below is shortened and can be found in its entirety online at the URL
mentioned in the Appendix’ introduction.

95

<routes>

<vType id="BUS" vClass="bus" accel="1.3" decel="2.3"
sigma="0.1" length="12.0" minGap="4.0" maxSpeed="19.5"
speedFactor="normc(1,0.1,0.2,2)" laneChangeModel="SL2015"
maxSpeedLat="1.0" minGapLat="0.6" latAlignment="nice"/>

<flow id="bus3s1s6" color="255,127,80" begin="0" end="6900"
number ="12" type="BUS" from="gneE660" to="gneE53">
</flow>
<flow id="bus13s6s6w" color="255,127,80" begin="0" end="6480"
number ="5" type="BUS" from="-gneE10" to="gneE53">
</flow>
<flow id="bus21s6s11" color="255,127,80" begin="0" end="6600"
number ="6" type="BUS" from="-gneE10" to="gneE553">
<stop busStop="busStop_gneE26_0_13" duration="15"/>
<stop busStop="busStop_gneE79_0_25" duration="15"/>
<stop busStop="busStop_-gneE136_0_3" duration="15"/>
<stop busStop="busStop_gneE142_0_8" duration="15"/>
</flow>
<flow id="bus151s1s6" color="255,215,0" begin="0" end="6600"
number ="6" type="BUS" from="gneE412" to="gneE53">
<stop busStop="busStop_gneE469_1_19" duration="15"/>
</flow>
<flow id="bus187s3s9" color="255,215,0" begin="0" end="6900"
number ="12" type="BUS" from="gneE532" to="gneE133">
<stop busStop="busStop_gneE532_0_22" duration="15"/>
</flow>
<flow id="bus208s3s9" color="176,196,222" begin="0" end="6900"
number ="12" type="BUS" from="gneE532" to="gneE133">
<stop busStop="busStop_gneE532_0_22" duration="15"/>
<stop busStop="busStop_gneE629_0_24" duration="15"/>
<stop busStop="busStop_gneE133_0_7" duration="15"/>
</flow>
<flow id="bus274s1s6" color="176,196,222" begin="0" end="6600"
number ="6" type="BUS" from="gneE660" to="gneE53">
<stop busStop="busStop_gneE469_1_19" duration="15"/>
</flow>

</routes>

97

A.4 Python code
The SUMO application was controlled by using Traffic Control Interface
(TraCI). By using the add-on traci, Python code was used to build a
simulation control program and a data output compiler.

A.4.1 Simulation control code
001: from pathlib import Path
002: from numpy import mean as mean
003: import traci, os, datetime, json, sys, csv
004: programstart = datetime.datetime.now()
005: filesuffix = programstart.isoformat().replace('-',
'_').replace(':', '_').replace('.', '_').replace('/', '_')
006:
007: sumoBinary = "/usr/local/opt/sumo/share/sumo/bin/sumo-
gui"
008: sumoCmd = [sumoBinary, "-c", "simu_traci_02.sumocfg"]
#simu_traci_01.sumocfg, simu_v5-6orig2-1.sumocfg
009: folder = 'REPORT/'
010: reportFile = "summary" + filesuffix + ".txt"
011: detectorFile = "pcuReport" + filesuffix + ".json"
012: dataFile = "data" + filesuffix + ".csv"
013:
014: start, end = 0, 8100
015: process_time = [int(arg) for arg in sys.argv[1:]]
016: if len(process_time) > 1:
017: start = min(process_time)
018: end = max(process_time)
019: print(start, end)
020: warning = False
021:
022: streets = {
023: "s1_s3" : ["-gneE406", "-gneE290", "-gneE291", "-
gneE293", "-gneE294", "-gneE295", "-gneE296", "gneE252",
"gneE253", "gneE255", "gneE297", "gneE396", "gneE611"],
024: "s1_s6" : ["gneE17", "gneE413", "gneE440", "gneE443",
"gneE469", "gneE470", "gneE471"],
025: "s3_s1" : ["-gneE297", "gneE256", "gneE257", "gneE261",
"gneE290", "gneE291", "gneE293", "gneE294", "gneE295",
"gneE296", "gneE406", "gneE425", "gneE428", "gneE430",
"gneE434", "gneE618", "gneE621"],
026: "s3_s5" : ["gneE262", "gneE270", "gneE274", "gneE279",
"gneE320", "gneE321"],
027: "s3_s9" : ["-gneE131", "gneE248", "gneE374", "gneE375",
"gneE628", "gneE629"],
028: "s5_s3" : ["gneE263", "gneE268", "gneE269", "gneE271",
"gneE272", "gneE273", "gneE311", "gneE322", "gneE688"],

98

029: "s5_s11" : ["-gneE555", "gneE210", "gneE331", "gneE332",
"gneE333", "gneE334", "gneE336", "gneE648", "gneE649",
"gneE651"],
030: "s6_s1" : ["-gneE413", "-gneE440", "-gneE441", "gneE20",
"gneE414", "gneE415", "gneE436", "gneE444"],
031: "s6_s9" : ["-gneE71", "gneE115", "gneE116", "gneE120",
"gneE121", "gneE25", "gneE26", "gneE70", "gneE72", "gneE73",
"gneE79"],
032: "s9_s3" : ["gneE131", "gneE376", "gneE377", "gneE378",
"gneE626", "gneE627"],
033: "s9_s6" : ["-gneE115", "-gneE116", "-gneE120", "-
gneE121", "-gneE25", "-gneE26", "-gneE70", "-gneE72", "-
gneE73", "-gneE79", "gneE71"],
034: "s9_s11" : ["-gneE136", "gneE128", "gneE137", "gneE140",
"gneE142", "gneE552"],
035: "s11_s5" : ["-gneE210", "gneE337", "gneE343", "gneE344",
"gneE346", "gneE399", "gneE400", "gneE404", "gneE555"],
036: "s11_s9" : ["-gneE128", "-gneE137", "-gneE140", "-
gneE142", "-gneE552", "gneE136"]
037: }
038:
039: detectors = ["e2Detector_s1eOut1", "e2Detector_s1eOut2",
"e2Detector_s1en", "e2Detector_s1es1", "e2Detector_s1es2",
"e2Detector_s1ew1", "e2Detector_s1ew2", "e2Detector_s1ew3",
"e2Detector_s1nOut1", "e2Detector_s1nOut2",
"e2Detector_s1nOut3", "e2Detector_s1ne1", "e2Detector_s1ne2",
"e2Detector_s1ne3", "e2Detector_s1ns1", "e2Detector_s1ns2",
"e2Detector_s1nw1", "e2Detector_s1nw2", "e2Detector_s1sOut1",
"e2Detector_s1sOut2", "e2Detector_s1se", "e2Detector_s1sn1",
"e2Detector_s1sn2", "e2Detector_s1sw1", "e2Detector_s1sw2",
"e2Detector_s1wOut1", "e2Detector_s1wOut2",
"e2Detector_s1wOut3", "e2Detector_s1we1", "e2Detector_s1we2",
"e2Detector_s1wn1", "e2Detector_s1wn2", "e2Detector_s1ws",
"e2Detector_s3eOut1", "e2Detector_s3eOut2",
"e2Detector_s3eOut3", "e2Detector_s3es1", "e2Detector_s3es2",
"e2Detector_s3ew1", "e2Detector_s3ew2", "e2Detector_s3ew3",
"e2Detector_s3nOut", "e2Detector_s3ne", "e2Detector_s3ns1",
"e2Detector_s3ns2", "e2Detector_s3ns3", "e2Detector_s3nw1",
"e2Detector_s3nw2", "e2Detector_s3sOut1",
"e2Detector_s3sOut2", "e2Detector_s3se", "e2Detector_s3sn1",
"e2Detector_s3sn2", "e2Detector_s3sw1", "e2Detector_s3sw2",
"e2Detector_s3wOut1", "e2Detector_s3wOut2",
"e2Detector_s3wOut3", "e2Detector_s3we", "e2Detector_s3we1",
"e2Detector_s3we2", "e2Detector_s3we3", "e2Detector_s3ws",
"e2Detector_s5busnws", "e2Detector_s5nOut1",
"e2Detector_s5nOut2", "e2Detector_s5nbusOut",
"e2Detector_s5ns1", "e2Detector_s5ns2", "e2Detector_s5nw",
"e2Detector_s5sOut1", "e2Detector_s5sOut2",
"e2Detector_s5sOut3", "e2Detector_s5sbusOut",
"e2Detector_s5sn1", "e2Detector_s5sn2", "e2Detector_s5sn3",
"e2Detector_s5sw", "e2Detector_s5wOut1", "e2Detector_s5wOut2",
"e2Detector_s5wOut3", "e2Detector_s5wn1", "e2Detector_s5wn2",

99

"e2Detector_s5wn3", "e2Detector_s5ws", "e2Detector_s6eOut1",
"e2Detector_s6eOut2", "e2Detector_s6eOut3", "e2Detector_s6en",
"e2Detector_s6es1", "e2Detector_s6es2", "e2Detector_s6ew1",
"e2Detector_s6ew2", "e2Detector_s6nOut1",
"e2Detector_s6nOut2", "e2Detector_s6nOut3",
"e2Detector_s6ne1", "e2Detector_s6ne2", "e2Detector_s6ns1",
"e2Detector_s6ns2", "e2Detector_s6nw", "e2Detector_s6sOut1",
"e2Detector_s6sbusOut", "e2Detector_s6se", "e2Detector_s6sn1",
"e2Detector_s6sn2", "e2Detector_s6sw1", "e2Detector_s6sw2",
"e2Detector_s6wOut1", "e2Detector_s6wOut2",
"e2Detector_s6wOut3", "e2Detector_s6we1", "e2Detector_s6we2",
"e2Detector_s6wn1", "e2Detector_s6wn2", "e2Detector_s6ws",
"e2Detector_s9eOut1", "e2Detector_s9eOut2",
"e2Detector_s9eOut3", "e2Detector_s9en", "e2Detector_s9es1",
"e2Detector_s9es2", "e2Detector_s9ew1", "e2Detector_s9ew2",
"e2Detector_s9nOut1", "e2Detector_s9nOut2", "e2Detector_s9ne",
"e2Detector_s9ns", "e2Detector_s9nw", "e2Detector_s9sOut1",
"e2Detector_s9sOut2", "e2Detector_s9se", "e2Detector_s9sn",
"e2Detector_s9sw", "e2Detector_s9wOut1", "e2Detector_s9wOut2",
"e2Detector_s9wOut3", "e2Detector_s9we1", "e2Detector_s9we2",
"e2Detector_s9wn1", "e2Detector_s9wn2", "e2Detector_s9ws1",
"e2Detector_s11nwBus", "e2Detector_s11eOut1",
"e2Detector_s11eOut2", "e2Detector_s11en", "e2Detector_s11es",
"e2Detector_s11ew", "e2Detector_s11nBusOut",
"e2Detector_s11nOut1", "e2Detector_s11nOut2",
"e2Detector_s11ne", "e2Detector_s11ns1", "e2Detector_s11ns2",
"e2Detector_s11sBusOut", "e2Detector_s11sOut1",
"e2Detector_s11sOut2", "e2Detector_s11se",
"e2Detector_s11sn1", "e2Detector_s11sn2",
"e2Detector_s11snbus", "e2Detector_s11sw",
"e2Detector_s11wOut1", "e2Detector_s11wOut2",
"e2Detector_s11wOut3", "e2Detector_s11we1",
"e2Detector_s11we2", "taz_s1n0", "taz_s1n1", "taz_s1n3",
"taz_s1r0", "taz_s1w0", "taz_s1w1", "taz_s1w2", "taz_s1w3",
"taz_s1w4", "taz_s3n0", "taz_s3n1", "taz_s5n0", "taz_s5n1",
"taz_s5n2", "taz_s5n3", "taz_s5r0", "taz_s6w0", "taz_s6w1",
"taz_s6w2", "taz_s6s0", "taz_s6s1", "taz_s6s2", "taz_s9s0",
"taz_s9s1", "taz_s9s2", "taz_s11s0", "taz_s11s1",
"taz_s11s2" , "taz_s11e0", "taz_s11e1", "taz_s11e2"]
040:
041: fringeEdges = {'s1n': ["taz_s1n0", "taz_s1n1",
"taz_s1n3"], 's1r': ["taz_s1r0"], 's1w': ["taz_s1w0",
"taz_s1w1", "taz_s1w2", "taz_s1w3", "taz_s1w4"], 's3n':
["taz_s3n0", "taz_s3n1"], 's5n': ["taz_s5n0", "taz_s5n1",
"taz_s5n2", "taz_s5n3"], 's5r': ["taz_s5r0"], 's6w':
["taz_s6w0", "taz_s6w1", "taz_s6w2"], 's6s': ["taz_s6s0",
"taz_s6s1", "taz_s6s2"], 's9s': ["taz_s9s0", "taz_s9s1",
"taz_s9s2"], 's11s': ["taz_s11s0", "taz_s11s1", "taz_s11s2"],
's11e': ["taz_s11e0", "taz_s11e1", "taz_s11e2"]}
042: pcuOnStreets = {'s1_s3': [[], []], 's1_s6': [[], []],
's3_s1': [[], []], 's3_s5': [[], []], 's3_s9': [[], []],
's5_s3': [[], []], 's5_s11': [[], []], 's6_s1': [[], []],

100

's6_s9': [[], []], 's9_s3': [[], []], 's9_s6': [[], []],
's9_s11': [[], []], 's11_s5': [[], []], 's11_s9': [[], []]}
043: collisions = {'s1_s3': 0, 's1_s6': 0, 's3_s1': 0,
's3_s5': 0, 's3_s9': 0, 's5_s3': 0, 's5_s11': 0, 's6_s1': 0,
's6_s9': 0, 's9_s3': 0, 's9_s6': 0, 's9_s11': 0, 's11_s5': 0,
's11_s9': 0}
044: statistics = {'sumLoaded': 0, 'sumDeparted': 0,
'sumArrived': 0, 'sumTeleports': 0, 'sumCollisions': 0,
'collisions': []}
045: csv_header = {'fringe' : True, 'pending' : True,
'occupancy' : True}
046: map, intervals, streetLanes = {}, {}, {} # [pcu,
avg_occupancy], {t: {detector: pcu, ...}, ...}, [laneID, ...]
047: csv_fringe, csv_pending, csv_occupancy = {}, {}, {}
048: fringe, laneStreets = {}, {}
049: old = {'t': start}
050: for entry in fringeEdges.keys():
051: fringe[entry] = 0
052:
053: def resetDetected(detected):
054: for detector in detectors:
055: detected.update({detector: set()})
056: return detected
057:
058: def resetDictionary(iterable, value):
059: for item in iterable:
060: iterable[item] = value
061:
062: def countVehicleTypes(idList, count_pcu):
063: randoms, commuters, buses = [0, 0, 0]
064: if count_pcu:
065: busFactor = 3
066: else:
067: busFactor = 1
068: for id in idList:
069: if 'bus' in id:
070: buses += busFactor
071: elif 'commuter' in id:
072: commuters += 1
073: else:
074: randoms += 1
075: return [randoms, commuters, buses]
076:
077: def countPCUsOnDetector(vhcLeftDetector):
078: PCU = {}
079: for detector in vhcLeftDetector:
080: PCU[detector] =
sum(countVehicleTypes(vhcLeftDetector[detector], True))
081: return PCU
082:
083: def setStreetLanes(streetLanes):
084: for street in streets:

101

085: streetLanes[street] = []
086: for edge in streets[street]:
087: lanes = traci.edge.getLaneNumber(edge)
088: for lane in range(lanes):
089: laneID = edge + '_' + str(lane)
090: allowed = traci.lane.getAllowed(laneID)
091: unprotected = ['moped', 'bicycle', 'pedestrian']
092: if not any(category in allowed for category in
unprotected):
093: streetLanes[street].append(laneID)
094:
095: def setLaneStreets(streetLanes, laneStreets):
096: for street in streetLanes:
097: for laneID in streetLanes[street]:
098: laneStreets[laneID] = street
099:
100: def update_pcuOnStreets(streetLanes):
101: for street in streetLanes:
102: vehicles = []
103: occupancy = []
104: for laneID in streetLanes[street]:
105:
vehicles.extend(traci.lane.getLastStepVehicleIDs(laneID))
106:
occupancy.append(traci.lane.getLastStepOccupancy(laneID))
107: if sum(occupancy) != 0:
108:
pcuOnStreets[street][0].append(sum(countVehicleTypes(vehicles,
True)))
109: pcuOnStreets[street][1].append(mean(occupancy))
110:
111: def pop_pcuOnStreets(street):
112: vhc, occ = pcuOnStreets[street]
113: pcuOnStreets[street] = [[], []]
114: return int(mean(vhc)), mean(occ)
115:
116: def getFringeVehicles(intervals, t):
117: vhcAtFringe = {}
118: entriesAtFringe = ''
119: period = t - old['t']
120: for entry in fringeEdges:
121: nbr = 0
122: for detector in fringeEdges[entry]:
123: nbr += intervals[detector]
124: vhcAtFringe[entry] = nbr
125: fringe[entry] += nbr
126: values = vhcAtFringe.values()
127: entriesAtFringe += 'Number of PCUs that entered thru
fringe from {} s to {} s ({} s).\n'.format(old['t'], t,
period)

102

128: entriesAtFringe += '{0:^5s} {1:^5s} {2:^5s} {3:^5s}
{4:^5s} {5:^5s} {6:^5s} {7:^5s} {8:^5s} {9:^5s} {10:^5s}
{11:^5s}\n'.format('sum', *vhcAtFringe.keys())
129: entriesAtFringe += '{0:^5.0f} {1:^5.0f} {2:^5.0f}
{3:^5.0f} {4:^5.0f} {5:^5.0f} {6:^5.0f} {7:^5.0f} {8:^5.0f}
{9:^5.0f} {10:^5.0f} {11:^5.0f}\n'.format(sum(values),
*values)
130: old['t'] = t
131: if csv_header['fringe']:
132: csv_fringe[0] = ['time', 'sum', *vhcAtFringe.keys()]
133: csv_header['fringe'] = False
134: csv_fringe[t] = [t, sum(values), *values]
135: return entriesAtFringe
136:
137: def findConfig(sumoCfg):
138: configFiles = {}
139: values = ['<net-file', '<lateral-resolution', '<gui-
settings-file', '<route-files', '<additional-files']
140: with open(sumoCfg, 'r', encoding='utf-8') as aFile:
141: cfgText = aFile.read()
142: for value in values:
143: i = cfgText.find(value)
144: if i > 0:
145: j = cfgText.find('/>', i)
146: configFiles[value[1:]] = cfgText[i+1:j]
147: return configFiles
148:
149: def getPendings(t):
150: origins = {
151: 's1n':['gneE660'], 's1ramp':['-gneE659'], 's1w':['-
gneE411', 'gneE412'],
152: 's3n':['gneE532'], 's5n':['gneE666', 'gneE667'],
's5ramp':['-gneE675'],
153: 's6w':['-gneE10'], 's6s':['-gneE657'], 's9s':['-
gneE133'],
154: 's11s':['-gneE669'], 's11e':['-gneE553']
155: }
156: M = [[0] * 12 for i in range(3)]
157: col = 1
158: thisMap = {}
159: for entry in origins:
160: for edge in origins[entry]:
161: idList = traci.edge.getPendingVehicles(edge)
162: thisMap[entry] = len(idList)
163: M[0][col], M[1][col], M[2][col] =
countVehicleTypes(idList, False)
164: col +=1
165: map[t].update(thisMap)
166: headline = '{0:^5s} {1:^5s} {2:^5s} {3:^5s} {4:^5s}
{5:^5s} {6:^5s} {7:^5s} {8:^5s} {9:^5s} {10:^5s} {11:^5s}\n'

103

167: resultline = '{0:^5s} {1:^5.0f} {2:^5.0f} {3:^5.0f}
{4:^5.0f} {5:^5.0f} {6:^5.0f} {7:^5.0f} {8:^5.0f} {9:^5.0f}
{10:^5.0f} {11:^5.0f} \n'
168: sumOfPenders = [sum(M[0]), sum(M[1]), sum(M[2])]
169: pendings = 'At t = {} min {} vehicles are pending to
enter via the fringe. \n'.format(t/60, sum(sumOfPenders))
170: pendings += headline.format('vTyp', 's1n', 's1r',
's1w', 's3n', 's5n', 's5r', 's6w', 's6s', 's9s', 's11s',
's11e')
171: pendings += resultline.format('rand', *M[0][1:12])
172: pendings += resultline.format('comm', *M[1][1:12])
173: pendings += resultline.format('bus', *M[2][1:12])
174: if csv_header['pending']:
175: csv_pending[0] = ['time', 'vTyp', 's1n', 's1r',
's1w', 's3n', 's5n', 's5r', 's6w', 's6s', 's9s', 's11s',
's11e']
176: csv_header['pending'] = False
177: csv_pending[t] = [[t, 'rand', *M[0][1:12]], [t, 'comm',
*M[1][1:12]], [t, 'bus', *M[2][1:12]]]
178: return pendings
179:
180: def getSystemOccupancy(streetLanes):
181: streetKeys = streets.keys()
182: systemOccupancy = 'System occupancy:\n'
183: systemOccupancy += '{0:5s} {1:5s} {2:5s} {3:5s} {4:5s}
{5:5s} {6:5s} {7:6s} {8:5s} {9:5s} {10:5s} {11:5s} {12:6s}
{13:6s} {14:6s}\n'.format('avg', *streetKeys)
184: streetOccupancy = {}
185: for street in streetLanes:
186: streetOccupancy[street] = pop_pcuOnStreets(street)
187: if streetOccupancy[street][0] == 0:
188: warning = True
189: map[t].update(streetOccupancy)
190: occupancy_format = [mean([v[1] for v in
streetOccupancy.values()]), *[streetOccupancy[street][1] for
street in streetKeys]]
191: systemOccupancy += '{0:^5.1%} {1:^5.1%} {2:^5.1%}
{3:^5.1%} {4:^5.1%} {5:^5.1%} {6:^5.1%} {7:^6.1%} {8:^5.1%}
{9:^5.1%} {10:^5.1%} {11:^5.1%} {12:^6.1%} {13:^6.1%}
{14:^6.1%}\n'.format(*occupancy_format)
192: if csv_header['occupancy']:
193: csv_occupancy[0] = ['time', 'avg', *streetKeys]
194: csv_header['occupancy'] = False
195: csv_occupancy[t] = [t, mean([v[1] for v in
streetOccupancy.values()]), *[streetOccupancy[street][1] for
street in streetKeys]]
196: return systemOccupancy
197:
198: def updateStatistics(t, summarize):
199: statistics['sumLoaded'] +=
traci.simulation.getLoadedNumber()

104

200: statistics['sumDeparted'] +=
traci.simulation.getDepartedNumber()
201: statistics['sumArrived'] +=
traci.simulation.getArrivedNumber()
202: statistics['sumTeleports'] +=
traci.simulation.getEndingTeleportNumber()
203: statistics['sumCollisions'] +=
traci.simulation.getCollidingVehiclesNumber()
204:
statistics['collisions'].extend(traci.simulation.getCollisions
())
205: if summarize:
206: for collision in statistics.pop('collisions'):
207: laneID = str(collision.lane)
208: street = laneStreets.get(laneID)
209: if street:
210: collisions[street] += 1
211: intervals[t].update(statistics)
212: resetDictionary(statistics, 0)
213: statistics['collisions'] = []
214:
215: # Run code:
216: detected = resetDetected({}) # Dictionary of sets
{detector: {vehicle, ...}, ...}
217: traci.start(sumoCmd)
218: summary = 'Start = {} s. Stop = {} s.\n'.format(start,
end)
219: print(summary)
220: setStreetLanes(streetLanes)
221: setLaneStreets(streetLanes, laneStreets)
222: checkframe = [900, 1800, 2700, 3600, 4500, 5400, 6300,
7200, 8100, 9000, 9900, 10800, end] # time in s
223: all_pending_cars = ''
224: for t in range(start, end+1):
225: traci.simulationStep()
226: if t % 150 == 0 and t > 0:
227: update_pcuOnStreets(streetLanes)
228: if t not in checkframe:
229: updateStatistics(t, False)
230: for detector in detected:
231: vehiclesOnDetector =
traci.lanearea.getLastStepVehicleIDs(detector)
232: detected[detector].update(vehiclesOnDetector)
233: else:
234: vehiclesLeftDetector = {}
235: map[t], intervals[t] = {}, {}
236: updateStatistics(t, True)
237: for detector in detected:
238: vehiclesOnDetector =
traci.lanearea.getLastStepVehicleIDs(detector)
239: detected[detector].update(vehiclesOnDetector)

105

240: vehiclesLeftDetector[detector] =
set(detected[detector].difference(vehiclesOnDetector))
241: detected[detector] = set(vehiclesOnDetector)
242:
intervals[t].update(countPCUsOnDetector(vehiclesLeftDetector))
243: fringeVehicles = getFringeVehicles(intervals[t], t)
244: pending_cars = getPendings(t)
245: systemOccupancy = getSystemOccupancy(streetLanes)
246: all_pending_cars += '\n' + fringeVehicles + '\n' +
pending_cars + '\n' + systemOccupancy + '\n'
247: print(fringeVehicles)
248: print(pending_cars)
249: print(systemOccupancy)
250: vehicles = {}
251: system_occupancy = []
252: sums = [0, 0, 0, 0, 0, 0, 0] # car, pcu, sum-%, random,
commuter, bus, occupancy
253: occupancy_report = ''
254: for street in streetLanes:
255: random_cars, commuters, buses, pcu = 0, 0, 0, 0
256: idList, occupancy = [], []
257: for laneID in streetLanes[street]:
258:
idList.extend(traci.lane.getLastStepVehicleIDs(laneID))
259:
occupancy.append(traci.lane.getLastStepOccupancy(laneID))
260: random_cars, commuters, buses =
countVehicleTypes(idList, False)
261: carsum = commuters + random_cars + buses
262: pcu = commuters + random_cars + 3 * buses
263: avg_occupancy = mean(occupancy)
264: vehicles[street] = [carsum, pcu, 0, random_cars,
commuters, buses, avg_occupancy]
265: sums = [sums[i] + vehicles[street][i] for i in
range(len(sums))]
266: sums[-1] = sums[-1] / len(streets) # create average
occupancy
267: endtime = 'Time = {} min.'.format(t/60)
268: summary += endtime + '\n'
269: print(endtime)
270: header ='{0:7s} {1:>7s} {2:>7s} {3:>7s} {4:>7s} {5:>7s}
{6:>7s} {7:>7s} {8:>7s}'.format('Street', 'CarSum', 'PCU',
'Sum-%', 'Random', 'Commute', 'Bus', 'Occ-%', 'Coll')
271: summary += header + '\n'
272: print(header)
273: for street in vehicles:
274: carsum, pcu, perc, ran, com, bus, occ =
vehicles[street] # nbrList
275: if sums[0] > 0:
276: perc = float(carsum)/sums[0] # percentage
277: sums[2] += perc
278: else:

106

279: perc = 0
280: coll = collisions[street]
281: line = '{0:7s} {1:7.0f} {2:7.0f} {3:7.1%} {4:7.0f}
{5:7.0f} {6:7.0f} {7:7.1%} {8:7.0f}'.format(street, carsum,
pcu, perc, ran, com, bus, occ, coll)
282: print(line)
283: summary += line + '\n'
284: sumline = '{0:7s} {1:7.0f} {2:7.0f} {3:7.1%} {4:7.0f}
{5:7.0f} {6:7.0f} {7:7.1%} {8:7.0f}'.format('TOTAL', *sums,
sum(collisions.values()))
285: summary += sumline + '\n'
286: print(sumline)
287: programend = datetime.datetime.now()
288: runtime = programend - programstart
289: print('Program runtime:', runtime, '\n')
290: sumFromFringe = 'Total number of PCUs that entered thru
fringe during entire simulation ({} s).\n'.format(t - start)
291: sumFromFringe += '{0:^5s} {1:^5s} {2:^5s} {3:^5s} {4:^5s}
{5:^5s} {6:^5s} {7:^5s} {8:^5s} {9:^5s} {10:^5s}
{11:^5s}\n'.format('sum', *fringe.keys())
292: sumFromFringe += '{0:^5.0f} {1:^5.0f} {2:^5.0f} {3:^5.0f}
{4:^5.0f} {5:^5.0f} {6:^5.0f} {7:^5.0f} {8:^5.0f} {9:^5.0f}
{10:^5.0f} {11:^5.0f}\n'.format(sum(fringe.values()),
*fringe.values())
293: # filePath = Path(os.getcwd() + '/REPORT/')
294: if not os.path.exists(folder):
295: os.makedirs(folder)
296: json_configFiles = json.dumps(findConfig(sumoCmd[2]),
indent=4)
297: with open(folder+reportFile, 'w') as aFile:
298: aFile.write(json_configFiles + '\n')
299: aFile.write('Program runtime:' + str(runtime) + '\n')
300: aFile.write(summary)
301: aFile.write(all_pending_cars)
302: aFile.write(sumFromFringe)
303: print('Above report has been written to
{}\n'.format(os.path.abspath(folder + reportFile)))
304: print(sumFromFringe)
305: if warning:
306: print('------ *** WARNING! Check for zeros. *** ------
')
307: with open(folder+detectorFile, 'w') as bFile:
308: bFile.write(json_configFiles + '\n\n')
309: bFile.write(json.dumps(collisions, indent=2) + '\n\n')
310: bFile.write(json.dumps(map, indent=2) + '\n\n')
311: bFile.write(json.dumps(intervals, indent=2))
312: with open(folder+dataFile, 'w') as cFile:
313: for data in [csv_fringe, csv_pending, csv_occupancy]:
314: header = data[0]
315: writer = csv.writer(cFile)
316: writer.writerow(header)
317: for t in data:

107

318: if t > 0:
319: if len(data[t]) < 4:
320: for row in data[t]:
321: writer.writerow(row)
322: else:
323: writer.writerow(data[t])
324: writer.writerow(['' for x in data[t]])
325: traci.close()

A.4.2 Simulation output process code
001: import json, csv, sys
002: from numpy import mean as mean
003:
004: folder = 'REPORT'
005: filename = 'pcuReport2021_06_06T17_26_26_836291.json' #
default filename
006:
007: # Call file with optional arguments: filename.json -junc
--> filename.csv
008: # Run as: <codename>.py <filename1>.json
[<filename2>.json ‚…] [-junc]
009: # Argument -junc will sort table in junction order.
Default: period order.
010:
011: filesToProcess = sys.argv[1:]
012: sortJunction = False
013: maxDivisor = False
014: if '-junc' in filesToProcess:
015: filesToProcess.remove('-junc')
016: sortJunction = True
017: if '-maxdiv' in filesToProcess:
018: filesToProcess.remove('-maxdiv')
019: maxDivisor = True
020: nbrOfFiles = len(filesToProcess)
021: if not nbrOfFiles > 0:
022: filesToProcess.append(filename)
023:
024: detectors = {
025: 's1' : {'fromNorth' : ["e2Detector_s1ne1",
"e2Detector_s1ne2", "e2Detector_s1ne3", "e2Detector_s1ns1",
"e2Detector_s1ns2", "e2Detector_s1nw1", "e2Detector_s1nw2"],
'fromEast' : ["e2Detector_s1en", "e2Detector_s1es1",
"e2Detector_s1es2", "e2Detector_s1ew1", "e2Detector_s1ew2",
"e2Detector_s1ew3"], 'fromSouth' : ["e2Detector_s1se",
"e2Detector_s1sn1", "e2Detector_s1sn2", "e2Detector_s1sw1",
"e2Detector_s1sw2"], 'fromWest' : ["e2Detector_s1we1",
"e2Detector_s1we2", "e2Detector_s1wn1", "e2Detector_s1wn2",
"e2Detector_s1ws"], 'toNorth' : ["e2Detector_s1nOut1",
"e2Detector_s1nOut2", "e2Detector_s1nOut3"], 'toEast' :
["e2Detector_s1eOut1", "e2Detector_s1eOut2"], 'toSouth' :
["e2Detector_s1sOut1", "e2Detector_s1sOut2"], 'toWest' :

108

["e2Detector_s1wOut1", "e2Detector_s1wOut2",
"e2Detector_s1wOut3"]},
026: 's3' : {'fromNorth' : ["e2Detector_s3ne",
"e2Detector_s3ns1", "e2Detector_s3ns2", "e2Detector_s3ns3",
"e2Detector_s3nw1", "e2Detector_s3nw2"], 'fromEast' :
["e2Detector_s3es1", "e2Detector_s3es2", "e2Detector_s3ew1",
"e2Detector_s3ew2", "e2Detector_s3ew3"], 'fromSouth' :
["e2Detector_s3se", "e2Detector_s3sn1", "e2Detector_s3sn2",
"e2Detector_s3sw1", "e2Detector_s3sw2"], 'fromWest' :
["e2Detector_s3we", "e2Detector_s3we1", "e2Detector_s3we2",
"e2Detector_s3we3", "e2Detector_s3ws"], 'toNorth' :
["e2Detector_s3nOut"], 'toEast' : ["e2Detector_s3eOut1",
"e2Detector_s3eOut2", "e2Detector_s3eOut3"], 'toSouth' :
["e2Detector_s3sOut1", "e2Detector_s3sOut2"], 'toWest' :
["e2Detector_s3wOut1", "e2Detector_s3wOut2",
"e2Detector_s3wOut3"]},
027: 's5' : {'fromNorth' : ["e2Detector_s5busnws",
"e2Detector_s5ns1", "e2Detector_s5ns2", "e2Detector_s5nw"],
'fromEast' : [], 'fromSouth' : ["e2Detector_s5sn1",
"e2Detector_s5sn2", "e2Detector_s5sn3", "e2Detector_s5sw"],
'fromWest' : ["e2Detector_s5wn1", "e2Detector_s5wn2",
"e2Detector_s5wn3", "e2Detector_s5ws"], 'toNorth' :
["e2Detector_s5nOut1", "e2Detector_s5nOut2",
"e2Detector_s5nbusOut"], 'toEast' : [], 'toSouth' :
["e2Detector_s5sOut1", "e2Detector_s5sOut2",
"e2Detector_s5sOut3", "e2Detector_s5sbusOut"], 'toWest' :
["e2Detector_s5wOut1", "e2Detector_s5wOut2",
"e2Detector_s5wOut3"]},
028: 's6' : {'fromNorth' : ["e2Detector_s6ne1",
"e2Detector_s6ne2", "e2Detector_s6ns1", "e2Detector_s6ns2",
"e2Detector_s6nw"], 'fromEast' : ["e2Detector_s6en",
"e2Detector_s6es1", "e2Detector_s6es2", "e2Detector_s6ew1",
"e2Detector_s6ew2"], 'fromSouth' : ["e2Detector_s6se",
"e2Detector_s6sn1", "e2Detector_s6sn2", "e2Detector_s6sw1",
"e2Detector_s6sw2"], 'fromWest' : ["e2Detector_s6we1",
"e2Detector_s6we2", "e2Detector_s6wn1", "e2Detector_s6wn2",
"e2Detector_s6ws"], 'toNorth' : ["e2Detector_s6nOut1",
"e2Detector_s6nOut2", "e2Detector_s6nOut3"], 'toEast' :
["e2Detector_s6eOut1", "e2Detector_s6eOut2",
"e2Detector_s6eOut3"], 'toSouth' : ["e2Detector_s6sOut1",
"e2Detector_s6sbusOut"], 'toWest' : ["e2Detector_s6wOut1",
"e2Detector_s6wOut2", "e2Detector_s6wOut3"]},
029: 's9' : {'fromNorth' : ["e2Detector_s9ne",
"e2Detector_s9ns", "e2Detector_s9nw"], 'fromEast' :
["e2Detector_s9en", "e2Detector_s9es1", "e2Detector_s9es2",
"e2Detector_s9ew1", "e2Detector_s9ew2"], 'fromSouth' :
["e2Detector_s9se", "e2Detector_s9sn", "e2Detector_s9sw"],
'fromWest' : ["e2Detector_s9we1", "e2Detector_s9we2",
"e2Detector_s9wn1", "e2Detector_s9wn2", "e2Detector_s9ws1",
"e2Detector_s11nwBus"], 'toNorth' : ["e2Detector_s9nOut1",
"e2Detector_s9nOut2"], 'toEast' : ["e2Detector_s9eOut1",
"e2Detector_s9eOut2", "e2Detector_s9eOut3"], 'toSouth' :

109

["e2Detector_s9sOut1", "e2Detector_s9sOut2"], 'toWest' :
["e2Detector_s9wOut1", "e2Detector_s9wOut2",
"e2Detector_s9wOut3"]},
030: 's11' : {'fromNorth' : ["e2Detector_s11ne",
"e2Detector_s11ns1", "e2Detector_s11ns2"], 'fromEast' :
["e2Detector_s11en", "e2Detector_s11es", "e2Detector_s11ew"],
'fromSouth' : ["e2Detector_s11se", "e2Detector_s11sn1",
"e2Detector_s11sn2", "e2Detector_s11snbus",
"e2Detector_s11sw"], 'fromWest' : ["e2Detector_s11we1",
"e2Detector_s11we2"], 'toNorth' : ["e2Detector_s11nBusOut",
"e2Detector_s11nOut1", "e2Detector_s11nOut2"], 'toEast' :
["e2Detector_s11eOut1", "e2Detector_s11eOut2"], 'toSouth' :
["e2Detector_s11sBusOut", "e2Detector_s11sOut1",
"e2Detector_s11sOut2"], 'toWest' : ["e2Detector_s11wOut1",
"e2Detector_s11wOut2", "e2Detector_s11wOut3"]}
031: }
032:
033: pcu_capacity = {'s1_s3': 0, 's1_s6': 0, 's3_s1': 0,
's3_s5': 0, 's3_s9': 0, 's5_s3': 0, 's5_s11': 0, 's6_s1': 0,
's6_s9': 0, 's9_s3': 0, 's9_s6': 0, 's9_s11': 0, 's11_s5': 0,
's11_s9': 0}
034:
035: def findDivisor(pcuOnStreets, direction):
036: div = []
037: for t in pcuOnStreets:
038: div.append(t[direction][0])
039: return int(mean(div))
040:
041: def getDeviation(N, pcuOnStreets):
042: dev_order = {
043: 's1_s3' : {'s1' : 'toEast', 's3' : 'fromWest'},
's3_s1' : {'s3' : 'toWest', 's1' : 'fromEast'},
044: 's1_s6' : {'s1' : 'toSouth', 's6' : 'fromNorth'},
's6_s1' : {'s6' : 'toNorth', 's1' : 'fromSouth'},
045: 's3_s5' : {'s3' : 'toEast', 's5' : 'fromWest'},
's5_s3' : {'s5' : 'toWest', 's3' : 'fromEast'},
046: 's3_s9' : {'s3' : 'toSouth', 's9': 'fromNorth'},
's9_s3' : {'s9' : 'toNorth', 's3' : 'fromSouth'},
047: 's5_s11' : {'s5' : 'toSouth', 's11' : 'fromNorth'},
's11_s5' : {'s11' : 'toNorth', 's5' : 'fromSouth'},
048: 's6_s9' : {'s6' : 'toEast', 's9' : 'fromWest'},
's9_s6' : {'s9' : 'toWest', 's6' : 'fromEast'},
049: 's9_s11' : {'s9' : 'toEast', 's11' : 'fromWest'},
's11_s9' : {'s11' : 'toWest', 's9' : 'fromEast'}
050: }
051: efficiency = {}
052: headerMuStdev = '{0:>5s} {1:^4s} {2:^4s} {3:^11s}
{4:^11s} {5:^11s} {6:^11s} {7:^11s} {8:^11s} {9:^11s}\n'
053: muAndStdev = headerMuStdev.format('time', '¬μ', 'd(X)',
's1/s3', 's3/s5', 's1/s6', 's3/s9', 's5/s11', 's6/s9',
's9/s11')
054: for t in N:

110

055: evac = {}
056: streets = N[t]
057: pcu_occupancy = pcuOnStreets[t]
058: divisors = []
059: for direction, parts in dev_order.items():
060: divisor = int(pcu_occupancy[direction][0])
061: if maxDivisor:
062: divisor = int(pcu_occupancy[direction][0] /
pcu_occupancy[direction][1])
063: if divisor == 0:
064: warning = True
065: divisor = findDivisor(pcuOnStreets, direction)
066: print('divisor corrected to', divisor, '@ t=', t,
'on', direction)
067: divisors.append(divisor)
068: startNode, endNode = parts.keys()
069: toWhere, fromWhere = parts.values()
070: toAdd = streets[startNode].get(toWhere)
071: toSubtract = streets[endNode].get(fromWhere)
072: evac[direction] = round((divisor+toAdd-
toSubtract)/divisor, 6)
073: mu = sum(evac.values())/len(evac)
074: stdev = (sum([(x-mu)**2 for x in
evac.values()])/(len(evac.values())-1))**0.5
075: evac['¬μ'] = round(mu, 6)
076: evac['d(X)'] = round(stdev, 6)
077: efficiency[t] = evac
078: valueMuStdev = '{0:>5s} {1:4.2f} {2:4.2f}
{3:5.2f}/{4:5.2f} {5:5.2f}/{6:5.2f} {7:5.2f}/{8:5.2f}
{9:5.2f}/{10:5.2f} {11:5.2f}/{12:5.2f} {13:5.2f}/{14:5.2f}
{15:5.2f}/{16:5.2f}\n'
079: muAndStdev += valueMuStdev.format(t, mu, stdev,
evac['s1_s3'], evac['s3_s1'], evac['s3_s5'], evac['s5_s3'],
evac['s1_s6'], evac['s6_s1'], evac['s3_s9'], evac['s9_s3'],
evac['s5_s11'], evac['s11_s5'], evac['s6_s9'], evac['s9_s6'],
evac['s9_s11'], evac['s11_s9'])
080: return efficiency, muAndStdev
081:
082: def getStatistics(intervals):
083: statistics = 'Statistics:\n'
084: S = []
085: tStats = [0, 0, '', 0, '', 0, '', 0, '']
086: header2 = ['time', 'loaded', 'departed', 'dep-%',
'arrived', 'arr-%', 'teleports', 'tele-%', 'collisions',
'coll-%']
087: statistics +=
'{0:6s}{1:>7s}{2:>9s}{3:>7s}{4:>8s}{5:>7s}{6:>11s}{7:>8s}{8:>1
1s}{9:>7s}\n'.format(*header2)
088: statLine =
'{0:6s}{1:7.0f}{2:9.0f}{3:7s}{4:8.0f}{5:7s}{6:11.0f}{7:8s}{8:1
1.0f}{9:7s}\n'

111

089: sumLine =
'{0:6s}{1:7.0f}{2:9.0f}{3:7.2%}{4:8.0f}{5:7.2%}{6:11.0f}{7:8.2
%}{8:11.0f}{9:7.2%}\n'
090: S.append(header2)
091: for time in intervals:
092: interval = intervals[time]
093: stats = [interval['sumLoaded'],
interval['sumDeparted'], '', interval['sumArrived'], '',
interval['sumTeleports'], '', interval['sumCollisions'], '']
094: S.append([time, *stats])
095: statistics += statLine.format(time, *stats)
096: for i in range(len(stats)):
097: if stats[i] != '':
098: tStats[i] += stats[i]
099: tStats[2], tStats[4], tStats[6], tStats[8] =
tStats[1]/tStats[0], tStats[3]/tStats[1], tStats[5]/tStats[1],
tStats[7]/tStats[1]
100: statistics += sumLine.format('sum',*tStats)
101: S.append(['sum', *tStats])
102: print(statistics)
103: return S
104:
105: def getTotalCollisions(collisions):
106: header3 = ['totColl', 'sum', 'avg', 's1_s3', 's3_s1',
's1_s6', 's6_s1', 's3_s5', 's5_s3', 's3_s9', 's9_s3',
's5_s11', 's11_s5', 's6_s9', 's9_s6', 's9_s11', 's11_s9']
107: allCollisions = ['', sum(collisions.values()),
round(mean([*collisions.values()]),1), *collisions.values()]
108: coll_headerline =
'{0:>7s}{1:>6s}{2:>6s}{3:>6s}{4:>6s}{5:>6s}{6:>6s}{7:>6s}{8:>6
s}{9:>6s}{10:>6s}{11:>6s}{12:>6s}{13:>6s}{14:>6s}{15:>7s}{16:>
7s}\n'
109: coll_line =
'{0:7s}{1:6.0f}{2:6.1f}{3:6.0f}{4:6.0f}{5:6.0f}{6:6.0f}{7:6.0f
}{8:6.0f}{9:6.0f}{10:6.0f}{11:6.0f}{12:6.0f}{13:6.0f}{14:6.0f}
{15:7.0f}{16:7.0f}\n'
110: print('Total nbr of collisions:\n' +
coll_headerline.format(*header3) +
coll_line.format(*allCollisions))
111: csv_collisions = [header3, allCollisions]
112: return csv_collisions
113:
114: # Run code
115: warning = False
116: for jsonFile in filesToProcess:
117: fileToRead = folder + '/' + jsonFile
118: if maxDivisor:
119: jsonFile = 'maxdiv_' + jsonFile
120: fileToWrite = folder + '/' + jsonFile.split('.')[0] +
'.csv'
121: summary = ''
122: M = []

112

123: N = {}
124: with open(fileToRead) as aFile:
125: text = aFile.read()
126: config, collision_data, pcu_data, detector_data =
text.split('\n\n', 3)
127: collisions = json.loads(collision_data)
128: pcuOnStreets = json.loads(pcu_data)
129: intervals = json.loads(detector_data)
130: header = ['junc', 't-per', 'start', 'end', 'fr N', 'fr
E', 'fr S', 'fr W', 'sumIN', 'to N', 'to E', 'to S', 'to W',
'sumOUT', 'I/O']
131: summary +=
'{0:>6s}{1:>6s}{2:>6s}{3:>6s}{4:>6s}{5:>6s}{6:>6s}{7:>6s}{8:>6
s}{9:>6s}{10:>6s}{11:>6s}{12:>6s}{13:>7s}{14:>8s}\n'.format(*h
eader)
132: period = 0
133: periods = [0 , *[int(key) for key in intervals.keys()]]
134: for time, interval in intervals.items():
135: Junc = {}
136: for junction, directions in detectors.items():
137: results = {}
138: m = ['', 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0.0]
139: m[0:4] = [junction, period, periods[period],
periods[period+1]]
140: for direction, detector in directions.items():
141: pcu = 0
142: for aDetector in detector:
143: pcu += interval[aDetector]
144: results[direction] = pcu
145: m[4:8] = [results['fromNorth'],
results['fromEast'], results['fromSouth'],
results['fromWest']]
146: m[8] = sum(m[4:8])
147: m[9:13] = [results['toNorth'], results['toEast'],
results['toSouth'], results['toWest']]
148: m[13] = sum(m[9:13])
149: m[14] = round(m[8] / m[13], 6)
150: M.append(m)
151: Junc[junction] = results
152: N[time] = Junc
153: period += 1
154: if sortJunction:
155: M.sort(key=lambda x: int(x[0][1:])) # Sort in
Junction order instead of period order
156: for row in M:
157: summary +=
'{0:>6s}{1:6.0f}{2:6.0f}{3:6.0f}{4:6.0f}{5:6.0f}{6:6.0f}{7:6.0
f}{8:6.0f}{9:6.0f}{10:6.0f}{11:6.0f}{12:6.0f}{13:7.0f}{14:8.4f
}\n'.format(*row)
158: print(summary)
159: for direction in pcu_capacity:

113

160: nbrOfVehicles = []
161: occupancies = []
162: for t in pcuOnStreets:
163: vehicles, occupancy = pcuOnStreets[t][direction]
164: if vehicles != 0:
165: nbrOfVehicles.append(vehicles)
166: if occupancy != 0:
167: occupancies.append(occupancy)
168: pcu_capacity[direction] = round(mean(nbrOfVehicles) /
mean(occupancies), 0)
169: efficiency, muAndStdev = getDeviation(N, pcuOnStreets)
170: print(muAndStdev)
171: fieldnames1 = ['time', '¬μ', 'd(X)', 's1_s3', 's3_s1',
's1_s6', 's6_s1', 's3_s5', 's5_s3', 's3_s9', 's9_s3',
's5_s11', 's11_s5', 's6_s9', 's9_s6', 's9_s11', 's11_s9']
172: with open(fileToWrite, 'w', encoding='UTF8',
newline='') as bFile:
173: writer = csv.writer(bFile)
174: writer.writerow(header)
175: writer.writerows(M)
176: writer.writerow(['' for x in fieldnames1])
177: writer = csv.DictWriter(bFile, fieldnames1)
178: writer.writeheader()
179: evac = []
180: for t in efficiency:
181: efficiency[t].update({'time' : t})
182: evac = efficiency[t]
183: writer.writerow(evac)
184: writer = csv.writer(bFile)
185: writer.writerow(['' for x in fieldnames1])
186: writer.writerows(getTotalCollisions(collisions))
187: writer.writerow(['' for x in fieldnames1])
188: writer.writerows(getStatistics(intervals))
189: if warning:
190: print('----- ***** WARNING! Check divisors and
occupancies. ***** -----')

115

A.5 General layouts of TLIs
These layouts were in fact crucial for developing this entire work. Thus,
overlooking important details were prevented. As a convenience for the
reader matrices with turn probability P and green light times G are also shown
for the six TLIs where alternative phase times were simulated. The
implementations of each item in Netedit and SUMO are shown underneath
each layout. The location of every intersection and pedestrian crossing is
shown on the map in Figure A 5.1. The layouts are not exactly to scale.

Figure A 5.1 The TLIs and pedestrian crossings across the system.

116

A.5.1 Layout of traffic light intersection S1
P1=
0 1/6 2/5 3/10
3/7 0 1/5 5/10
5/14 2/6 0 1/10
3/14 3/6 2/5 1/10

G1=
0 78 39 45
36 0 66 54
39 36 0 75
90 42 36 45

117

A.5.2 Layout of traffic light intersection S2

118

A.5.3 Layout of traffic light intersection S3
P3=
0 0 2/5 1/10
1/6 1/10 1/5 3/5
3/6 3/10 1/10 1/5
2/6 3/5 3/10 1/10

G3=
0 0 51 39
39 39 93 60
51 39 39 93
93 60 39 39

119

A.5.4 Layout of traffic light intersection S4

This TLS was not active.

120

A.5.5 Layout of traffic light intersection S5
P5=
0 0 3/4 9/8
0 0 0 0
5/8 0 1/8 1/4
3/8 0 1/8 1/8

G5=
0 0 81 45
0 0 0 0
81 0 51 45
45 0 51 45

121

A.5.6 Layout of traffic light intersection S6
P6=
1/10 1/5 5/8 2/5
3/10 1/10 1/8 2/5
2/5 3/10 0 1/5
1/5 2/5 1/4 0

G6=
45 102 42 30
45 30 42 42
42 30 0 102
102 42 45 0

122

A.5.7 Layout of traffic light intersection S7

123

A.5.8 Layout of traffic light intersection S8

124

A.5.9 Layout of traffic light intersection S9
P9=
0 1/5 1/3 2/5
1/3 0 1/3 2/5
3/6 2/5 0 1/5
1/6 2/5 1/3 0

G9=
0 57 75 33
24 0 75 42
75 33 0 57
75 42 24 0

125

A.5.10 Layout of traffic light intersection S10

126

A.5.11 Layout of traffic light intersection S11
P11=
0 1/3 3/5 1/4
3/8 0 1/5 3/4
5/8 1/6 0 0
0 3/6 1/5 0

G11=
0 45 45 45
45 0 45 45
45 45 0 0
0 45 45 0

127

A.5.12 Layout of regulated pedestrian crossing Ø1

128

A.5.13 Layout of regulated pedestrian crossing Ø2

129

A.5.14 Layout of regulated pedestrian crossing Ø3

Simulation of road traffic flow in Hangzhou

ANDERS HOLMBERG AND LOUISE BRANDT
BACHELOR´S THESIS
DEPARTMENT OF ELECTRICAL AND INFORMATION TECHNOLOGY |
FACULTY OF ENGINEERING | LTH | LUND UNIVERSITY

Printed by Tryckeriet i E-huset, Lund 2022

A
N

D
ER

S H
O

LM
B

ER
G

 A
N

D
 LO

U
ISE B

R
A

N
D

T
Sim

ulation of road traffi
c flow

 in H
angzhou

LU
N

D
 2022

Series of Bachelor’s theses
Department of Electrical and Information Technology

LU/LTH-EIT 2022-862
http://www.eit.lth.se

