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Abstract

Convolutional Neural Networks impressed the world in 2012 by reaching state-of-
the-art accuracy levels in the ImageNet Large Scale Visual Recognition Challenge.
The era of machine learning has arrived and with it countless applications varying
from autonomous driving to unstructured robotic manipulation. Computational
complexity in the past years has grown exponentially, requiring highly efficient low
power new hardware architectures, capable of executing those. In this work, we
have performed optimization in three levels of hardware design: from algorithmic, to
system, and accelerator level. The design of a DSP with Tensilica and the integration
of Xenergic dual port SRAMs, for direct memory access of a convolution hardware
accelerator, lead to four orders speed-up on the initial identified bottleneck, causing
an estimated three times final speed-up of a single handwritten classification image
compared to the pure software implementation. Higher speed-up is expected for
deeper convolutional architectures and larger image dimensions, due to the linear
time complexity scaling of the convolution hardware accelerator in comparison to
conventional non-linear software-based approaches.
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Popular Science Summary

Artificial Intelligence is becoming more and more used in newer technologies, from
mobile phones featuring voice detection to autonomous driving cars and also in
the new industries. For such applications the "intelligence" requirements are
increasing. Today much computations are solved by using the cloud. For example,
in mobile phones, voice assistance only works with an internet connection. The
same approaches are not possible for autonomic controlled vehicles. The essential
control features have to be inside the vehicle.

Therefore we are in need to bring Artificial Intelligence into mobile devices.
This thesis aims to implement a benchmark classification problem (MNIST) by
using a programmable processor, designed with a commercial tool, and a flexible
hardware accelerator to speed up a Convolutional Neural Network that recognizes
handwritten digits between 0 and 9. Therefore we have designed and trained a
reference architecture in the programming language Python, from which the weights
were obtained to implement the same architecture on the designed processor (by
using C/C++). By investigation of the most resources consuming functions, we
have figured out that the convolution has the highest computation cost. Hence the
accelerator was implemented and instructions added, directly connecting it to the
processor. Results obtained achieved four orders of magnitude total speed-up of the
identified bottleneck. Yielding in an estimated three times final speed-up for a single
handwritten classification image, compared to a pure software implementation at
the same processor. Additionally, an open-source processor alternative is proposed.
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Chapter 1
Introduction

As of psychological definitions of intelligence, “ability of an organism to solve new
problems” [1] or “the capacity to learn or to profit by experience”[2], Artificial
Intelligence (AI) aims to create entities capable of adapting itself to (out)perform
in human-like activities.
AI can be categorized into three different stages: Artificial Narrow Intelligence

(ANI), Artificial General Intelligence (AGI), and Artificial Super Intelligence (ASI).
Cutting edge AI systems currently are in the first stage (ANI), executing application
specific tasks without self-expanding abilities, even outperforming human skills
in such repetitive tasks, for instance, driving, GO (game) [3], and skin cancer
diagnosis [4]. At the AGI stage, also known as the singularity, machines will be
able to perform a broad range of tasks, being able of competing with any human
intellectual activity, consequently making the mental distinction between people
and machine unclear. Finally, at the ASI stage, which shall occur shortly after the
singularity, those entities will cognitively outperform the most gifted human level
in most of the efforts.
AI can be divided into two broad categories: unsupervised and supervised learning

[5]. The more human-like intelligence is unsupervised learning, where a computer
is not given any labeled data or guidance, and it has to find substructures or
rules in the given data to perform a task. It can be applied in a broad range of
functions, including clustering and anomaly detection problems (identification of
unexpected patterns). Clustering involves any grouping problems, for instance,
defining personalities by interests, creating profiles based on people’s activity
monitoring, grouping similar images, or audios and etc..
The most common form of machine learning is the supervised learning, where

the computer receives input data and expected output (e.g., label) or feedback for
the training. One of the classic examples of the supervised learning algorithm is
the cat vs. dog recognition. Imagine that we have a dataset containing thousands
of labeled images of cats and dogs, and we train a neural network (set of neurons,
implementing a regression) to guess whether the picture is a dog or a cat. Based
on the predicted output, we compare it to the image’s label, and we compute a
loss function which will update our prediction model.
Reinforcement learning is a particular case within supervised learning, where only

rewards or punishments are given to the system as feedback of its actions. This
methodology gained status when Google’s AlphaGo overcame the world champion
go player for three times in 2017 [6], or when OpenAI Bot defeated consistently

1



2 Introduction

professional players of the intricate game Dota 2 [7]. Not only for games this
methodology exhibited its potential, but also by observing results in extensive
fields such as finance, energy distribution, medicine, and robotics, in which for
example a robotic hand was designed to manipulate physical objects exhibiting
unprecedented dexterity [8].
The recent AI boom dates back mainly from results obtained by using a deep

convolutional network algorithm (a subset of supervised learning) developed by
[9], applied to artificial vision in the ImageNet Large Scale Visual Recognition
Challenge (ILSVRC) in 2012. This annual contest is based on ImageNet dataset,
which consists of over 15 million labeled images, distributed over 22,000 different
categories. ILSVRC uses a subset of ImageNet with roughly 1,000 images distributed
over 1,200 categories, and data is divided into 1.2 million images for training, 50,000
for validation and 150,000 for testing. Their proposed architecture resulted in top-1
and top-5 error rates (error rate of which the correct label is not one of the five
most probable predictions by the model) of 37.5% and 17.0%, which became 2012’s
state-of-the-art for the given dataset.
Convolutional Neural Networks (CNNs) became then mainly applied in machine

learning for computer vision. Its underlying architecture contains three different
operations to predict the output: layers of convolution filters are applied to the
input, having pooling and activation operations in between. The outputs after
each activation, also known as activation maps (or feature maps), are connected to
the next convolution layer. The last one serves as an input for a fully connected
neural network, which then predicts the output, followed by a classification layer
performed primarily by the linear or softmax classifiers.
CNNs, as we know, were firstly introduced by LeCun (1989) [10] to identify

handwritten zip codes in the US, together with very similar approaches in the same
year as the Time Delay Neural Networks, or TDNNs to identify acoustic-phonetics
[11]. All those based on [12], and his ideas inspired on the cortex simple and
complex cells corresponding to small regions of the visual field. Although those
ideas date back from the ’80s, not much progress was made until the previously
referred works in 2012. Reasons are that the amount of calculations performed
by a standard CNN scales fast, depending on the number of layers and input size,
requiring substantial greater complexity regarding hardware (specifically memories
and processing elements).
Another limitation was the amount of data required to train the neural network,

since it requires vast amounts of structured labeled data, demanding reasonable
efforts. For these reasons, CNNs did not perform astonishingly well, and was a topic
treated with skepticism by most in the area of machine learning until recent results.
To make it worse, back propagation was considered risky, as it was thought that
chances were high of the algorithm getting trapped in a local minimum, hypothesis
denied by [13]. Finally, 20 years after LeCun [10] firstly introduced CNN, the era
of data and more capable hardware has arrived, and with it a new spring for the
CNNs.
In this thesis we are using the knowledge about CNNs to analyze the bottle-

neck and to develop a hardware accelerator to increase efficiency of the forward-
propagation computation. First of all, we explore into the design of a Digital Signal
Processor (DSP) with Cadence Tensilica (a tool to design and generate a processor
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for specific applications) by adding our own instructions. Afterwards, we extend
the processor with the hardware accelerator. Therefore this thesis begins with back-
ground information about Artificial Neural Networks (ANNs) and CNNs by going
through a deeper understanding of the networks. Afterwards, we design and train
our CNN architecture to solve a given task performing the most power demanding
CNNs function in special-purpose designed hardware accelerator. Subsequently,
we describe the possibilities in Tensilica and an open-source alternative by usage
of the RISC V. A proposed extension to the core containing the aforementioned
accelerator and Xenergic’s dual port Static Random-Access Memorys (SRAMs)
follows. At the end we discuss future projects and summarize main ideas.
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Chapter 2
Feed-forward Networks and Convolution

Neural Networks

2.1 Feed-forward Neural Networks

2.1.1 Perceptron

In the following section we are using the single perceptron as illustrated in Figure
2.1 to explain the simplest ANN, gaining a deeper understanding of CNNs building
blocks based on [14].

ω1

ω2

ωk

..
.

ŷ

bias

Figure 2.1: Diagram of a single perceptron.

The perceptron’s outputs, for N experiments, can be calculated as:

ŷ = σ
(
wTX + b

)
= σ

(
wTX

)
, (2.1)

where w is a weight vector of dimension (M+1)x1 of the perceptron, X is an input
matrix of dimension (M+1)xN, b is the bias value, and σ an activation function.
Additionally, as shown, the bias term can be added as an extra weight ω0 into the
perceptron.
The weight vector w is given by:

wT = [ω0 ω1 ω2 . . . ωN ] , (2.2)

5



6 Feed-forward Networks and Convolution Neural Networks

and X is the data input matrix for N experiments having the form:
1 1 . . . 1
x11 x11 . . . x1N
x21 x22 . . . x2N
...

... . . .
...

xM1 xM2 . . . xMN

 . (2.3)

Even though the simplest ANN model, the perceptron is powerful enough to
solve any hyperplane separable classification problem. Let us consider for simplicity
the two-dimensional case, where two different classes are learned by the single
percetron.
For this two-dimensional classification (Figure 2.2), if separable, there will be a

decision boundary which fully separates the two classes. The decision line is the
hyperplane learned by the perceptron. Any element below this line belongs to class
X1, and consequently the others to class X2.

X
2

X1

Figure 2.2: Linear classification of a two-class problem learned by a
single perceptron.

The learning algorithm can be seen as a method which updates the weights,
and consequently moving the decision plane such that the two classes can be fully
separated. The method is based on calculating the output for each experiment
and comparing the estimated output with the real result. In case of error between
estimated and expected, then the new weights, i.e. w (t+ 1), are updated following
the rule:

w (t+ 1) = w (t) + η (ŷ|xµ − y|xµ)xµ , (2.4)

where ŷ|xµ represents the predicted output given a single experiment xµ, and y|xµ
the expected output. The factor η, also called the learning rate, expresses the
relevance of a single experiment error in comparison to all other previous updates
also being a compromise between training speed and final accuracy.
A classification problem is said linear separable if there is a hyperplane which

can separate the two classes. As a consequence, (N)AND, (N)OR, or some other
variations, can be successfully realized by a perceptron. For instance, let us consider
the following logic:

X2X1 = X2 +X1 .

Illustrated by Figure 2.3 has the following truth table:
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X2 X1 Y
-1 -1 1
-1 1 1
1 -1 -1
1 1 1

X1
X
2

Figure 2.3: Example of complexity of linear separable logic, and
addressed by a single perceptron.

Such logic can be implemented by a single perceptron with weights equals to:

wT = [ω0 ω1 ω2] = [1 1 1] (2.5)

and, for instance, the sign function serving as activation defined as:

σ = sgn =

{
1, x > 0

−1, x < 0 .
(2.6)

We can easily verify that:
1
1
−1
1

 = σ

[ 1
−1
1

T  1 1 1 1
−1 −1 1 1
−1 1 −1 1

] (2.7)

fully solves the truth table, hence it is a possible solution learned by single percep-
tron to solve the X2 +X1 problem.

Direct Solution for the weights

A learning algorithm, for N experiments, can be introduced considering first the
linear case, i.e. when the activation σ (x) = x. Therefore Equation 2.1 turns into:

ŷ = σ
(
wTX

)
= wTX . (2.8)

An error function can be then defined as:

E (w) =

N∑
n=1

(yn − ŷ (xn))
2

= (y − ŷ)
T

(y − ŷ) = yTy − yT ŷ − ŷTy + ŷT ŷ

= yTy − yT (Xw)− (Xw)
T
y + (Xw)

T
(Xw)

= yTy − yTXw −wTXTy + wTXTXw .

(2.9)
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The learning algorithm obtains the weights w such that the error function is
minimized. The weights which minimize the error are obtained when ∇wE = 0,
which represents the fact that a minimum can only occur when the derivative is
zero. Thus:

∇wE = −yTX−XTy + 2XTXw

= 2XTXw − 2XTy = 0

2XTXw = 2XTy

w =
(
XTX

)−1
XTy ,

(2.10)

where
(
XTX

)−1
XT is also known as the pseudo inverse X†. The average products

over N experiments is also the correlation matrix of the inputs Rxx = 1
NXTX, and

finally rxd = 1
NXTy the correlation between input and output. Thus 2.10 can also

be written as:
w = Rxx

−1rxd , (2.11)

which is also known as linear regression, also a possible feature implemented by
the perceptron.
The direct learning algorithm can be seen merely as a closed-form solution of the

linear system of equations involved with linear regression problems (Equation 2.10),
and much more straightforward than any other learning alternatives. However,
mostly used activation functions, capable of solving more complex tasks (linear
regression), will result in nonlinear systems when trying to obtain the weights
similarly as of minimizing an error function.
In case of non-linear equation systems, having a direct solution is rather rare.

Thus another more appropriate learning algorithm is necessary to address more
complex problems.

Gradient Descent

The gradient descent algorithm not only enables us to find out the weights for a
broad range of problems, but also features an iterative method for updating the
weights given multiple experiments.
The gradient descent method can also be calculated for the linear activation

function. For convenience, the error function adopted for this derivation will be
the same (as in Equation 2.9), but averaged over 1/2N , resulting in

E (w) =
1

2N

N∑
n=1

(yn − ŷ (xn))
2

=
1

2N
[yTy − yT ŷ − ŷTy + ŷT ŷ]

=
1

2N
[yTy − 2yTXw + (Xw)

T
Xw]

∂E (w)

∂wk
=

1

2N
[−2yTX + 2(X)

T
Xw]

=
1

N
[XT (Xw − y)] .

(2.12)
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Thus, the weight update is given by a learning rate times the derivative of the
error in respect to the weights, as:

∆wk = −η ∂E (w)

∂wk
, (2.13)

then the updates are:
∆wk =

η

N
[XT (Xw − y)]

∆wk =
η

N

∑
n

(y − ŷ)xn

=
η

N

∑
n

δnxn ,

(2.14)

consequently, for online update (where the weights are updated after each input
set), the update rule resumes in:

∆wk = ηδnxn . (2.15)

It is also straight-forward to prove that in case of non-linear activation functions
the gradient descent has the following weight update rule, when the activation
function is differentiable, thus:

∆wk =
η

N
[XT (Xw − y)σ (αn)

′
]

∆wk =
η

N

∑
n

(y − ŷ)xnσ (αn)
′

=
η

N

∑
n

δnxn .

(2.16)

2.1.2 Multi-Layer Perceptron

Even though very powerful for its simplicity, the perceptron cannot solve an
exclusive-or (XOR) problem. XOR implements the following logic and truth table.

X1⊕X2 = X1X2 +X1X2

X2 X1 Y
-1 -1 -1
-1 1 1
1 -1 1
1 1 -1

Figure 2.4 illustrates that there is no possible decision plane capable of reaching
linear separability for the XOR problem. Thus, it turns out that a composition of
perceptrons is necessary for solving this problem.
The Multi-Layer-Perceptron (MLP) represented in Figure 2.5, is able to solve the

XOR problem. A MLP is a composition of perceptrons, arranged in one or more
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X1

X
2

Figure 2.4: XOR classification with decision plans.

x1

x2

w1
11

w1
12

w1
21

w1
22

w2
1

w2
2

b11

b12

b21

ŷ

Figure 2.5: MLP capable of solving the XOR problem.

hidden-layers, whose activations are in most cases non-linear functions (commonly
used are tanh, logistic, or rectifier). Also, an often used output activations function
is softmax and used to represent the probability distribution over n different classes.
Those are defined at Equations 2.17.

σ (x) =
1

1 + e−x

tanh (x) =
ex − e−x

ex + e−x

ReLu (x) = max(0, x)

softmax(x)i =
exi∑n
j=1 e

xi

(2.17)

The output of the MLP can be calculated as:

Ŷ = sgn
(
w2

1h1 + w2
2h2 + b21

)
h1 = sgn

(
w1

11x1 + w1
21x2 + b11

)
h2 = sgn

(
w1

12x1 + w1
22x2 + b12

)
.

(2.18)

resulting in the following outputs:

x2 x1 h1 h2 Ŷ
-1 -1 -1 -1 1
-1 1 1 -1 -1
1 -1 1 -1 -1
1 1 1 1 1
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and consequently solving the XOR classification problem, since when the inputs
are different the MLP outputs -1 and 1 in the opposite.

Deeper Understanding of the MLP

Undoubtedly, the multilayer perceptron is one of the essential building blocks of
machine learning. It extends all the results shown for the single perceptron, and
adds the feature of classifying any number of different classes, given a large enough
MLP model, according to the universal approximation theorem [14].
The multilayer perceptron mechanics can be understood as a composition of

perceptrons trying to fit a hyperplane capable of linearly separate a multi-class
dataset, by performing affine transformations followed by nonlinear distortions of
the dataspace.
For instance, let us consider first the one-dimensional classification problem:

A AB

Figure 2.6: Example of MLP 1-D mechanism.

An MLP capable of solving such a problem will first extend this 1-D problem
into 2-D data space. Then a set of affine transformations (rotation and translations
implemented as in Equation 2.1 by the weight matrix w and the bias respectively)
followed by non-linear distortions (implemented by the activation function) will
result in the following effect:

A A

B

Figure 2.7: Example of a linearly separable 1-dimension problem
solved with an MLP.

where the problem is linearly separable. This fundamental mechanism can still
be visualized for a 2D case such as the spiral classification, illustrated in Figure 2.8.
It is observable that the learning process, realized by training of the MLP, finds
out the weights necessary to transform the given data into a linearly separable
problem.
Linear separability, however, is not a simple task to ask from an MLP. In some

cases where there is a mathematical knot in the dataset, going only one dimension
higher (i.e. n+ 1) than the problem is not enough to guarantee linear separability.
Such problems may require an MLP going up to 2n+2, where any n-order manifold
(links and knots are 1-dimensional manifolds) can be untangled. [15]
Such topological results are interesting to us because it forms lower boundaries

of which the MLP cannot be smaller, in order to entirely solve the classification
problem. For instance, a dataset as shown in Figure 2.9 is impossible to be solved
by an MLP which does not have at least one hidden layer containing three (or
more) neurons, no matter how deep the architecture. [15]
Now that we have a deeper understanding of what is asked from an MLP, and its

mechanism to classify different data, it is time to update the main results from the
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Figure 2.8: Effect of forward propagation on different stages for a
2D spiral classification problem.[15]

X1

X2

Figure 2.9: Dataset requires at least three neurons in one of the
hidden layers MLP, for linear separability.

single perceptron (forward- and back-propagation algorithms). This time, however,
such expressions will not be derived, since the basic strategies, as derived for the
perceptron, still holds true.
Figure 2.10 serves as an example of an MLP. Observe that the number of neurons

at each of the layers, and the actual depth (i.e. how many hidden layers are
utilized) is defined by the user. Research as in [16] shows extensively how deeper
models positively impact final accuracy, however as discussed before, depth alone
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cannot untangle certain manifolds, therefore requiring broader hidden layer(s).

input hidden layers

output

Figure 2.10: MLP with 3 inputs and 2 hidden layer with each 3
neurons and 2 output neurons.

The output of a single neuron in the output layer is:

Ŷi (xi) = σo

∑
j

wnijhnj


hnj = σh

(∑
k

wn−1ij hnj

)
,

(2.19)

which can also be written as in Equation 2.20. Note that the output of an MLP
consists exactly of the composition of several perceptrons. Important to notice
that the biases work exactly as for the perceptron, i.e. each layer can be extended
with a "bias neuron" which has a unitary input, and each of the weights represent
the bias for each subsequent layer neuron.

Ŷi (xi) = σo

∑
j

wnijσh

(∑
k

wn−1ij hnj

) (2.20)

Back-propagation Algorithm for an MLP

The back-propagation algorithm is minimizing the error function by using a learning
method and efficiently computing the chain rule of derivatives. The basic version
was developed in 1986 by [17]. In the following algorithm, we describe this idea, by
starting with a random initialization of all weights and biases.

1. Select an input pattern µ and define

X0
k = xk (µ) .
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2. Forward propagate X0
k , calculating and composing all outputs of each neuron

as described at Equation 2.19

3. Calculate the final estimation error (δ) at layer M, and back propagate it to
each neuron, at every layer (from M th to 1st):

δMi = σ′
M
i

∑
j

wMij h
M−1
j

(yi (µ)− ŷMi
)

δM−1i = σ′
M−1
i

∑
j

wM−1ij hM−2j

∑
j

wMji δ
M
j .

(2.21)

4. Update the weights from last to first layer (where M = 1):

wMij (t+ 1) = wMij (t) + ηδMi h
M−1
j . (2.22)

5. Repeat for the next input µ pattern, until the whole training set is performed.

"Back-propagation refers only to the method for computing the gradient, while
another algorithm, such as stochastic gradient descent, is used to perform learning
using the gradient" according to [14]. Therefore the computational cost of the
back-propagation is depended on the learning algorithm. The above example is the
gradient descend learning procedure by updating the weights after each pattern
(or input). Another approach is the stochastic gradient descend with the difference
that the weight update is averaged over a user-defined number of input patterns.
Such a combined pattern is called mini-batch because it consists of 10 to 50 input
patterns, forming a batch.

2.2 Convolutional Neural Networks

2.2.1 Convolution

As an introduction to Convolutional Neural Networks (CNNs), it is crucial to have
a deeper understanding of both mathematical meaning, definitions, and properties,
but also to verify the results obtained by its applications, and consequences related
to the field of image processing.
Convolutions can be intuitively understood as the total likelihood of two sequential

events resulting in an expected third one. For instance, let us consider a golfing
example. We have a hole with pair 3, of which we would like to make a birdie (i.e.
using only two shots to put the ball in the hole). If shoot one is given by event
f (a), shoot two by g (b), we can compute:

C = f (a) · g (b) , (2.23)

with C being the result birdie event. However, many other different combinations
of two shoots also results in a birdie. Consequently the sum of all events resulting
into a birdie can be obtained by:

C =
∑
a+b=c

f (a) g (b) . (2.24)
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If we rewrite b = c − a, we end up at the definition of convolution given by
Equation 2.25, representing in this example the sum of all possible shots resulting
in a birdie.

(f ∗ g) (c) =
∑
a

f (a) g (c− a) (2.25)

From the golfing example, we could have also inferred some properties of convo-
lution as: associativity (also with real scalars), commutativity, and distributivity
for instance. Properties of which, when applied to the CNN context will result in
a fundamental property: dissociation between object spacial position, orientation,
image brightness and such to the final classification results, when in comparisons
to equivalent MLP only architectures.

Convolutions are applied in many different areas, from probability and statistics
(as the golfing example), to optics, signal processing, and many other areas whenever
superposition of two signals or impulse response needs to be calculated. In the
context of CNNs, we could visualize the results of a two-dimensional convolution,
defined by:

S(i, j) = K ∗ I(i, j) =
∑
m

∑
n

I(i−m, j − n) ·K(m,n) (2.26)

and illustrated in Figure 2.11. The kernel moves across the input image to receive
the output feature map. Such a convolution is performed on a real image in Figure
2.12.

0

4

8
3

8

13
6

12

18

Figure 2.11: Input image 8x8, convolution with a 3x3 kernel and
resulting 6x6 matrix.
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(a) Image source (b) Blur

(c) Sharpen (d) Edge detection

Figure 2.12: Convolution filter examples on a gray-scale image of
Lund University.

It is important to notice, that by performing this same operation, with slightly
different kernels the convolution output as seen in Figure 2.12d can change dra-
matically, or merely reducing focus of the image, resulting in a smoothing effect as
in Figure 2.12b or even sharpening the details as in Figure 2.12c.
The kernels utilized were:

blur =
1

9

1 1 1
1 1 1
1 1 1

 , (2.27)

sharpen =

 0 −1 0
−1 5 −1
0 −1 0

 , (2.28)

edge detection =

−1 −1 −1
−1 7 −1
−1 −1 −1

 . (2.29)

A noteworthy aspect of such diverse results applied by CNNs is the ability of
self-learning and selection of the filters at each convolutional layer. The CNN after
back-propagation will implement a composition of such filters (or many others),
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resulting in feature maps that can successfully be classified by an MLP robustly to
some image variations as described.
The two dimensional cases can be extended to a volumetric convolution for multi

channel images illustrated by Figure 2.13.

Figure 2.13: Example of 3-D convolution.

Notice that the 3-D kernel, in this case, can be seen as a stack of six 2-D kernels.
Each valid element in the final result consists of the sum of each individual 2-D
kernel convolved with the respective 2-D portion of the image.

2.2.2 Max-pool

The final component in order to fully build a convolutional neural network is the
max-pool. The NxN max-pool operation is performed by taking the maximum
element of a NxN sub-matrix either straight from the convolution or after the
feature map (i.e. after convolution and activation). Max-pool is usually with stride
N, meaning that once a max-pool is performed the next one will take place N+1
elements away, resulting in no overlap of the max-pool "window".
The main goal of the max-pool is to further ensure stability on the classification,

once that small translations of the input will not affect the pooled result. Yet
another convenient feature of pooling, in general, is the down-sampling effect. For
instance the result of a MxM after a NxN max-pool is: M/NxM/N image. Figure
2.14 shows an example of a 2x2 max-pool of the previous showed blurred image in
Figure 2.12b, where down-sampling can be observed.

Figure 2.14: Visualization of 2x2 max-pool.
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To summarize, now that all the CNN building blocks are introduced, their
output size can be calculated depending on hyperparameters (not directly trainable
parameters) as in Table 2.1 .

Table 2.1: Most used hyperparameters in a CNN context.

Hyperparameters Output Size

Convolution
• Kernel size (K)

Convo = W−K+2P
S + 1• Stride (S)

• Zero Padding (P)

Max-pool • Pool size (Ps) MaxPo = W−Ps
S + 1• Stride

Activation
• Relu
• sig same as input
• tanh

Where W is the width of the input images, which will be always equal to the
height, for the majority of the commonly available datasets, since images are usually
square-shaped.

2.2.3 CNN Architecture

Now that we have already seen all the basic building blocks of CNN, we can
compose them as shown in Figure 2.15, forming a convolutional neural network.

0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 1 0 0
0 0 1 1 1 1 1 0
0 0 0 0 0 0 0 0

Input Image Convolution + Activation Max-Pool Fully Connected

Figure 2.15: Example of a CNN architecture.

CNN can be seen as an arrangement of filters, which outputs are activated by
a non-linear function, and down-sampled via max-pool (or equivalent), followed
by an MLP. Alternatively it can be seen as equivalent sparsely connected MLP
with shared weights. Sparsely connected in the sense that the receptive field of each
convolution neuron equivalent MLP receives a much smaller input, given by the
size of the kernel, instead of the full-sized image as it would have been for a fully
connected MLP instead. Shared weights in the sense that all the "convolutional
neuron" shares the same weights within the layer as in Figure 2.16 illustrated.
A convolution neural network can be formed by the combination of several

convolution layers stacked, each being formed by convolution, activation, and
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Figure 2.16: Convolution illustrated as MLP.

max-pool. As described by [9], the initial convolution layers learn the simpler edges
of the images, arranging it into more complex and meaningful structures at the
deeper hidden-layers of convolution layers, which are then classified by the MLP.
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Chapter 3
Reference Model and Back-propagation

3.1 Implementation Strategy

This chapter will describe the dataset chosen as a benchmark for this thesis, together
with a reference model selection, and an overview of the state-of-the-art in machine
learning for such applications.
Since this project aims to accelerate only forward-propagation of convolutional

neural networks, one needs to justify such an approach. A reasonable reason for
not including also a hardware implementation for back-propagation is that for
battery-powered applications, such as smart sensors, mobile phones, and wearables,
training of such task-specific networks will be done offline, and the weights or
architectural updates would be streamed by the network, in order to extend battery
life. A large number of applications could not rely on forward-propagation being
performed on cloud, as autonomous vehicles driving without available internet,
for instance. In general, any mobile device offering AI features should be able
to perform its actions locally, especially when controlling devices that can put at
risk human-life. Newer parameters or architectures are less crucial and could be
implemented as a software update, which can be performed at any time.
Another guideline followed by this project is to be able to accelerate any CNN

architecture. As it will be seen, even for simpler datasets (as the one utilized
for this thesis) the model’s architectural characteristics can change dramatically
if one aims to reach higher accuracies, or being flexible enough to solve broader
range of problems. Therefore our vision, as for this project, is to accelerate the
most basic operations involved with CNNs (or at least the typical case where most
computational power/time is spent), and by only focusing on these, being flexible
enough to be relevant and useful most of the time independently of any particular
case or application.
Such methodology, of focusing on accelerating one of the building blocks aims

to address the software nature of the Machine Learning (ML) problems. Given
a scenario where there is no superhuman capability yet on solving the specific
case, any model is susceptible of being changed entirely and thus making any
hard-wired solution obsolete from a moment to the other. For instance, an MLP
able to classify two objects, cannot tell anything about a third, without the further
addition of neurons (and possible change of other hyperparameters). Additionally
let us consider a hardware implementation of AlexNet used for autonomous vehicles,

21
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having an impressive top-error rate of 37.5% on ImageNet 2012 [9] . A simple
"update" on AlexNet capable of reducing this error-rate by for instance additional
10% most likely may require profound changes not only in the parameters values,
but changing the configuration on the amount of layers, convolutions and max-
pooling sizes, and other arrangements. Therefore while there is no superhuman
solution for a given problem, fully optimized hardware-fixed solutions may not be
able to cope with simple architectural changes, and thus at risk of being fastly
outdated. For such fast-paced scenario a rather simpler alternative is the usage of
GPUs (programmable, reliable, compatible with many APIs, and well known).
What seems to be relevant still in the future, demanding hardware solutions are

the basic operations such as convolutions, multiplications, additions, and other
fundamental building blocks. An underlying problem when considering those are
still the classic bottlenecks as computational or memory limited systems.

3.2 MNIST Dataset

Before detailing further the implemented system, let us discuss more on the utilized
reference model, and application.
The reference application addressed in this thesis is the Modified National Institute

of Standards and Technology (MNIST) dataset. However, the implemented system
is flexible enough to perform as well in any other application. MNIST was just
chosen for convenience, as many people in the field benchmark their implementations
using it. This dataset consists of labeled, size-normalized and centered images of
digits 0 to 9. The image dimension is fixed to 28x28 pixels. The total number of
examples is 60,000 training images and 10,000 for validation.[18]
A class visualization of the MNIST dataset can be seen in Figure 3.1. Such

classification space representation can be obtained by the usage of the T-Distributed
Stochastic Neighbor Embedding (T-SNE). Briefly T-SNE allow us to visualize
high-dimensional data into lower dimensions while preserving similarity between
different groups clustering, when in comparison to other techniques such as Principal
Component Analysis (PCA).
As it can seen in Figure 3.1 our goal is to train a CNN which will find out a

hyperplane which linearly separates the classes, or does its best to reach as close
as possible to such linear separability.

3.2.1 State-of-the-art MNIST Classification Error

Convolutional neural networks as expected, serves as the most powerful technique
as of today, in order to classify MNIST data with the highest accuracies. Note that
CNNs are performing as good as, or even outperforming human beings in such
dataset. According to [20], human’s error rates are ≈ 0.2%, virtually the same as
the state-of-the-art record as seen in Table 3.1.
Results obtained by [20] utilized an architecture given by: 35(1x29x29-20C4-

MP2-40C5-MP3-150N-10N DNN). Meaning one input 29x29 is fed into the first
convolutional layer, containing 20 4x4 kernels, followed by a tanh activation of
the convolutions, non-overlapping 2x2 max pooling, 40 5x5 kernels in the second
convolutional layer, tanh activation, 3x3 max-pool, all converging into a 150
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(a) (b)

(c) (d)

Figure 3.1: MNIST Classes decision hypercube, created with t-SNE
Explorer [19].

neurons - tanh - 10 neuron - softmax MLP. The work [20] does this for 35
parallel CNNs described above, receiving each a slightly modified input obtained
by different normalization. Finally, the classification result is obtained by averaging
the individual outputs, in order to make a single classification.
We estimate for the architecture of [20] that roughly 3,000 weights are needed for

each of those CNNs, resulting in total of roughly 105,000 parameters, most likely
32-bit floating points. This massive configuration improved that time state-of-the-
art by impressively 34%, meaning that the anterior top-1 record error improved
from 0.35% to the obtained 0.23%.
A simple model trained by us with as few as 222 parameters had 8% top-1 error

rate. This fact illustrates that after a certain threshold the algorithm/architectural
expenses explode in order to further improve a decimal of accuracy. This "little"
improvements could be seen as irrelevant, however such specific applications may
control devices handling lives, where reliability is crucial. Moreover, for this
handwritten dataset, as mentioned before is roughly as good as human level
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Table 3.1: Result of the top-1 classification error for the MNIST
dataset state-of-the-art as from 2016. [21]

Result Method
0.21 % Regularization of Neural Networks using DropConnect [22]
0.23 % Multi-column Deep Neural Networks for Image Classication

[20]
0.23 % APAC: Augmented Pattern Classification with Neural Net-

works [23]
0.24 % Batch-normalized Maxout Network in Network [24]
0.29 % Generalizing Pooling Functions in Convolutional Neural Net-

works: Mixed, Gated, and Tree [25]
0.31 % Recurrent Convolutional Neural Network for Object Recog-

nition
0.31 % On the Importance of Normalisation Layers in Deep Learning

With Piecewise Linear Activation Units [26]
0.32 % Fractional Max-Pooling [27]
0.33 % Competitive Multi-scale Convolution [28]
0.35 % Deep Big Simple Neural Nets Excel on Handwritten Digit

Recognition [29]

classifications, but for more challenging datasets as ImageNet the top-1 error
best results are at 16.5% [30] (obtained by Inception V4 architecture as of 2016).
Impressive results, but still yet a long way to outperform human beings.
It is relevant to stress that improving the top-1 error rates at ImageNet from

[30], may require total architectural changes of the inception V4 to the point that
a hardware accelerated circuit working well for this, might not be able to execute
all newer architectures, if a higher flexibility was not taken into consideration while
optimizing only for the Inception architecture.

3.3 Tensorflow Model

In order to test our system, first task was to obtain a model, capable of performing
reasonably well at the MNIST dataset. For this, a Tensorflow model was created,
back-propagation performed and finally the weights were obtained.
Tensorflow is an open-source library, created by Google, to nurture development

of ML applications. It has many built-in functions, where one can research on a
mathematical, or algorithmic level implementations of neural networks for solving
one’s own datasets or the many other available options. Tensorflow is also very
convenient as it offers easy integration of GPUs or multicore acceleration if available
by the user.
Our implemented reference model trained with Tensorflow has the following

architecture: 1x28x28 - 2C5 - MP2 - 10C5 - MP2 - 160 - 10. Activations are
rectifier linear units, and final classification layer is implement by a softmax layer.
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The model has a total of 1,427 parameters, trained with 32-bit floating point and
resulting in 0.9729 final accuracy after 30 epochs.

The Python code in Listing 3.1 shows the implementation of such an architecture
in Tensorflow.

Listing 3.1: Reference Model Architecture.
model = Sequent i a l ( )

# Layer 1 − Convolution 5x5 kernel
model . add (Conv2D(2 , ke rne l_s i z e =(5 ,5) , a c t i v a t i on=None , input_shape=

input_shape ) )
# Layer 1 − Maxpool 2x2

model . add (MaxPooling2D ( poo l_s ize =(2 ,2) ) )
# Layer 1 − Activation ReLU

model . add ( Act ivat ion ( ’ r e l u ’ ) )

# Layer 2 − Convolution 5x5 kernel
model . add (Conv2D(10 , ke rne l_s i z e =(5 ,5) , a c t i v a t i on=None , input_shape=

input_shape ) )
# Layer 2 − Maxpool 2x2

model . add (MaxPooling2D ( poo l_s ize =(2 ,2) ) )
# Layer 2 − Activation ReLU

model . add ( Act ivat ion ( ’ r e l u ’ ) )

# Layer 3 − Flatten and f u l l y connected
model . add ( Flatten ( ) )
model . add (Dense (5 , a c t i v a t i on=’ r e l u ’ ) )
model . add (Dense ( num_classes , a c t i v a t i on=’ softmax ’ ) )

3.3.1 Visualization of the Forward-Propagation

As a real example of the forward-propagation using our reference CNN model, the
image in Figure 3.2 was fed to the CNN and Figure 3.3 illustrates the feature maps
after each convolution. Notice that the image gets more blurred after each layer,
and it seems that at the second convolution layer feature maps are focusing on the
shapes of the different edges present in the original image. Serving as the input for
the MLP, which will base its classification decision on the presented edges.

Figure 3.2: Input image from the MNIST dataset fed to the reference
model.

After this project’s reference model guidelines, architecture, and behaviour was
discussed, we will introduce Tensilica processor’s design.
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(a) Fmap L1K1 (b) Fmap L1K2 (c) Fmap L2K1

(d) Fmap L2K2 (e) Fmap L2K3 (f) Fmap L2K4

(g) Fmap L2K5 (h) Fmap L2K6 (i) Fmap L2K7

(j) Fmap L2K8 (k) Fmap L2K9 (l) Fmap L2K10

Figure 3.3: Feature Maps visualization after convolution sorted by
layer and kernel, given an MNIST image containing the digit
seven.



Chapter 4
Processor Architectures

4.1 Xtensa Processor

Tensilica is a part of the Cadence Design Systems and provides a configurable and
extendable processor for system-on-chip (SoC) applications. It gives the possibility
to design a customizable processor for specific needs as high-performance, flexibility,
and low power by providing an automatic creation of Register Transfer Level (RTL),
compiler, and other back-end and verification scripts. [31]
In this thesis, we focused on the low power implementation by reducing the

processor to our need and adding application-specific instructions. In the following
sections, we will discuss the architecture of the Xtensa core and the changes we
have considered. Also, we will briefly describe the development flow for a Tensilica
based system.

Control
Unit

I/O

ALU

Instruction
Memory

Data
Memory

Figure 4.1: Processor Harvard architecture.

4.1.1 Xtensa Architecture

The processor architecture is based on the Harvard architecture where the instruc-
tion- and data-memory is physically separated like shown in Figure 4.1. This
has the advantage of parallel memory access by fetching an instruction from and
writing back the processed data to the memories. Depending on the memory speed
a 5- or 7-stage pipeline can be selected. A bigger pipeline increases the number
of instructions per time unit and could increase the program speed, but with

27
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limitations such as latency, imbalance of the pipeline stages, and hazards. Such
structural, data and control hazards lead to necessary stalls of the pipeline which
could end up in a lower performance. [32]
The core has a 32-bit Arithmetic Logic Unit (ALU) with up to 64 general-

purpose registers. The Instruction Set Architecture (ISA) is based on the Reduced
Instruction Set Computer (RISC), nevertheless it may be extended with a Very Long
Instruction Word (VLIW) for parallel instruction execution that are implemented
via Tensilica Instruction Extension (TIE).

Figure 4.2: Xtensa architecture and possibilities. [31]

Figure 4.2 shows the provided standard, configurable and optional blocks. As
shown there are two tightly coupled memories for instructions and data. In our
case, we have implemented one instruction memory (IRAM) and two data memories
(DRAM) with a word length of 32 bits to match with the 32-bit ALU. These
memories are accessed by load/store units. Here the user can configure the core
utilizing one or two units. Two units are necessary if a significant amount of data
needs to be moved. Besides, the memories can be externally accessed through the
external interface, called Processor Interface (PIF) with the option of implementing
an Advanced Extensible Interface (AXI) bus. This interface connects the processor
with the system memory and other peripherals.
One of the main advantages of Tensilica is the possibility of extending the

processor through TIE for example to add instructions, or customized input/output
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interfaces. Those extensions are described in chapter 4.1.2. For verification of all
the features after fabrication on-chip debug and trace components can be optionally
selected. This additional hardware enhances debuggability possibilities during
verification of a fabricated device.

4.1.2 TIE

Figure 4.3: Xtensa instruction pipeline with extensions. [33]

TIE is a Tensilica specific language to extend the processor instruction and is based
on the Verilog syntax. Figure 4.3 shows the effect of TIE. The basic ALU will not
be affected, and another ALU will be implemented in parallel. In the following
chapter, we will explain the possible optimization techniques in TIE.
Fusion combines multiple operations to a single instruction to increase the

performance of a loop, for instance. Another method is called Flexible Length
Instruction Extensions (FLIX). It uses a variable instruction length VLIW to
issue multiple operations in one cycle by packing it in up to 128-bit instructions.
This performance improvement of issuing in parallel multiple operations has the
drawback of additional hardware cost. The compiler selects the FLIX instruction
so that it increases the performance of the code, while avoiding usage of NOP (no
operation) instructions.
Another powerful performance enhancement technique is to vectorize the processor

by using Single Instruction, Multiple Data (SIMD) to increase the data-level
parallelism. Thus up to 1024 bits and 128 entries of own specific register files can
be added. These need to be extended by custom instructions to perform operations,
for example, addition and multiplication, to handle the new registers file. In the
following example at Listing 4.1 we are creating a register file with 16 entries, and
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each of them is 64 bit wide. Additionally, we implement a vectorized addition.
Therefore the input signals A and B are split into 16-bit values and added together.
The single results are stored in temporary signals, and these signals are using the
wire command to indicate an intermediate type. The keyword assign is used to
write to a real signal. Thus the SIMD result is the vector of all the temporary
results of the calculations. Therefore it is vital to keep the right endianness as
the processor and the other instructions. For the given example the performance
increases by four times only because of the data-level parallelism.[33]

Listing 4.1: TIE example on parallel computation.

r e g f i l e r f 6 4 64 16 name // 64 b i t wide with 16 e n t r i e s

opera t i on vec4add16 {out r f 6 4 res , in r f 6 4 A, in r f 6 4 B} {}
{

// s p l i t i n to the d i f f e r e n t b i t s and add
wire [ 1 5 : 0 ] tmp0 = A[ 1 5 : 0 ] + B[ 1 5 : 0 ] ;
wire [ 1 5 : 0 ] tmp1 = A[ 3 1 : 1 6 ] + B[ 3 1 : 1 6 ] ;
wire [ 1 5 : 0 ] tmp2 = A[ 4 7 : 3 2 ] + B[ 4 7 : 3 2 ] ;
wire [ 1 5 : 0 ] tmp3 = A[ 6 3 : 4 8 ] + B[ 6 3 : 4 8 ] ;

// a s s i gn the temporary r e s u l t s to the r e s u l t
//(ATTENTION: endianness )
a s s i gn r e s = { tmp3 , tmp2 , tmp1 , tmp0 } ;

}

As shown in Figure 4.3 there is also direct input/output (I/O) interface to the
ALU via queues, ports and memory look-up. These I/O interfaces can be used
to transfer data or control signals between the ALU and other RTL components
or memories. Such direct connections are fast and do not need any address. The
access is implemented via TIE to enhance the performance. A single instruction can
access multiple I/O interfaces. Queues can be used to connect external synchronous
FIFO (first-in-first-out) devices. During creation automatic handshake signals are
added to access data. The look-up interface could be connected to an external
memory such as ROM or RAM. Which could perform for instance an activation
function look-up, instead of executing high complex calculations. The last ports
are General-Purpose Input/Outputs (GPIOs) with up to 1024 bits wide connection
to external RTL blocks. The output is written to specific registers that can be
accessed from "outside" through export state. The input is connected via import
wire that are visible from the processor. These ports are often used as control or
status ports. Hence it is essential to know that the compiler does not reorder the
TIE instructions differently and optimizing away the read and write instruction
of the GPIO ports. The compiler needs additional information to guarantee the
sequential order of critical actions. [33]
The implemented convolution accelerator close to the Xtensa core is controlled

via GPIO ports and a specific instruction sends all the information per convolution
in a single cycle. This reduces the setup time by four cycles per convolution.
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4.1.3 Xtensa Methodology

The Xtensa hardware/software development is performed with the Eclipse based
graphical user interface called Xtensa Xplorer IDE. From there C/C++ programs
can be created and verified on different user-designed processors. Such processor
can be created by using check-boxes and adding own specific instructions, as
described before. Profiling the implemented algorithm to identify hotspots and
compare different implementation is a very powerful feature of the Tensilica profiler.
It is also an excellent way to compare the compiled assembly and C-code with
information about the cycles per instruction. It also provides an idea about the
performance degrading functions. Furthermore, the number of stalls and taken
branches during the execution can be analyzed.

Figure 4.4: Development methodology of the Xtensa workflow.[31]

Figure 4.4 shows the development methodology of an Xtensa processor. Therefore,
the user designs a C/C++ application and profiles to choose the processor and
necessary optimizations for a specific application. The Xtensa Processor Generator
(XPG) creates the specific RTL, EDA scripts for verification and synthesis based
on the selected configuration. Also, the software development tools are generated
to have an exclusive compiler for each processor, together with a system model and
design development flow. This gives access to faster simulations than the RTL-level
simulation for verification. To speed up the simulation time different scripts, for
individual simulations of each interface, are provided. This hardware/software
co-development gives the advantage to create a specific embedded system.[31]
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4.2 RISC V Processor

An open-source alternative to Tensilica would be the RISC V processor, for example,
the PULPino with the RI5CY core (single core). This version has an extended
instruction set and is based on the RV32IMFC. Therefore we will describe the
RISC V and the implementation of the hardware accelerator shortly.
This processor is a 4-stage pipelined 32-bit processor like shown in Figure 4.5

with instruction fetch, instruction decode, execution and write back stage. In
the execution stage, there is a standard ALU supporting basic integer operations,
extended with a multiplication and division unit for fixed point. Optionally, a
floating point unit (FPU) is also available. For this project, we do not see any
advantages by usage of floating point unit. Fixed point operations are more energy
efficient and good enough to achieve high accuracy in ANNs.

Figure 4.5: RISC V 4-stage pipeline. [34]

It also consists of two separated single port memories for instruction and data as
shown in 4.6. The boot loader is stored in the boot ROM and can read a program
through the Serial Peripheral Interface (SPI) to the instruction memory. The main
bus is an AXI interconnection with a bridge to Advanced Peripheral Bus (APB).
The advanced debug unit is connected via AXI with the processor to read out the
internal registers and can also access the two RAMs and the APB. Also, there are
components like GPIO, UART, timer and further features available. [34]
To connect a hardware accelerator to the RISC V processor the APB interconnet

can be selected by changing the memory map. This connection can be used to
control the hardware accelerator. To guarantee stable throughput direct memory
access should be implemented. Besides, the convolution setup must to be done via
the 32-bit APB interconnect, hence it is not possible to do it by a single instruction
as in Tensilica. To indicate the end of such convolution the processor receives a
ready signal via an interrupt, awakening the processor.
Using the RISC V has a trade-off, the processor is well known and open-source

but adding own instructions and modifying the compiler may take considerable
longer compared to the Tensilica processor. However, this processor may serve as
a control unit of different hardware accelerators, which are performing the major
part of the calculations. Such a system needs to consists of the basic operations
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Figure 4.6: Overview of the PULPino architecture. [34]

of a CNN while keeping the flexibility to adjust the hyperparameters and the
network architecture. For example, we are performing a convolution followed by
an activation but without max-pooling. These different architecture possibilities
have to be taken into account to design a sustainable ASIC.
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Chapter 5
Convolution Hardware Accelerator

In the following chapter we describe the main computational bottleneck identified,
and a proposed hardware architecture addressing it. Additionally, we decompose
the convolution into a Finite Impulse Response (FIR) filter and derive the fast FIR
implementations. Furthermore, we describe more details about the accelerator and
finish by analyzing the implementation.

5.1 Identification of Computational Bottlenecks

After the selection of the reference model as described before, a C++ algorithm
including all necessary functions for the CNN was developed to be executed by the
Xtensa processor. The computation time on each of the functions are shown in
Table 5.1.

Table 5.1: Time spent on each of the main building blocks of the
reference model.

Function Time Spent (%) Number of Calls
Conv2D 28.17 22
Conv3D 0.32 10
Maxpool 0.32 22
Vsum 0.26 4
LoadModel 0.11 1
Relu 0.06 3
Fully Connected 0.02 1
Flatten 0.01 1
Softmax 0.00 1
Exp 0.00 20

For the reference model (1x28x28 - 2C5 - MP2 - 10C5 - MP2 - 160 - 10), 28.17%
of the time is spent only in calculating the basic convolution alone. Not considering
the memory allocation to store the results, else 66.86% of all computational time
is spent in the convolution to perform this CNN model. The remaining time was
spent performing many other processor’s instructions, such as allocating/freeing
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memory many times, and other auxiliary functions not directly related to the CNN
functions.

Another important factor, that should be considered in the identification of the
computational hotspot is the scalability issue as seen in Table 5.2. Note that by
making a single image 4 times bigger, the convolution time (5x5) will increase by
46.85 times, and 188.69 if the image is 8x bigger. Moreover, by having a bigger
image, the whole CNN computational time will be impacted by a much greater
factor, since each individual convolution time will increase.

Table 5.2: Image dimension in pixels vs software only convolution
computational time.

Image Size (pixels) 28x28 112x112 224x224
Image Increase (x) 1 4 8
Computational Time Increase (x) 1 46.85 188.69

A possible indication for such scaling complexity are the costly memory operations.
For the reference model seven within the TOP-21 most issued instructions are
memory instructions, clustered as shown in Table 5.3.

Table 5.3: Occurrence of the top-21 load/store instructions as a
total of all issued instructions.

Instruction Occurrences (%)
load 32-bit 30.0
store 32-bit 13.89
load 8-bit 1.79
Total 45.68

Therefore, it is expected that by usage of multiple load/store units one can
significantly speed-up the final system because multiple of those instructions could
be issued at the same clock cycle. A compromise is made by this possible strategy,
once that from convolution layer to the next, the number of elements to be calculated
is divided by four (by using 2x2 pooling). Consequently one has to find a number of
load/store units to minimize the number of memory access cycles while minimizing
the amount of no operations (when aiming for high efficiency).

Finally, for all the reasons previously described, it was clear that the main
bottleneck for forward-propagating CNN are at a first moment the convolution
operations, in terms of computational time and memory requirement. Convolutions
in CNN will not only be the main bottleneck in general, if the input size is not big
enough, or if the amount of convolutions performed are insignificant in comparison
to the MLP (not the usual case for artificial vision applications).
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5.2 Convolution as Fast FIR Filter

The convolution equation (2.26) can be written as:

S(i, j) =

M∑
m

(
N∑
n

I(i−m, j − n) ·K(m,n)

)
.

This can be transformed to a sum of M FIR filters with N -taps. One single FIR
filter is given by

y(x) = h(n) · x(n) =

N−1∑
i=0

i = h(i) · x(n− i) , (5.1)

with n = 0, 1, 2, ...,∞. The FIR filter can be implemented as fast FIR filter by a
strength reduction technique based on [35]. First of all we need a formulation of
the parallel FIR filter using the polyphase decomposition. It starts by converting
the equation into the discrete domain via z-transformation.

Y (z) = H(z) ·X(z) (5.2)

The infinite input X(z) and output Y (z) sequence can be decomposed into even
and odd numbers. Also for the filter coefficients H(z).

X(z) = x(0) + x(1)z−1 + x(2)z−2 + ...

= X0(z2) + z−1X1(z2) (5.3)

Y (z) = y(0) + y(1)z−1 + y(2)z−2 + ...

= Y0(z2) + z−1Y1(z2) (5.4)

H(z) = H0(z2) + z−1H1(z2) (5.5)

Consequently, the outputs can be computed as follows:

Y (z) = X0(z2)H0(z2) + z−1(X0(z2)H1(z2)

+X1(z2)H0(z2)) + z−2X1(z2)H1(z2) (5.6)

Y0(z2) = X0(z2)H0(z2) + z−2X1(z2)H1(z2)

Y1(z2) = X0(z2)H1(z2) +X1(z2)H0(z2) . (5.7)

The two output equations Y0(z2) and Y1(z2) are equivalent in the time domain
to y(2k) and y(2k + 1). This is a 2-parallel FIR filter with a throughput of two.
However, this filter can be further optimized by reshaping the equation as followed.

Y1 = X0H1 +X1H0 = (H0 +H1)(X0 +X1)−H0X0 −H1X1 . (5.8)
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Resulting in the following equations:

Y0 = H0X0 + z−2H1X1

Y1 = (H0 +H1)(X0 +X1)−H0X0 −H1X1 , (5.9)

implementing a fast FIR filter with two shared terms between the outputs. This
reduces the number of multiplications from 2N to 2N − N

L where N is the number
of taps and L the level of parallelism. The final 2-parallel filter can be written in
the matrix from Y2 = Q2H2P2X2.

(
Y0
Y1

)
=

(
1 0 z−2

−1 1 −1

)
diag

 H0

H0 +H1

H1

1 0
1 1
0 1

(X0

X1

)
(5.10)

In the previous part, we have derived the formula for the 2-parallel fast FIR
filter by using the polyphase decomposition. The resulting block diagram of the
implementation is shown in Figure 5.1. Here it is essential to understand that each
H can contain subfilters so that any filter can be designed.

H0

H0 +H1

H1

+ + +

+

-
-

D

x(2k)

x(2k + 1)

y(2k)

y(2k + 1)

Figure 5.1: Implementation of 2-parallel Fast FIR filter.

5.3 Hardware Implementation and Integration

The previously derived fast FIR filter can be used to implement an efficient
convolution hardware accelerator. We have focused on a kernel size of 5x5 because
it is very often used in CNNs. It can also perform the 3x3 kernel by zero padding
(adding zeros) the kernel.
Assume we have the following kernel:

k =


k00 k01 k02 k03 k04
k10 k11 k12 k13 k14
k20 k21 k22 k23 k24
k30 k31 k32 k33 k34
k40 k41 k42 k43 k44

 . (5.11)

Every FIR receives from each row of the kernel five coefficients. Consequently
the coefficient for one filter is obtained by:
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H0 = [k00 k02 k04] , (5.12)
H1 = [k01 k03 0] , (5.13)

H0 +H1 = [k00 + k01 k02 + k03 k04] , (5.14)

resulting into the following block diagram.

in

out

x x xC0 C1 C2

D D+ +

in

out

x x xC0 C1 C2

D D+ +

in

out

x x xC0 C1 C2

D D+ +

+ + +

+

-
-

D

x(2k)

x(2k + 1)

y(2k)

y(2k + 1)

Figure 5.2: Fast FIR filter as part of a full convolution.

To perform the 5x5 kernel convolution five fast FIR units are needed, each unit
is called here Fast FIR Computation Unit (FCU). Equation 5.1 shows the results
of each FCU, these need to be summed together as shown in Figure 5.3. The input
must be delayed between the FCU units to slide the kernel row-wise through the
image. Therefore we implemented a controllable shift register.

FCU0

FCU1

FCU2

FCU3

FCU4

Shift Reg0

Shift Reg1

Shift Reg2

Shift Reg3

+

xt, xt+1

yt, yt+1

Figure 5.3: 5x5 convolution implemented with fast FIR filters.
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This convolution processing unit is one of the main components of our hardware
accelerator. In Figure 5.4 all the single components and connections are shown. The
system reads from the memories through the memory interface, that is implemented
as a crossbar. Therefore we need to have direct access to the memories by using, for
example, a dual port memory. As designed the input image is expected in memory
0 and output in memory 1 or inversely. This results in the advantage of reduced
usage of memories inside the accelerator. The kernel data is stored in a register file
(kernel register) and configured during setup. The controller handles all the I/O
signals of the system while controlling the data flow of the internal components.

Convolution
Unit

Memory
Interface

Kernel
Register

Controller Control I/O

Memories I/O

Figure 5.4: Block diagram of the hardware accelerator.

To understand the working routine of the accelerator it is fundamental to know
the incoming signals. Depended on the connection to the processor the transfer of
the setup information can be performed in a single or multi-cycle transfer. The
input signals are

• Address input image

• Address kernel

• Address result

• Input image size

• Start-bit

The input information are stored in registers. When the start-bit occurs, the
kernels and bias are configured by reading each element from memory (two 16-bit
values per cycle), and some pre-calculations are performed so that during execution
only simple counters are running. Afterwards, the input image values are read
from memory. For each cycle two 16-bit elements are read, and after a latency,
the results are written back to the second memory in pairs (total 32-bit). The
convolution unit only gives the ’valid’ convolution out. Meaning that an input
image with the dimensions of 28x28 and kernel 5x5 will result in a 24x24 output
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dimension. For some other algorithms zero padding is used to keep the same size
for input and output. In our case the convolution is already used to down-sample
the input so we are not using zero padding. After the convolution is done the ready
signal is set to high and the processor reads or waits for an hardware interrupt.
The approach selection is a design choice. Also the intermediate register are reset
and the system is ready to perform the next convolution.
The hardware accelerator is implemented with 16 bit fixed point in a Q8.8 format.

This binary representation was selected because of its small RMS of circa 0.0075
compared to smaller bit widths. This error appears due to truncation in the FCU
and is depended on the input and kernel data. It is crucial to notice that this error
could be further reduced by a fixed point neural network training algorithm. Also,
such training could lower the requirement of a Q8.8 format. The performance of
this implementation is one of the main advantages compared to other solutions. It
needs 18 cycles to set up the kernel, the bias, and the counters. The cycle count
for the convolution can be calculated by:

cycles =
M ·N

2
, (5.15)

where M and N are the dimensions of the input image.
A short example to MNIST: input image dimensions of 28x28, therefore it will

need 392 cycles for the convolution and 18 for the setup. Thus, the full hardware
accelerator needs 410 cycles to compute the convolution of an MNIST image. This
cycle count scales up linearly. An image of 256x256 dimension will result in 32786
cycles.
The hardware accelerator was synthesized for 200 MHz and 1 GHz without any

memory. The worst negative slack went down to 0.0ps. This shows that the
convolution hardware accelerator can also perform high-frequency computations,
with the cost of a higher power consumption. The leakage was 40% higher compared
to the 200 MHz implementation. The frequency could be selected so that the
system can run in real time for a specific application.

COREIRAM

DRAM

DRAM

Accelerator

Figure 5.5: Integration of the hardware accelerator with the core.
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Figure 5.5 illustrates the integration of the accelerator with the core and the
tightly coupled SRAMs from Xenergic. The data memories have one dedicated
port for the core and another one for the accelerator. As described before, the
accelerator is controlled via the GPIO interface with an own instruction in the
Xtensa core.

5.4 Hardware/Software Implementation Results

After the hardware accelerator was implemented and verified, together with the
selected Xtensa core, an estimation of the new computation time per function was
made as show in Table 5.4. The following results are obtained by estimation of
the synthesized accelerator and processor estimations. The final system was block-
synthesized, but co-simulations could not be performed, due to tool complications.

Table 5.4: Estimated new computation time of the hardware/software
co-design. Final speed-up is estimated in 3 times faster than
the software only approach.

Function Time Spent (%) Number of Calls
Conv3D 0.98 10
Maxpool 0.98 22
Vsum 0.79 4
LoadModel 0.36 1
Relu 0.19 3
Fully Connected 0.07 1
Conv2D 0.05 22
Flatten 0.05 1
Softmax 0.01 1
Exp 0.00 20

Notice that the main convolution function, initially implemented in software,
was reduced from 28.17% to 0.05%, aided by the hardware accelerator. The other
building blocks have their significance slightly changed, once that the new total
number of clock cycles are reduced by three times.
No other performance limiting function that would call for a further optimization

was observed. We rather detect in the reference model a high number of processes
taking roughly one percent or less of the total computational time, summing up
to a third of what was the software-only number of cycles. This lately observed
processor overhead must still be further investigated in future work.
Finally, the expected energy/classification is:

E

Class
= 0.092 mJ/class (@200MHz) ,

yielding at 87 classifications per second, with an estimated accuracy of 97%.
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Table 5.5: State-of-the-art benchmarks compared to the present
work.

Bankman [36] IBM
TrueNorth

[37]

VLSI
’17[38]

VLSI
’17[39]

This
work

Technology 28 nm 28 nm 65 nm 40 nm 28nm
Algorithm CNN CNN DNN LCA CNN
Dataset CIFAR-10 CIFAR-10 CIFAR-10 MNIST MNIST MNIST
Precision [bits]
(Weights,
Activation)

(1,1) (1.6,1) (1.6,1) (4,1) (16,16)

Supply [V] VNEU = 0.6
VCOMP = 0.8
VDD = 0.8
VMEM = 0.8

VNEU = 0.6
VCOMP = 0.8
VDD = 0.6
VMEM = 0.53

1.0 0.55 -
1.0

0.9 0.9

Classification
Accuracy [%]

86.05 85.69 83.41 90.1 88 ∼ 97

Energy per
Classification [µJ ]

3.79 2.61 164 0.28 -
0.73

0.050 92

Power [mW] 0.899 0.094 204.4 50 - 600 87 7.88
Frame Rate [FPS] 237 36 1249 800 K -

3280 K
1.7 M 87.5

Table 5.5 shows prior relevant results in the field. First of all the dataset MNIST
is gray-scale and CIFAR-10 (dataset containing ten different classes) contains
colored images (RGB-format) with size 32x32 pixels. CIFAR-10 state-of-the-art
classification accuracy is at 96.5% [27]. A comparison of the present work with
CIFAR-10 implementations is valid, since the incremental cost in the reference
architecture can be seen as irrelevant (two more convolutions in total are needed,
and weight updates).
The design in [36], using the CIFAR-10 dataset, is a mixed-signal binary CNN

processor using XNORs instead of multiplications, due to weights and activations
being represented by a single bit. Additionally the filter size of the convolution
is fixed to 2x2 and has up to 256 channels. Although relevant to the field [36]
in comparison to the present work, has no flexibility. As discussed before, such
methodology will become a good alternative when an architecture able to solve
one of the great problems in machine learning is discovered, until this moment
flexibility is crucial.
A deeper look into [39] shows that they have designed an analog computation

neuron and a digital communication feature. By using the Locally Competitive
Algorithm (LCA) and reducing the weights to four bits, they could archive a energy
consumption of 50nJ/classification. Their impressive frame rate is due to the
fact that the LCA algorithm is much less computational demanding than CNNs,
together with the chip area and amount of "analog neurons" implemented. As
discussed before, the TOP-10 most accurate algorithms for the MNIST dataset, as
of today, implement CNNs. LCA algorithms are relevant, but have not yet been
widely used for artificial vision applications.
[38] is an implementation parallel in-memory computation for binary/ternary

deep neural network (DNN), basically a deep MLP. Reconfigurability is limited
to types as full, dense, and sparse. Additionally the number of neurons per layer
and the number of layers can be selected. So no deeper MLP architecture changes
can be done. This chip has a power consumption of 0.6W at 400 MHz. Work
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done by [38] is very promising in terms of DNNs, however the motivation for the
creation of CNNs was to reduce the amount of parameters necessary for a DNN
equivalent architecture. Additionally as discussed, CNNs are very robust to spatial
changes and image noise, when in comparison to DNNs. Thus, although with a
certain degree of flexibility, [38] methodology is not be as scalable and flexible as
the present work.
IBM [37] developed and published chip TrueNorth is based on a network of

neurosynaptic cores. Block-wise programmable connectivity builds up the full
CNN architecture. Activation and weights are represented by 1.6 (average) and
1 bit. They could achieve an accuracy of 83.41% with a power of 204.4mW for a
single TrueNorth chip. The accuracy could be increased by combining 8 TrueNorth
chips to 89.32%. The interesting results about this work is that they used different
benchmarks to analyze the system, and obtained an impressive frame-rate of 1249
FPS. The work by [37] is the one which is most similar to ours. It offers a higher
degree of flexibility by the aforementioned block-wise connectivity and a high frame
rate, at the cost of usage of many cores. Another fact is the wordlength utilized
of 1.6 bits in average for weights and 1 for activation negatively impact into the
final classification accuracy. The present work serves as an alternative, with higher
classification accuracy and lower energy per classification. Higher frame rates could
be increased by compromising area.



Chapter 6
Conclusion and Future Work

As we currently live in the renaissance of machine learning algorithms, the trade-
off between specification and generalization leans towards higher flexibility and
programmability. The application is in constant change, and no MLs architecture
design seems to attend the aspiration of the consumers fully.
This scenario demands efficient programmable hardware capable of delivering

the next best algorithm, sharing fundamental building blocks to its predecessor,
and thus having enough design space for hardware gains. This work exploited this
margin and benefited from it.
Results obtained by hardware accelerating a typical case of the most compu-

tationally expensive operation, the (5x5) convolution, yielded impressive results
when compared to our reference software implementation. Four order magnitude
acceleration was achieved, having an estimated speed-up of three times when in
comparison to the processor alone for the MNIST case.
Our results strongly indicate that there may be no other computation bottleneck

to be further accelerated. All other CNNs software implemented building blocks,
including the sum of all convolutions in our reference model, individually take less
than one percent of the new estimated computation time. As for a future project,
other more demanding dataset or architectures could be used (as Inception V4 for
ImageNet) in order to identify further computational bottlenecks not required by
MNIST usage.
This project indicates that in order to achieve greater single image classification

speed-up, increasing memory bandwidth, load/store units, and/or incrementing
the wordlength might offer significantly final speed-up.
Furthermore, this project hopes also to propose that even if the number of

load/store units were radically increased, one needs to consider that the amount of
operations per convolutional layer is reduced by four, since a 2x2 no overlapping
max-pool downsamples every four samples down to one each time it is performed.
Thus one better not consider the worst case scenario when considering further
optimizations.
As a future project, apart from co-simulating the hardware accelerator and the

Xtensa processor, we would suggest rethinking the architecture, as the present
work when scaled up would converge into a GPU-like architectures, with many
processors and accelerators working in parallel. Finding out a possibility to lower
the number of memory instructions, while scaling down the processor, avoiding
unnecessary overhead, and using it just to control other CNNs building blocks

45



46 Conclusion and Future Work

seems a possibility to us. Additionally a pure C optimized implementation of the
building blocks could be done in order to minimize the processor’s overhead.
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