
React Native vs Xamarin – Mobile
for industry
DERVIS AVDIC
MASTER´S THESIS
DEPARTMENT OF ELECTRICAL AND INFORMATION TECHNOLOGY
FACULTY OF ENGINEERING | LTH | LUND UNIVERSITY

Printed by Tryckeriet i E-huset, Lund 2019

D
ER

V
IS A

V
D

IC
R

eact N
ative vs X

am
arin – M

obile for industry
LU

N
D

 2019

Series of Master’s theses
Department of Electrical and Information Technology

LU/LTH-EIT 2019-689
http://www.eit.lth.se

1	
	

Master Thesis

React Native vs Xamarin – Mobile
for industry

By

Dervis Avdic

Department of Electrical and Information Technology
Faculty of Engineering, LTH, Lund University

SE-221 00 Lund, Sweden

2	
	

Abstract
This thesis is developed in collaboration with Tetra Pak AB. The
assignment was to create a mobile application which would present
information from a platform called ACT, Automation & Connectivity
Tools. The mobile application would be called ACT Mobile and
would also have functionality from ACT and one application which
ACT provides. The ACT platform is a collection of applications that
helps and facilitates the work for Tetra Pak employees. This can for
example be with remote support and assistance functionality, where
they don’t have to be physically present. The mobile application
would be developed within two different mobile frameworks in
parallel. The two frameworks are React Native and Xamarin.
Additional aspects to evaluate are also the maintainability of the
system and performance. The result of the thesis was that ACT
Mobile was further developed in Xamarin. One of the main reasons
was the good knowledge of ASP.NET C# in Tetra Pak. That makes it
easy for Tetra Pak to maintain and develop ACT mobile since
Xamarin is based on ASP.NET.

Keywords: Mobile application, Xamarin, React Native, UI, UX,
integration, Web API and Web application.

3	
	

Sammanfattning
Detta examensarbete är genomfört i samarbete med Tetra Pak AB.
Syftet är att utveckla en mobilapplikation som ska erhålla data från en
plattform som heter ACT, Automation & Connectivity Tools. Den
mobila applikationen ska heta ACT Mobile och inkludera
funktionalitet från ACT och en applikation som plattformen
tillhandahåller. ACT är en samling applikationer som hjälper och
underlättar arbetet för anställda på Tetra Pak. Detta kan exempelvis
vara med live videosamtal, där de inte behöver delta fysiskt för att
kunna tillhandahålla hjälp. Den mobila applikationen ACT Mobile är
utvecklad i två olika mobila ramverk parallellt. De två ramverken är
React Native och Xamarin. En utvärdering av ramverken har gjorts
huvudsakligen baserad på hur underhållsbart systemet är och i vilken
prestanda som applikationen tillhandahåller. Resultatet blev att ACT
Mobile utvecklades i Xamarin. Detta på grund av att kompetensen
inom ASP.NETs C# är mycket bredare på företaget vilket leder till att
vidareutveckling och underhåll blir mest tidseffektiv i Xamarin.

Nyckelord: Mobilapplikation, Xamarin, React Native, UI, UX,
integration, Web API och Webapplikation.

4	
	

Acknowledgments

This master thesis would not exist without the support and guidance
of;

Rikard Carlsson, Manger Infrastructure – Tetra Pak AB.
I want to thank you for letting me have this opportunity.
Rikard has been my supervisor for this thesis and is also the
functional product owner. He has helped me through the project,
answering all my questions and has successfully managed to guide
me and my work.

Jonas Melin, IT solution architect – Tetra Pak AB.
Jonas has been very helpful throughout the project and has helped me
a lot in the begging and with certain difficulties with for example
Web API and SOAP services. To that I am very grateful.

Carl Danell, Software developer – Tetra Pak AB.
Carl has been very helpful throughout the project and has helped me a
lot in the begging and with certain difficulties with for example UI
and UX. To that I am very grateful.

I am also grateful for all the help I have gotten from the team working
with the ACT platform.

Christin Lindholm, Associate professor
I want to thank you for your guidance throughout my thesis and
report and answering all my question regarding my thesis.

Christian Nyberg, Associate Professor
I want to thank you for answering my question regarding the thesis.

5	
	

Contents
Abstract	...	2	

Sammanfattning	..	3	

Acknowledgments	...	4	

1.	 Introduction	..	8	

	 Background	...	8	

	 Digitalization	...	9	

	 Tetra	Pak	history	...	10	

	 Purpose	and	Goal	..	10	

1.4.1.	 Purpose	...	11	

1.4.2.	 Goals	..	11	

	 Problem	definition	..	11	

	 Limitations	..	12	

2.	 Technical	background	...	14	

	 Automation	&	Connectivity	Tools	(ACT)	14	

2.1.1.	 Service	Platform	..	15	

	 React	Native	..	16	

2.2.1.	 Advantages	with	React	Native	..	17	

2.2.2.	 Disadvantages	with	React	Native	...	18	

2.2.3.	 Redux	...	19	

	 Xamarin	...	21	

2.3.1.	 Advantages	with	Xamarin	...	22	

2.3.2.	 Disadvantages	with	Xamarin	..	23	

	 Xamarin	vs	React	Native	...	24	

2.4.1.	 Market	...	25	

2.4.2.	 Availability	..	25	

6	
	

2.4.3.	 Compilation	...	26	

2.4.4.	 Development	Environment	..	26	

2.4.5.	 Framework	..	26	

2.4.6.	 Reusable	code	...	27	

3.	 Methodology	and	Analysis	...	28	

	 Working	methods	...	28	

3.1.1.	 Agile	&	Scrum	..	30	

3.1.2.	 Team	Foundation	Server	...	32	

	 Solution	of	the	problems	..	33	

3.2.1.	 Problem	solution	-	React	Native	...	34	

3.2.2.	 Problem	solution	-	Xamarin	..	36	

	 Source	criticism	...	38	

4.	 Results	...	42	

	 Results	...	42	

4.1.1.	 ACT	Mobile	-	React	Native	..	42	

4.1.2.	 ACT	Mobile	–	Xamarin	..	48	

4.1.3.	 Differences	between	Xamarin	and	React	Native	53	

	 Final	ACT	Mobile	...	53	

5.	 Conclusion	...	64	

	 Result	..	64	

	 Conclusion	...	68	

	 Use	of	the	prototype	..	70	

6.	 Future	work	..	72	

	 Future	development	...	72	

References	...	74	

Figure	References	..	76	

7	
	

List	of	Acronyms	..	78	

8	
	

1. Introduction

This chapter gives an introduction to the thesis, its purpose, goals and problem
definition. Finally, limitations of the thesis work are presented and what could be
implemented in future versions is discussed.

 Background

This master thesis is carried out in cooperation with Tetra Pak AB.
The thesis describes how to create a mobile application for the
Embedded Automation & Digitalization department which has
developed the platform Automation & Connectivity Tools, ACT. The
decision on which framework the mobile application should be
developed in, is made by comparing and analyzing two different
mobile frameworks, React Native which is a sub-library to React
written in JSX (JavaScript) and Xamarin which is developed in
ASP.NET.

The mobile application called ACT Mobile will communicate with
the APIs that ACT is communicating with. The ACT application that
is going to be displayed by ACT Mobile is determined by its possible
mobile usability and demand from the users of ACT. A part of the
work is therefore to investigate which application in ACT is most
suitable and has the highest demand.

In parallel with this	React Native and Xamarin are compared. This is
done by developing ACT Mobile with both frameworks and compare
them. ACT Mobile was built first in React Native where the start
menu and dashboard were first designed and implemented. This was
followed by designing and implementing the start menu and

9	
	

dashboard in Xamarin. The reason for the parallel design and
implementation was to continuously describe and note the differences
of the frameworks. These observations were the basis for decisions on
which framework to further develop ACT Mobile in.

Initially ACT Mobile was first developed in React Native where the
design process began with a design mockup of the start menu and
dashboard. This was done in order to receive feedback from the
product owner and architect. The feedback determined the direction
of the design process. The same was done with Xamarin. The design
of ACT Mobile will be adjusted during the development especially in
the beginning. Therefore, is it important to start out with an initial
design which receives feedback from the product owner and architect.

The main target for the mobile application are Tetra Pak employees,
Automation Specialists (AS) and Field Service Engineers (FSE)
which are supporting the customers factories.

 Digitalization
Our whole society is heading in a direction where the digitalization is
inevitable. Within the food and beverage industry where Tetra Pak is
involved there are many aspects of how to digitalize the industry in
order to create efficient processing and packaging solutions. Tetra
Pak has therefore established clear objectives for the whole company
regarding digitalization.

This thesis examines one of the objectives which is striving to create
factories which can be supported by AS and FSE based on all the data
that is gathered. Therefore, creating a mobile application for the Tetra
Pak employees that support the customers factories is one small step
towards that objective. The focus is to be able to provide help and
support without physical attendance.

10	
	

 Tetra Pak history

Tetra Pak AB was founded in 1951 in Lund, Sweden by Ruben
Rausing. Shortly after the founding he started to create the first
packaging system for dairy products, which was designed and
manufactured by Tetra Pak. This was completed on the 18 of May
that same year. In November 1952, the first product was created, a
one deciliter cream-package [1].

In 1956 the company moved to their own factory at Råbyholm in
Lund. Tetra Pak then began to create some unique packaging
products for milk and other dairy products like Tetra Classic, Tetra
Brik and Tetra Prisma. This got attention from outside of Sweden and
this was the first time the company reached out to the world.
Råbyholm is still one of their most important sites today and was their
headquarters until late 20th century before the headquarter moved to
Switzerland [1].

Tetra Pak is still today the world leader in food processing and
packaging solutions for food. The company has more than 23,000
employees in over 85 different countries and these figures are
increasing for every year. When the company was founded by Ruben
Rausing in 1951 they specialized in creating and designing packaging
systems. This is still a part of their income source. Today they focus
in creating complete solutions for processing, packaging and
distributing food products such as dairy products, juices, ice cream
and cheese [1].

 Purpose and Goal
Throughout the master thesis it is important to identify the purpose
and to establish goals in order to facilitate the working process. The
purpose and the main goals of this thesis are presented below.

11	
	

1.4.1. Purpose
The purpose of this master thesis is to explore and investigate two
different mobile frameworks, React Native and Xamarin. This is in
order to establish an appropriate framework and develop a mobile
application called ACT Mobile. This mobile application is built with
base functions which are the login system and user functionalities
from the original platform called ACT. Using the base functions one
application from ACT is implemented in ACT Mobile for testing.

1.4.2. Goals
These are the main goals of this master thesis.

Ø Create a mobile application with a user interface adapted to
Tetra Pak standard and which is which is audience adapted.

Ø Find the most suitable mobile development framework
technology to create the application through a comparison
between React-Native (JSX/JavaScript) and Xamarin
(ASP.NETs C#).

Ø Investigate which application in ACT would bring most value
in a mobile application in terms of usability and rapid access.

Ø Create a scale-able and maintainable integration with the ACT
platform

 Problem definition
The problem definition of the master thesis is presented below and is
going to be used during the whole working process.

Ø How to collect feedback from the target user?
Ø Which comparison metrics are suitable when selecting

between React Native and Xamarin?
Ø How to investigate which application in the ACT platform is

going to be implemented as a web application?

12	
	

Ø Which possibilities and limitations exist to create an
integration between the mobile application and ACT
platform?

Ø How should the mobile application behave when users are in
the factory and when out of range?

 Limitations
One of the limitations of the master thesis is that not all of the mobile
development frameworks are used in the comparison. This is because
React Native and Xamarin are frameworks used for cross-
functionality development and this thesis doesn’t investigate
frameworks that use native development, such as Swift/C for XCode
or Java for Android Studio. There are more cross-functionality
development frameworks on the market, but they have a much
smaller market share than React Native and Xamarin.

All the applications in the ACT platform are not implemented in ACT
Mobile. This is due to the time aspect and complexity of
understanding how the applications in ACT are structured and
implemented. There was an original idea of creating a priority list of
ACT applications to be transformed to mobile applications in ACT
Mobile, but this was not completed. The reasons for this are presented
in section 5, Conclusion.

13	
	

14	
	

2. Technical background

This chapter gives an introduction to the technical background of the thesis work. It
describes ACT, Service Platform, Xamarin and React Native.

 Automation & Connectivity Tools
(ACT)

Automation & Connectivity Tools, called ACT is a platform
developed by the Embedded Automation & Digitalization department
of Tetra Pak. It is mainly used by automation engineers and field
service engineers around the world to maintain different factories that
are connected to the ACT platform. The ACT platform displays a
variety of applications that their users need when working with an
issue. Some of the applications within the ACT platform are
Connectivity dashboard, Remote Service Unit (RSU) dashboard,
Remote support and Remote assistance.

The ACT platform is installed on Tetra Pak’s servers, where it can be
access by the Tetra Pak LAN or by the RSU if the user is located at a
customer site. Figure 1 presents how the RSU is located on the
customer site and the Tetra Pak LAN. This design has been chosen,
because the user is not always present at the customer site. Therefore,
there must be an access point to the customer site through the RSU
and out to the global Tetra Pak server.

The information that ACT presents is gathered by the RSU on the
customer site. This data contains information about how the factories
are operating and if there is any alarm about shutdown. The data that
is being generated is sent to the server at Tetra Pak Lund and is then
displayded by the ACT GUI. The data is continuously updated

15	
	

through VPN from the stationed RSU server all the way up to the
server located in Tetra Pak Lund. By this server set up there is a
possibility to send and receive data.

	

Figure 1 - RSU overview

2.1.1. Service Platform
Originally the ACT platform is a user interface upgrade from the
previous platform called Service Platform. The Service Platform is
the Tetra Pak generic channel for all electronics service product tools
functionality in customer operational environment. It supports all
common needs like user handling, single sign-on, language support,
offline operations, multi device support and standard user interface. It
is built on top of the Tetra Pak secure standard way of networking the
customer with VPN technology.

The Service Platform is seen at figure 2 where the workspace lets the
user navigate to and start the desired services. Service Platform
provides an all-in-one window integrated layout, where all the
windows and panels are integrated into a single larger application
window.

Customer	Factory	

RSU	
Tetra	Pak	
server	
(ACT)	

Data	

16	
	

	

Figure 2 - Service Platform UI

 React Native
React Native is a JavaScript framework which is used to write
natively rendering mobile applications with cross-functionality. This
means that applications developed by React Native can be used on
both iOS and Android. React Native is originally based on
Facebook’s JavaScript library called React. This was created in order
to build user interfaces for browsers and later on Facebook created a
mobile framework called React Native. Web developers which have
experience with JavaScript and React can easily write native
applications for all mobile devices at the same time [2].

The behavior of React Native is very similar to React applications
because they both use a combination of JavaScript and XML markup,
known as JSX. React Native invokes the native rendering of APIs in
Objective-C for iOS and Java for Android. In that way the mobile

17	
	

application will render using real mobile user interface components
and therefore look like any other mobile application [2].

2.2.1. Advantages with React Native
One of the largest advantages is that React Native renders using the
platforms host standard APIs.	This native rendering technique is not
used by other cross-platform frameworks. Other frameworks that
want to achieve something similar use a combination of JavaScript,
HTML and CSS and renders their views using Web Views, which is a
simplified web browser inside the mobile application [2].

It can therefore render native user interface elements on Android, iOS
and Windows Phone views. Performance is important for mobile
applications and React Native can achieve a high performance by
working separately from the main UI thread. React Native renders
views by changing the props or state. Props are so called properties
that every component contains. A React Native application consists of
components and each component represent a part of the GUI that is
displayed on the mobile phone. It can also include some functionality
to perform operations within the mobile application. This is an
effective way to communicate between the components which render
the user interface [2].

React Native and React change and modify content on the GUI by
changing the state and props. React Native changes the state and
props by mutating the user interface libraries provided by the mobile
devices. This is done by the mobile manufactures to ensure that the
correct content is displayed and that the mobile application developed
doesn’t creates performance issues. React changes the state and props
by using HTML and CSS markup [2].

An additional advantage of the development environment in React
Native is that the changes in the mobile application can instantly be
previewed. This is important, because developers need feedback on

18	
	

their projects. There is also a strong debugging tool integrated in
React Native which uses a browser to present the debugging
information. During the development the developer can debug the
mobile application simultaneously as the debugging data is presented
on a web browser, see figure 3 [2].

Figure 3 - Debugger for React Native

	

Reusing code with React Native is simple. React Native applications
are built with components that can be reused within the application.
All of the code can’t be reused, because it targets different platforms.
Facebook and Microsoft are both working on reusability, because it
can save a lot of time during development. Within a large
development project increased reusability could lead to large cost and
time reductions [2].

2.2.2. Disadvantages with React Native
The largest risk developing with React Native is the framework's lack
of maturity. The framework was released in March 2015 to iOS and

19	
	

to Android in September 2015 and is therefore in an early stage of
development. Another disadvantage is the lack of experienced React
Native developers. Facebook, which founded React Native are
continuously working on creating a sustainable and maintainable
framework. [2].

One more disadvantage of React Native is also that because of its
early stage there is not so much information on the framework and the
solutions it offers. The traditional way of programming has been with
Java for Android and Objective C for iOS [2].

React Native is built with JavaScript XML (JSX) which is a
typescript language built on JavaScript. It is a different way of
programming because is both involves code structure and design.
New React Native users can perceive the framework to be difficult in
the beginning and therefore can have a steeper learning curve [2].

2.2.3. Redux
React Native is suitable for writing small applications, but when the
application is starting to grow and becomes more complex it will get
complicated to handle all the state and props if there are a lot of
components. Therefore, a library called Redux has been developed to
make it easier to handle this complexity. [3].

Nowadays, user interfaces are becoming more complex and need
quite a lot of maintenance. Routing is often implemented on the client
so that we don’t need to refresh a browser in order to see some
change. Before this, the application had to refresh the whole page.
Routing on the client side is beneficial for performance, but it means
that the client must handle more states compared to server-side
routing. Managing all these states can be very difficult if not handled
correctly [3].

20	
	

Figure 4 – React + Redux

Figure 4 describes how React and Redux operate together. Actions
are JavaScript objects which describe the state changes in the
application for the different components. Then there are action
creators which basically behave like functions that take in parameters
and return actions where they are supposed to change something.
Reducers which receive actions and current state, return a new state
and send it to the store. The store behaves like the core of Redux and
stores and guards the states of the application. All of the components
within the application can subscribe to state changes in the store and
dispatch actions to it. Because of this every component can
communicate with each other, rather than going to the parent node
each time and further out. See figure 5 for more clarification [3].

Figure 5 - Redux structure

21	
	

 Xamarin
Xamarin is a development platform which enables cross-platform
development on iOS, Android and Windows phone through writing

C# code. The Xamarin platform ports .NET to the iOS and Android
operating system and it also partly supports the Windows Phone, see
figure 6 above [4].

Under Android and iOS layer there is Mono runtime. This is the
bridge between C# and the native Android and iOS APIs. This
enables the development to use Android and iOS user interface,
notifications and all the features included in the phone. This is to
create a development environment as if you were to develop a native
application. Xamarin’s takes advantage of .NET for the features
regarding data types, generic types and garbage collection, Language-
Integrated Queries, asynchronous programming patterns and
Windows Communication Foundation communication. In order to
connect all this to the Xamarin this is managed by a linker to only

Figure 6 - Xamarin

22	
	

include the referenced components. Xamarin forms which are used in
this master thesis have a layer on top of the other UI bindings which
provides a fully cross-platform UI library, see figure 7 [4].

Figure 7 - Xamarin Forms

	

2.3.1. Advantages with Xamarin
One of Xamarin’s largest advantage is the ability to reuse code. This
can create an effect on the development, because it saves time and
energy from the developers. Xamarin is also built with C# which is a
modern and advanced language that is well known among the
development and software business. Therefore, it is easy to find
information and solutions regarding C# problems [5].

Due to the popularity of developing mobile application with Xamarin,
it facilities business that emphasized modern mobile development.
One reason is the fast development speed without compromising on
cost. The speed of developing the first beta version can be rapid and it
would also target all the different mobile operation systems, such as
iOS, Android and Windows.

23	
	

An additional benefit with Xamarin is the shared code base. When
hiring a Xamarin developer, the developer has a good overview of the
API, web services and input validation, because all is included within
the framework. When hiring software developers for developing
mobile application, costs could be reduced. This is due to the
developer competence, because the developer creates one mobile
application and it targets all the mobile operating systems. If the
mobile application is built natively, targeting each mobile operating
system would require three developers, one for each OS [5][7].

The Xamarin transforms UI components into platform-specific
elements which results in a real native application and not in a hybrid
application which could have impact on performance and user
experience. This is important in today’s mobile development [5][7].

One more practical advantages with Xamarin is that the framework
allows for unit, integration and system testing due to the integration
with .NET framework. Today’s pressure on getting the product to the
market is very critical. A lot of companies strive for automated testing
on the devices and Xamarin opens the possibility to test the product
for performance aspects and general bugs [6].

Much fewer developers use Xamarin than the native frameworks for
Android and iOS. Therefore, a learning platform called Xamarin
University has been developed. Experts on Xamarin and mobile
applications can provide live and online classes for developers [6].

2.3.2. Disadvantages with Xamarin
One disadvantage with the Xamarin framework is that the installation
files must include linkage and referencing for all mobile OS to work
correctly. This can lead to large file sizes of 3 megabytes to 15
megabytes. Due to the file size the time for downloading the
application or initializing it may be considerable [5].

User interface, UI is one of the most important parts of mobile
development. One of the most time-consuming tasks when Xamarin

24	
	

is used is the UI development. Although Xamarin has a high ratio in
shared code base, there is some time-consuming portion of coding for
each independent platform [5].

Xamarin is under a license cost just like Microsoft Visual Studio.
They are all commercial tools that is licensed and it comes with a cost
[8, page 29].

Google and Apple are gradually releasing new updates and features to
their mobile framework and it can then occur some delay in order to
transform those releases into Xamarin’s framework. It can create
issues for the developers working with Xamarin, when the users are
experiencing new features with native applications, but not with
Xamarin developed mobile applications [8, page 29].

 Xamarin vs React Native
The demand for mobile applications has been growing since their
launch in 2008. Due to this high number of users many applications
are needed to meet the user’s need. In March 2017, there are over 2.8
million Android applications and 2.2 million iOS applications.
Therefore, it becomes interesting to find a framework which can meet
Time to Market demands and create applications which are
maintainable, testable and stabile. Earlier in the creation of
applications native language has been used to create the applications,
but now there are frameworks for creating applications which can be
run on all platforms. Examples of this are the competing Xamarin and
React Native [9].

In section 2.4 Xamarin and React Native are compared. These two
frameworks are the most mentioned when talking about cross-
functional frameworks and to compare and evaluate them is the main
purpose with this thesis [10].

25	
	

2.4.1. Market
The market share for React Native is increasing as the figure 5 shows.
There is a lot of different companies that uses React Native in their
software development and companies like Guardian, Tesla and
Facebook are some of the companies which use React and React
Native in their software development [9].

	

Figure 8 - Market share for Xamarin vs React Native

	

Xamarin is 6 years old and has therefore a longer history than React
Native. Over 15000 companies like CA Mobile and Story use
Xamarin. According to Google (see figure 8) Xamarin's market share
is decreasing. Why this is happening will be discussed in the
conclusion of this report [9].

2.4.2. Availability
As mentioned earlier there is a cost for Xamarin on enterprise level,
but there is a limited free version in which some features can be
accessed in order to test the framework. React Native is a free tool
which is available to anybody that wants to create applications with it
[9].

26	
	

2.4.3. Compilation
JIT, Just in Time compilation is not possible when developing mobile
application with iOS with React Native. This is because React Native
interprets the JavaScript code and uses the JavaScript Core library in
the iOS and Android in order to process its content [9].

Xamarin uses ASP.NETs C# which enables both JIT and AOT,
Ahead of Time compilation, but only AOT compilation is used [9].

2.4.4. Development Environment
With React Native the developer can choose which Integrated
Development Environment, IDE they want to work with. Examples of
IDE are Visual Code, Visual Studio and Atom [9].

When working with React Native on an Apple computer, the
developer is restricted to only compile the iPhone simulator on the
Apple device. Xamarin has some beneficial functions regarding this.
Xamarin enables the development project to be created on a Windows
machine, but complied on an Apple computer in an iPhone simulator
[9].

2.4.5. Framework
React Native is essentially developed from React, therefore React
Native uses the one-way data flow which is included into React. This
is similar to the JavaScript web development and therefore is more
suitable to what the JavaScript developer is used to [9].

Xamarin follows the Model View ViewModel pattern called MVVM
style. Developers which have experience with ASP.NET web
development are familiar with this pattern and can therefore easily
understand the syntax and structure [9].

27	
	

2.4.6. Reusable code
React Native has complete components which are ready to use and
include into the application and this comes with great documentation
of what the components are and how they perform [9].

Xamarin follows ASP.NETs NuGet store where there are components
stored. This is a market store for all the external libraries and
extensions for Visual Studio users. There are some improvements on
the documentation, because the framework is older and more
stakeholders have contributed [9].

The problem that occurred while developing the mobile application in
both frameworks are presented in under section 3. In the conclusion,
section 5 there is also the final discussions about why one of these
frameworks was most suitable for this thesis

28	
	

3. Methodology and Analysis

This chapter is about the methodology and analysis used during the thesis work. It
also describes which problems/challenges this thesis has encountered and how they
have been solved.

 Working methods
The work was divided into several
parts as presented in figure 9. The
first part consisted of collecting
information about React Native and
Xamarin. This was done to be
able to decide in which
framework to start developing
ACT Mobile. Because the
author of this thesis has less
experience with React Native it
would probably take longer time to
develop ACT Mobile with React
Native than with Xamarin. Therefore,
the development started with React
Native. Further on the development
of ACT Mobile was done in
parallel. When the development of
ACT Mobile in React Native was
completed, the development process
continued with just Xamarin. The
development was done in parallel

Collect	information	
about	React	Native	&	

Xamarin	

Develop	ACT	
Mobile	–	
Xamarin	

Develop	ACT	
Mobile	–	

React	Native	

Development	of	ACT	
Mobile	was	done	in	

iterations	

Discussion	&	evaluation	
about	which	framework	
to	further	develop	in	

Complete	ACT	Mobile	

Fe
ed

ba
ck
	

Figure 9 – Development process

29	
	

because the evaluation and analysis of performance and usability
could be done at each step.

Thereafter a long discussion was held with the architect and product
owners to evaluate which mobile framework is most suitable to
further develop in. During the discussion, it was decided to base the
evaluation on the following metrics: maintainability, scalability and
the ability to integrate with Tetra Pak environments data transport
protocols. There were also discussions if the knowledge about the
frameworks could be found in at the organization and if not, which
are the costs for learning or buying the knowledge in terms of hiring.

Throughout the whole development process there were appointed
meetings to collect feedback from the product owner and architect,
but there were also spontaneous meetings to discuss the progress and
collect new feedback.

In parallel with the processes of developing the application there was
a need of structure to create an effective workflow for the thesis
work. The workflow process was therefore built on an Agile work
process called Scrum, see figure 10, which will be described in
section 3.1.1 Agile & Scrum. Briefly explained it’s an iterative and
incremental agile software development framework for product
development.

30	
	

Figure 10 - Scrum work process

	

3.1.1. Agile & Scrum
Scrum is an iterative process which was followed in this thesis and
development process. The iterations are divided into two weeks of
work, where one week is called one iteration and both weeks is called
one sprint. After completion of one iteration there was a discussion
about the progress so far, if any problem has occurred and what
should be implemented in the next iteration. In this thesis, there were
8 iterations completed. In order to keep track of all the tasks and
assignments there was a backlog implemented in Team Foundation
Server, see figure 11. More information about Team Foundation
Server in section 3.1.2.

31	
	

The backlog that contained all the assignments and tasks was
separated into two sections, a product backlog and a sprint backlog. A
product backlog is where all the tasks are created and stored. In the
sprint backlog, there is only tasks which are supposed to be
completed within the iteration. This is to separate what is most
prioritized. All the tasks that should be implemented for the whole
thesis were divided into features and one feature can have multiple
stories, see figure 11. This work is done before the implementation in
order to prioritize what should be developed first and which should be
included into the current sprint. When the correct stories are included
in the sprint the development of the mobile applications begins.

The stories that are included into the sprint can also have something
called tasks which describe what should be done in detail. This is
done in order to create more traceability and control of what is
developed and if something happens, what went wrong. This is also
an advantage when working in teams with multiple people, because
then all the developers can have knowledge of what the others are
working with.

Scrum is a branch of agile development, which is a set of standards
for developing software. The requirements, or the prioritized tasks
evolve within self-organization teams and are often managed by a
Scrum Master [10].

Scrum is also a framework for some of the largest companies around
the world where Tetra Pak is included. Scrum is usually used for
larger project developments, where developers take advantage of the
iterative process. This is to enhance the work process and create
efficiency, which has been proven when comparing against other
product development methods. One of the largest advantages is that
new demands from the customer can easily be prioritized in the
original priority list of tasks. If this occurs there is a possibility to
change the backlog priority in order to meet the customer demands
[10].

32	
	

3.1.2. Team Foundation Server
There are different applications available on the market to handle the
features, stories and sprint overview and they come with a variety of
license costs. Some of them are also free that allow in-purchase
functionality. Tetra Pak has created a standard for handling code,
tests, requirements and project management. This is in order to give
an overview of products and allow traceability in customer products
and to control the test environment. This is also a tool available for
management to analyze the product installations, how many bugs and
incidents that have been reported. Team Foundation Server can also
be integrated with the code writing editor from Microsoft, Visual
Studio. Tetra Pak is therefore using Visual Studio together with TFS
for optimal integration and performance when working with the code
and requirements. Figure 11 presents a general work day of TFS with
all the features and included stories. To the left in the figure the
current sprint is displayed.

Within the TFS there is also existing a priority of the stories in terms
of what should be implemented or done first. The stories are usually
called requirements in a water fall working process.

33	
	

Figure 11 - TFS work process

 Solution of the problems
Problem solution has been an extensive part of this thesis. The first
problem emerged when the mobile application was created with
React Native due to the knowledge level in React Native. It has
similarities with JavaScript, but still has a very different structure in
rendering information and establishing logic functions. The
knowledge of this framework was low in Tetra Pak, therefore a lot of
information gathering for answers resulted in an extensive Internet
search and testing different code examples. The problems that are
presented below are more practical problems that emerged when the
knowledge about React Native was gained. All of the problems below
were solved and the complexity of each problem is presented with the
most challenging problem first.

The problems that occurred in developing the mobile application,
ACT Mobile in React Native (JSX/JavaScript):

• Create a mobile application which can be scalable

34	
	

• Create an architecture that is maintainable and enable
scalability

• Limitations in integration with the ACT platform

The development of ACT Mobile created some challenges, where the
authors experience in C# was not an issue, but there arised some
problems regarding the architectural structure. This was because the
earlier experience was in web development and there are some
differences when developing a mobile application in C#. All the
problems below were solved and the complexity of each problem is
presented with the most challenging problem first.

The problems that occurred in developing the mobile application,
ACT Mobile in Xamarin (C#):

• Create a mobile application which can be scalable

• Limitations in integration with the ACT platform

• Limitations in integration with the ACT platforms messaging
protocol

• Deployment of ACT Mobile to iPhone

3.2.1. Problem solution - React Native
The development of React Native created some challenges due to the
author’s lack of knowledge about JavaScript and React. Therefore,
there was some struggling in the beginning, but with persistency,
information search and testing the lack of knowledge quickly
transformed into an effective development process, because of
research and testing code examples. It was starting to get more fun
and React Native’s advantages were clearer. One of the first problems
that did occur during the development was to handle requests between
components within the application. A component renders a part of the
GUI interface and the communication between the components can

35	
	

quickly become very complex if the structure is inefficient.
Discussions regarding how to scale the applications architecture
raised some discussion if the application was to become larger.

As presented in figure 5 in section 2.2.3, there is a figure that explains
the differences between the state through all components. The figure
starts with the parent on top and explains how there exists a
possibility to have a store which holds all the states. The problem
with implementing Redux in an already developed system can be time
consuming however this could lead to an efficient system. There was
some lack of competence with React at Tetra Pak and it would lead a
cost, because there is a need of investing in learning React.
Additionally, the cost would become greater if Redux also was
necessary for further development. There was a decision not to invest
in Redux, because it would only create a more complex application
which was not necessary at this stage of development. This decision
was taken together with the product owner and architect of the ACT.
The benefit of using Redux when implementing ACT Mobile
revealed itself when the components had to communicate with each
other in a more complex situation.

This also leads into the second issue where the architecture had to
become maintainable and flexible in order to add new functionality
into the mobile application. ACT Mobile was created as a native
platform which should offer the different applications that ACT
platform can provide. These applications in the ACT platform would
then be created as web applications and could be presented both in the
ACT Mobile, but also in the ACT platform. ACT Mobile will
therefore grow and would become more complex which means that
it’s important to invest in architecture. The ACT Mobile was
established as a platform which held the native functionality of login
system, user and navigation functionality.

There occurred some limitations regarding the integration against
ACT platform. To begin with, ACT platforms messaging protocol

36	
	

against log-in system was built with Simple Object Access Protocol
(SOAP). There is a more recent process to handle this, by Rest API
which is very commonly used in mobile application. React Native
does not support SOAP services. Therefore, the SOAP service had to
be transformed into a Web API which then could be used by the
mobile application to authenticate and authorize certain users into
ACT Mobile.

A testing process for the ACT Mobile in React Native was not
implemented neither was any test completed, due to lack of time.
There were tasks in the TFS to create a test environment, but the
focus was on create a first version of a mobile application.

3.2.2. Problem solution - Xamarin
As the development with ACT Mobile began with React Native it
continued with Xamarin. The first version of ACT Mobile in Xamarin
was faster due to the author’s knowledge level in C#. It was easier to
understand how Xamarin wants the developer to build the application
and because of the author’s earlier experience in C# there opened
possibilities to create a robust code structure.

How to create a mobile application with scalability to enable more
functionality from the ACT platform was one of the challenges with
developing ACT Mobile in React Native. This was also solved by
creating an application from the ACT platform as a web application.
The web application is then presented in the ACT Mobile and the
ACT platform. This solved the scalability problem, because every
application that would get included is created as a web application
and then it could be presented in both the mobile application and
ACT platform. There could emerge some problem regarding the
performance of displaying a web application and the solution to that
is to create the application from ACT as a native functionality. It
would prevent the application to be displayed into both ACT Mobile
and ACT platform.

37	
	

Limitations of the ACT platform were identified as with the React
Native. ACT was built with SOAP services and there is support for
SOAP services in Xamarin, because it is partly a Microsoft product
and Microsoft develops SOAP services. When the configuration of
communication with the SOAP service was complete there was an
ability to communicate with the ACT platform in order to retrieve
information about the user. Another problem that occurred during
development, was that the requests from SOAP to the ACT platform
were encrypted with Web Services Enhancements (WSE) 3.0 for
Microsoft .NET. It is a common practice to encrypt secure the
information that is being sent between the applications because ACT
holds sensitive information about Tetra Pak employees. Therefore,
the WSE enables developers and administrators to apply security
policies to web communication running on the .NET Framework 2.0.

Xamarin only supports the .NET standard and not the .NET
Framework 2.0 as WSE was implemented on and it was not possible
to communicate with the ACT platform through SOAP services. The
SOAP services had to be transformed into a Web API. In order to
keep the security intact there are built in features which can encrypt
information sent between the HTTP-requests in order to secure the
Tetra Pak user information.

When the development of the application started, there was a need for
testing it in a physical mobile device. Earlier on, the testing was done
with the emulator of an Android device in Visual Studio. The testing
of the mobile application was limited due to network problem
regarding the Web API. It was not located on a global server since
sensitive information is sent. Due to the limitation of Android
devices, there were only iPhones to test on because Apples devices
are an industrial standard throughout the company, both mobile
devices and tablets.

Visual Studio is a Microsoft product and therefore, they want to limit
the testing on Apples devices. There was a possibility, but it included

38	
	

an Apple laptop. If an Apple laptop was used the process started with
connecting the iPhone to the MacBook through the mobile
application development tool called XCode, which is used to develop
mobile application for Apples devices. Then a contract is created that
enables the application to be tested on iPhone for 6 days and be stored
on the iPhone. Further on the project on Visual Studio was opened
and remotely connected to the MacBook through the PC computer.

This enabled the mobile application project on the PC computer to
remotely connect to the MacBook which simulated ACT Mobile on
the iPhone. The application started and could now be used on the
iPhone which had the certificate to run it. The problem was that the
ACT Mobile was never used on the iPhone, because the Web API
that handled the login was not located on a global server. It was never
resolved, because a large organizational process was needed in order
to locate the server to enable outside web requests. This could create
a good opportunity to test the application in a physical device but was
never done.

A testing process for the ACT Mobile in Xamarin was not
implemented neither was any test completed, due to lack of time.
There were tasks in the TFS to create a test environment, but the
focus was on creating a first version of a mobile application.

 Source criticism
The source criticism is very important. For the history facts Tetra
Pak's home page was used when collecting information. This is safe
and reliable information, because the source is Tetra Pak and when
talking about the history there is no hidden agenda with trying to sell
something. When writing about React Native, Redux and Xamarin it
is best to find information from an impartial source. If collecting
information from Facebook which developed React Native, then
Facebook would write out the information for their market benefit
and Microsoft would do the same, which has connections to Xamarin

39	
	

even though they are not the founders. Therefore the need of sources
which have an independent perspective is the most valuable source.
The investigation in the sources reliability has been assessed by the
questions; Who is behind the source? Is it a company? Is it an
organization? Is it a private person? Is it someone you rely on? [12].

After these questions has been asked, there is a next step of questions
that can be asked and those are; Is it to inform? Is it to convince me
into something? Is it to sell me something? It is important to examine
whether the company wants me to buy their product or use their
framework and that can be accomplished by describing how complex
and secure the product is and reflect the benefits. Discussions and
opinions that come from sources where people are professional
software developers have a greater reliability. Therefore, the
information from those kind of sources is consistent and can be used.
If the source has connection with the founders, they will probably
present more benefits. There is then the possibility to combine the
source with another in order to establish a reliability.

When analyzing a source of information something that is very
important is to analyze how the information is presented. If the
information includes both drawbacks and benefits and is written with
an interest to teach, then the information is more reliable. If the
source only wants to sell something or only present the benefits, there
could be some suspicions regarding whether it is to teach or only to
sell. For example, regarding Xamarin, the source where the benefits
and drawbacks where extracted were from a blog. Often blogs have a
theme and therefore contain articles based on partial perspectives.
The important part of this is to abstract the relevant information and
compare with real life experience. If there is any doubt, don’t use the
information until it is confirmed with another similar source. Ask the
questions; Who is behind the source? Is it someone that can be
trusted? Is it a company? [12].

40	
	

When it comes to the comparison between the frameworks, Xamarin
and React Native there are more questions raised about the sources.
This is for the sources 5, 6, 7, 9 and 10. Questions regarding where
the sources come from are very important, because it could be the
companies behind writing for the frameworks advantages. The
question; Is it to convince me into something?

When assessing the different sources, the most central part is also to
assess the authors. Which kind of articles do they write and how do
they write them. Do they have a background of being partial in their
writing? Then that information should be compared to what is known
to happen in software development. The advantage within this thesis
is that the assessment of the information is already confirmed from
previous programming knowledge and therefore increases the
reliability with the source. That is information which can be extracted
[12].

In this report, there is a section about product development, Agile &
Scrum. Here the source is CPRIME, which could be strengthened by
adding a book about Scrum. CPRIME is a company that delivers a
service to progress structure in product development. They clarify
what scrum and agile is in terms of how it is managed out in work
field. The purpose of the page creation is though unclear. Their goal
could also be to slowly affect the reader and convince the reader to
purchase their service. One perspective could also be to try their
service, because of their great quality and customer service. The
source was chosen because it gave a realistic information about
product development with agile [12].

41	
	

42	
	

4. Results

This chapter presents the results of a comparison between a mobile application
prototype ACT Mobile created in React Native and in Xamarin.

 Results
The result of this thesis includes the comparison of React Native and
Xamarin and the result of the prototypes that was created by both
mobile framework. Both protoypes include a log-in system for
authorized Tetra Pak users. If log-in is successful there is a navigation
page for the application which is available for each user. The
navigation page for ACT Mobile is different on each mobile
framework. The navigation design on Xamarin can be seen in figure
15. ACT Mobile navigation design for React Native can be seen in
figure 13 and is presented with a start page and then the page is
changed to the current application. These two different navigation
designs were tested in order to see how the user experiences different
design approaches.

More in detail about each application is described in the following
sections. Section 4.2. ACT Mobile presents which mobile
development framework ACT Mobile was further developed in. Due
to copyrights and ownership of the mobile application any code is not
visible and presented in this thesis.

4.1.1. ACT Mobile - React Native
The first prototype of a mobile application that was developed was
with React Native. One of the first things that was implemented is the
log-in system, see figure 12. Here the Tetra Pak user creates an
authorization with their Tetra Pak email and password. The

43	
	

authentication is based on a rest call to the Web API created for this
thesis. It then validates the user and sends back a response. The
response is interpreted by the application in order to process the user
to the navigation page or to try log in again.

When trying to log in to the system the application also handles all
requests with activity indicators in order to create visual feedback to
the user. This feedback can for example be a spinning wheel. This is
very important when interacting with a mobile application, because
there is no other visual feedback that is sent back to the user and
therefore it can be unclear about how different activities progress.

44	
	

Figure 12 - ACT Mobile - React Native Log-in

If the user is not successfully logged in, the input fields for the email
and password becomes empty and the user can try to log in again. The
user is allowed unlimited attempts to log in. If the user is successfully
logged in, then the user is redirected to the navigation page, see figure
13.

45	
	

	

Figure 13 - ACT Mobile - React Native Navigation

Figure 13 is presenting the available applications for the logged in
user. The navigation consists of 4 applications. The first application is
a Microsoft Power Business Intelligence application which collects
information about site alarms and present their data. The second
application presents the same content with an exception that is in a
Web View. This means that the application is opened within a frame
inside the application and the first application opens a browser. The
third application presents Google within the application in a frame

46	
	

and not in another browser window, see figure 14. The fourth and last
application is the Customer Operation Access application. This
presents information about customer sites around the world with
purpose to display how the site is running and if any alarm has been
detected. It is also presented within a web-view.

The navigation page also presents a welcome text where the mobile
application communicates with the Web API. Here the state is
changed by a prop on the welcome text. The complete navigation
page is rendered by using states. Dependent on which application is
chosen the state is changed and therefore the whole page changes.

47	
	

	

Figure 14 - ACT Mobile - Google Web View application

In figure 14 the application of Google Web View is opened and
presented within its frame. This is an example of how the web
applications from ACT is presented in the application. Some of the
functionality from ACT is transformed into a web application and can
be shown as websites inside the application. Other information and
functionality is created natively because of performance and
interaction and that is an example of the log-in system and navigation
functionality.

48	
	

4.1.2. ACT Mobile – Xamarin
The second application which was developed during the thesis was
the ACT Mobile with Xamarin. One of the first things that was
implemented was the log-in system, see figure 15. The log in system
is developed as in React Natives log-in system in corresponding
JavaScript. The only differences are the design with the background
color and a logotype of Tetra Pak in Xamarin’s ACT Mobile. A Tetra
Pak user creates an authorization with their Tetra Pak email and
password. The authentication is based on a rest call to the Web API
created for this thesis, which confirms if the user is valid or not and
sends back a response. The response is interpreted by the application
in order to process the user to the navigation page or to try log in
again.

When trying to log in to the system the application also handles all
requests with activity indicators in order to create feedback to the
user. Therefore, when trying to log in the system will complain if the
fields are empty, no authority or wrong credentials.

The Android project emulator is a fictive mobile device inside the
computer and therefore lacks Internet connection and GPS location.
Therefore, the bar at the top indicates that no Internet is available.
When starting the iOS project, a simulator is started which is a
simulation of the iOS application. The simulation has the same access
rights and functionality as the computer it is simulated on. Another
example of confirming that the emulator is a fictive mobile device
inside the computer is that when writing localhost in order to retrieve
the local IP-address on the emulator it cannot interpreted. This is
because the emulator is a real device and a mobile device do not
contain a localhost attribute. The simulator understands it, because it
is a simulation on a computer and therefore has access to the
computers local IP-address.

49	
	

Figure 15 - ACT Mobile - Xamarin

	

If the user is not successfully logged in, the input fields for the email
and password becomes empty and the user can try to log in again. If
the user is successfully logged in the user is redirected to the
navigation page, see figure 16.

50	
	

	

Figure 16 - ACT Mobile - Xamarin Navigation

	

Figure 16 presents a different navigation design than figure 13 which
is the navigation design selected for the React Native application. The
different design approach for Xamarin was made in order to
collecting more feedback about which navigation approach is most
user friendly. More information about the differences is presented in
4.1.3 Differences between Xamarin and React Native. Within the

51	
	

navigation design there is also a separation between the applications
and the profile functionality as can be seen in figure 16. This is in
order to present a clear view of the application regarding the ACT
Mobile and the functionality regarding the user.

The applications which is included in ACT Mobile are built with Web
View functionality which is the same as with React Native. An
application is presented as a frame inside the ACT Mobile, see figure
17. This is the long-term goal for every application, because the ACT
Mobile doesn’t have to generate a new browser in order to display the
information. It enables ACT Mobile to easier transport data between
the web view and the application itself.

52	
	

	

Figure 17 - ACT Mobile - Xamarin WebView

	

Figure 17 displays the content of a Web View inside the Xamarin
application. As described with React Natives web view, this is an
example of how the web applications from ACT is presented in the
application. Some of the functionality from ACT is transformed into a
web application and can be shown as websites inside the application.

53	
	

4.1.3. Differences between Xamarin and React
Native

This section explains and summarizes the differences of Xamarin and
React Native found during the parallel development phase. The log in
system is the first encounter with both versions of ACT Mobile. Here
the functionality behind the log in system is equal with the exception
that it developed in two different environments and therefore the
syntax of the programs become different. Further on the design has
some minor differences where React Native has white background
and Xamarin dark blue.

When successfully logged in to both applications the navigation
design on Xamarin can be seen at figure 15. This is possible to
perform on all of the different pages inside ACT Mobile and the
available functionality is the applications and user settings which are
separated in order to facilitate the experience of the user. ACT Mobile
navigation design for React Native can be seen at figure 13 and is
presented with a start page and then changes page to the current
application by replacing the start page. The user settings are available
at the top header where there is a home and user button for the
corresponding functions.

Other differences in the web view component which both applications
have implemented is that in the Xamarin application there is a
navigation header at the top, see figure 17. Here the user can enter a
different web link and go forward and backwards. This is not
implemented in the React Native application, because it was not
necessary due to the decision to use Xamarin in the future.

 Final ACT Mobile
After developing the ACT Mobile in both Xamarin and React Native
there was a final decision on which framework to use in the future.
This was Xamarin, due to maintainability, scalability and further

54	
	

development competence. Section 5 Conclusion explains
maintainability, scalability and further development competence in
more detail. The application had some refactoring to the design as can
be seen if figure 15 and 18 are compared. In the log-in page the
background color was changed in order to follow Tetra Pak’s
standard for colors. The placeholder for the username is changed and
this is because the Tetra Pak user don’t longer log in with the domain
name (@tetrapak.com). This was made because the only authorized
users are able to log in to ACT Mobile are Tetra Pak employees.
Therefore, the system adds the domain name for the user, so that the
user doesn’t have to waste time. When typing the password, the user
can also press the icon with an eye. This is a peek functionality where
the user can reveal the password behind the password characters. It is
a convenient function because writing on a mobile device can be
more difficult than when typing on a keyboard.

55	
	

Figure 18 - ACT Mobile - Log in

	

There is also a home page implemented and that is the start page for
the ACT platform, as can be seen in figure 19. Here is also a welcome
text which call the rest API in order to retrieve information about the
logged in user.

56	
	

	

Figure 19 - ACT Mobile - Home

	

The navigation page had some design modifications as seen in figure
20. The icons are redesigned with more suitable images that represent
what the application does. It is also done to create a connection
between an image and an application. It facilitates the for the user,
which is confirmed by feedback from the product owner and
architect. Customer Operation Access and Connectivity are two

57	
	

applications that present a web application within an iframe and the
Customer Site locator is a beta application that was developed as a
native application.

Figure 20 - ACT Mobile - Navigation

58	
	

	

Figure 21 - ACT Mobile - Site locator BETA

Site locator is a native application developed as a proof of concept to
another application called Customer Operation Access which also can
be seen at figure 20. It displays all the available customers and the
user can then navigate to their RSU dashboard in order to overview
the status of the specific details of a factory.

In this function there is all the available and online factories and the
user can click on them in order to go to the RSU dashboard. The RSU

59	
	

dashboard is not visible in order to maintain customer secrecy, see
figure 21.

Another design approach to navigate between the sites is to
implement Google Maps as seen in figure 22. Here all the available
factories are presented as needles on a map and the user can see the
name and address of a factory. If it is clicked, then the user is
redirected to the RSU dashboard. This design approach is an
advantage to the user, because it doesn’t have to search for the site in
some tree structure or in a list. If the user has some clue of where the
site is located, it can easily trace the site on a map. It helps the user
see the sites from a whole new design perspective.

60	
	

	

Figure 22 - ACT Mobile - Google Maps

The profile function is implemented, see figure 23 and if the user
clicks on the profile is reveals all the information about the logged in
user and there is the possibility to change password, see figure 24.

61	
	

	

Figure 23 - ACT Mobile – Profile

	

62	
	

	

Figure 24 - ACT Mobile - Profile - Change password

	

There is also a page for user settings. This is supposed to collect all
the common settings for the logged in user, see figure 25.

63	
	

	

Figure 25 - ACT Mobile – Settings

	

Further on the ACT Mobile has not been tested with automatic tests,
unit tests or integration tests. The user interaction and design features
have been tested where discussions has been held with the product
owner and architect. Unit and integration tests are something that is
prioritized in future work and is something that is necessary if the
mobile application reaches the market.

64	
	

5. Conclusion

This chapter contains the conclusions of the thesis work and the answers to the
problems addressed in this thesis. It also contains how the result will be used by
Tetra Pak.

 Result
This section answers the problems specified in section 1.4.

Ø How to collect feedback from the target user?

The feedback was received by the thesis author from the product
owner and the architect on an appointed meeting. Here the
discussions regarded the architect, user interface, UX and how to
create a design that is in align with Tetra Pak’s colors.

Further on the collecting of feedback was completed by displaying
demo versions of the applications every other two week. This was
done to synchronize the design, user interface and UX effort with the
people that is supposed to use and maintain the application in the
future. If ACT Mobiles new functions were not discussed with the
product owner and architect there would be a possibility to create
redundant functionality which is time and energy consuming.

When ACT Mobile was demonstrated feedback was received
regarding new requirements or modifications. This feedback was
received by the product owner and the architect and discussed in
order to analyze if new functionality is necessary and suitable to the
applications architecture. Feedback that was received which was not
given by the architect and product owner was always discussed with
the product owner and architect in order to align with the future of
ACT Mobile in terms of functionality and user interface.

65	
	

If feedback was given by the developer, the feedback would be
transformed into tasks in the backlog. This is a benefit because every
feature that is stored in the backlog is also confirmed by product
owner and architect. The product owner confirms that the features is
needed by the customer and the architect is confirming that the
function is needed for further development and that is possible with
the current architectural setup.

Ø Which comparison metrics are suitable when selecting
between React Native and Xamarin?

There is a variety of metrics that could be used to evaluate which
mobile framework is most suitable for future development. Some of
them are number of code rows written. reusability of code and
scalability. All these metrics are important for comparing React
Native and Xamarin. Due to secrecy, there is not an exact number of
differences in code rows, but there was more code written inside the
Xamarin project then in the React Native project. This shows that the
React Native framework has better code reusability then Xamarin.
Although Xamarin Forms is developed in order to increase its
reusability React Native still wins and this is because of the
component structure. Scalability is a metric that is very important, but
was not the most crucial because the long-term perspective for the
ACT Mobile was unclear at Tetra Pak. Therefore, the scalability was
not prioritized.

The metrics that were prioritized and most important was the further
development and maintainability of ACT Mobile. The knowledge
behind the architecture of ACT Mobile is very important. This is due
to maintainability and further development. If there is lack of
knowledge within the architecture, maintainability and further
development can become very time consuming and costly in terms of
money. This can also be seen for larger software productions for
mobile development. When creating something, make sure that the
product can be maintained and further developed if handed to some

66	
	

other organization. Reusability is something that was discussed for
code but can also be applied to complete products. If the whole
organization knows what is developed within the company, there is a
possibility to share knowledge and experience.

The developers that are going to create further applications and add
new functionality must have the competence to proceed this. Here at
Tetra Pak the most used coding language is ASP.NETs C# and they
are a Microsoft oriented company. This means that they are heavily
invested in Microsoft environment. They also have different mobile
development departments around the world working in Xamarin.
Therefore, the development was being proceeded in Xamarin.

Ø How to investigate which application in the ACT platform is
going to be implemented as a web application?

This problem was solved by discussion with the product owner and
the architect and all developers involved in developing applications in
ACT. People that also has connection with business units and towards
the customer was also involved to receive information about which
demands the customers have on mobility solutions. Therefore, the
decision was taken by the thesis author, the architect and the product
owner about which application is most suitable for a mobile device.
What suitability means in this context is which application can be
presented in a mobile device and have most usability for the
customer.

Initially there was a discussion about creating a priority list for every
application in ACT that would be developed as a web application.
Due to lack of time no priority list was created.

To develop the log in system and the dashboard was time-consuming.
That was considered more important and this is something that was
discussed along the way together with the product owner and
architect.

67	
	

Therefore, Customer Operation Access was chosen as the application
that should be converted to a web application. The reason behind this
was that the application had firstly an outdated user interface and the
tree structure was very complex. Customer Operation Access
application was created as a web application in JavaScript, HTML
and CSS. The application is responsive, so it is presented in a tablet
and mobile device equally well as within desktop environment. The
COA application was also created as a native functionality inside
ACT Mobile and this was to demonstrate the power of native
functions. The tree structure that was complex could be more efficient
in terms of performance if ACT Mobile could avoid rendering
HTML. It was shown that it was efficient with native functionality,
but the benefit of creating a responsive web application is that it can
also be shown in the ACT platform. The decision was to keep both
the web application and the native function in order to evaluate both
approaches.

Ø Which possibilities and limitations exist to create an
integration between the mobile application and ACT
platform?

ACT platform uses SOAP services to send and receive data and there
is not support for that in React Native and with Xamarin there existed
an integration. The problem which occurred further on was that the
SOAP Service is secured and encrypted with a web service called
WSE 3.0, more information is in 3.3.2 Problem Solution – Xamarin.
WSE 3.0 did only support .NET framework and it differentiated from
Xamarin’s framework, which was .NET standard which is a different
framework only for mobile solutions. The conclusion was therefore
that there is a limitation between integrating ACT Mobile and ACT
platform due to the differences in their framework.

Possibilities that occurred for the integration aspect was that some
web application could be possible to present within the application as

68	
	

a website, but this would work on a traditional mobile web browser
such as Safari, Google Chrome and Mozilla Firefox.

Ø How should the mobile application behave when users are in
the factory and when out of range?

This was implemented back-end as a native function inside the
application. There is mocked data which generated geographical
coordinates, longitude and latitude for the different sites. The mobile
device could then through its own GPS support recognized where the
device is located and calculate the vicinity to the site. The reason
behind the mocked data is because there is no Web API supporting
the data communication of the sites geographical positions. It is only
stored in a database and must be transformed into a Web API and that
comes with a security risk of leaking vulnerable information to the
Internet.

 Conclusion
This solution is presented based on evaluation of the two frameworks
Xamarin and React Native. It presents material about the differences
between React Native and Xamarin, but also how to evaluate which
framework is most suitable. These metrics are maintainability,
scalability and accountability. One of the most important discussions
are also in which environment the mobile application is developed.
The thesis discusses the organization or company that is developing
the mobile application and formulates questions that should be asked
and answered before any development is started.

There must be a long-term plan for scaling the application and how to
add new and existing functionality. There must also be an
architectural basis for the application which enables the possibility to
handle a lot of data and functionality. Furthermore, there should
exists the possibility to test the mobile application before released to
customers.

69	
	

The maintainability is an important aspect and there is a great need
for a plan for how to maintain the application. This is because if there
is not a strategy for this, the mobile application can grow without the
application is maintained. This can lead the mobile application to
crash in the worst-case scenario. Therefore, a plan must be
implemented in order to avoid this risk. To create a sustainable
strategy for the maintainability the competence must be allocated,
within the company or from external resources such as consultants.
What is the cost of hiring consultants to maintain the application or
can the company solve the problem themselves within in-house
competence if it exists. The in-house competence should be located
and allocated before taking this decision to avoid redundancy.

The accountability, the responsible within the organization for the
mobile application is something that is also very important, but
sometimes is not prioritized. The responsibility could for example be
very confusing and have multiple ownership within the company. It
can therefore be complicated when different stakeholders within the
company begin to make demands for their own benefit. Then the
mobile application creates a different purpose than what it was
created for. It is therefore important to ask the question; Who is
responsible? If the responsibility question is solved it is easier to
integrate other demands from different stakeholders and create a
mobile application that could be used by multiple stakeholders and
employees within the company. An additional benefit that is
generated from a solid responsibility-strategy is the efficiency of
locating other competence within mobile application development.
This is because there is a structured overview of which kind of
application each stakeholder develops and designs. Each stakeholder
can avoid that code and design are duplicated in order to save time
and money.

70	
	

 Use of the prototype
This prototype will be used and commissioned by Tetra Pak along
their new ACT platform MES in 2019. They are then able to offer
customers a mobile version of the ACT platform with functionality
that is suitable and user-friendly.

This is also a benefit for their branch within the organization, because
they can market their product and describe their capacity and
responsibility within their branch. It is also presenting a step into the
digitalisation which is one of the company’s digital strategy set for
the coming years.

71	
	

72	
	

6. Future work

This chapter of the thesis will be about future work in Tetra Pak with the ACT Mobile.

 Future development
The ACT Mobile prototype works in Tetra Pak LAN. This is because
the Web API is only installed on Tetra Pak due to the risk of
uncovering valuable information. In the future, there is the possibility
to install the Web API on a server which can be access from outside
Tetra Pak LAN. Then there would be a possibility to use the ACT
Mobile where ever the employees are located, if connect to Wi-Fi and
Internet.

Further on ACT Mobile is going to be included with more
functionality from the ACT platform. Before implementing anything,
there must be a discussion regarding if the functionality is mobile
friendly and suitable for a mobile device. A mobile application
doesn’t always have to be the solution. This is because there exists
web applications that achieve the same performance and usability if
they are responsive within the browser. The cost and time of creating
a mobile application can therefore be avoided.

It is important for other companies that also want to implement a
mobile solution that they first analyse the needs. If the decision is to
develop a mobile application, it is also important to utilize the native
functionality with the mobile device. This can for example be Global
Positioning System, Accelerometer, Gyroscope, Magnetometer or
Proximity sensor. It is not necessary to utilize these native functions,
but then it is more time effective and cost-friendly to create a
responsive website to present information.

73	
	

If a company has some content regarding not only plain information
there is also a discussion about how to handle those functionalises
inside the application. In ACT Mobile Customer Operation Access is
presented as a web application because it is more convenient to show
the application on a desktop device. If the application is more suitable
and user-friendly with some natively functionality such as the GPS
and Google Maps, then maybe the application should be transformed
into a native application also in order to exploit the functions
maximum.

Consequently, the analysis of why the mobile application must be
developed is very important and what it should be used for.

74	
	

References

[1] Tetra Pak AB. Tetra Pak History. [ONLINE] Available at:
http://www.tetrapak.com/se/about/history [2018-10-05]

[2] B. Eisenman. 2017. Learning React Native – Building Native
Mobile Apps with JavaScript. Second edition. Published by:
O’Reilly Media, Gravenstein High North, Sebastopol, United
States of America.

[3] D, Bugl. 2018. Learning Redux – Build consistent web apps with
Redux by easily centralizing the state of your application. First
edition. Published by: Packt Publishing Ltd, Birmingham, UK.

[4] D. Hermes. 2015. Xamarin Mobile Application Development –
Cross-Platform C# and Xamarin.Forms Fundamentals. First
edition. Published by: Apress.

[5] Red Bytes. Advantages and Disadvantages of Xamarin in Mobile
App Development. [ONLINE] Available at:
https://www.redbytes.in/advantages-and-disadvantages-xamarin-
mobile-app-development/ [2018-11-27]

[6] Quora. What are the advantages and disadvantages of
developing apps on Xamarin cross-platform? [ONLINE]
Available at: https://www.quora.com/What-are-the-advantages-
and-disadvantages-of-developing-apps-on-Xamarin-cross-
platform [2018-10-05]

[7] Gerasimov, V.V., Bilovol, S.S. and Ivanova, K.V.,
COMPARATIVE ANALYSIS BETWEEN XAMARIN AND
PHONEGAP FOR .NET.

[8] N. Panigrahy. 2015. Xamarin Mobile Application Development
for Android – Develop, test and deliver fully featured Android
applications using Xamarin. Second edition. Published by: Packt
Publishing, Livery Place, Birmingham, UK.

75	
	

[9] Cabot. Xamarin vs React Native: Which is Better for Cross-
Platform App Development? [ONLINE] Available at:
https://www.cabotsolutions.com/xamarin-vs-react-native-which-
is-better-for-cross-platform-app-development [2018-10-05]

[10] DZone. Xamarin vs. React Native – Comparison of Two Cross-
Platform Development Tools. [ONLINE] Available at:
https://dzone.com/articles/xamarin-vs-react-native-comparison-
between-two-cro [2018-10-05]

[11] CPRIME. What is agile? What is Scrum? [ONLINE] Available
at: https://www.cprime.com/resources/what-is-agile-what-is-
scrum/ [2018-12-04]

[12] IIS. Källkritik på Internet by Kristina Alexanderson. [ONLINE]
Available at: https://www.iis.se/lar-dig-mer/guider/kallkritik-pa-
internet/ [2018-12-06]

76	
	

Figure References

[Figure 1] Creator: Dervis Avdic [2018-01-27]

[Figure 2] Creator: Dervis Avdic [2018-11-29]

[Figure 3] Creator: Dervis Avdic [2018-11-29]

[Figure 4] https://cdn-images-
1.medium.com/max/1600/0*95tBOgxEPQAVq9YO.png [2018-12-
06]

[Figure 5] https://blog.codecentric.de/files/2017/12/Bildschirmfoto-
2017-12-01-um-08.53.32.png [2018-12-06]

[Figure 6] https://technovert.com/xamarin/ [2018-11-29]

[Figure 7] https://www.sitepoint.com/build-cross-platform-android-
ios-uis-xamarin-forms/ [2018-11-29]

[Figure 8] https://trends.google.com/trends/explore?date=today%205-
y&geo=US&q=react%20native,xamarin [2018-11-29]

[Figure 9] Creator: Dervis Avdic [2018-01-28]

[Figure 10] https://luis-goncalves.com/what-is-scrum-methodology/
[2018-12-04]

[Figure 11] Creator: Dervis Avdic [2018-12-17]

[Figure 12] Creator: Dervis Avdic [2018-12-17]

[Figure 13] Creator: Dervis Avdic [2018-12-17]

[Figure 14] Creator: Dervis Avdic [2018-12-17]

[Figure 15] Creator: Dervis Avdic [2018-12-17]

[Figure 16] Creator: Dervis Avdic [2018-12-17]

[Figure 17] Creator: Dervis Avdic [2018-12-17]

[Figure 18] Creator: Dervis Avdic [2018-12-17]

[Figure 19] Creator: Dervis Avdic [2018-12-17]

77	
	

[Figure 20] Creator: Dervis Avdic [2018-12-17]

[Figure 21] Creator: Dervis Avdic [2018-12-17]

[Figure 22] Creator: Dervis Avdic [2018-12-17]

[Figure 23] Creator: Dervis Avdic [2018-12-17]

[Figure 24] Creator: Dervis Avdic [2018-12-17]

78	
	

List of Acronyms

APP Application

API Application Programming Interface

React Native vs Xamarin – Mobile
for industry
DERVIS AVDIC
MASTER´S THESIS
DEPARTMENT OF ELECTRICAL AND INFORMATION TECHNOLOGY
FACULTY OF ENGINEERING | LTH | LUND UNIVERSITY

Printed by Tryckeriet i E-huset, Lund 2019

D
ER

V
IS A

V
D

IC
R

eact N
ative vs X

am
arin – M

obile for industry
LU

N
D

 2019

Series of Master’s theses
Department of Electrical and Information Technology

LU/LTH-EIT 2019-689
http://www.eit.lth.se

