Self-organizing Maps for Digital

Pre-distortion

MICHAIL ISAAKIDIS

MASTER’'S THESIS

DEPARTMENT OF ELECTRICAL AND INFORMATION TECHNOLOGY
FACULTY OF ENGINEERING | LTH | LUND UNIVERSITY

Self-organizing Maps for Digital
Pre-distortion

Michail Isaakidis
mi3105is-s@student.lu.se

Department of Electrical and Information Technology
Lund University

Supervisors:
Liang Liu (LTH)
Ove Edfors (LTH)
Asad Jafri (Ericsson)

Examiner: Erik Larsson

September 20, 2020

© 2020
Printed in Sweden
Tryckeriet i E-huset, Lund

List of Acronyms

3GPP 3rd Generation Partnership Project
ACLR Adjacent Channel Leakage Ratio
AM/AM Amplitude to Amplitude

AM/PM Amplitude to Phase

BMU Best Matching Unit

DLA Direct Learning Architecture

DPD Digital Pre-Distortion

DRC Design Rule Check

DSP Digital Signal Processor

FLOPs FLoating point Operations Per second
ILA Indirect Learning Architecture

IMD Intermodulation Distortion

IP Internet Protocol

LS Least Square

LTE Long-Term Evolution

LUT LookUp Table

ML Machine Learning

PA Power Amplifier

PAPI Performance Application Programming Interface
PCA Principal Component Analysis

SOM Self-Organizing Map

W-CDMA Wideband Code Division Multiple Access

ii

Abstract

Power amplifiers are very important components in the area of wireless com-
munications. However, they are non-linear devices and they seem to achieve
high efficiency when they are operating in the non-linear regions, at the cost of
being more power-consuming. In order to linearize their behavior, designers
have been considering many methods. Among those, the digital pre-distortion
tends to be the most popular one.

There are different ways of applying the digital pre-distortion. Two of the
most common are the pseudo-inverse and gradient descent methods. Both
those two methods require too much power, as a result of the high amount
of computation. For this reason, new power-efficient methods are under re-
search.

The main focus of this master thesis is to explore the possibility of apply-
ing the digital pre-distortion with the use of self-organizing maps, a machine
learning algorithm, to develop a more efficient digital pre-distortion (DPD)
unit. The algorithm implementation and the simulations were performed with
the use of MATLAB and the neural network toolbox.

During this research, the performance, the accuracy and the computa-
tional complexity of the implemented design were measured before and after
the fine tuning of some of the system’s parameters. The target is to show if
the use of this algorithm is an efficient method of implementing digital pre-
distortion.

iii

iv

Popular Science Summary

Digital pre-distortion: A new approach

The power amplifier is an electronic device that is used in order to increase
the magnitude of the power of a given input signal. It is used for devices like
speakers, headphones and RF transmitters. It is considered as an essential
element within the wireless communication area, due to the fact that it is
used for the transmission and the broadcasting of the signals to the users. In
addition to those, with the use of power amplifiers and the increase of the
power levels, higher data transfer rates became available. What basically a
power amplifier does, from a computation perspective, is that it receives an
input signal and multiplies it with the desired gain. But that is an ideal model
of a power amplifier. However, the power amplifiers are non-linear sources
for a communication system, so the real model differs a lot from the ideal
one. They tend to be non-linear as their output power increases and reaches
close to its maximum value, which can create an in-band distortion within
the system. For this reason, the linearization of power amplifiers is a very
important topic under research in the digital communications field.

The most common method for linearizing a power amplifier’s behavior is
the digital pre-distortion. This method is very power efficient as well as cost-
saving. Ideally, with the pre-distortion, the characteristics of a power ampli-
fier are inverted in order to compensate for the non-linearities. The role of
a pre-distorter unit inside a digital communication system is to correct any
possible gain and phase nonlinearities and in combination with the system’s
amplifier to produce a “clear” out of distortion signal. With the use of the
pre-distortion and the gain stability that it can provide in the output of the
amplifiers, the construction of bigger, more expensive and less efficient ampli-
fiers is no longer necessary. Despite the fact that the pre-distortion is widely
and successfully used, it has been observed that the current ways of apply-
ing the pre-distortion are very power-consuming due to their complexity and
the amount of computational power they require in order to perform the pre-
distortion. For that reason, new approaches are under the scope.

Nowadays, there is a trend in electronics where many concepts are being
implemented with the use of machine learning in order to replace the number

of computations with simpler logic, such as the classification of the data and
the prediction of the desired values. It is easy to understand, that a high
amount of computations inside a system means more power which leads to a
higher operating cost. As a result, a more power-efficient system could lead
to a big saving in terms of power and money.

This project evaluates the impact of the self-organizing maps algorithm
as an adaptive algorithm for the digital pre-distortion. The main goal is to
reduce computations and provide a more power-efficient system. It could be a
guideline for future researches with new approaches that might lead to more
energy-saving results.

vi

Contents

1 Background 1
1.1 Motivationandchallenges 1
1.2 Poweramplifiers 1

1.2.1 Basic concept 2
1.2.2 Memory effects 3
1.2.3 Intermodulation 3
1.2.4 AM/AM AM/PM Distortions 4
1.3 Machinelearning 6
1.3.1 Types of learning 6
1.3.2 Artificial neural networks 7
1.3.3 The application of machine learning 9
1.4 Thesisstructure e 10

2 Digital pre-distortion 11
2.1 Digital pre-distortion overview 11
2.2 Modeling the amplifier, 12

22.1 Volterra series 14
222 Memory polynomial model 15
2.3 Learning architectures 16
2.4 Theconventionalapproach 18
2.4.1 Look-Up Table (LUT) based pre-distortion scheme 18
2.5 Figuresofmerito 20
2.5.1 Adjacent-Channel-Power Ratio (ACPR) 20
2.5.2 Error-Vector Magnitude (EVM) 21
2.6 Previous work on digital pre-distortion with machine learning . . 22

3 Self-organizing maps 25
3.1 Introduction 25
3.2 Structure 26
3.3 Training a self-organizingmap 26
3.4 K-nearestneighbors 30

vii

3.5 Applications

4 Implementation and results

4.1 Specifications
4.2 The concept
4.3 Implementation

43.1
4.3.2
4.3.3
4.3.4
4.3.5

4.4 Architecture
4.5 Computational complexity
4.6 Comparison to the Look-Up Table (LUT) pre-distorter

5 Conclusions and future work
5.1 Conclusions
5.2 Future work

References

Training stage
Processing stage
Results
Optimization loop
Results

References

viii

35
35
35
36
37
37
39
42
43
44
47
49

51
51
52

53

54

List of Figures

1.1
1.2
1.3
1.4
1.5
1.6

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8

3.1
3.2
3.3
3.4
3.5
3.6

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

PA behavior.
Input versus output power for a typical PA.
Intermodulation distortion graphical representation.
AM/AM and AM/PM plots.
A biological and an artificial neuron[10].
Artificial neural network architecture, with three input nodes, one
hidden layer, and two outputnodes.

pre-distortion process.
Digital pre-distortion system block diagram.
Volterra series structure. oL
Direct Learning Architecture.
Indirect Learning Architecture.
DPD with LUT Structure.
Graphical definition of ACPR[3].
EVM measurement.

Structure of a SOM network.,
Rectangulartopology,
Hexagonal topology.
Best matchingunit. Lo
KNN classification map for Iris flower dataset [44].
SOMs-KNN combination.

LUT model based on prediction.
Training stage, classification of the input values.
Processing stage, prediction of theoutput.
Processing stage, prediction of theoutput.
EVM-Classesplot
ACPR-Classes plot
EVM-Training sizeplot
ACPR-Training sizeplot

ix

12

27
28

38

4.9

4.10
4.11
4.12
4.13
4.14
4.15

Training stage with optimizationloop. 42
EVM-Number of loopsplot 43
ACPR-Number of loopsplot 44
Overall system architecture 45
Flowchart of the overallprocess 46
Proposed pre-distorter with SOMsand KNN 47
Pie chart for SOMs complexity 48

List of Tables

3.1

4.1
4.2
4.3
4.4

Iris flowerdataset, 27
Performance 39
SOMs computational complexity 48
KNN computational complexity 49
Summary of KNN and LUT pre-distorter 49

xi

xii

Chapter 1

Background

This introductory chapter explores the basic concepts of power amplifiers and
machine learning, that were investigated during this thesis work. By the end
of the chapter, the reader will be familiar with all the necessary basic terms
and their integration to this project. In addition to that, there will be a discus-
sion about the main motivations and the challenges that lead to the choice of
this topic as a thesis.

1.1 Motivation and challenges

The motivation and the main challenge behind this thesis is to combine two
different areas of technology, machine learning, and digital signal processing
to provide a more efficient solution for the digital pre-distortion.

The goal is to replace the conventional approaches of digital pre-distortion
with a new one, using the self-organizing maps to reduce the required process-
ing power by reducing the number of computations on the forward path of the
digital pre-distortion scheme. Self-organizing maps can identify a correlation
between the data that can be used in a combination with another algorithm,
to form a power-efficient system.

The integration of machine learning into that task is a great challenge
since it will introduce a new approach for digital pre-distortion, not based on
PA modelling but on patterns. With the self-organizing maps, where the input
signals are being evaluated and clustered according to their similar features,
the pre-distorted signal will be produced based on the formed patterns and
predictions.

1.2 Power amplifiers

This section is an introduction to power amplifiers. The main operation, the
most important terms and the basic characteristics of a power amplifier will
be discussed.

2 Background

1.2.1 Basic concept

The use of the power amplifiers is very broad. They are used for devices such
as loudspeakers, headphones and RF transmitters. They are used in order to
amplify input signals to a desired level, according to the needs of the project.
In contrast to voltage/current amplifiers, power amplifiers are implemented
and used as the last block within the amplification chain, to drive loads.

The inputs of the power amplifier have to be over a certain value and for
this reason, the pre-amplification operation with the use of current/voltage
amplifiers is necessary before the values are modified and sent as inputs to
the power amplifier [1].

An ideal amplifier can be characterized by parameters such as the gain and
the linearity of the incoming signal, as well as the power efficiency. Figure 1.1
illustrates an ideal power amplifier and (1.1) provides the output voltage for
this component.

Vout(t) = G*szn(t) (11)

Y

Figure 1.1: PA behavior.

Those characteristics in the real-world applications are always a tradeoff.
For example, in order to obtain high output power the amplifier is becoming
non-linear as it enters in a compression zone where the input-output expo-
nential relationship is not constant any more. In addition to that the peaks in
the output signal are getting clipped. Figure 1.2 shows the difference in the
behavior between an ideal and a real power amplifier.

Figure 1.2: Input versus output power for a typical PA.

Background 3

According to [2] the non-linearity of a power amplifier can cause the pres-
ence of intermodulation products, a topic that will be further discussed in the
next section. This intermodulation could create a leakage into the adjacent
channel of the system and as a result, interference might occur in a different
channel. The ratio of the average power between the main channel and an
adjacent channel is called Adjacent Channel Power Ratio or ACPR. It is also
known as Adjacent Channel Leakage Ratio or ACLR [3].

1.2.2 Memory effects

Apart from the amplitude distortions there are also phase distortions that oc-
cur in power amplifiers. Those distortions are indicating the presence of mem-
ory effects in the amplifier, which means that the output of the PA does not
depend only on the current input but on the previous ones as well [4].

The memory effects can be categorized into two basic types. Electrical
memory effects and electrothermal memory effects. For the first group, the
origin is from the variable impedances at the DC, fundamental and harmonic
band. The impedance can be affected by the transistors in the bias network,
that they are creating undesired signals into frequencies that the intermodu-
lation distortion also occurs (the concept of intermodulation distortion will be
further analyzed in the next section). This source of memory effects is con-
sidered as the most important one, due to the fact that it can force many re-
strictions on the operation of the system. The second category, electrothermal
memory effects, are occurring due to the difference in transistors properties
at different temperatures. This effect might create intermodulation distortion
as well, however it is not a big issue for low frequencies [5].

1.2.3 Intermodulation

Intermodulation distortion (IMD) could be described as the interaction be-
tween two frequencies that are occurring simultaneously in a non-linear de-
vice. This interaction will generate unwanted frequencies in the power spec-
trum. Real life examples of devices where intermodulation of frequencies
could be observed are the amplifiers and the mixers.

The mixed frequencies will generate intermodulation effects at the points
of the sum and/or the difference of the integer multiples of the original fre-
quencies. Assuming m and n as integers, the output frequency for the mixed
input signals can be expressed from equation (1.2).

mfi1 £ nfs (1.2)

In most cases the IMD is being filtered out, however there are cases where
the third order IMD is very close to the frequency of the original signal and
therefore it is difficult to filter it. A subset of the third order indermodulation
can be represented by equations (1.3) and (1.4).

4 Background

2f1 —2fs (1.3)
2fs — f1 (1.4)

Figure 1.3 illustrates an example where the first, the second and the third
order intermodulation products are illustrated. As it is shown, the third order
products are those who are the closest to the main channel.

A f1. R

A A

Amplitude (V)

fa.f4 24f4
2f4., 2f,.fq

3
>

Frequency (Hz)

Figure 1.3: Intermodulation distortion graphical representa-
tion.

Some typical real-life examples where there is a high demand for good in-
termodulation performance are the satelites, where each transponder has a
limited usable bandwidth and many signals are frequency multiplicated onto
one carrier, so there is a high chance of signals interfering with each other.
For that reason it is essential to have a reliable filtering of the intermodula-
tion distortion. The same concept applies for the radars, where it is easy to
understand that intermodulation is a very sensitive topic, due to the fact the
frequency spectrum of one radar, can be easily polluted by other radars that
might interfere. More about the importance of a good IMD performance can
be found in the literature [6].

1.2.4 AM/AM AM/PM Distortions

Amplitude to amplitude (AM/AM) and amplitude to phase (AM/PM) are two
characteristics that are very useful, in order to describe the non-linear effects
of an amplifier. AM/AM is the deviation from the gain as the input increases
and it reaches the compression region. AM/PM illustrates the deviation of the
signal’s phase for the same scenario.

As Figure 1.2 shows, there is a compression in the input power after a
certain point and that is where the AM/AM distortion occurs. Moreover, in

Background

that region the phase deviation starts to increase [7]. In order to compensate
those, a method called digital pre-distortion is used, which will be further

discussed in the next chapters.
Figure 1.4 illustrates the AM/AM and AM/PM plots for the power ampli-

fier’s data that were used in this project. However, from the provided data
only the starting point of the compression region is visible.

AM/AM AM/PM
20 100
10 . 50
) o o i
% :.:',r % MET L
> *%‘ — 5
g 0 EE 0 . %
E . = |'..||'
< . 4 .
-10 -50 .
-20 -100
-60 40 -20 40 20 0 20

Input power(dBm)

Input Power (dBm)

Figure 1.4: AM/AM and AM/PM plots.

6 Background

1.3 Machine learning

Machine learning as a term refers to the computer’s, or machine’s, ability to
act without having been explicitly programmed for that. It is considered as
a very broad area in our days and it is used in many daily life applications
such as speech recognition, movies and music recommendation, auto filling
sentences for email writing and web search. The digital world is so influenced
by machine learning, that users are taking advantage of it in many of their
daily tasks without even knowing about it. The main task of a machine learn-
ing algorithm, is to solve very specific problems. However, each algorithm is
different depending to the problem that has to be solved.

There are three main categories that the algorithms can be classified as
according to their ability to learn from patterns:

e Supervised learning, which includes regression and classification.

* Unsupervised learning, which includes clustering and dimensionality re-
duction.

e Reinforcement learning, which includes rewards and recommendations.

Each method has its own trade-off and according to the design needs, the
developer has to select the most appropriate one.

Reinforcement learning is very popular for artificial intelligence in the
video gaming industry, as well as for the navigation of robots. Supervised
learning is used more for predictions. For example weather forecasting or
prediction and analysis of stock market, as well as data classification, which
is a strong tool in image processing. Unsupervised learning is a very effective
approach for feature extraction, visualization of big data sets and effective
clustering of data.

In this project a combination of unsupervised and supervised learning is
used, so those two concepts will be further explained in this section.

1.3.1 Types of learning

Supervised learning

Talking about supervised learning the most important characteristic that can
define this type of learning is the presence of annotated training data, also
known as labels. Supervised algorithms are using known datasets with known
labels and they perform predictions on new datasets with undefined labels. In
other words, it is the process of teaching a model by providing a combination
of input and output data.

There are two categories of supervised learning algorithms:

* Classification, where the labels are classes, so the system is trained
to provide specific classes to a new dataset. A typical example of a
classifier is an algorithm that determinates if an email is spam or not.

Background 7

e Regression, where the system is trained to predict missing values for
a new dataset. In case of regression the algorithm predicts continuous
values such as sales, votes or test scores.

It is worth to be mentioned, that supervised learning will often require
human interaction, in order to have a proper training dataset, but once this
is done and it is accurate enough then supervised learning algorithms can
become a very powerful tool. There are however many cases where another
unsupervised algorithm can be used and provide data to the supervised algo-
rithm. This is also the case for this project, where the supervised algorithm is
getting the training set labels from the unsupervised algorithm. More infor-
mation regarding the supervised learning can be found in [8].

Unsupervised learning

The majority of machine learning applications, so far, are being implemented
by supervised learning. However, there are certain applications where the use
of supervised learning is not possible, since there is not enough information
about the expected output. In those cases, unsupervised learning could be a
more useful approach.

With the use of unsupervised learning the input features are required but
there is no need for labels. Instead, the similarities in the inputs can be ob-
served and groups (classes) can be formed according to the input features.
In addition to this, unsupervised learning can reduce the dimensionality of
the data in many cases. After the training, the output data (classes) in com-
bination with the input data are available for further supervised analysis. In
areas such as image and video processing, the data are presented in a very
high dimensionality. For those cases unsupervised learning can be proven as
an important solution, since the application of the supervised learning might
lead to an overfitting of data and as a result to a poor performance. There are
no general rules about the efficiency of unsupervised learning algorithms, so
their performance is highly dependent on individual cases [9].

An example where the unsupervised learning could be applied is the cus-
tomers segmentation, where companies using the customer’s individual pur-
chasing history as data, can cluster, identify and analyze certain patterns. That
way, the can improve their service and satisfy their clients more.

1.3.2 Artificial neural networks

In many daily life applications, computers have proven themselves better than
humans. Typical examples are the calculations and the processing of data.
However, the human brain has other big advantages such as the creativity,
the common sense, and the imagination. Nowadays, there is a trend towards
making computers behave more similar to humans. That is where the artificial
neural networks come into the game.

8 Background

Even though we are still not fully aware about how the human brain works,
there is some useful information about the neuron structure. The process be-
gins by the neuron collecting signals through a structure named dendrites and
storing them into the core of the neuron. In the next step the core transmits
spikes through a channel called axon. This information can be split into thou-
sands of branches before they reach to a place called synapse, which converts
the axon activity into information for the next neuron. The learning is hap-
pening according to the influence of one neuron to another when it changes.
Figure 1.5 represents both a brain neuron and an artificial neuron.

dendrites
AN NS
> N[£= nucleus
e &% e A
N ‘v
DA L
L ST U O A
=L cell “axon LR/
A &'g body |
ax'onl
. terminals

in2 z f out

bias
Figure 1.5: A biological and an artificial neuron [10].

A neural network is composed of multiple layers and a layer in a neural
network consists of a several neurons. The inspiration of artificial neural net-
works came from the biological neural networks, so as a result their structure
is quite similar. Artificial neural networks are used in many unsupervised ma-
chine learning algorithms and they are considered as systems able to perform
tasks by learning through examples, without being programmed for a specific
task. A typical example is the image recognition where they are able to recog-
nize specific objects without prior knowledge of them or their characteristics.
They are achieving that just by training and identification of characteristics.
The main task of a neural network is to use the given inputs in order to create
meaningful outputs.

The structure of an artificial neural network contains multiple nodes. The
neurons receive data as inputs and they perform operations on them. They
are fully connected and they are interacting, passing information from one to
another. Each node’s output is called activation or node value.

The neurons are connected by links, which are the same as axons in the
brain neurons. For each link there is a corresponding weight. The process of
learning is being implemented by changing and adjusting the weight values.
Figure 1.6 shows an artificial neural network with a hidden layer between the

Background 9

input and the output. The task of the hidden layer is to translate the inputs in
a way that the output can use. It performs the computations on the weighted
inputs and provides a net, which produces an output after the application of a
function on it. Depending on the application, the neural network type and the
function are chosen.

Hidden Layer

Input Layer

Output Layer

Figure 1.6: Artificial neural network architecture, with three
input nodes, one hidden layer, and two output nodes.

1.3.3 The application of machine learning

Machine learning can be found in the background of many applications to-
day. It is widely used for assisting driving or self-driving cars, audio quality
improvement, big data analysis, and a variety of other applications.

¢ A popular machine learning area of application is medicine, where it is
used in order to recognize patterns of diseases according to their fea-
tures. There is a speculation that in the future it would be even possible
to replace the doctors, when the algorithms reach the stage where they
can recognize and distinguish all the different patterns from a simple
cough and a flu, to brain scanning and malignant tumor prediction [11].

e It is also used in the manufacturing industry where it has successfully
been integrated in the automated assembly lines. For this there is a
study [12], where a fuzzy fault detection system is being developed to
detect fault diagnosis of car assembly process. The semiconductor in-
dustry has used machine learning algorithms to overcome problems.
A very interesting example is from Gardner and Bieker research [13],
where with the use of self-organizing maps, they are detecting faults on
the wafer fabrication equipment [14].

e Finally one very innovative application of ML is in the design rule check
or also known as DRC, a very important step in the physical design of
integrated circuits in order to ensure manufacturability. This study is

10 Background

based on the following papers [15], [16] and [17], where a variety of fea-
tures that can lead to DRC violations are identified. During the place-
ment and the global routing those features are extracted and feed to
the neural network as training inputs, in combination with the actual
DRC result. After some certain number of training and evaluation steps
the model is ready to be used and predict design rule violation hotspots
[18].

Nowadays, machine learning is getting more popular since the available
hardware resources, that are needed for training machine learning models,
are more powerful. In addition to that new and more efficient machine learn-
ing algorithms are introduced continuously. This is only the start towards a
new generation where the use of machine learning will offer efficient and low
power consuming electronic devices.

1.4 Thesis structure

The thesis is organized into the following chapters:

- Chapter 1: The background and the basic concepts and terminology of
the thesis.

- Chapter 2: A theoretical analysis of digital pre-distortion and all the
related concepts, with an introduction to the conventional digital pre-
distortion approaches.

- Chapter 3: The self-organizing maps are presented along with useful
information that will help the reader to understand their main function-
alities.

- Chapter 4: The implementation steps and the recorded results for this
project are presented.

- Chapter 5: The main conclusion points of the project in along with sug-
gestions about future work.

Chapter 2

Digital pre-distortion

As mentioned in the previous chapter, power amplifiers are more efficient in
terms of performance, when they are operating in their compression (non-
linear) region. However, in that region the peaks are getting clipped and as
a result the output frequency spectrum is ruined. To avoid this, the clipping
could be estimated from before, in order to form the inverse model and com-
pensate the amplifier’s loss, in terms of gain. When this concept is applied
to systems with high bandwidths, the memory effects must be considered,
otherwise the performance could be affected due to the fact that when the
bandwidth increases the memory depth of the power amplifier also increases
[19].

Digital pre-distortion is considered as the most efficient technique of lin-
earization for power amplifiers, in terms of good linearization performance
and low implementation complexity. In the following sections of this chapter,
the concepts and the terminology of the digital pre-distortion will be further
discussed.

2.1 Digital pre-distortion overview

In order to apply digital pre-distortion to a power amplifier, a good first step
would be to extract its behaviour. This can be achieved by observing the input
and the output data of the PA. The next step is the observation and the esti-
mation of the memory effects through the amplitude-to-amplitude modulation
(AM/AM) and the amplitude-to-phase modulation (AM/PM) plots. When the
effects are estimated then the inverse equivalent for the input signal should
be constructed in order to remove the estimated distortions.

Figure 2.1 illustrates the pre-distortion process. The goal of the DPD as
it was mentioned earlier in this chapter, is to compensate the gain losses of
the PA’s input signal, on high frequencies. So as it is shown in Figure 2.1, the
inverse function should be placed before the PA in the chain [20].

11

12 Digital pre-distortion

Predistortion

.

Figure 2.1: pre-distortion process.

Y
Y

Baseband RF

The results of the DPD can be evaluated through the ACPR, EVM and some
other parameters that will be further explained in section 2.2.1.

A good example to look deeper into the digital pre-distortion is the use
of a power amplifier for a transmitter. Figure 2.2 represents the digital pre-
distortion system block diagram for a transmitter.

| Digital Analog RF Transmitter

1 _ Mod &
Ba : Predistorter DIA Up Conv
-
X Demod &
mecton te——{ o |« "Bom 1
g Conv.

Figure 2.2: Digital pre-distortion system block diagram.

The system starts with the baseband station, which feeds the input data
to the pre-distorter, so then they can enter into the analog part where the up
and down conversions as well as the D/A and A/D blocks are located. After the
digital signal is converted into analog, it enters the PA before it goes back to
the digital part through a feedback loop, known as the adaptation loop, where
it will enter the correction algorithm. The correction algorithm will perform
some calculations, that will be further explained later in this chapter, in order
to construct the inverse behavioral model of the PA [22].

2.2 Modeling the amplifier

The behavioral modeling of a PA is basically the process of formulating a math-
ematical relationship between the input and the output signals, to simplify and
describe the behavior of the PA based on previous data. The amplifier in this
process is treated as a block box while only the input and output data are
under consideration [23].

An accurate behavioral modeling is very important for an efficient pre-
distortion and it is usually taking place before the DPD block. As mentioned

Digital pre-distortion 13

earlier, the concept of the digital pre-distortion is to construct an inverse be-
havioral model of the PA and for that reason, there is a need for a good and
simple behavioral model of the PA.

The behavioural models for power amplifiers are divided into the two fol-
lowing categories.

Memoryless models

This model considers only the current input data and ignores any past ones,
so the output depends only on the current input. The distortion is usually sep-
arated into two different distortions, the AM/AM and the AM/PM distortions.
The AM/AM is modelling the PAs saturated output signal and the AM/PM the
phase shift of the signal.

The relationship between the input and the output can be expressed as

Zpp(n) = F x 2pp(n) (2.1)

where x, corresponds to the bandpass input, 2, to the bandpass output, F
to the function of nonlinearity and n to time-domain sampling index.
Some popular memoryless models are:

¢ The Saleh model

¢ The Ghorbani model
¢ The Rapp model

* Bessel-Fourier

Those four memoryless models are providing different accuracy for a be-
havioural model, depending on the PAs operating region. More information
about them can be found in the literature [24].

Memory-based models

In contrast with memoryless models, models with memory are considering not
only the current input data but also the previous ones, for a specific range.
This means that the current and the past inputs will effect the output and
by this condition the system will automatically be converted into a dynamic
system.

The memory models are commonly used for systems with wide signal
bandwidths, up to 100MHz, without introducing memory effects. However,
high-power amplifiers in wireless base stations use wider bandwidths. For
those systems memoryless pre-distortion can achieve very limited results of
linearization and for this reason memory-based models are preferable.

The most common algorithms for models with memory are the following :

¢ Volterra series

14 Digital pre-distortion

¢ Wiener, Hammerstein and Wiener-Hammerstein
e Memory polynomial

* Generalized memory polynomial

* Neural networks

e LUT pre-distorter

Volterra series, Wiener, Hammerstein and Wiener-Hammerstein are con-
sidered as some of the most popular pre-distortion algorithms for models with
memory. However, those methods are introducing a big number of coeffi-
cients which could be very complex for practical applications. For this reason,
there are other methods, such as the Memory polynomial and the Generalized
memory polynomial that are based on the Volterra series but are less compli-
cated [17]. In addition to those, the LUT pre-distorter according to [25] can be
proved as a low cost, efficient, and flexible method for systems with low degree
of non-linearity and memory depth. As those two parameters are increasing,
the size of the LUTs will increase as well, which will affect the design’s area.
At last, the neural network approach is very different than the others. In sim-
ple terms, it can be described as a network that tries to behave as the human
brain and learn from past knowledge and specific patterns. When it acquires
the required knowledge it can predict the desired values, in the case of digital
pre-distorition, the pre-distorter’s output values.

In this chapter the main focus will be on the LUT pre-distorter, due to
the fact that the initial measurements and the comparison with the machine
learning approach were made with that one. The suggested implementation
tries to integrate the LUT pre-distorter into the neural network approach and
will be explained in Chapter 4. This technique is based on the the memory
polynomial model which will be explained in this section. However, in order to
understand the memory polynomial model, it is necessary first to understand
the Volterra series, since the memory polynomial is a special and simplified
case of Volterra series.

2.2.1 \olterra series

Volterra series is considered as a series of functionals. In other words, a
series of operations which are assigning functions to specific sets. It is a
way of modeling nonlinear systems with memory, so it is a good tool to model
the behavior of a power amplifier with memory by describing its input-output
relationship. However, Volterra series shows a very high complexity in terms
of computations and as a result it is considered as an impractical solution for
real applications such as hardware designing. The number of computations for
Volterra series is high because of the large number of parameters, a number
that increases exponentially along with the degree of non-linearity and the
depth of the memory that the system has [21].

Digital pre-distortion 15

Volterra series can be expressed with the following equation for the dis-
crete time domain:

P M M

yn) = "> .. th(i,;,..,ip)nx(nfz’j) (2.2)

p=1i,=0 i,=0

where h,, is the kernel of Volterra series, x the input of the system and y the
output. P is degree of nonlinearity and M the memory depth.

Volterra series kernels are the coefficients that are defining the target
model. When the coefficients are estimated then the system is ready to be
modeled for any input value.

The coefficients are being estimated with the use of the least square ap-
proach and the target is the minimization of the sum squared error between
the observed data and the output of the PA model. This process is described
by the following equation:

N-1 N—-1

JO) =Y) => lymn) —yn) [(2.3)

n=0 n=0

where N is the number of the input samples, y(n) are the samples of the pre-

distorter’s observed output data and y’(n) are the PAs output data [26].
Those coefficients can be expressed as:

h, = (XHX)"'XxHy = Xty (2.4)

where (.)" denotes the Hermitian transpose and (.)* the Moore-Penrose pseudo-
inverse. X is the Volterra terms of the input signal z, and y is the captured
output signal. With the use of this equation and the input, output signals the
coefficient can be estimated and the modeling of the PA can be achieved.

Figure 2.3 illustrates the structure of the Volterra series. The delayed
input values are going through the kernels before they are summed up to
form the Volterra series output, which is provided by (2.2).

There were many tries over the years to simplify the Volterra series in
order to reduce the amount of the required computations. One of the most
popular simplified Volterra series versions is the memory polynomial model
which will examined in this project, since it is the model that the conventional
techniques are based on.

2.2.2 Memory polynomial model

The memory polynomial pre-distortion model, is a Volterra Series-based model
but in a simpler form with less terms. Due to the fact that there is a limitation
on the resources and the estimation time, the Volterra series is truncated so
it can model the memory effects and the nonlinearities of the power amplifier
with the use of less elements. The memory polynomial is considered as one of

16 Digital pre-distortion

X(n) —y1(n)
Volterra Kernel 1

| —

A

— \Y2(n)

Volterra Kernel 2 > ()
n
-~
+ LY

yk(n)
Volterra Kernel K

Figure 2.3: Volterra series structure.

Yy

the most effective truncated versions and it is expressed with the use of the
following formula:

cpmr(n —m) | x(n —m) [P~ (2.5)

M:

P
p=1 0

3
I

where x is the input signal, y the output, ¢ the coefficients and P and M the
degree of nonlinearity and the memory depth respectively [27].

2.3 Learning architectures

There are two different architectures that are used for pre-disorters with
memory structures. The first one receives the power amplifier’s output and
inverses it directly. This method is called direct learning architecture (DLA).
The second one constructs a pre-distorter with the use of a postdistorter and
it is called indirect learning architecture (IDLA).

Direct Learning Architecture (DLA)

Direct learning architecture (DLA) is a popular technique that is commonly
used to identify the parameters, also known as coefficients, of a pre-distorter
and is illustrated in Figure 2.4.

The direct learning architecture involves two basic steps. The first one is
the identification of the PAs model. Once the model is obtained, there is an
estimation of the pre-distorter’s coefficients, through an iterative algorithm,

Digital pre-distortion 17

/

x(n) y(n)
Predistorter

A 4

1G

> Adaptive
Algorithm

Figure 2.4: Direct Learning Architecture.

that tries to minimize the error between the desired and the actual output, see
equation (2.6). The goal is to drive the output z(n) as close as possible to z(n).
For that reason the learning controller e is used as a mean of measuring their
difference.

e(n) = xz(n) — z(n) (2.6)

After the extraction of the coefficients the next step is to use them in order
to construct a pre-distorted signal that will be applied to the PA. This pro-
cess takes place in the pre-distorter block and it is an iterative process that
continues until the best possible solution has been identified.

There are different algorithms that can be used for direct learning archi-
tecture, however this architecture is not very popular due to its structural
complexity and the big amount of computations that requires [25].

Indirect Learning Architecture (ILA)

The indirect learning architecture suggests the use of an inverting function
in front of the PA in the block chain, so an inverse output can be formed. This
inverse function is implemented in the postdistorter block. The PAs output is
now operating as an input and the PAs input as an output (Figure 2.5). By
comparing those two signals, the coefficients are extracted. The values of the
coefficients are the actual coefficients of the inverse PA behavior, so after this
estimation the inverse model can be generated and placed before the PA. By
this iterative process an accurate postdistorter block is developed. This post-
distorter block is able to operate and used for any signal within the bandwidth
that the used PA has.

Figure 2.5 shows the block diagram of a pre-distortion system with an
indirect learning architecture.

18 Digital pre-distortion

x(n)
—_— Predistorter

Adaptive
Algorithm

L ¥

Figure 2.5: Indirect Learning Architecture.

The advantage of this architecture compared to the direct learning, is that
it does not require the modelling assumption and the estimation of the PAs
coefficients, since the process occurs after the signal leaves the PA and the
PAs output is known [20].

In this thesis the indirect learning architecture is used in both the LUT
based and the SOMs approach. For the first one it will be explained in more
detail in the upcoming sections 2.4.1. For the SOMs approach it will be dis-
cussed in Chapter 4 (section 4.4).

2.4 The conventional approach

There are various DPD techniques for linearizing a power amplifier. During
this work one of the most common ones was used. This technique uses look
up tables(LUTs) to form the pre-distorter and it is based on the the memory
polynomial model.

This section aims to provide a basic understanding of the conventional
approach and how this differs from SOMs, so the reader will be able to follow
the final results.

2.4.1 Look-Up Table (LUT) based pre-distortion scheme

There are mainly two different digital pre-distortion schemes that are widely
used. The polynomial scheme and the LUT based scheme. The first one models
a pre-distorter as a polynomial function with adaptive coefficients which are
linearizing the amplifier. The second one uses also the polynomial model but
it calculates the pre-distorted signal by using coefficients obtained from look
up tables. Those look up tables contain coefficients as complex values, that

Digital pre-distortion 19

are multiplied with the input signal, according to the input signal’s amplitude.
The look up table scheme is used in this thesis as a conventional approach.

Figure 2.6 represents a system that uses LUT for implementing the digital
pre-distortion.

X
(n) D D
y
Y Magnitude ;\
Ij:l Calculation (
Block y(n)
+ —>
p L P P
— Y ealx@P | Y ealk= P | gl 2t
|x(n)|p p=0 p=0 p=0
LUT1 LUT2 LUT3
Address >
Generator Tap0 Tap1 Tap2
D D

Figure 2.6: DPD with LUT Structure.

The design in this work, contains a LUT table with four columns in total.
The first one (address generator), corresponds to an index (address), for the
LUTs values, that is estimated through the input’s signal magnitude. The index
value can be assessed according either the magnitude or the phase of the data.
The LUT algorithm in this project uses the magnitude as index.

The rest three tables contain the values of the coefficients for the current
input signal (LUT1) and the input signal after one and two delay taps (LUT
2 and LUT3) respectively. When the signal passes the magnitude calculation
the non-linearity order p must be assigned, so the proper coefficients from the
LUTs will be multiplied with the corresponding input signal x to the power of
p(0 to p), forming the following equation for the first LUT:

Zcpoliv) [Pt 2.7)

which will then be multiplied by the input signal x and form the below equa-
tion:

Zcpolw) [P~ 2(n) (2.8)

which corresponds to the memory polynomial (2.5), just for the first memory
tap.

The result of this is just for the input signal (with no memory effects) so
the same equation must be formed for the rest of the delay taps. The output y,

20 Digital pre-distortion

which corresponds to the pre-distorter’s output and the PA’s input, will be the
sum of those equations for each memory tap. For example if the result of (2.8)
is considered as y;(n) and the system has three memory taps in total which
give y2(n) and y3(n) for x(n — 1) and z(n — 2) respectively, the final y would be
the sum of those :

y(n) = y1(n) + y2(n) + ys(n) (2.9)

The equations (2.9) and (2.10) including M number of memory taps will be-
come as follow to provide the final y:

P

M
y(n) = Z Z cpm | (n—m) P71 z(n —m) (2.10)

p= m=0

which is the memory polynomial equation explained in the previous section by
(2.5). The output y, result of the multiplication, will be converted into RF and
fed into the PA.

In the feedback loop, an adaptive process is taking place, where the values
inside the LUTs are updated constantly, through the Volterra Series and the
least square approach described previously. This update of the values corre-
sponds to the changes in the PAs behavior over the time. The changes are
usually caused by factors such as ageing and temperature. The update pro-
cess considers the output of the PA, the input of the PA and the index value in
order to estimate these changes [28].

2.5 Figures of merit

By definition a figure of merit is the way of characterizing a system’s perfor-
mance in terms of quantity and compare it to its alternatives. In this project
the Adjacent Channel Power Ratio (ACPR) is used as a measure of perfor-
mance and the Error-Vector Magnitude (EVM) as a measure of accuracy.

2.5.1 Adjacent-Channel-Power Ratio (ACPR)

In modern wireless systems the demand for data capacity and bandwidth has
been increased significantly, due to the need of delivering IP services to more
subscribers. To provide an efficient performance to the transmitter, the PA
many times is forced to operate beyond the linear ranges. This nonlinear be-
havior combined with the signal amplification, might lead to interference that
occurs due to the power that leaks from the main channel of the transmitted
signal into the adjacent channel. This interference might effect the overall
system performance.

Adjacent Channel Power Ratio or also known as ACPR, is a key measure-
ment that it is used in wireless radio systems (3GPP 5G, LTE, W-CDMA).

Digital pre-distortion 21

As Figure 2.7 illustrates, it is defined as the ratio of the modulated signal
power in the main channel and the power leaked into the adjacent channel
and it is measured in decibels relative to the carrier (dBc) [3].

A
E Adjacent Main Adjacent
z Channel Channel Channel
3 ' ' '
H e o s } = r————
a :] i}
' ' ‘ | LI
' ACPR \\ '
' |
L g
N 1
4 ' N
W/ NN R
Frequency (MHz)

Figure 2.7: Graphical definition of ACPR [3].

2.5.2 Error-Vector Magnitude (EVM)

Error Vector Magnitude or EVM can be described as the measure for the qual-

ity of a wireless system’s modulation. It has a negative dB value which is
desired to be as high as possible.

It is basically illustrating the difference between an ideal vector and the

actual measured one. In wireless systems, the EVM can be measured on trans-
mitter’s modulator or receiver’s demodulator circuits [29].

- M// P2
4 Error
Se vector
Measured
P1 %

® Ideal

Q

\

Figure 2.8: EVM measurement.

As Figure 2.8 shows, P1 is the ideal constellation point and P2 the mea-

22 Digital pre-distortion

sured one. The difference among them might be due to many reasons such as
IQ mismatch (gain, phase, DC offset), frequency offset, phase noise, AM-AM
distortion, AM-PM distortion etc. The M and ¢ shows the magnitude and the
phase error respectively [30]. The EVM can be expressed by the following
equation:

V2 - T1)? + (Q2 - Q1)?
| P1|
where, P1 = 11+ 5% @1 is the ideal vector and P2 = 12+ jx Q2 is the measured
vector.
The EVM is expressed as:

EVM = (2.11)

EV My
EV Mg, =10 % logio[——] (2.12)
100
which provides the result in dB.
EVM can also be measured as a percentage:
EV My = 100 5 10(EVM)an/20) (2.13)

2.6 Previous work on digital pre-distortion with
machine learning

Digital pre-distortion can be implemented in many different ways and provide
different results respectively. The use of machine learning algorithms and
neural networks has become very popular nowadays, due to their ability of
reducing the complexity and the number of computation within an embedded
device. This section will examine some of the existing researches that are
closely related to the work of this thesis, and their results.

An interesting project is from Manish Sonal (2016). This research explores
the modeling of nonlinear analog devices, such as Power Amplifier (PA), with
the use of machine learning algorithms. Some of the algorithms that were
used and compared in this study are nonlinear regression, smoothing spline,
polynomial fit and deep learning with the use of Levenberg-Marquardt algo-
rithm. The results are indicating that the deep learning method provides a
very good estimation of the data while it was more time consuming and re-
quired more CPU memory [31]. This need however, was a result of the big
amount of the neurons and hidden layers, which is not considered as an issue
in the use of self-organizing maps, due to their simpler structure.

In contrast with Manish Sonal (2016), Zhenyu Wang et al (2017) proposes
a novel method based on deep neural networks, auto-encoder model, for the
digital pre-distortion and the results are indicating two things as advantages.
The first one is that the deep neural networks are providing a higher accuracy
and can fit nonlinear models with success. The second one is that the process
speed after each iteration will be faster, due to their deep network structure,

Digital pre-distortion 23

than the traditional neural networks, which basically means that they have the
ability to learn and perform faster on practical applications [32].

One good example of digital pre-distortion with the use of a machine learn-
ing algorithm, comes from Jun Peng et al. (2016), where the digital pre-
distortion is applied with the use of Spare Bayesian learning. What that al-
gorithm does basically is predicting, based on probability, the parameters and
the behavioral model of the power amplifier. The results shown that by ap-
plying the Spare Bayesian approach the parameters and the sampling where
reduced significantly, compared to conventional methods, while the modelling
accuracy was very satisfying. This approach is very similar to the SOMs ap-
proach but the main difference is that Spare Bayesian is a supervised ap-
proach, when self-organizing maps is an unsupervised one [33].

Finally, James Peroulas (2016) research examines the implementation of
the pre-distortion with the use of five different machine learning algorithms
and how effective they are compared to the memory polynomial approach,
which is also used as a conventional algorithm in this thesis work. The five al-
gorithms are linear regression, regularization, model selection, principal com-
ponent analysis, and gradient descent. Principal component analysis (PCA),
which is a method similar to the self-organizing maps, provided the best re-
sults by reducing the number of computations significantly and maintained
the performance at acceptable levels [34].

24

Digital pre-distortion

Chapter 3

Self-organizing maps

3.1 Introduction

A self-organizing map (SOM), is an artificial neural network (ANN) which ap-
plies a competitive learning approach to train samples for data analysis. The
most popular self-organizing maps model is known as the Kohonen network
and it was introduced in 1982 by the Finnish researcher Teuvo Kohonen. It
is considered as a special type of artificial network and it is widely used for
clustering and visualizing data [35].

The main principle of self-organizing maps is the transformation of com-
plex data with high-dimensionality, into a simpler form with fewer dimensions
(usually two). The location (coordinates) of the output nodes is extracted
through the common characteristics of the input space elements. This aspect
makes this method similar to other popular dimensionality-reduction tech-
niques, such as the principal component analysis. However, SOMs are proved
to have key features that make them more efficient. For example, their imple-
mentation is easier, and they are very effective in solving nonlinear problems
with a high degree of complexity. In addition to this, they perform very well
with noisy or missing data and big datasets, compare to other techniques.

Self-organizing maps are categorized as an unsupervised learning algo-
rithm. As it was mentioned in Chapter 1, unsupervised algorithms do not
depend on predefined outputs during their process. In other words, these al-
gorithms learn through observation and draw inferences, rather than depend-
ing on input datasets with labels. For self-organizing maps, this happens by
applying competitive learning rules to their output nodes, which are compet-
ing with each other. Through the learning process, the information is heading
only to one direction, without using any feedback loop. This makes SOMs a
feedforward network. The input and output nodes are connected through links
(weights) [36].

25

26 Self-organizing maps

3.2 Structure

As Figure 3.1 shows, a SOM network contains two layers of nodes. The input
and the output layer. In contrast with other neural networks, SOM does not
involve any hidden layer and the input layer is directly connected to the output
one through weights.

Output space
Output nodes

Weights

Input space (n-
dimensional)

Input nodes

Figure 3.1: Structure of a SOM network.

In the input layer, the nodes are representing the features of the input
data. In case there are big differences in the scale of the numbers between
the different features, normalization is required to ensure the equal effect of
the attributes.

For the output layer, the represented nodes are the visualization of the low-
dimensional data. This layer is also called the Kohonen layer and it is usually
a two-dimensional layer. The number of nodes is the number of clusters and
it is a very important factor in terms of accuracy. The correlation between the
neighborhoods is based a lot on the set-up of the nodes.

The typical shape of a SOM network topology is usually a rectangular or
a hexagonal grid and each of these two shapes has different properties. With
the use of the rectangular topology each node will have four neighbor nodes,
while with the hexagonal it will have six [37]. For that particular reason, the
hexagonal structure is more popular and is the structure that is used in this
project. Figures 3.2 and 3.3 are illustrating the two different topologies.

3.3 Training a self-organizing map

The training process includes several steps to cluster the data. This section
will discuss the necessary steps from the moment the data arrive in the sys-
tem, until the moment that the clusters have been formed.

Self-organizing maps 27

Figure 3.2: Rectangular topol- Figure 3.3: Hexagonal topol-
ogy ogy.

Initial weights

The first step for the SOM is to initialize the weights. The weights appear
as links between the input and the output nodes and they keep on updating
during the training process. The most common case is to assign relative small
and random values to the network’s weights, wi=(wi,wiz,...wim), for i=1,2,...,n,
where n is the number of output nodes in the network and m the number of the
input’s vector features. However, there is a restriction that the values should
differ and similar weights must be avoided.

A very famous example is the Iris flower dataset, illustrating in Table 3.1.
In this example, the dataset consists of many different flowers, with four dif-
ferent characteristics, which are considered as inputs. By comparing those
characteristics the algorithm can provide a label for each flower. This label
will be the type of the flower.

Considering Table 3.1, a possible weight vector would be w=[0.2 0.6 0.5
0.9]. An array of four elements due to the fact the input vector has four
features. Those values are updated during the process but the initialization
should have small values (usually 0-0.9).

x Sepal length Sepal width Petal length Petal width
1 5.1 3.5 1.4 0.2
2 4.9 3.0 1.4 0.2
3 4.7 3.2 1.3 0.2
4 7.7 3.8 6.7 2.2
5 7.1 3.0 5.9 2.1

Table 3.1: Iris flower dataset
[38]

28 Self-organizing maps

Sampling

Select randomly input samples from the input space (training data set). For
example, considering Table 3.1 and the Iris flower dataset, each flower (or
sample z) has four different features. In the sampling step for this scenario
sample x3, marked as gray, is chosen as a random sample.

Similarity matching

The next step of this process would be to identify the inputs with the most
similar characteristics. This step begins with the competition between the
output nodes. The neuron who will have a weight vector close to the input’s
weight vector will be declared as the winning neuron or the best matching
unit(BMU). Figure 3.4 illustrates a layer of output nodes where the BMUs for
each neighborhood are identified.

N NONONON®
©@® 0 O 00
OO0 0 & @
O 00000

Figure 3.4: Best matching unit.

To find that node, some parameters need to be taken into account such
as the distances between the input data(z) and all the weight vectors(wi).
This distance can be calculated with several different methods, Manhattan
distance, Chebyshev distance, Euclidean distance, and Mahalanobis distance.
Among those methods, the Euclidean distance is the most popular one and the
one that is going to be used in this project, due to its ability to provide an
isotropic display for the SOM representation. More information regarding the
distances in classification can be found in [39].

The following equation illustrates the formula for calculating the Euclidean
distance between an input node and the weight vectors that are linked to the
node:

T

| & = wim [|= 4| Y _[#(t) = wim(t)]? (3.1)

t=0
At the end of the similarity matching process and with the use of the Euclidean
minimum-distance criteria, the best matching unit ¢, or else called the winning

Self-organizing maps 29

neuron, is detected after some iterations with the above equation:

T

c(t) = main(|| © — wim ||) = min(Z[a:(t) — w;m (1)]?) (3.2)

t=0

where T is the maximum number of iterations that the network will perform.
Neighborhood function

The neighborhood function is responsible for providing a relation between a
sample and its neighbors, as well as the topological order of the map. In case
that this function is missing then the SOMs are the same with the k-means al-
gorithm, which is an algorithm more based on averaging the selected sample
according to its neighbor samples. In contrast, SOMs are trying to match the
selected sample with its closest neighbor and increase the distance with the
rest of the neighbors. The two most popular functions for this purpose are the
Gaussian (3.3) and the square function (3.4) :

(i—n)*=(j—m)*
272

hg(Wij, Winp,T) = exp(—) (3.3)

l<=/(i—n)2+(G-m2<r,
0<=+/(i—n)2+(G—m)2>r

Where wi is the selected neuron in position 4,5, wmn the neighbor neuron in
position m,n and r is the radius. In both functions, the radius r is decreasing
to 0 or 1 during the training. The Gaussian neighborhood is considered as a
more reliable solution when the square function requires less computations
[40].

For this experiment, the Gaussian neighborhood function was used to ob-
tain more accurate outputs.

(3.4)

hs<wij7wmn7 ’I") = {

Weight updating

After identifying the best matching units, their weights and the weights of
their neighbor units are adjusted to become correlated to the input space fea-
tures. The learning rate and the neighborhood size are the two most important
characteristics of this weight update.

The learning rate is in charge of the change on the weights and its value
can differ from 0 to 1. However, the learning rate for the self-organizing maps
is not a stable variable and it is gradually decreasing as the number of itera-
tions of the SOMs algorithm is increasing. This decrement can occur linearly,
exponentially or inversely proportional to the iterations. In most of the neural
network cases, the weights are assigned randomly and the learning rate starts
from a very high value, close to 1 and reduces through the time. At the begin-
ning of the training, more iterations are occurring, and they are reducing as

30 Self-organizing maps

the process goes on, as there are fewer necessary corrections that need to be
done.

The following formula indicates the updated weight vector wi(t+1) of the
winning neuron and all the neurons that lie in the neighborhood of it, with re-
spect to the number of iterations (¢), the learning rate («) and the past weight
vector wi(t) :

wi(t + 1) = w;i(t) + a(t) h(Wpmu, wi, r)[z(t) — w; (1)) (3.5)

Where h is the neighborhood function, wsmu the weight vector of the best
matching unit and r the radius of the formed neighborhood [41].

3.4 K-nearest neighbors

The k-Nearest-Neighbors or KNN is considered as one of the simplest algo-
rithms for classification and regression. The main function of this algorithm is
classifying input data into outputs by identifying the most common character-
istics on them and applying a new set of data from the same type to perform
predictions about their outputs. The same approach applies to regression,
where the algorithm predicts target values for new data [42].

In contrast with other algorithms, KNN is not using any training method.
Instead of that, the moment the input data are available they are classified and
after that, any possible training is applied. However, to perform classification,
the algorithm has to go through all the data points. This process makes this
algorithm very expensive in terms of computation.

The process will follow the below steps :

¢ Calculate the distance between the selected input value (a random value
from the training dataset) and the rest of the training data inputs.

¢ Choose k£ amount of data points, located close to the selected data point.
Those points are identified as the ones with the lowest distance values.

e Evaluate according to their distance value and the number of similar
data in each class, to which class the selected data point will be classi-
fied (or in case of regression what would be the predicted value) for the
rest of the data.

There are two factors to be taken under consideration before the KNN
process starts. The first one is the value of k, which can just be a random
number or a fixed one after tests and optimizations. For this project k was set
as 3, since that was the number that provided the most accurate results.

The second one would be the distance metric that the algorithm is going to
use. As it was mentioned before for SOMs, there are many different methods
for calculating this distance for KNN. Likewise SOMs, the Euclidean distance
is the most popular one, which is described in the previous section and the

Self-organizing maps 31

one that is used in the KNN model of this work. Equation 3.1 will be applied
for the case of the KNN as well [43].
To summarize the KNN model includes the following steps:

¢ The load of the data.
e The initialization of the value for the k factor.
e Multiple iterations for each data in order to obtain the predicted class.

In the last step, the algorithm first calculates the distance between the test
and each of the training data. Then according to the calculated distances the
k top distances (the ones with the lowest values) will be selected. The most
frequent class label among those elements will be obtained and assigned as
the predicted class.

Figure 3.5 illustrates the KNN classification map for Iris flower dataset,
where there is a representation of how the data are divided into three different
flowers. Setosa, Versicolor and Virginica.

3-Class classification (k = 15)

Figure 3.5: KNN classification map for Iris flower dataset [44].

3.5 Applications

As mentioned before, self-organizing maps is a very popular way of visualizing
data and observe hidden patterns behind them that are not clear in the be-
ginning. K-nearest-neighbors algorithm, on the other hand, is a very accurate
method for predictions. This section will discuss some of the most important
applications that the self-organizing maps, as well as the k-nearest-neighbors,

32 Self-organizing maps

are involved too.
Applications of self-organizing maps

One very interesting research has been published by Ryotaro Kamimura (2012),
where SOMs is used as an algorithm for analyzing data for automobile indus-
tries in Japan and predict the financial state of the country since researches
have proved that those data are related and affect the country’s economy [45].

Another important application has been released by Suzanne Angeli et. al
(2012). This study is investigating the classification of earth observation data
with the use of self-organizing maps. Those data are from sensors on earth
that are monitoring the atmosphere and some geophysical properties such as
identifying the clouds or the areas that are covered by ice. To receive that
information, there is a need for pixel processing for the obtained picture from
a satellite. The conventional approach to this is with the use of decision trees,
but this research replaces the decision tree solution with the self-organizing
maps. The results are indicating that SOM is a very effective algorithm for
this application and it is providing a simpler solution to the problem [46].

At last, an interesting approach within the financial sector has been pub-
lished by Li Jian et. al (2016). Due to the increase of fraudulent financial
reporting over the last years, it has been observed that many reports contain
overvalued profits, sales, and assets, or understating liabilities and expenses.
Those fault reported values can be usually observed through the financial ra-
tios. The financial ratios are mainly divided into two groups, normal and ab-
normal group and the fraudulent data are mostly located into the abnormal
group. As a result, the SOMs are classifying the input data into two individ-
ual classes. The results are showing that SOMs are effective in detecting the
fraudulent financial data with high accuracy however the results could be fur-
ther improved by enlarging the dataset or by trying and comparing different
unsupervised algorithms [47].

Applications of k-nearest neighbors

KNN algorithm is very popular as a text mining technique with a wide va-
riety of applications. In their paper Suhatati Tjandral et. al (2015), they
are examining the use of the KNN as a text mining algorithm where the fi-
nal design is used as a system by the government to receive complaints from
the citizens. With the use of its data mining properties, KNN can detect the
department that should receive the complaint text and the mail is being for-
warded to them. As was expected the results showed that KNN can be used
as a very reliable text mining system [48].

Facial image analysis is considered as a very important part of the image
processing area. It can be used for face recognition, psychological tests, and
several more applications. Treesa George et. al (2014), in their research, ex-
plore the application of the KNN algorithm for the detection of a smile within

Self-organizing maps 33

still images. With the use of another classification algorithm called Haar cas-
cade, the necessary information to detect a mouth and a pair of eyes on a face
are extracted. Then those values are provided as input training data to the
KNN algorithm. The results are showing that with the use of the mouth only
the accuracy is 60% but including the eye pair as well the result is increasing
and the algorithm becomes more accurate [49].

Finally, an interesting research paper is published from S.Venkata Lakshmi
and T.Edwin Prabakaran (2014), where with the use of the KNN they are de-
tecting cyber-attacks to a network, by examining some specific features and
looking for potential intrusions. The data for train and testing are provided by
the KDD Cup dataset, which is considered as the benchmark data in Intrusion
detection and contains 41 different features for each data. By changing the
number and the type of features within 5 sets, different threats can be iden-
tified. Set five appeared to be the most effective since the biggest amount of
threats was identified with the use of those features while it had less amount
of data compared to other datasets [50].

Combining self-organizing maps with k-nearest neighbors

The two algorithms described before in the chapter, self-organizing maps (SOMs)
and k-Nearest-Neighbors (KNN), are combined in this project to provide a final
result and replace the conventional approach for the digital pre-distortion.

The self-organizing maps are used as a mean of classification. In other
words, this algorithm is used to obtain a class value (label) by identifying the
common characteristics among the input data. This, however, is applied only
to a part of the input dataset. This dataset is called the training dataset.

The k-Nearest-Neighbors, on the other hand, are used as a mean of re-
gression. Using the training dataset in combination with their class values,
the algorithm can perform a class prediction for the rest of the data (called
test set) by providing their input values.

Figure 3.6 illustrates a simple representation of the two algorithms com-
bined. The next chapter will explain more in-depth how this concept is applied
to the design.

34

Self-organizing maps

Dataset

Training

[Training dataset
inputs

ZE0ow

Training dataset
classes

Test

ZZ X

—>
Test dataset
classes

Test dataset
inputs

Figure 3.6: SOMs-KNN combination.

(predicted)

Chapter I

Implementation and results

This chapter will discuss the approach for the neural network based DPD de-
sign, the architecture that was used and the given results. The simulations
were executed with the use of MATLAB and the algorithm was developed with
MATLAB’s neural network toolbox. Some additional simulations for calcu-
lating the computational complexity were executed with the use of Python
scripts.

4.1 Specifications

According to the current industry’s needs and to the 3GPP specifications, a
proper EVM for a base station should be below 8% [51]. However, the PA is
only a part of the base station and there are other components in the system
such as the modulators and the RF transceivers that are affecting the total
EVM. For this reason, EVM just for the PA should be in lower levels, around
4% or even less.

On the other hand, the ACPR of the conventional approach is around -
45dBc which is considered as a very good and low ACPR. According to the
predicted performance losses, and the 5G NR specifications [52], an ACPR
value for a PA with a channel offset of 400MHz, as the one used in this project,
would be between -27dBc and -33dBc.

4.2 The concept

As it was shown in Figure 2.6, in the LUT-based model there are many different
LUTs according to the system’s memory taps. The idea of this project is to
prove that all those LUTs could be replaced by just one that will use the input
z as an index and predict the y value (instead of (2.5)). Input z refers to the
pre-distorter’s input and y to the pre-distorter’s output (for more details check
section 2.2 and 2.4). This implementation can reduce the required amount of

35

36 Implementation and results

computations since only one LUT will be needed and there will not be any
complex multiplications.

In the conventional approach, the input data are complex numbers, con-
sisted of phase and magnitude. In this project’s implementation, the phase and
the magnitude of each input data point are separated and fed to the SOMs as
two different features. Then SOMs will classify those data and provide this
information in a form of a LUT to the forward path.

For prediction and to examine if this implementation could work the KNN
algorithm is used. KNN will use the input sample (phase and magnitude) and
predict its class. According to the class value an individual value taken from
the SOMs LUT, will be assigned as a pre-disorter’s output. This way of esti-
mating the pre-disorter’s output will help reduce the number of combutations
in the forward path, since there will no longer be a need for using several
equations and multiple LUTs.

Figure 4.1 represents the suggested approach for replacing the LUT method.
The address generator will operate as a filter which should provide an index
to the LUT according to some specific characteristics of the input . The KNN
has the role of identifying those characteristics, predicting the class of the in-
put as an index and obtaining the corresponding y value. This process will be
further explained later in this chapter.

(Filter) LUT
Xp Address index yn
—> —>
Generator

Figure 4.1: LUT model based on prediction.

4.3 Implementation

The main goal of the project is to examine whether SOMs can be used as an
adaptive algorithm and provide a good enough LUT which in combination with
a predictor (KNN), will replace the conventional architecture. However, the
bottleneck is that the input values to the pre-distorter are not directly related
to each other, since they are consisting of the input signal (z) and its delayed
values. They have to pass through the Volterra kernel as Figure 2.3 shows, so
the algorithm can identify their common characteristics. In other words, the
Volterra series output value (y) has to be obtained and provided as an input to
SOMs. The idea is to use some values of y for training and then predict the
rest y values based only on the input = values.

Implementation and results 37

The data set is split into two parts. The first one is the training set, which
includes a part of the pre-distorter’s inputs. Those values are going to be
considered as the input values for the training (i.e the first 40% of the pre-
distorter’s input values). The second one is the test set, which will contain
a part of the rest of the pre-distorter’s input values (i.e the last 20% of the
input values). This set will be used as input to the KNN and the algorithm
will predict its outputs. The performance and accuracy of those results will be
measured with the use of ACPR and EVM respectively and the computational
complexity by measuring the floating point operations (FLOP).

4.3.1 Training stage

For this project, the two feature input to SOMs will be the phase and the mag-
nitude of y, which is obtained by splitting the real and the imaginary part of
this complex value. When the values of y pass into the SOMs, then the neural
network will divide them into classes by identifying their common character-
istics, as it was explained in Chapter 3.

The next step will be to estimate an average y value for each class and
store it into a table. With this step the average y could be used instead of
the original one for each input value, resulting in a significant decrease of the
different y values. At the end of this process, each class will have a unique y
value.

For example for a dataset of 100000 different values of z corresponding to
100000 different values of y, applying this implementation using 1000 classes
can reduce the number of y values from 100000 to just 1000 values, a decrease
of 99%. Of course, the main drawback of this implementation will be the loss
in accuracy and that is a part of what this thesis is investigating.

Figure 4.2 illustrates how the above process is implemented in the system.
This part is the training stage where the data are trained in order to provide
the system with the required information for the processing stage, where the
prediction is taking place.

It is worth to be mentioned that the conventional approach with the use
of LUTs (Figure 2.6) will run for several iterations (5 in this project) in order
for the coefficients to get updated and provide a more accurate result for y.
The coefficients will have random values from 0 to 1 at the beginning of the
process and they will be updated after each iteration through the equation
(2.4). This process will occur only for the training set.

4.3.2 Processing stage

After each input x of the training dataset has a class and a y (average) value,
the following step will be to provide this information to the KNN algorithm in
order to predict classes for the test set. Now the test set consists of = values as
well, since the initial dataset was split into two separate datasets. The training

38 Implementation and results

l Training data

x |y |Class X | Yavgiclass| Class

yi+Q) I:>
Volterra Terms

x(1+Q) l

y(Q)

=E0w

Class

yi

Figure 4.2: Training stage, classification of the input values.

dataset and the test dataset. After the KNN predicts a class for each of the
test set value, then the corresponding y for each class will be assigned, as it
was estimated in the training set. Of course, it is important that the training
stage and the processing stage are using the same amount of classes so it is
possible to find an average y value for each class after the KNN predicts a
class value. By using fewer classes, for both testing and processing stage, the
shrinking of the original amount of values can be achieved but this will lead to
a decrease in the system’s accuracy.

Figure 4.3 represents how the class prediction for the test data is exe-
cuted.

X;
testdata Processing data

Training
data Xtestdata Class,
Yavg/class| Class

predicted

>

zzx |[€&

Y

CI5“5spredicted A

Figure 4.3: Processing stage, prediction of the output.

By providing the input x of the training set and their class values, the
KNN can predict a class value for each of the test set values. This is achieved
by finding the closest neighbors to the value or in other words the closest
matching classes. This closest matching class will be the predicted class.

After the KNN has predicted a class value for each test data x, this class
will be used as an index to the LUT (Training data table) to obtain the y (av-

Implementation and results 39

erage) value, which will be used as the final y value for the corresponding =
(Final data table). Figure 4.4 represents how this indexing is executed.

Processing data

xtesldala c Iasspredicted
Final data table
xtesldala yavu/class
—
Training data 7

X [Yavgiclass| Class

Figure 4.4: Processing stage, prediction of the output.

4.3.3 Results

As was mentioned in Chapter 2, the results should be evaluated in terms of
performance and accuracy through the ACPR and the EVM respectively. Mea-
suring the ACPR and the EVM for the training and the processing stage using
50 as the number of classes and 40% of the dataset as training data (around
45000 values), the following values from Table 4.1 resulted.

H Stage ACPR EVM H

Training (SOM) -20.51 21.10
Processing (KNN) -19.85 23.25

Table 4.1: Performance

In the training stage, the EVM and ACPR values are estimated using the
average y values, which were calculated by averaging the y values in each
class (section 4.3.1).

In the processing stage, the EVM and ACPR values are estimated using
the predicted y values from the final data table (section 4.3.2).

As it was expected the EVM and the ACPR are increasing after the pro-
cessing stage since the KNN algorithm is performing a prediction so a loss

40 Implementation and results

in performance and accuracy was expected. However, both the EVM and the
ACPR are very high in this case.

A first approach to reduce those values is by increasing the number of
classes. This solution will provide a more accurate model with the drawback
of increasing the total number of y values and as a result the number of com-
putations. Figures 4.5 and 4.6 show the reduction of the EVM and the ACPR
respectively, by increasing the classes.

Training size = 40000

257
*
20}
o |
S | e
= \
.,
15+
°
AN
‘\“ X 400
\.7 Y 10.84
10 | T 'T”'". ®— e o o
0 200 400 600 800 1000
Classes

Figure 4.5: EVM-Classes plot

Another important factor is the size of the training set. The bigger the
training set is the more accurate the training stage will be. Figures 4.7 and
4.8 are showing how the EVM and the ACPR are decreasing by increasing the
size of the training data set.

After extracting that information, it was observed that even by increasing
the classes and the training set the EVM and ACPR levels are still very high.
For this reason, an optimization loop was added to the training stage of the
system.

Implementation and results 41

Training size = 40000

18
Q

207 |
3 °
E \
oY -22 °
& \\\\\
g o

24+ .

\‘ X 400
~e. |Y-25.24
26 S ey (NPT

0 200 400 600 800 1000
Classes

Figure 4.6: ACPR-Classes plot

Classes =400
129,
1M15F
. X 40000
= 10.5 e
10t AN
AN
@
95+ L S
L]
g L 1 1)
2 4 6 8 10
Training size %104

Figure 4.7: EVM-Training size plot

42

Implementation and results

Classes =400
2457
il\\
25 ¢ \l\ m
g \o\\\
L -255]
4 LN
% '26 [h \\\.
< \\
265 Ny
e
-27 ‘ ‘ ‘ ‘
2 4 6 8 10
Training size x10%

Figure 4.8: ACPR-Training size plot

4.3.4 Optimization loop

By estimating a unique y for each class and limiting the number of different
values of y, the EVM was expected to increase since quantization was intro-
duced. In order to decrease this EVM, an efficient solution is to identify the
classes with the highest EVM values in the training stage and divide them into
more classes. However, to obtain more accurate values and decrease the error
as much as possible, this process has to be iterative. For the above reasons an
optimization loop will be introduced to the training process of Figure 4.2 and
the training stage will now become as Figure 4.9 illustrates.

Optimization

y ()

Volterra Terms

x (1+Q)

y(Q)

loop

x

Average y

u

:l Class
0 »
M

New
classes s [€
o
M |
Y A
verage y
Class (1+Q)
Fix
Class _| Classes

I

Average y (I)

Average y (Q)

J

Figure 4.9: Training stage with optimization loop.

The fix classes block compares the assigned y values of each class with the
actual ones and calculates the total EVM of each class. The classes are then

Implementation and results 43

sorted in descending order, from the one with the highest EVM to the one with

the lowest, so N number of classes can be selected and divided into M new
classes.

4.3.5 Results

With respect to the results from Figures 4.4 and 4.5, the number of classes
was set to 400. As the training set increases, the EVM and the ACPR are
getting better, as Figures 4.7 and 4.8 illustrate, however, 40000 was selected
as the size due to the fact that the simulation time is too long and large sets
would highly affect this time. To test the optimization loop, the initial number
of classes was set to 400, then the 200 classes with the highest EVM are
indicated and divided into more classes. The number of new classes per loop
is not constant since overlaps might occur between the values of the new
classes and the values of the old classes. In that case, only one class is formed
every time, so the uniqueness of the value will be maintained.

11
[]
|
105}
g
= |
W 10t
|
|
|l X 100
'Y 9.524
9.5/% Vou:

0 1000 2000 3000 4000 5000
Number of loops

Figure 4.10: EVM-Number of loops plot

The results from Figures 4.10 and 4.11 are indicating, that the use of
the optimization loop can decrease the EVM and the ACPR, as it was expected
since this approach provides more classes with better accuracy. However,
this can drop the EVM only to a certain point. As it is shown from 1 to 100
iterations the levels of EVM and ACPR are decreasing significantly, but on the
other hand from 100 to 500, 1000 and 5000 are saturating.

44 Implementation and results

-2557¢
)
\
|
— \
8 -26 r‘
z \
o |
o, |
< -265 —w‘
Il x 100
| Y -26.83 | | x 1000
[OSS Y -26.91
®— @ —Q
=27

0 1000 2000 3000 4000 5000
Number of loops

Figure 4.11: ACPR-Number of loops plot

4.4 Architecture

The final system is illustrated in Figure 4.12 and the flow chart of Figure 4.13
explains the steps for the whole process. At first, the training data (x) will
pass through the Volterra series, so the Volterra terms (y) will be estimated.

The calculated Volterra outputs will go through the SOMs where they will
be classified into N number of classes. The next step would be to identify the
K number of classes with the largest EVM and divide them into M number of
classes, which would lead to a more accurate model.

The Volterra outputs along with the classes will be used from the KNN as
the training data and labels. The rest of the input data set values (z) will be
used as the test data for the KNN. The KNN algorithm will predict the class
for each z input value of the test set.

According to the predicted class, the average y will be assigned as it was
calculated in the training stage.

Implementation and results 45

Processing
Training Optimization stage
stage loop New Average y
[classes (0]
Input x ’?n Average y (Q)|
x_| Aver. y [Class
Predicted
asies Predicted y
—
Traning
X |Aver. y [Class/Average
Sat v Yy Clasg g
[Clasq
Volterra y
Terms @ i

X

(I+Q)
Test
set

J

Figure 4.12: Overall system architecture

46

Implementation and results

Start

Y

Estimate Volterra terms for
the training data

v

Classify Volterra terms
into
N number of classes

Y

Y

Calculate the average
Volterra term value for
each class

Find K number of
classes with high
EVM

v

Divide into M
new classes

|

Y

Write all the
values
to SOMs LUT

Iterations = Loops

Provide SOMs LUT
and the test data to
the KNN

v

Predict the missing
Volterra terms

Figure 4.13: Flowchart of the overall process

Implementation and results 47

Figure 4.14 illustrates the proposed architecture for the digital pre-distorter
implementation. The Delay Adjustment block has been added to indicate that
the system will first accept a certain amount of input samples (40000 in this
project) and then will classify them with the use of self-organizing maps, to
form a look-up table that will contain the classes and the calculated y value
for each class.

x(n) i
1 e Delay Predistorter
' 7| Adjustment (Processing stage)
E A
LUT

«| Adaptive Algorithm
(Training stage)

Adaptation path

]
'
U

Figure 4.14: Proposed pre-distorter with SOMs and KNN

4.5 Computational complexity

Using MATLAB for simulations would not be a useful solution for measur-
ing the computational complexity and comparing the project’s implementation
with the original one, due to the fact that MATLAB optimizes many functions
and does not provide a proper interface for measuring the computational com-
plexity. For that reason, SOMs and KNN were also implemented in Python
where the total number of floating point operations per second (FLOPS) was
estimated with the use of Python’s PAPI (Performance Application Program-
ming Interface) library [53].

48 Implementation and results

Table 4.2 shows the number of FLOPs for the training part. The numbers
are indicating that SOMs require a big number of computations, especially
when the number of classes and the training size are increasing.

H Classes Training size GFLOPs H

50 40000 16
200 40000 56
400 40000 100
400 20000 50
400 30000 75
400 40000 100

Table 4.2: SOMs computational complexity

Figure 4.15 illustrates the pie chart for the computational complexity per
step for the SOM. The steps that require the biggest amount of computation
are the Neighborhood Function and the Similarity Matching, The ones with
the lowest are the Sampling and the Weights Initialization which due to their
very low percentages, are not really visible on the pie chart. Looking back into
Chapter 3 (section 3.3), one can understand that equations (3.1), (3.2), (3.3)
and (3.4) which are used in Neighborhood Function and Similarity Matching
steps, require more computations compared to the rest of the steps.

Computational complexity per step (%)

Figure 4.15: Pie chart for SOMs complexity

Implementation and results 49

[Classes Training size MFLOP/sample EVM(%) ACPR(dBc) ||

50 40000 14.2 18.3 -20.8
200 40000 13.9 12.6 -24.2
400 40000 14.7 10.8 -25.2
400 20000 8.7 12 -24.74
400 30000 11.5 11.25 -25.22
400 40000 14.7 10.8 -25.2

Table 4.3: KNN computational complexity

Table 4.3 illustrates the computational complexity of the KNN pre-distorter.
As the results are showing, there is no difference on the amount of computa-
tions when the number of classes is increased. However, this is not the case
about the training size. As it was expected the training size affects the amount
of computations, since the KNN algorithm compares its input sample with all
the values of the training set. The number of classes will not affect that com-
parison since it will always be one feature, but with different range of values
depending on the total classes. In contrast, increasing the training size will
increase the number of samples that will have to be compared with the KNN’s
input size and it is easy to understand that this will affect the computations.

4.6 Comparison to the Look-Up Table (LUT) pre-
distorter

In the proposed implementation the training part is required to run only once
and form the LUT, that will be provided to the KNN. For that reason the KNN
pre-distorter is compared in this section with the LUT approach.

According to Figure 4.10 and 4.11, the best results for the KNN pre-
distorter were obtained after the use of the optimization loop. This will require
SOMs to be executed multiple times so the number of computations for the
training part will increase even more. Since the difference after the first 100
iterations was not that big, the KNN pre-distorter results for 100 SOMs opti-
mization loops will be used and be compared with the LUT pre-distorter(see
Figure 4.11 and 4.12). The selected training size is 40000 and the total num-
ber of classes after 100 loops was around 6000.

The project’s simulation data were taken from a 28GHz band PA, with
bandwidth up to 400MHz. The pre-distorter’s memory depth for the LUT im-
plementation was 3 and the polynomial order 5.

pre-distorter MFLOP/sample EVM(%) ACPR(dBc)
KNN 14.6 9.5 -26.8
LUT 71 3.8 -45.2

Table 4.4: Summary of KNN and LUT pre-distorter

50 Implementation and results

Observing Table 4.4, one can conclude that the KNN pre-distorter requires
a small amount of computations per sample, compared to the original ap-
proach. However, the accuracy and the performance has dropped significantly
and such an implementation would be difficult to meet the industry’s specifi-
cations as those mentioned on Section 4.1. The next chapter will focus on
discussing this projects results and some possible improvements that could be
made to get this design one step closer to the industry’s requirements.

Chapter 5

Conclusions and future work

5.1 Conclusions

The main goal of this thesis project was to develop an innovative solution for
digital pre-distortion with the use of self-organizing maps and investigate the
quality of the results. Using the LUT-based pre-distorter scheme as a base
and a mean of comparison, this implementation is targeting on reducing the
multiple LUTs on the forward path with only one that will be formed by SOMs
and provided to the KNN algorithm in order to estimate the pre-distorters
output value. In addition to that, this project’s implementation needs to use
the Memory Polynomial only for a limited amount of data in the beginning of
the process to form the LUT.

The results are indicating that as it was expected the accuracy of the
model is worse than the conventional one since it is based on predictions.
However, in terms of computational complexity the KNN pre-distorter is more
efficient than the LUT pre-distorter for the used PA. This difference can be
even more significant if the KNN pre-distorter is compared with pre-distorters
with higher memory depth and polynomial order due to the fact that in those
cases the FLOPs are increasing in the conventional approach but will not af-
fect the forward path of this design. However, it will affect the adaptation path
with SOMs, which needs to be executed initially to form the LUT.

By investigating further the results, some interesting parts were observed
such as that the accuracy of the model could be increased by increasing the
number of classes. A scenario that makes sense. since predicting the output,
using a limited number of pre-estimated values, generates some quantization
to the output values which will lead to an increase of the error. In order to
aim for the quality and not the quantity of the classes, the optimization loop
was introduced and the error was reduced while the number of classes was
maintained on a reasonable level. Due to the long simulation time in this
project not all the possible scenarios and combinations were tested.

The project concludes that theoretically by starting with a small number of
classes and introducing new classes through the optimization loop, the EVM
and the ACPR can reach even lower levels and they might be able to meet

51

52 Conclusions and future work

the specifications. To achieve that more simulations are required, with very
long execution time, which will also lead to an increment in the amount of
computations in the adaptation path, since SOMs will be executed more times.

5.2 Future work

As an extension of this thesis, I would like to mention four basic points that
could be further examined and improved:

e The optimization of the existing system to reach better EVM and ACPR
levels and meet the specifications.

e The replacement of the KNN with a different prediction algorithm that
could be more accurate and hardware-friendly in terms of computations.

¢ The hardware implementation of the system and the testing in real-life
scenarios with bigger amount of data.

¢ A comparison of this design with different pre-distorters with bigger
memory depth and polynomial order.

References

53

References

[1]

Electronics Hub, What is a Power Amplifier? Types, Classes, Appli-
cations, 2018. https://www.electronicshub.org/power-amplifier/
#What_is_a_Power_Amplifier

[2] John Price and Terry Goble, Signals and noise.Elsevier Inc, 1993.

[3]

(4]

[5]

(6]

[7]

(8]

[9]

[10]

Xilinx, Inc Understanding Key Parameters for RF-Sampling Data Convert-
ers. White Paper: Zynq UltraScale+ RFSoCs, February 20, 2019.

Erik Andersson, Christian Olsson, Linearization of Power Amplifier using
Digital Predistortion, Implementation on FPGA. Department of Electrical
Engineering, Linkopings universitet, Linkoping, Sweden, 2014.

Wei Wei, Ole Kiel Jensen, Jan H. Mikkelsen, Self-heating and memory
effects in RF power amplifiers explained through electrothermal. IEEE
Press, Aalborg Universitet, Denmark, 2013.

Christian Henn, Burr-Brown International, GmbH. Intermodulation Dis-
tortion (IMD). Burr-Brown International,Texas Instruments Incorpo-
rated, Tucson, Arizona, 2000.

Ibrahim Can Sezgin, Different Digital Predistortion Techniques for Power
Amplifier Linearization. Department of Electrical and Information Tech-
nology Faculty of Engineering, LTH, Lund, Sweden, 2016.

Aidan Wilson, A Brief Introduction to Supervised Learning. Towards
Data Science, September 29, 2019. https://towardsdatascience.com/
a-brief-introduction-to-supervised-learning-54a3e3932590

Barber, D, Bayesian Reasoning and Machine Learning. Cambridge Uni-
versity Press, 2012.

Nagyfi Richard. The differences between Artificial and Biological
Neural Networks. Sep 4, 2018. https://towardsdatascience.com/
the-differences-between-artificial-and-biological-neural-
networks-a8b46db828b7

54

References 55

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

Sylvester Kaczmarek, What You Need to Know About Ma-
chine Learning. Electronic Design an informa business, 2017.
https://www.electronicdesign.com/industrial-automation/what-
you-need-know-about-machine-learning

Q.Wu and Z.Ni, Car assembly line fault diagnosis based on triangular
fuzzy support vector classifier machine and particle swarm optimization.
Expert Syst, 2011.

M. Gardner and J. Bieker, Data mining solves tough semiconductor man-
ufacturing problems. In Proc. 6th ACM SIGKDD Conference, 2000.

Darko Stanisavljevic and Michael Spitzer, A Review of Related Work on
Machine Learning in Semiconductor Manufacturing and Assembly Lines.
SamI40 workshop at i-KNOW’, Graz, Austria, 2016.

A. F. Tabrizi et al. A machine learning framework to identify detailed
routing short violations from a placed netlist. DAC, 2018.

A. F. Tabrizi, N. K. Darav, L. Rakai, A. Kennings, and L. Behjat Detailed
routing violation prediction during placement using machine learning.
VLSI-DAT, 2017.

W.-T. J. Chan, P.-H. Ho, A. B. Kahng, and P. Saxena Routability optimiza-
tion for industrial designs at sub-14nm process nodes using machine
learning. ISPD, 2017.

Wei Zeng, Azadeh Davoodi, and Yu Hen Hu Design Rule Violation Hotspot
Prediction Based on Neural Network Ensembles. University of Wiscon-
sin-Madison, 2018.

Dennis R. Morgan, Zhengxiang Ma, Jaehyeong Kim, Michael G. Zierdt,
and John Pastalan A Generalized Memory Polynomial Model for Digital
Predistortion of RF Power Amplifiers. IEEE Transactions on Signal Pro-
cessing, 2006.

Ibrahim Can Sezgin, Different Digital Predistortion Techniques for Power
Amplifier Linearization. Department of Electrical and Information Tech-
nology, Faculty of Engineering, LTH, Lund University, 2016.

Henna Paaso and Aarne Mammela, Comparison of direct learning and
indirect learning predistortion architectures. ISWCS ’08. IEEE, 2008

Takao Inoue, Digital Predistortion (DPD) Design-to-Prototype Framework
for PA’s. National Instruments, AWR Corporation, 2013.

F.M Ghannouchi and Oualid Hammi, Behavioral Modeling and Predistor-
tion. Microwave Magazine, IEEE, 2010.

Maria Canavate-Sanchez, Andrea Segneri, Apostolos Georgiadis, Savvas
Kosmopoulos, George Goussetis, Yuan Ding System performance evalua-
tion of power amplifier behavioural models. Heriot-Watt University, 2018.

56

References

[25] Jessica Chani-Cahuana, Digital Predistortion for the Linearization of

[26]

[27]

[28]

[29]

[30]

[31]

[32]

Power Amplifiers. Communication Systems and Information Theory
Group Department of Signals and Systems, Chalmers University of Tech-
nology, Gothenburg, Sweden, 2015

D. Schreurs, M. O’'Droma, A. A. Goacher, and M. Gadringer, RF Power
Amplifier Behavioral Modeling. Cambridge, UK, 2008.

L. Ding, G. T. Zhou, D. R. Morgan, Z. Ma, J. S. Kenney,]J. Kim, and C.
R. Giardina, A Robust Digital Baseband Predistorter Constructed Using
Memory Polynomials. IEEE Trans. Commun., Vol. 52 No 1., 2014.

Home of RF and Wireless Vendors and Resources, Digital Predistortion
Reference Guide. Altera Corporation, 2003.

Scott, A.W., Frobenius Rex, RF Measurements for Cellular Phones and
Wireless Data Systems. Wiley/IEEE, 2008.

RF Wireless World EVM-Error Vector Magnitude. https://www.
rfwireless-world.com/Terminology/Error-Vector-Magnitude.
html/.

Zhenyu Wang, Yanyun Wang, Chunfeng Song, Tao Chen and Wei Cheng
Deep neural nets based power amplifier non-linear pre-distortion, Phys.:
Conf. Ser. 887 012049, 2017.

Manish Sonal, Machine Learning for PAPR Distortion Reduction in OFDM
Systems. KTH Royal Institute of Technology, School of Electrical Engi-
neering, Stockholm, Sweden, 2016.

[33] Jun Peng, Songbai He, Bingwen Wang, Zhijiang Dai and Jingzhou Pang

Digital Predistortion for Power Amplifier Based on Sparse Bayesian
Learning. IEEE Trans. Commun., Vol. 63 No 9., 2016.

[34] James Peroulas Digital Predistortion Using Machine Learning Algo-

[35]
[36]

[37]

[38]

[39]

rithms. Stanford University, California, 2016.
Abhinav Ralhan Self Organizing Maps. Towards Data Science, 2018.

Simon Haykin Neural Networks: A Comprehensive Foundation. 2nd ed.
Prentice-Hall, Englewood Cliffs, New Jersey, 1999.

Cengiz Kahraman Computational Intelligence Systems in Industrial En-
gineering. Atlantis Press, 2012.

D. Bloice, Marcus and Holzinger, Andreas. A Tutorial on Machine Learn-
ing and Data Science Tools with Python. Holzinger Group HCI-KDD, In-
stitute for Medical Informatics, Statistics and Documentation, Medical
University of Graz, Graz, Austria, 2016.

Dr. Meenakshi Sharma, Anjali Batra Analysis ofDistance Measures in
Content based Image Retrieval. H.C.T.M., Technical Campus, India,
2014.

References 57

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

Victor J.A.S. Lobo Application of Self-Organizing Maps to the Maritime
Environment. Springer, 2009.

Algobeans Self-organizing maps tutorial. Layman Tutorials in analytics,
Algobeans.com, November 2, 2017.
https://algobeans.com/2017/11/02/self-organizing-map/

Onel Harrison Machine Learning Basics with the K-Nearest Neighbors
Algorithm. Towards Data Science, 2018.

Devin Soni Introduction to k-Nearest-Neighbors. Towards Data Science,
March, 12, 2018.
https://towardsdatascience.com/introduction-to-k-nearest-
neighbors-3b534bb11d26/

Pedregosa, F. et al. Scikit-learn: Machine Learning in Python. JMLR 12,
pp. 2825-2830, 2011.
https://scikit-learn.org/stable/auto_examples/neighbors/plot_
classification.html/

Ryotaro Kamimura Social Interaction and Self-Organizing Maps. Appli-
cations of Self-Organizing Maps, Magnus Johnsson, IntechOpen, 2012.

Suzanne Angeli, Arnaud Quesney and Lydwine Gross Image Simplifica-
tion Using Kohonen Maps: Application to Satellite Data for Cloud De-
tection and Land Cover Mapping. Applications of Self-Organizing Maps,
Magnus Johnsson, IntechOpen, 21 November, 2012.

Li Jian, Yang Ruicheng and Guo Rongrong Self-Organizing Map Method
for Fraudulent Financial Data Detection. IEEE, 3rd International Confer-
ence on Information Science and Control Engineering, 2016.

Suhatati Tjandral, Amelia Alexandra, Putri Warsito and Judi Prajetno Su-
giono Determining Citizen Complaints to The Appropriate Government
Departments using KNN Algorithm. IEEE, 13th International Conference
on ICT and Knowledge Engineering, 2015.

Treesa George, Sumi. P. Potty and Sneha Jose Smile Detection from Still
Images Using KNN Algorithm. IEEE, International Conference on Con-
trol, Instrumentation, Communication and Computational Technologies
(ICCICCT), 2014.

S.Venkata Lakshmi and T.Edwin Prabakaran Application of k-Nearest
Neighbour Classification Method for Intrusion Detection in Network
Data. IJCA, International Journal of Computer Applications, Volume 97-
No.7, July 2014.

Dr. Oliver Werther and Roland Minihold LTE: System Specifications and
Their Impact on RF Base Band Circuits . Rohde Schwarz, 2013.

58 References

[52] Keysight Technologies. 5G NR (New Radio). Technical Overview litera-
ture number 5992-2916EN, 2019. https://www.keysight.com/se/en/
assets/7018-06127/technical-overviews/5992-2916.pdf/

[53] Fabien Loison, Mathilde Boutigny. PyPAPI’s documentation. Github,
2017. https://flozz.github.io/pypapi/

[54] Intg Ckts, Adjacent Channel Power Ratio (ACPR). 2018. http://analog.
intgckts.com/adjacent-channel-power-ratio-acpr/

UNIVERSITY

Series of Master’s theses
Department of Electrical and Information Technology
LU/LTH-EIT 2020-789
http://www.eit.Ith.se

0Z0Z pun 18sny-3 1 12132411 Aq parulid

