
Further investigation of the performance
overhead for hypervisor- and container-based
virtualization

CUI ZHENG
MASTER´S THESIS
DEPARTMENT OF ELECTRICAL AND INFORMATION TECHNOLOGY
FACULTY OF ENGINEERING | LTH | LUND UNIVERSITY

Printed by Tryckeriet i E-huset, Lund 2020

C
U

I ZH
EN

G
Further investigation of the perform

ance overhead for hypervisor- and container-based virtualization
LU

N
D

 2020

Series of Master’s theses
Department of Electrical and Information Technology

LU/LTH-EIT 2020-743
http://www.eit.lth.se

1

Further investigation of the

performance overhead for

hypervisor- and container-based

virtualization.

By

Cui Zheng

Supervisor: Maria Kihl

Examiner: Christian Nyberg

Department of Electrical and Information Technology

Faculty of Engineering, LTH, Lund University, Sweden

2

3

Abstract

This thesis work aims to find a suitable environment for different

virtualization system to achieve enhanced performance. Virtualization

plays a vital role in cloud services, and it is essential to help cloud users

comprehend the brief distinction between different virtualization

technologies. The hypervisor-based technology has been used as the

primary selection for cloud services in the past, but container-based

virtualization starts receiving more attention and is regarded as the

substitution of hypervisor-based technology. This thesis, contains

research and discussion of the performance overhead and performance

variability overhead that a Virtual Machine or Docker container

introduce under certain conditions. The challenge was to find a feasible

solution to measure the parameters based on the performance, acting

on the CPU, memory, hardware disk, and network throughput on the

physical machine. These parameters will be used in the performance

comparison of these two virtualization techniques.

Moreover, in the 5G network, network function virtualization (NFV)

is an efficient solution against the massive traffic, but it suffers from

software-based solutions. The main concept in NFV is to decouple the

network functions of the dedicated hardware working only for the

given purpose. When setting up a virtualization proxy or deploying a

web server within a virtual environment, it is necessary to determine if

the virtualization method should use hypervisor-based (KVM) or

container-based (Docker) technology. Therefore, we need to

investigate as a special condition which technique will maximize the

network data throughput and minimize the physical machine’s

overhead.

Our experiment presents the performance overhead when a

webserver is running in the KVM and Docker virtualization

environment. In most cases, the Docker virtualization performs better.

KVM has similar performance overhead as Docker when the network

is not under heavy load.

4

5

Popular science summary

Virtualization was developed by IBM in 1960[20], and it becomes a

fundamental part of clouding technology these days. In computing

technology, virtual operating system and virtual network resource are

widely used. The first virtual machine was designed by IBM in

1967[14], those VMs are created and managed by a Hypervisor. The

main function of the hypervisor is enabled multiple operating system

running on the same underlying hardware. The severs deployed by the

Hypervisor is known as the Host machine and those VMs running on

top of the host machine is named guest machine. Recently there is a

new technology implemented in the cloud named Containers. The

containers are more lightweight compared with the hypervisor. The

containers access the same operating system which including the

system root files, libraries and common files, and they can run multiple

isolated processes on the same host. Also, containers provide isolating

the user space instances while sharing the same kernel; it uses the

control groups and namespace technologies to provide the resource

management.

The virtualization commonly has an impact on the real-world

application such as network virtualization. Network function

virtualization is a part of the software-defined network, which can

integrate the network resource flexible with the virtual CPUs or

Memory to any other VNFs instance. The network management layer

can modify the data throughput concerning the performance of the

network and scale expectations over a single virtualized system or

operating platform. It is an efficient solution against the massive data

traffic problem in 5G network.

6

7

Acknowledgement

I would like to express my gratitude to everyone who helped me to

finish this thesis work

First, I would like to express my great appreciation to my supervisor

Maria Kihl, who has given me lots of review and feedback to support

me through this thesis.

Also, I would like to thank to my friend and family for all their best

wishes.

Cui Zheng

8

9

List of Acronyms

VM
Virtual Machine

NFV Network Function Virtualization

VNF Virtualized Network Functions

KVM Kernel-based Virtualization machine

LXC Linux Container

COW Copy-on-write

EPC Evolved Packet Core

HA High availability

RDD Resilient Distributed Datasets

VBD Virtual block device

UFW Uncomplicated firewall

10

11

Table of contents

Abstract .. 3

Popular science summary ... 5

Acknowledgement .. 7

List of Acronyms .. 9

Table of contents .. 11

1. Introduction ... 13

2. Related work ... 15

3. Theory ... 21

3.1 Hypervisor-based virtualization ... 21

 KVM ... 21

 File system journaling .. 22

 Performance on ARM architecture 24

 Xen .. 24

3.2 Container-based virtualization ... 25

3.2.1 Linux containers (LXC) ... 26

3.2.2 Containers executed on top of VM 28

3.2.3 Docker ... 29

3.2.4 Memory resource management 31

3.2.5 Container performance comparison in NFV 32

3.3 Network Function Virtualization and Software Defined

Network .. 33

3.3.1 Virtualization Comparison under Open5GCore 33

3.3.2 Network traffic simulation with Open5GMTC 34

3.4 Benchmark Application ... 36

3.4.1 System performance .. 36

12

3.4.2 CPU performance .. 36

3.4.3 Memory performance .. 37

3.4.3 Disk I/O performance .. 37

3.4.4 Network throughput ... 38

4. Experimental part .. 39

4.1 Testbed.. 39

4.1.1 Host machines deployment 40

4.2 Experiments .. 43

4.2.1 System’s resource consumption 44

4.2.2 Elapsed time of the response 44

5. Results .. 45

5.1 Light Traffic .. 45

5.2 Medium Traffic .. 45

5.3 Heavy traffic ... 46

5.4 Average response time.. 47

6. Conclusions ... 49

References .. 52

13

1. Introduction

Virtualization plays a vital role in cloud services. In cloud

computing, there are two kinds of virtualization technologies,

hypervisor-based and container-based virtualization. A cloud user

should understand the characteristic of different virtualization

technologies so that they can choose the most suitable one to deploy

for their services, as various cloud providers such as Amazon EC2,

Google Compute Engine and Microsoft Azure use different

virtualization technology.

In 1960, IBM introduced a technology called virtualization [14], and

they developed the first VM in 1967. They created the Hypervisor,

which is a software to manage running multiple operating systems on

the defined hardware. The hypervisor virtualization deployed on the

host machine is controlled and connected to the virtual machine that

runs on top of it. By virtualizing system resources such as CPUs,

Memory etc., it can provide an environment running multiple operating

systems. Recently, containers have been deployed in cloud

infrastructure. The containers access the same operating system

including the system root files, libraries and common files, and they

can run multiple isolated processes on the same host. Also, containers

provide isolated user space instances while sharing the same kernel; it

uses the control groups and namespace technologies to provide the

resource management.

Generally, VMs have outstanding performance in isolation

compared with containers, such as preventing VMs from interfering

with each other. The currently existing virtualization technologies are

hypervisor-based and container-based virtualization, which

respectively corresponds to hardware-based and operating system-

based virtualization method.

In this thesis, the performance of hypervisor and container-based

technologies are compared within the same operating environment.

Several simulations have been implemented based on these two

virtualization technologies. The performance overheads of the

virtualization technologies could vary not only on a feature basis, but

also on task basis. With the help of a micro-benchmark tool, we

evaluate the performance related to the CPU consumption and network

throughput in different virtualization environments. It is shown that

14

container-based virtualization performs better when the web server

dealing with the network request is deployed on top of it.

For further investigation, the virtual environment for data storage

purposes that is deployed with the system resource virtualization

related to the Disk I/O can be regarded as one of the research directions.

Also, the memory utilization rate is an exciting topic when the

virtualization handles the intermediate data that frequently access the

system memory. At last, combined hypervisor and container

technologies may become one attractive topics. Both the lightweight

deployment and the isolation may be achieved when the container is

running on top of the KVM.

15

2. Related work

There are several studies that have analyzed the performance

overhead and variability overhead for the two technologies.

Zheng Li et al. [1] presented a performance comparison of the

hypervisor and container-based virtualization. They used a local

machine connecting to a cloud service provider (Amazon EC2A)

which runs the individual benchmarks on three types of resources

(physical machine, container and virtual machine) independently. The

testing stage contains four parts, which respectively are

communication, computing, memory, and storage. The paper

evaluated with three types of resources to support the Cloud service.

They noticed that the container's average performance is generally

better than VM's and even comparable to the physical machine

regarding many features. However, there are still some cases where

VMs have better performance than containers, for example, when

solving the N-Queens problem or writing small-size data to the disk.

Further, Ericsson Research, Nomadic Lab had an article [2]

published, which contained a comparison between the hypervisor and

lightweight virtualization. They used the Linux system with KVM as

an example of a hypervisor-based system, and compared this with

Docker and LXC, represented as container-based solutions. They used

benchmark tools to measure CPU, memory, disk I/O and network I/O

performance. They conclude that the container-based solution is more

lightweight, thus facilitating the denser deployment of services. Their

results show that the KVM hypervisor performance improved but still

lack performance in DISK I/O efficiency. The containers’ overhead

could be considered almost negligible. By analyzing the measurement

results, they conclude that the versatility and ease management, which

are the intrinsic attribute of the containers are against the security.

A further work is relating to "Linux Container Daemon” [3]”, which

is a new type of container that can claim to offer improved support for

security without losing the performance benefits mentioned in the end.

Prof. Ann Mary Joy [8] presented a performance comparison

between Linux Containers and Virtual Machines. Several features

about the container benefits listed in the article include portable

deployment, fast application delivery, scale and deploy with ease and

higher workloads with greater density. By making the application

16

performance comparison and scalability comparison, the author

concludes that containers have outperformed virtual machines in

regarding performance and scalability. With better scalability and

resource utilization, containers have an advantage over the reduced

resource overhead. However, there is one case where virtual machines

overcome the containers, as mentioned by the author. This case

concerns applications running with business-critical data, and here

virtual machines are better, since the containers run root privileges and

this may cause security issues.

When a user considers deploying their service to the cloud, it is

essential to understand the performance of different virtualization

technologies when choosing from the cloud provider, in order to avoid

degradation of the quality of service. Some papers found better

performance for some of the application due to optimizations in the

hypervisor.

Sampath Kumar [6] did several benchmarks measuring the

performance on CPU, memory and disk I/O for Xen, LXC and KVM.

He concluded that LXC is preferred when virtualizing infrastructure

that is dynamic by designing for applications with secure resource

isolation. KVM did a better job when memory needs more frequently

access. Meanwhile, Xen performs better when disk access has a distinct

signature.

Bo Wang presented [7] a performance comparison between

hypervisor and container-based virtualization for the cloud user. Two

macro benchmarks were used in the data analysis, HPL for high-

performance computing applications and YCSB for online transaction

processing applications. He concluded that for network I/O, computing

rate and bandwidth of memory, both virtualizations have small

overheads. Due to the cost of the hypervisor, Xen has higher overheads

on operating system latencies, main memory accesses and disk,

network I/O. Then they deployed an HPC application for the data

analysis, and showed that the performance degradation by these two

virtualization solutions is negligible, due to the small performance

overhead on CPU and memory bandwidth. After that, OLTP

applications were deployed to determine the transaction latency under

specific loads. Here, Xen has higher overhead than Docker because of

the performance overhead on the latencies of system operations, and

I/Os. However, when considering the transaction throughput, Xen did

17

a better job due to improvements to I/O, virtual block device (VBD)

[5] and aggressively data prefetching, which do not affect disk I/Os for

large blocks.

Further, these technologies apply to NFV. NFV is regarded as one

of the efficient solutions for the massive traffic in the 5G network, and

decouples the network function of the local machine and replaces it by

commodity hardware.

The author Sun Young Chung [10] investigated NFV performance

in the cellular network. The paper applied KVM and Docker to

virtualized SOCKS proxies and deployed it to enable MPTCP

connection. By comparing latency and data throughput, we can have a

better understanding when comparing these two technologies under the

NFV environment. Two conclusions are listed separately. The first

conclusion relates to the usage of the MPTCP connections and show

that MPTCP has better performance in long and large volumes of TCP

connections, and the latency between the proxy and server determines

the throughput. If the latency is large (RTT 100ms), the MPTCP

performs worse than the single TCP connections. The second

conclusion is that while using these two technologies deployed on

NFV, Docker handles the traffic with less resource consumption

compare with KVM.

It is difficult to deploy an NFV system since when configuring fault

management policies, multiple possibilities exist, so selecting suitable

virtualization technologies and management products also needs to be

considered.

Domenico Cotroneo presented an article [13] where he analyzed the

dependability benchmark for NFV systems, and concluded the

characteristic of container-based and hypervisor-based technologies.

The paper points out that even if containers can achieve higher

performance and manageability, they still perform less dependable

compared with hypervisors. VMware configuration showed a higher

fault detection coverage, due to a more complex fault management

mechanism. In the NFV system, Docker has a memory overload

problem that is unreported to the operating system. Also, Docker has

some specific actions like internal kernel errors, and I/O errors that

must configure the recovery actions by forcing a reboot to trigger the

fault management process. Those points of view support the selection

of virtualization technologies deployed in a different environment.

18

 When deploying cloud servers for commercial use or emergency

use, a high availability (HA) must be considered. When virtualization

vendors offer solutions to the customers, high availability is guaranteed

by setting multiple levels of failover capacity in the system. Moreover,

HA refers to the measurement of the ability of the system.

Wubin Li presented an article [11] about two types of technologies

for virtualized platform achieving high availability. Some main

features achieving HA are live migration, VM monitoring, failure

detection and check-point restore. These features are mainly for

hypervisor-based technologies. For container-based technologies,

because of the strong isolation features, the capability of process

checkpoint /restore is essential. For LXC/Docker, this is the only

possible way to achieve high availability of the system.

There is an exception in container-based technologies named

OpenZC [20] that can manage live migration and checkpoint/restore

by implementing loadable kernel modules plus a set of user-space

utilities, while using the file system change tracking, lazy migration

and interactive migration. In [20] it is concluded that there are no

mature features for continuous monitoring to detect a failure of a

container and automatic operation failover actions. Therefore,

extensions on top of container technologies are necessary for an HA

perspective.

Today, it is common to use a lightweight virtualization framework

on an enterprise cloud to accelerate a big data application.

Jabki Bhimani [12] presented a performance comparison of different

Apache Spark applications using both VM and Docker containers.

They studied execution latency and resource utilization, which include

CPU, disk, memory, etc. Spark as a new framework caches all

intermediate dates (Resilient Distributed Datasets (RDDs)) in memory

instead of disk. RDDs can store into memory without requiring

replication and disk access. Hypervisor-based virtualization is widely

used for the implementation of Spark, but recently Docker has been

concerned. Both technologies can achieve resource isolation, but they

have their own way to do resource management. Containers perform

shared resource management while VMs perform distributed resource

management. In the paper, they studied the execution time when Spark

applications operated either on VM or on Docker. The container

performs mostly better than VMs because of the fast setup time and

19

dominates read operations compared with VMs. The read operation

benefits from Docker's storage driver and performs Copy-on-Write

(COW).

However, there are still some cases where VMs perform better than

containers, for example, K (clusters)-means algorithm. K-means has

characteristics that include shuffle and intensive. The Docker-AFUS

(Advanced multi-layered unification filesystem) system executed

COW for every writes operation, and during the shuffle, many COW

operations were stacked, which may result in the throttling stall of

operating threads. Therefore, for the intensive shuffle application, VM

performs better than Docker. For resource utilization, Docker has

higher CPU and disk utilization ratios. Docker has lower memory

utilization compared with VMs due to the bypasses of the guest OS, so

it required less memory usage.

20

21

3. Theory

3.1 Hypervisor-based virtualization

One of the most important characteristics for the hypervisor is

hardware-based virtualization. A virtual machine is created and

managed by the hypervisor, and this enables running multiple

operating systems in the same underlying hardware. The host server

machine is implemented by the hypervisor, which controls and connect

with the guest machine that runs on top of the server.

According to [21] a hypervisor is classified into two different types,

see Figure 1. A Type 1 hypervisor is called "Bare-metal hypervisor"

and it is installed directly on hardware. A Type 2 hypervisor is called

"Hosted hypervisor" and runs on top of a host's operating system.

 KVM
A Kernel-based Virtualization machine (KVM) is a virtualization

software technology for the Linux kernel that makes it into a

hypervisor. A KVM runs as a Linux kernel-based VM manager on

Linux OS. Using KVM, an infrastructure can make multiple virtual

machines running unmodified operating system images. These VMs

will be managed within the host machine. KVM is an open-source

software that allows running guest operating systems inside Linux

processes [22]. KVM loads a kernel module into a Linux kernel as a

hypervisor without creating any necessary processes like scheduler,

memory manager and device drivers. These VMs running on top of the

hypervisor are managed by tools to achieve live migration and resizing

of the units. The architecture of a VM is shown in Figure 1. Further,

KVM can virtualize the processor, RAM, network interface card, etc.

22

Figure 1. Virtualization Architecture: Virtual Machine and

hypervisor-based architectures.

 File system journaling
Virtual machines, expected to provide isolation, compete with the

negligible overhead of lightweight virtualization using Linux

containers (LXC). However, in some environments, VMs outperform

LXC sharply without considering the isolation benefits. The database

management system (DBMS), commonly used in clouds, provides the

user with access and maintenance functions and uses virtualization for

efficient resource utilization and isolation of collocated users’

workloads. The disk I/O is the primary consideration when the DBMS

uses virtualization technologies.

An article [26] discussed performance and isolation issues based on

the virtualization technologies for DBMS, and showed that KVM

outperforms LXC by up to 86% in MySQL throughput without

considering the performance isolation. Due to the special conditions of

the container, the isolation is one of the significant disadvantages, since

the container shares the buffer caches and other data structure at the

OS level. Meanwhile, journaling activities are serialised and bundled

within containers, resulting in inferior performance and isolation. This

performance and isolation anomaly was investigated when regarding

disk I/O performance for DBMS.

The architecture and the I/O path of the journal module for the KVM

and LXC are listed below in Figure 2. In KVM, the disk drives and

hardware drives are virtualized with QEMU emulator. The disk I/O

23

request is processed inside the VM. In LXC, individual processes are

running on the OS without any additional virtualization.

Therefore, the disk I/O process is handled by the ordinary process

on the host. A container architecture leads to performance degradation

caused by sharing of the buffer caches, and the activity inside each

container will affect the performance of other containers through the

shared data structure.

Multi-containers respectively update the journaling module into the

transaction and commits the transaction to disk periodically or while a

synchronization function is invoked, and this has a negative impact on

performance isolation. The containers will be suspended to

communicate the transaction and file sync from other containers, even

if only one of the containers request the information update.

 The file system journaling, which is regarded as the guarantee of the

consistency of file systems causes the performance and isolation

problem according to the measurement data.

Figure 2. Virtualization Architecture: Disk I/O paths of hypervisor

and container in DBMS.

24

 Performance on ARM architecture
In recent days, network function virtualization, which provides a

practical approach using available computer resource to improve the

QoS, aims to reduce the cost and enlarge the scalability when deployed

in the network by using software implementation instead of hardware

deployment. Meanwhile, ARMv8 servers play an essential role due to

the power consumption compare to other servers.

There is a difference when KVM is deployed on an ARM platform

compared with X86 platform. The architecture for the ARM system

exists on two levels, privileged exception level, which serves as the

management, and a hypervisor exception level, which works for the

isolation. Therefore, a KVM will be split into two levels when

deployed on an ARM.

The performance when comparing VMs with lightweight

deployment on an ARM architecture shows that KVM performs better

on the network I/O test, which may probably due to the efficient design

on ARM. For memory and CPU testing, results are quite like X86

platform where KVM has negligible overhead compared with

lightweight deployment [27].

 Xen
Xen (architecture in Figure 3) virtualization technology aims to run

multiple operating systems on a signal server, and it is possible to

migrate the running instance from one server to another. The user from

the guest domain can choose the preferred operating system. The

hardware resources will be allocated by Xen dynamically, and for

security purpose, the guest OSs will not have full authority to access

the computer resource. That guest operating system, which runs

individually, is non-intrusive.

The guest domain (Dem U) in XEN is a virtualized environment and

has few privileges interacting with other VMs. Also, there is a domain

called Demain0 (Dem0), which contains the driver for all devices in

the system, that has the privileges to access the hardware and handles

all access to the system’s I/O functions and interacts with the VMs.

The system operating overhead of XEN is much similar to KVM

since they are both hypervisor-based, but in some specified

environment, Xen is more complicated to deploy.

25

In ARM-based NFV and cloud computing, containers are an

alternative with their fast deployment and lightweight execution. Even

so, it still has security weaknesses compared with XEN and KVM. If

there is not much performance overhead between hypervisors and

containers, the isolation serves as the primary role to consider when

selecting the suitable virtualization.

For this reason, Moritz Raho investigated the performance for ARM-

based NFV and Cloud computing [25]. Xen is more complicated to

deploy on ARM SOC, due to the changes in code and architecture. The

newly added part of the code contains para-virtualised drivers and

ARM virtualization extensions to achieve the function, which was

initially invoked by the network emulator QEMU. Due to the changes

in the architecture, most of QEMU stack was removed, making the full

virtualization impossible. Para-virtualization with support by Linux

and FreeBSD distribution split with frontends and backends was used

to activate the virtualization in own kernel [26]. ARM hardware

virtualization extensions add the HYP mode to separate the kernel from

the hypervisor. The hypervisor is standalone, inside the HYP mode,

taking full advantage of extensions without additional overhead. When

having the performance comparison, both Xen Dom0 and DomU was

considered.

The benchmark results did not show much performance overhead

for the hypervisor and container, which meant that the isolation has the

priority to be considered. The containers still need to consider both

security and steady-state performance when deployed on a similar

systematic framework.

3.2 Container-based virtualization

Compared with the hypervisor; containers have several advantages.

Due to the lightweight deployment, containers may have benefits in

performance overhead. Also, the system is more scalable. The VMs

have higher performance costs, since multiple operating systems is

running on the same host machine. However, the principle of

container-based technology allows lots of guests under the unified use

of a particular operating system. The system structure of the container-

based system will decrease the resource consumed, thus increasing the

scalability of the system.

26

Figure 3. Virtualization architecture: Xen.

3.2.1 Linux containers (LXC)

The container is an operating system-based virtualization

technology. Instead of running a complete operating system as in VMs,

container access the same operating system, which includes system

root files, libraries and common files. Therefore, multiple isolated

processes can run in the same host. The architecture of a container is

shown in Figure 4.

Figure 4. Virtualization Architecture: Container-based virtualization.

27

Linux containers (LXC) were one of the first widely used container

technologies. With benefits from use space management

characteristics, a user can create and manage the system or the

containers more efficiently. The primary function of LXC is using a

single Linux kernel virtualised on the operating system to provide

multiple isolated containers.

The LXC, other than Docker, can be able to run several operating

systems inside a container, managed by the namespace and Cgroups,

rationally utilising the system resource. The Cgroups mainly manages

the resources, including the CPU usage, memory and disk I/O

limitation. On the other side, namespace takes responsibility for the

resource isolation of an application's demand for the operating system.

LXC shares the kernel with the operating system so that system files

and running applications can be managed from the OS. Besides, the

applications can sit in an isolated environment based on the property

from the namespace. The architecture of the namespace and Cgroup is

shown in Figure 5.

Figure 5. Virtualization Architecture: Namespace and Cgroups.

28

3.2.2 Containers executed on top of VM
Other than the traditional way as hypervisors and containers are

deployed on cloud service, there is also a case where a container is

executed on top of a virtualization machine, see Figure 6.

To compare the overhead, Ilias Mavridis [9] conducted several

studies on how a container performance is affected by executed as an

additional layer on top of a virtual machine. The container, described

as a tool for packaging, delivering and orchestrating software service

with application, has a low performance overhead when deployed. The

VMs on the other hand, are doing fine in isolation. However, according

to some statistical data, public cloud providers mostly offer VMs, and

it is, therefore, essential to consider the lack of suitable infrastructure

of a private cloud. Executing containers on top of VMs become a

common case that also fulfils the enhanced security purpose. Moreover,

it is easier to manage and update the system by using this technology.

In the environment where a container is running on top of a VM, there

is a performance dissipation, and it is recommended due to high

security and easy management to execute a container on top of a VM.

The extra consumption sacrificed for the security property of the

system bring us an additional solution when combining both

technologies for better use.

Data centres and cloud computing relies on virtualization for the

public and private user. The hardware virtualization with sharing the

same kernel generate lots of guest OS, which increase the consumption

of the system. Replacing VMs with containers will lower the file

creation of binaries and libraries, which will improve the utilisation

rate.

 In this case, container executing on top of VMs is not only solving

the isolation and security problems but also enhancing the system. For

data storage convenience, the workload migration context should be

taken into consideration. It is relating to applications running as a

container on a VM, which needs to migrate to other physical hosts.

Two solutions mentioned in the article [25] are discussed separated.

One solution is to kill the container and recreate it with the same image

in the suitable host. Another solution is to replace the host VM with

simulated and calculate using the mathematical mode. Depending on

the theory, it is also expected to have proper timing whether to fork out

the parent VM or shift new containers on some other VM. The

29

conclusions summarized this for a stateful container. VM migration

performs better compared with the container reset and rebuild which

acts on a high value of time. For stateless containers, container

kill/restart performs relatively better compared to VM migration.

3.2.3 Docker
Docker container technology was created in 2013 as an open source

engine. It is a tool for container management, and it was built upon

LXC to package the application into the container in an efficient way.

The main difference between the LXC and Docker is concering the

management object, since LXC manage to run several operating

systems inside a container and Docker on the other side manage signal

application containers. Docker Hub as an open source platform plays

an essential role in supporting container images to the applications and

services. [23].

Compared with VMs, containers have much less overhead because

of the sharing system that decreases the image size and reduce resource

consumption of the infrastructure. The architecture is shown in Figure

7. The basic principle of Docker is to pull the images from the libraries

and pack them into the containers. Docker consists with three parts:

Docker Host, Docker Client and Registry.

Figure 6. Virtualization Architecture: Container on top VM.

30

Figure 7. Virtualization Architecture: Docker

With the copy-on-write (COW) file system, Docker instantiates

containers faster. The pointer directly invokes the existing files and

package them into the container. Also, the file system supports the

layering structure, where the container within the structure can operate

based on the containers contain with the existing requisite files.

The COW file system has a unique process when handling the live

data. Instead of overwriting the data, the system updates the live data

using the unused blocks on the disk. The access authorisation is

postponed until all the data is updated to the disk. Copy-on-write

ensures the repetitive resource usage by multiple tasks and saves

memory and CPU resources. When several applications request for the

same data, only one memory space is allowed by the COW, and this

memory space points to all the apps [8]. If the application requests to

modify the data, the new data will be uploaded to unused block in the

disk attached with its independent memory space. The rest of the

applications continue to call the data functions with the original

pointers.

31

The isolation of Docker depends on the layer between the

applications. Furthermore, the layer between the application and the

host restricts the access to the host. The containers can only access the

directory structure so that each container run individually. Even though

each container operates independently, the application inside still has

full of its dependencies like the libraries and share the same kernel with

other containers. Finally, containers run the isolated process in the

user-space on the host operating system.

3.2.4 Memory resource management
When container-based virtualization became popular in recent years,

many web developers and web application companies tend to use it as

a primary platform for their applications. Taking good advantage of

hosting multi-applications, leads to considering resource consume

problem such as memory consumption.

Unexpected access concentration in a target system causes

additional memory consumption, resulting in shortage on the host.

Besides the application bug related to the incorrect memory allocation

leads to an unexpected memory leak. A paper [4] investigating the

problem proposes that memory overuse is prevented by estimating the

memory usage of each container.

The memory management method for container-based virtualization

solves the memory consumption by setting the limitation for the

memory usage of the containers, since the problem a container may

have is a memory overuse feature. Without a memory monitor,

operating either limits the memory resource for each container to

prevent overuse even when some of the containers are out of control or

terminate the random process until the host system restores to regular

ownership of the memory to decrease the degradation of the

performance. Decreasing the number of containers managed by the

host if neither of the schemes works is another solution. Meanwhile,

the execution time handling the memory problem may still affect the

availability of the host.

Setting the consumption of each container as an index to evaluate

the behaviour, will monitor the memory usage and limit the

consumption when an unexpected threshold value pops up. Certainly,

the system detection will periodically examine the resource-restricted

32

containers to release the memory until the container memory

consumption becomes normal again.

3.2.5 Container performance comparison in NFV
 The operator will consider the selectivity for virtualization in the

different environment based on the performance and complexity rate

for deployment and maintenance.

Containers, which are widely used in NFV based applications, will

cause significantly improvement, especially in large-scale

microservice architectures such as telecommunication companies

when combined with the best performing containers and network. The

function for NFVs is mainly for application handling the package in

the network, primarily impacting on the parameters of the average

packet per second and store-forward latency.

In container-based technology, there are several choices to be

considered. Jakob Struye [23] contributes with a detailed comparison

of three container-based technology providers’ network performance

impacting the network function virtualization. The traffic throughput

and network latency were affected by different container technologies

deployed in the NFV based network. Three main container

implementations, including LXC, DOCKER and RKT were deployed

individually.

Running one or more containerized user datagram protocol

forwarding NFVs on host machines concluded that RKT had the worst

performance and LXC had the best. For packet processing, spread over

different applications with a different network solution, there is a

latency improvement compared with the bare metal machine. In

additional, if we only consider the network solutions that are

processing the NFVs, VLAN networking has 20% gain compared with

host networking, where separate buffer for each processor may gain the

advantage.

LXC can provide the significant performance gain even if the

maintaining and deploying is more complicated than for Docker and

RKT. It is not hard to work out that Docker has advantages

implementing on NFV comparing with the others using statistical

analysis.

33

3.3 Network Function Virtualization and Software

Defined Network

For the future 5G network, one of the essential technologies is to

utilise the network function virtualization. The NFV virtualizes the

network components to achieve flexibility and lost cost solutions for

network services.

To overcome the challenges of the huge increasing numbers of

network traffic, building more infrastructures is one of the hardware-

based solutions. However, this is restricted due to scalability issues and

huge costs. One of the alternative solutions called Software-Defined

Network (SDN) or Network Function Virtualization (NFV) is moving

forward. To save the resources and avoiding machines working for the

limited purpose, NFV enables decoupling the required network

functions from the specific hardware devices, and is a software-defined

virtualizing to handle the traffic on demand. Meanwhile, NFV has

more parameters to consider when deployed in the network. Compared

with purpose-built machines, NFV is a software-based solution to

maximize performance from existing devices. It is essential to calculate

the processing capacity of the NFV and have a good balance with the

workload. Furthermore, NFV is managed dynamically. Therefore, it

may cause network congestion due to delays or randomly high

throughput.

 In real-world applications, the important technologies that

virtualized the network function are related to hypervisor and container,

both virtualized technologies have advantages in a certain field.

3.3.1 Virtualization Comparison under Open5GCore
The Open5GCore is a commercial product for software-defined

network evolved packet core (EPC) over hypervisor and container.

The advantage of NFV is that it enables executing several virtual

machines at the same time, and this is controlled by the system.

Furthermore, according to the state of the network, an NFV instance

will adjust the computing and capacities in real time. Except for NFV,

it is also quite interesting to investigate virtualized technologies that

have a good performance on carrier-grade networks.

 During the installation of Open5Gcore, it is essential to set system

privilege mode for Docker to change the configuration of the network

34

interfaces, because Docker is deployed on application level and cannot

directly access libraries and host OS. However, it is hindering the

process from setting the system permissions. The privileged mode

situation leads to the security issue.

A research article about the evaluation of Open5GCore over

hypervisor and container [16] compared the CPU and memory usage

to show the resource utilisation during the evaluation stage.

Meanwhile, VoIP, Video, and file transfer protocol (FTP) profiling was

used to show network performance.

Calculation examples show that KVM has the highest CPU

utilisation, which is due to executing both host OS and guest OS. For

memory usage, KVM has the highest performance, and the memory

will not increase too much as the background traffic is growing as the

required memory is allocated when a virtual machine is created. The

network performance comprises the throughput and delay. In the

testing stage, the physical machine has the lowest delay and KVM has

the largest delay.

Video, VoIP and FTP stand for small and large data transmission

respectively. In light traffic, physical machine KVM and Docker have

almost the same throughput. This is probably caused by excessive CPU

and memory assembled on the local machine. For the FTP scenario;

the physical machine is the best due to the lowest overhead among

them.

The throughput between the physical machine and KVM/Docker are

close, and benefit by using the same interface virtualization technique,

macvtap. The gap throughput between the physical machines and

KVM/Docker can be as large as 3Mps. Finally, regarding the

availability of the system, the boot time, reboot time, and recovery time

of Docker are much shorter than for KVM.

3.3.2 Network traffic simulation with Open5GMTC
The open5GMTC is a protocol type tool for LOT/M2M platforms.

The main function of open5GMTC is a generator for simulating the

different kinds of network traffic to evaluate the performance between

the physical machine and virtualized machine (KVM, Docker)'s

Evolved Packet Core (EPC). The openMTC platform consists of two

service capability layers: a gateway service capability layer (GSCL)

and a network service capability layer (NSCL). The open5GMTC is an

35

application running on top of the openMTC. LOT/M2M was

introduced as a new paradigm for real-world applications connecting

to the Internet to improve the quality of the service

It is necessary to set the system mode to privileged mode and then

set the network mode to none when installing the open5Gcore on a

container, since the container is an application-level process and

configuration cannot be settled when the system is running.

Four application signals simulated by the generator (Open5GMTC)

were created after the installation. The eHealth traffic represents small

bandwidth but high reliability and extremely low latency. The video

traffic requires high bandwidth, but long delay and low reliability is

tolerated. Luggage traffic simulates a Bluetooth low energy tag for

tracking purposes and it needs high reliability but can tolerate a long

latency. The last signal is called smart meter data, which contain

location and device ID, timestamp and meter reading, and it requires

high availability but low bandwidth. The generator can set the different

payload size and frequency of requests for the different kinds of traffic

pattern. By processing, the data plane traffic evaluates the performance

of different virtualized EPCs.

When investigating the performance evaluation of open5GCore over

KVM and Docker by using open5GMTC [15], it is concluded that the

virtualization of EPC, especially Docker, is feasible because of the low

overhead. The virtualization needs more memory to maintain the VMs

and containers, and KVM has more massive memory usage than

Docker, since Docker is only virtualized on the application level. Even

though KVM and Docker consume more CPU resource，the CPU

consumption between the virtualized system and physical machine has

not much difference. Virtualized EPC on KVM and Docker can have

almost the same performance as the physical machine if the number of

the devices they serve is less than 70.

36

3.4 Benchmark Application

This section describes benchmark tools that are used to measure the

performance overhead of hypervisor and container compared with non-

virtualized bare metal. In general, parameters used to process the data

comparison are listed below. The testing data used to analyse the

performance are computing power, data transfer rate, memory usage

and data flow, which represent CPU, disk, memory and network

respectively. Both virtualisation technologies were tested

independently compared with the non-virtualized environment. More

remarkable, there is much difference between the benchmark tools

impacting on the system performance compared with the CPU

performance.

3.4.1 System performance
Several benchmark suits are available for testing the overall

performance of a system. The various aspects of the system result in

the raw score gives the most intuitionistic exhibition. The index value

stands for the interaction of different parts of the system.

3.4.2 CPU performance
The method of calculating the CPU performance is to run extensive

tests that estimate the prime numbers up to the limitation of the system,

and it is default to run a signal thread for execution on top of every

solution. Several measurement results are used to calculate the average

value and standard deviation in order to show the performance of the

host machine under the different virtualised environment.

1) LINPACK: The principle of LINPACK [9] is to measure

the computer’s floating-point rate of execution and this is

determined by a program that solves a dense system of linear

equations. As a collection of Fortran subroutines, LINPACK

solves the equation with the function “Ax = b” (random matrix

A size N, vector b) by performing lower-upper decomposition of

numerical analysis with partial pivoting.
2) Y-cruncher: Y-cruncher [17] is a multi-threaded

benchmark tool for a multi-core system to calculate the value of

Pi. As a constant number computed or generated by the system,

37

Pi is used as the stress testing parameters for the application

estimating the performance of CPU. This benchmark tool is

resulting in several outputs including multi-core efficiency,

computation time and total time.

3.4.3 Memory performance
1) STREAM: The STREAM benchmark is a simple synthetic

program that measures the sustainable memory bandwidth in Mb/s and

the computing rate, which is related to the vector kernels. While we

perform calculating, four simple vector operations, Copy, Scale, Add,

and Triad, perform as the primary operating parameters. These four

operations are listed in Figure 8. As an addition, the performance is

measured has a strong dependency to CPU cache size; it is

recommended to set the "STREAM array" size properly. The arrays are

required to be much larger than the most significant cache(s) used to

ensure the data validity.

3.4.3 Disk I/O performance
Disk performance parameters are processed by changing the file size

simulating the file handing situation in the different environments

based on different virtualisation. The file system benchmark is used to

help analysis and calculating. In the file system operations, read/re-

read, write/re-write, and random read /write, are the main comparison

subjects. Some articles showed that hypervisors have better

performance in disk I/O due to the cache mechanisms.

1) IOzone： IOzone is an open source solution, and it is a file system

benchmark tool that is extensively used to perform analysis in almost

all main platforms such as Linux, BSD, MacOSX and Windows.

IOzone was developed by William Norcott and then enhanced by Don

Capps. Basically, IOzone runs the testing on a default file and

generates the data based on reading, writing and random read/write.

2) Bonnie++ ： Bonnie++ is a benchmark tool for Unix-like

operating system, developed by Russell Coker. It can handle the testing

file for more than 2G on a 32bit machine, and the operations include

create (), stat (), and unlink (). There are two significant effectiveness

testing details including system file I/O test and file creation tests. In

the File I/O test, sequential output, sequential input and random seeks

are processed respectively.

38

Figure 8. Benchmark STREAM operations.

3.4.4 Network throughput
For testing purpose, one of the effective ways to measure network

throughput is setting the traffic generator by simulating sending and

receiving data from emulated devices, calculating the target parameter.

The traffic generator also allows setting the appropriate payload size

and frequency for different traffic pattern with the modified value of

payload size, generator frequency and the undefined emulated device

simulating the testing scenarios.

 1) Netperf: As a benchmark tool, Netperf can be used to measure

various types of networking. It can measure the unidirectional

throughput and end-to-end latency for giving purpose. By using the

BSD sockets, Netperf performs the measurements for TCP and UDP

for both IPv4 and IPv6. Also, Netperf has compatibility with Unix

Domain Sockets [19].

 2) Iperf : Iperf, which quality is quite close to the industry standard

is used to measure the maximum utilisable bandwidth between a server

and a client. It supports various parameters including timing, buffers

and protocols (TCP, UDP, SCTP with IPv4 and IPv6), and reports the

bandwidth, package loss and other parameters.

39

4. Experimental part

4.1 Testbed

The main objective of the experiments is to investigate the

performance difference when each virtualization approach is

implemented in different working environments. The gains or losses of

hypervisor-based and container-based virtualization when

implemented in a real-world application should be analysed and

calculated in an experimental context. Our target is to explore the

performance distinction when a web server is deployed on a

hypervisor-based or container-based virtualization environment. This

should be compared with system resource consumptions in different

virtualized environment to provide the theoretical basis of analysis. For

the performance comparison, two different types of virtualization,

KVM and Docker, were selected to represent the hypervisor-based and

container-based virtualization technologies. Both virtualization

systems are executed on the Ubuntu 18.4 system to ensure the same

testing environment. Also, they utilize the same hardware resources

from the host machine, with an 8 core, 2.3 GHz CPU, and 16GB

memory.

The testbed consists of a host machine and two virtual machines.

When the interaction happens, it is available to monitor the functioning

capability of each virtual machine on the host machine, and the load

environment can be modified on the host machine to achieve the

convenient data adjustment. The testbed is designed to simulate the

load capacity of the webserver when running on a different virtualized

environment. The load test tool is deployed on the host machine, and

the target server is implemented on the guest machine.

 In the testing scenario, the software imitates the customer and send

the HTTP request to the webserver. The webserver responses and deal

with the Http request with the system resources consumed.

Our primary objective is to determine the system performance while

handling a large number of the HTTP requests in a short period. Since

the webserver is executed on different virtualization environments,

there will be different performances depending on the different

virtualizing framework.

40

A similar work to ours is the virtualized MPTCP proxy performance

comparison in [10]. Their studies were mainly focused on the

virtualization proxy that implements the multipath TCP connection to

retransmit the data to the TCP-based host. The proxy server

respectively deploys the KVM and Docker to measure the elapsed time

and data throughput. With a similar concept, we build the testbed and

mainly focus on the system resource consume. A webserver deployed

in different virtualization environments, will result in a performance

difference when doing the load test. The host machine act as a

transmitter and the guest machine receives the data package.

4.1.1 Host machines deployment
The testbed mainly consists of the host machine and the virtual

machine, which respectively represents the clients and the webserver.

Besides, several benchmark tools on the host machine are used to

monitor the overall information of the system. The host machine

represents the transmitting side and simulates multiple clients. The

clients will access the webserver in a short period for testing purpose.

The host machine can achieve the Http emulation by sending numerous

requests to the webserver, which is deployed on the virtual machine.

Also, the benchmark tool will monitor the system performance while

the Http emulation is running to obtain the real-time data of the system.

The Apache JMeter deployed on the host machine is used to load

functional test behaviour. Modifying the transmitting frequency and

time will affect the load capacity. The Apache JMeter is running on the

host machine to keep sending the requests to the terminal server,

emulating that the client establishes the data connection while the

network is busy. When increasing the request number that is sent from

the transmitting side, the performance changed due to the load testing.

The load capacity of the virtual server is visualized by the "HTOP"

monitor, which visualizes the utilization of the system resources

separately. The webserver is running on top of the virtual machine and

can be reached by the pre-allocated static IP address given by the

router. By using the network configuring rules of the bridge-connection

when creating the virtual machine, enables the host machine to directly

connect and access the guest machine. Otherwise, the guest machine,

as an independent device, can only establish the data connection with

other equipment except for the host.

41

Figure 9. Testbed architecture for load test.

Two virtual machines are running on top of the host machine. The

webserver will set up inside of the virtual machine. For comparison

purpose, two different virtualizations KVM and Docker respectively

represent the Hypervisor and Container virtualization. The simulation

system is in Figure 9.

The test objects are running on top of the host machine with different

virtualization methods. Both virtual machines are running the Ubuntu

18.04 system to ensure the same testing environment. Moreover, both

virtual machines allocate the same system resources. To achieve the

function of a webserver, we install the Apache HTTP server on both

virtual machines. The experiment happens between the host and guest

machine and emulates the network scenario. The firewall (UFW) rules

need to be modified so that they ensure the successful establishment

between the host and the guest machine. The transmitter sends the

HTTP request to the receiver, and the web server deployed on the

virtual machine responses to the application following the network

rules as what happened in the real world.

42

Figure 10. Architectural of the webserver principles.

 The virtual machines created with the hypervisor and container

virtualization methods affect the overall performance of the webserver

while the available system resource maintains the same. With the pre-

allocated static IP address given by the router, the host machine can

connect and access to the guest machine. The simulation scenario

assumes that the client, or the customers randomly access to the

webserver, and that the server processes the network traffic based on

the hardware resources. The experiment data will show the webserver

performance when running under different network traffic situations

and availability of system resources.

All the benchmark tools and system versions of the experiment

testbed are listed in Figure 11. The Docker image version of the Ubuntu

system keeps the same as the KVM and the host machine.

Figure 11. System inventory of the testing environment.

43

4.2 Experiments

The experiments are including the host and the guest machine. With

the help of Apache JMeter, we can emulate the network scenario in a

different data flow. The primary research questions include the system

resource consumption when the webserver is deployed on different

virtualization environments and the reacting time when the webserver

is handling massive amounts of Http requests in a short time period.

These questions reflect the virtualization performance when the real-

world software is running on top of a hypervisor and a virtual machine,

and utilize the system resources based on the different characteristic of

the virtualization method. Multiple tests will be executed in order to

ensure the reliability of the experimental data.

The simulation starts with the Http generator, and the thread group

plays a vital role in the experiment stage. The number of threads and

the ramp-up period settled in the test plan and we observe the overall

system performance in order to analyse the variety in the different

virtualization frames.

We set the thread numbers to correspond to the network situation

in a certain period. Moreover, the thread numbers represent,

respectively, light traffic, medium traffic and heavy traffic, see Figure

12. The result is shown in form of graphics, and our objective is to

observe the computer resource utilization. We neglected the response

time and the error rate, which are the main parameters to test the quality

of a website. One reason is that the simulation is running inside the

computer and that will greatly reduce the response time and packet loss

rate. We only focus on the CPU consumption when the server handles

the HTTP request in the different virtualization environments.

 Here we mainly focus on the performance variation under all kinds

of system resource availability. The load test increases the occupation

of the system resources and the web servers under different virtual

environment will have different expressiveness.

44

Figure 12. The experiment parameter of the thread group.

4.2.1 System’s resource consumption
The operation of the webserver will result in an overall system

performance that concerns one of the research questions. The question

tries to do a tentative discussion about the overall system performance

when the webserver is under different virtualization environments. We

recorded the CPU usage of the 'Htop' benchmark tool when the system

is emulating the Http interaction, and the webserver is handling the

network traffic. Here we focus on the total usage of CPU core because

the consumption by the HTTP emulating software is always the same

no matter which virtualized server is used. The gap of the numerical

value represents the performance difference between the two

virtualization methods.

4.2.2 Elapsed time of the response
Another parameter used to analyse the webserver state is the average

reacting time when the interaction happens between the host machine

and the webserver. The response time represents how fast the server is

reacting and handling the data traffic. The average connecting time,

and the deviation will be used when discussing the KVM and Docker

individually.

In this experimental stage, the data will indicate the response time

when the webserver, which runs on top of KVM or Docker, handles

the client's application. We mainly focus on the reacting speed when

the system resource is limited and hence the sampling number is set to

10 000.

45

5. Results

In this chapter, the results from the experiments are presented and

discussed.

5.1 Light Traffic

The first experiments show that when there is light traffic, which

means that the task of the process is not substantial enough; the

performance of two virtualization methods are very similar. We set the

thread number on the HTTP generator to 1000 during a second and the

virtual machine can handle the requests easily. The monitor interface

on the ‘Htop’ shows precisely the amount of CPU usage while the

interaction happens between the 'host machine' and the 'guest'.

 According to the record, the KVM virtual machine has almost the

same consumption comparing with the Docker container when the

system task is not in an oppressive situation. Both virtualization

methods have enough computing resources. The usage of the CPU is

around 15.9% for both multi-thread tests under different virtualization

environments.

5.2 Medium Traffic

According to the test plan, the thread number needs to be increased

in order to determine the web server state when the virtual system is

under network stress. We set the threads number as follows: medium

(5000-7000 threads) and heavy (10000 threads) traffic during one

second for performance comparison purposes.

The results for medium traffic are shown in Figure 13. Even if the

Http requests access to the website during 1 second, for some reasons,

the system still takes around 2 seconds to complete all the requests. The

CPU consumption rapidly increases to a peak value and then drops to

normal. Here, we are running experiments 5 to 10 times in a row and

record the average value of the CPU consumption.

The results show the CPU consumption under medium network

traffic load. The benchmark tool records the peak, and total CPU usage

when the HTTP generator keeps sending medium traffic to the

46

webserver. As the number of threads increase, the CPU becomes under

pressure, and there is a performance gap between the KVM and

Docker. The results show that Docker has around 12% less

consumption compared with KVM. The system takes advantage of the

lightweight execution of the virtualized system architecture, and,

therefore, Docker has a better performance when the system resources

are limited.

5.3 Heavy traffic

For Heavy traffic (10.000 threads), the results may be affected of the

computer capacity. As we increase the thread number to 10.000, the

system is under heavy pressure, and Docker has not much advantage

compared with KVM in this kind of testing environment. In addition,

the Http generator utilizes tremendous system resources as well.

Therefore, the testing result is probably not accurate, since the

experiment shows that there are insufficient system resources.

However, according to the result, shown in Figure 14, Docker still has

some advantages.

As can be seen in Figure 14, Docker has a 3% advantage during the

heavy network traffic load. While the CPU is under immense pressure,

the result has an inaccuracy. The test should have been executed in an

environment where the system resource is enough to ensure the

accuracy of the result.

Figure 13. CPU consumption under medium traffic load.

47

Figure 14. CPU consumption under heavy traffic load.

5.4 Average response time

Another index we measured within the experiment was the response

or the reacting time of the web browser. Unlike the overall system

performance comparison, this index shows how fast the virtualization

responses to the HTTP request when the system resources are enough.

The average response time is in millisecond scale, and the deviation

indicates the stability when the connection is established between the

host machine and the webserver. The average response time and the

deviation are listed in Figure 15. This experiment was executed with

10.000 connections to the webserver.

The measurement happened inside the host machine, so the response

time purely indicates the reacting speed when the webserver is running

in different virtualization environments without the interference from

outside. In Figure 15, we can see that Docker is more stable when

responding to the connecting requests, since the average response time

and the deviation is less than for the KVM virtualization machine.

These results should be combined with the results in the stress testing,

where sampling 10.000 HTTP requests consumed around 80% of the

system resources. The Docker reacts to the responses faster and more

stable when there is an insufficient amount of computing resources.

The lightweight virtualization method, like Docker, will have an

advantage when comparing the total data throughput, no matter what

traffic load that arrives at the system.

48

 Figure 15. Responses time and deviation of the webserver.

49

6. Conclusions

In this thesis, we evaluate the performance impacts of representative

hypervisor-based virtualization, KVM, and container-based

virtualization, Docker. The thesis investigates the system performance

when a webserver is deployed on top of one of the virtualization

methods. We implement testbed with an HTTP transmission emulating

the real-world implementation of different virtualization frameworks

and evaluate the system consumption and server response time,

respectively. The benchmark tools are computing the overall system

performance and network state when the experiment happens. By

analysing the experiment results, we can conclude the following things.

Executing a webserver on top of a virtualization environment is

common these days, and the data traffic is affected by a variety of

factors, but not limited to the virtualization method. Many kinds of

researches have compared the performance between a hypervisor and

container respectively and how they impact on individual components.

Our goal is to contrast the theoretical expenditures of the operating

system with an actual situation where the application is working in

different virtualization environments. For a target customer, cost

factors should be taken into consideration when designing the

virtualization system. As none of the virtualizations are beneficial

absolutely, the operator should consider the operating situation and

make the right choice to lower the overall costs and improve the quality

of service.

In theoretical studies, some articles support that KVM has a robust

system isolation architecture. A container running with root privileges

makes the system unreliable. The isolation becomes one of the main

advantages when comparing KVM with a Docker virtualization

environment. The isolation property makes it feasible of running

Docker on top of VMs, which can achieve both system isolation and

performance improvement [9]. Besides, KVM performs better when

the memory needs more frequent access, and when handling the

intermediate data that stored in memory instead of the disk [12]. The

situation has decreased memory usage as the Docker share all system

resources instead of KVM that have distributed the memory resource

to the guest operating system in advance.

50

Following the experiment relating to the KVM and Docker, we

conclude mainly on the performance of the virtualization concerning

the real-world application. The theory part points out how

virtualization is affecting the individual components of the hardware

resources. The performance comparison is performed when the system

is executing under different virtualization environments. The CPU

consumption, memory usage or network throughput are separately

discussed with a specific benchmark method. In our test stage, we

focus on the overall performance of the virtualization environment.

The real-world application is running in a different background and

have interdependences based on the virtual system.

In our experiment part, we mainly focus on the webserver state when

executing in different virtual environments. Here we conclude that the

container's average performance is generally better than the hypervisor

virtualization. The operational steps when deploying a webserver on a

virtual machine is more complicated than when the Docker

environment is used. The network settings, which are default as the

NAT on KVM needs to specify the bridge mode. On the other hand,

Docker simplifies the steps of network configuration. Two questions

are specifically discussed based on our testbed. The first question is the

system overall consumption when the HTTP server is deployed on the

KVM and Docker environments. The second question is the response

time when the webserver is running in different virtualization

environments.

In the experiment stage, we specifically discuss three kinds of

network situations. KVM has a similar performance with Docker only

when the system resources are enough, or the network traffic is light.

In the rest of the testing stages, Docker has around 10% less overhead

compared with KVM when both virtualizations occupy equally

amounts of hardware resources. Another measurement concerns the

response time when an HTTP server is running in different

virtualization environments. The deviation represents the stability of

the HTTP server. In the test environment, Docker achieves excellent

results compared with KVM. Also, the Docker environment has more

advantages in response times compared with hypervisor-based

virtualization. When the performance is the only consideration, Docker

takes advantages based on the behaviour of the network state when

deploying the HTTP server on it. Since our experiments relate to the

51

network handling, memory usage and CPU consume, according to the

test results, Docker has advantages in the relevant aspects.

As a further work, it would be interesting to investigate the

combination of two virtualizations when running Docker on top of

VMs. The topic relates to how additional virtualization layers affect the

overall system performance, resource utilization and network state.

Since there is no comprehensive solution offering this virtualization

scheme, combining these two virtualizations may produce better

results.

52

References

[1] Zheng Li, Maria Kihl, Qinghua Lu and Jens A. Andersson (2017).

Performance Overhead Comparison between Hypervisor and

Container based Virtualization. Department of Electrical and

Information Technology, Lund University, Lund, Sweden.

[2] Roberto Morabito, Jimmy Kjällman, and Miika Komu（2015）
Hypervisors vs. Lightweight Virtualization: a Performance

Comparison, Ericsson Research, Nomadic Lab Jorvas, Finland.

[3] The next hypervisor LXD is fast, secure container management

for Linux Cloud. [Online]. Available at:

http://coreos.com/blog/rocket/, last accessed 12/Dec/2014.

[4] Gaku Nakagawa, Shuichi Oikawa "Behavior-based Memory

Resource Management for Container-based Virtualization"

Department of Computer Science University of Tsukuba Tsukuba,

Ibaraki, JAPAN.

[5] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R.

Neugebauer, I. Pratt, and A. Warfield, “Xen and the Art of

Virtualization,” in SOSP ’03. ACM, 2003, pp. 164–177.

[6] A. Sampathkumar（2013） “Virtualizing intelligent river R: A

comparative study of alternative virtualization technologies” Master’s

thesis, Clemson University.

[7] Bo Wang, Ying Song, Xiao Cui, and Jie Cao （ 2017),

Performance Comparison between Hypervisor- and Container-based

Virtualizations for Cloud Users Software Engineering College,

Zhengzhou University of Light Industry, Zhenzhou, China, 450002

[8] Prof. Ann Mary Joy (2015) Performance Comparison Between

Linux Container and Virtual Machine. IMS Engineering College

Ghaziabad India.

[9] Llias Mavridis, Helen Karatza (2017) Performance and overhead

study of containers Running on top of Virtual Machines.
[10] Sunyoung Chung, Seonghoon Moon, Songkuk Kim（2016）

The Virtualized MPTCP proxy performance in Cellular Network,

Yonsei Institute of Convergence Technology Yonsei University.

53

[11] Wubin Li (2015) Comparing Container versus Virtual

Machines for Achieving High Availability.
[12] Janki Bhimani，Zhengyu Yang, Miriam Leeser, and Ningfang

Mi （2017), Accelerating Big Data Applications Using Lightweight

Virtualization Framework on Enterprise Cloud Dept. of Electrical &

Computer Engineering, Northeastern University, Boston, MA USA.
[13] Domenico Cotroneo, Luigi De Simone, and Roberto Natella

（ 2017）NFV-Bench: A Dependability Benchmark for Network

Function Virtualization Systems.
[14]https://www.ibm.com/developerworks/aix/library/auaixhpvirtu

alization/, [Online; accessed 26-December -2018].

[15] Hung-Cheng Chang, "Performance Evaluation of Open5GCore

over KVM and Docker by Using Open5GMTC".

[16] Hung-Cheng Chang, "Empirical Experience and Experimental

Evaluation of Open5GCore over Hypervisor and Container" 2018.

[17] http://www.numberworld.org/y-cruncher/ [Online accessed 30-

January-2019].

[18] https://www.coker.com.au/bonnie++/readme.html/; [Online

accessed 29-Jamuary-2019].

[19] https://hewlettpackard.github.io/netperf/ . [Online; accessed

28-Jamuary-2019].

[20] Andrey Mirkin, Alexey Kuznetsov, and Kir Kolyshkin.

Containers Checkpointing and Live Migration. In Proceedings of the

Linux Symposium, pages 85–92, 2008.
[21] Popek, Gerald J., and Robert P. Goldberg. "Formal

requirements for virtualizable third generation architectures."

Communications of the ACM 17.7 (1974): 412-421.

[22] W. Felter, A. Ferreira, R. Rajamony, and J. Rubio, “An updated

performance comparison of virtual machines and linux containers,” in

Performance Analysis of Systems and Software (ISPASS), 2015 IEEE

International Symposium on. IEEE, 2015, pp. 171–172.

[23]https://www.docker.com/products/docker-hub/. [Online;

accessed 26-December-2018].

[24] A. Polvi, “CoreOS is building a container runtime, rkt,”

https://coreos. com/blog/rocket.html, 2014, [Online; accessed 21-

December-2018].

54

[25] Y.C.Tay, Kumar Gaurav, Pavan Karku （ 2017 ） A

Performance Comparison of Containers and Virtual Machines in

Workload Migration Context National University of Singapore.

[26] Asraa Abdulrazak Ali Mardan, Kenji Kono (2016) Containers

or Hypervisors, Which is Better for Database Consolidation?,

Department of Information and Computer Science Keio University .

Further investigation of the performance
overhead for hypervisor- and container-based
virtualization

CUI ZHENG
MASTER´S THESIS
DEPARTMENT OF ELECTRICAL AND INFORMATION TECHNOLOGY
FACULTY OF ENGINEERING | LTH | LUND UNIVERSITY

Printed by Tryckeriet i E-huset, Lund 2020

C
U

I ZH
EN

G
Further investigation of the perform

ance overhead for hypervisor- and container-based virtualization
LU

N
D

 2020

Series of Master’s theses
Department of Electrical and Information Technology

LU/LTH-EIT 2020-743
http://www.eit.lth.se

