
Implementation of an 8-bit
Dynamic Fixed-Point
Convolutional Neural Network
for Human Sign Language Recognition
on a Xilinx FPGA Board

RICARDO NÚÑEZ PRIETO
MASTER´S THESIS
DEPARTMENT OF ELECTRICAL AND INFORMATION TECHNOLOGY
FACULTY OF ENGINEERING | LTH | LUND UNIVERSITY

Printed by Tryckeriet i E-huset, Lund 2019

R
IC

A
R

D
O

 N
Ú

Ñ
EZ PR

IETO
Im

plem
entation of an 8-bit D

ynam
ic Fixed-Point C

onvolutional N
eural N

etw
ork for H

um
an Sign Language R

ecognition on a X
ilinx FP

G
A

 B
oard

LU
N

D
 2019

Series of Master’s theses
Department of Electrical and Information Technology

LU/LTH-EIT 2019-688
http://www.eit.lth.se

Implementation of an 8-bit
Dynamic Fixed-Point

Convolutional Neural Network
for Human Sign Language Recognition

on a Xilinx FPGA Board

Department of Electrical and Information Technology
Lund University

Master of Science Thesis
— March 17, 2019 —

Author: Ricardo Núñez Prieto

Supervisor: Liang Liu
Examiner: Erik Larsson

c© 2019
Printed in Sweden
Tryckeriet i E-huset, Lund

Para Erik,
una pequeña red neuronal que está en camino...

Diciembre, 2018

i

Abstract

The goal of this thesis work is to implement a convolutional neural network
on an FPGA device with the capability of recognising human sign language.
The set of gestures that the neural network can identify has been taken from
the Swedish sign language, and it consists of the signs used for representing
the letters of the Swedish alphabet (a.k.a. fingerspelling).

The motivation driving this project lies in the tremendous interest
aroused by neural networks in recent years for its ability for solving complex
problems and its capacity to learn by example. More specifically, convolu-
tional neural networks are being extensively used for image classification,
and this project aims to design a hardware accelerator to compute the con-
volutional layers of such type of network topology and test its accuracy and
performance when dealing with human sign language. Further applications
for this hardware solution can be placed in the educational field, specially
addressed to children with impaired hearing or as a translation system in
specific situations.

The network topology of choice is Zynqnet, proposed by Gschwend in
2016, which is a topology that has already been implemented successfully
on an FPGA platform and it has been trained with the large picture dataset
provided by ImageNet, for its popular image recognition contest. In this
regard, the aim of this work is not to propose a new neural network topology
but to re-use an existent one by introducing some improvements like the
utilisation of an 8-bit dynamic fixed-point scheme and challenge it with a
different but related task, like human sign language recognition.

The methodology followed to carry out a successful hardware imple-
mentation has consisted, first, of the installation and setup of a reliable
framework used for the training of the neural network. Different frameworks
were tried out, like MATLAB or Caffe, but finally, DIGITS from NVIDIA
was the more convenient due to its graphical environment and because it
provides all the compatibility and drivers needed to run together with the
GPU used in this project. Then, an image dataset of more than 13,000
pictures of hand gestures has been built up to grant enough input data

iii

for the framework to fine-tune ZynqNet for the new task, i.e. to provide
the neural network with the ability to classify the different hand-signs into
its corresponding alphabet letter. In parallel, the Register-Transfer Level
(RTL) abstraction of the hardware architecture has been generated using a
High-Level Synthesis tool chain, in which the algorithmic descriptions are
written in C/C++. Finally, the validation of the design has been done by
means of co-simulation techniques where the golden data obtained with the
C test bench is compared with the output data of the RTL implementation,
and all of it within the simulation environment provided by the Vivado
Design Suite.

As a result, the best-performing obtained solution achieved an accuracy
of 80.1% in the inference test and a frame rate of 6.4 FPS with a clock
frequency of 250 MHz.

iv

Popular Science Summary

Neural networks are becoming more and more ubiquitous in our everyday
lives, many times in ways that we do not even realise. Artificial Intelligence
(AI) is extensively used nowadays to improve the user’s experience with
digital technologies, for instance, the on-the-fly translation service provided
by Skype and Google. In other fields like robotics, improvements in object
detection from the hand of machine learning, allow robots and autonomous
cars to take better decisions. And in medicine, automatic detection of blood
diseases like leukaemia and lymphoma, powered by neural networks algo-
rithms, have accelerated and improved diagnosis. So the list of applications
found in many diverse fields goes on and on.

Now, let’s picture yourself in the hypothetical situation in which you
have a friend or a relative who has been born with a hearing impairment.
This person has been taught sign language from an early age on a specialised
school, and you would like to learn sign language too so you both can have
meaningful and pleasant communication. Furthermore, you want to be able
to help this person in day-to-day situations where deaf people can be in clear
disadvantage like a routine visit to the doctor or administrative processes.

You learn from one of your classmates at the university about a mobile
app which employs a deep neural network to recognise human sign language
just by using the phone camera. The application translates the captured
sequence of gestures from video to written text in real-time and automatically
reproduces the message in the phone speaker. It also includes a sign language
tutorial which can help you to rapidly learn to communicate by using your
hands. The software records your gestures and improves your learning
abilities by telling how accurate are your movements.

Well, the situation just described is something that I believe it is not
far to happen. The computational power found in embedded systems such
as mobile phones is growing by the day. So far, at least, one can find
mostly solutions that work one-way, that is, they convert speech into sign
language, by mapping spoken language to signs and using a virtual animated
human-like avatar. Fewer solutions can translate sign language into speech.

v

Some of them use special gloves with position sensors not so pleasant to
wear by the signer person, and others use 3D cameras that can pick the
speaker’s body gestures and then compare the obtained frame sequence
with a reference frame stored in a dictionary. These solutions though, rely
on mapping methods and are limited in terms of the number of gestures
they can interpret.

I really believe that neural networks are a game changer and they
will bring powerful, elegant solutions to the kind of problems described
above. This thesis work aims to provide proof-of-concept of a feasible
implementation of a neural network trained for recognition of human sign
language. The number of gestures to recognise is limited to the Swedish
alphabet, and the network must show an acceptable level of prediction
accuracy, throughput and area utilisation.

The content of this thesis is addressed to a variety of public: from people
interested in neural networks in general, and the significant development
experienced in the field in recent years, to people interested in learning
the basic concepts and the methodology for training neural networks, or
practitioners who look to implement a deep learning model on an AI
accelerator.

vi

Acknowledgements

First, I am grateful to professor Liang Liu for supervising this work and for
providing fruitful ideas and support.

I want to express my gratitude to Lund University for giving me the op-
portunity to take this Master Program in Embedded Electronics Engineering
and also for the four years I spent working for the MAX-IV project.

Thanks a lot to my teachers and classmates with whom I have shared
these three years: Arun, Leo, Luis, Berta, Mayra, Shenba... thanks for the
inspiring and funny little moments we have passed together and made of
this a more pleasant journey. I wish you all the best of luck in both your
professional and life projects.

Last but not least, I would like to thank especially my wife and my
daughter for their love and support that carried me through every challenge
I have faced, and also to my parents for their esteem and being always there.

Ricardo Núñez Prieto
Lund, February 2019

vii

Table of Contents

Abstract iii

Popular Science Summary v

Acknowledgements vii

Table of Contents ix

List of Figures xi

List of Tables xv

1 Introduction 1
1.1 Background and Motivation 2
1.2 Project Goals and Main Challenges 3
1.3 Approach and Methodology 4

2 Basic Concepts 7
2.1 Foundations of Artificial Neural Networks 7
2.2 Backpropagation Algorithm 16
2.3 Neural Networks are Universal Approximators 19
2.4 Example of a Convolutional Neural Network: ZynqNet 21

3 Training of a Deep Neural Network 25
3.1 Training Framework . 25
3.2 Making of a Training Dataset 26
3.3 ImageNet and Transfer Learning 31
3.4 Training Hyper-Parameters 32
3.5 Post-Training Network Quantisation 34

3.5.1 CNN Quantisation with Ristretto 35
3.6 Training Results . 36

ix

4 Design and Implementation of a CNN Hardware Accelerator 43
4.1 Project Goals and System Requirements 43

4.1.1 Memory Requirements 44
4.2 Adapting the ZynqNet Topology 46
4.3 Design Strategy . 48

4.3.1 Block Processing 48
4.3.2 Array Partitioning 50

4.4 Model Operation and Hardware Description 50
4.4.1 Main Process Unit 53
4.4.2 Memory Controller 55
4.4.3 Convolution Core 55
4.4.4 Arithmetic Logic Unit 59

4.5 Behavioural Model Validation and RTL Verification 61
4.5.1 Validation of the C-based Model Description 61
4.5.2 Post-Synthesis RTL Verification 62

4.6 HLS Limitations and Issues 63

5 Results and Conclusions 65
5.1 Accuracy Results . 65
5.2 Resource Utilisation and Performance 68
5.3 Conclusions . 74
5.4 Future Work . 75

References 77

List of Acronyms 83

Appendix A ZynqNet 85

Appendix B Test Dataset 86

x

List of Figures

2.1 Representation of an artificial neuron with multiple inputs. The
bias bi is added to the linear combination of the neuron weighted
inputs x1, x2, ...xr and the obtained sum ai is then used as the
input parameter of the activation function f to generate the
neuron output yi (Source: derived from Tanikić and Despotović,
2012 [18]). 8

2.2 Graphs for the sigmoid and the Rectified Linear Unit (ReLU)
functions. 8

2.3 Example of a neural network without hidden layers used in a
binary classification problem (left) versus a neural network with
hidden layers performing as a non-linear classifier (right). . . . 10

2.4 Diagram of a Multilayer Perceptron Network (Source: Pavlovsky,
2017 [19]). 11

2.5 2-D discrete convolution obtained by sliding the kernel along
the input image (Source: Intel Labs [20]). 11

2.6 Representing a full-colour RGB input image as a volume and
applying a volumetric convolutional filter. 12

2.7 Example of 2-D matrix convolution with zero-padding (Source:
derived from Dertat, 2017 [22]). 14

2.8 3-D representation of a convolutional neural network with pool-
ing layers (Source: Cord, 2017 [23]). 15

2.9 Example of a max pooling operation using 2x2 filters and stride
2 (Source: Karpathy [24]). 15

2.10 Stochastic Gradient Descent algorithm searching for the local
minimum (Source: Goh, 2017 [27]). 18

2.11 Single-input, single-output neural network with a 2-neuron hid-
den layer. The network output corresponds to the contribution
of the top hidden neuron alone (Source: Nielsen, 2015 [31]). . 19

2.12 Network output re-shaped like a step-function by modifying
parameters w and b (Source: Nielsen, 2015 [31]). 20

xi

2.13 The network output corresponds to the linear combination of
both hidden neuron activations (Source: Nielsen, 2015 [31]). . 20

2.14 Approximation of an arbitrary function by adding additional
neurons in the hidden layer (Source: Nielsen, 2015 [31]). . . . 21

2.15 Detail of the fire module in SqueezeNet (Source: derived from
Netscope CNN Analyzer [32] and Iandola, 2016 [26]). 22

3.1 Swedish hand alphabet (Source: Ene, 2015 [37]). 27
3.2 Representation of the Swedish sign alphabet by using sample

images used for the training. 28
3.3 Data augmentation techniques applied on a same picture. . . . 30
3.4 Ristretto’s network approximation flow to compress a floating-

point network into fixed-point (Source: Gysel, 2016 [46]). . . . 35
3.5 DIGITS. Graph showing the progression of the training along

the different epochs. The quantities of interest are the training
accuracy, the validation accuracy and the value of the loss
function for both the training and the validation data. 37

3.6 Example of 8-bit dynamic fixed-point numbers. A number with
a negative fractional length of -1, means that its integer length
is 9, although its bit-width is 8 (Source: derived from Gysel,
2018 [47]). 40

4.1 Dataflow representation of the block processing approach. . . 49
4.2 Block diagram of the CNN hardware accelerator. 54
4.3 Representation of the loading process of the input image into

the internal cache. 55
4.4 Examples of the padding of the blocks forming the feature maps.

The numbering in the blocks indicates the processing order,
row-wise from left to right. 57

4.5 The kernel (grey 3x3 matrix) slides over the padded block (blue
matrix with white borders) producing one pixel at a time in the
output matrix (in green). The grey area covered by the kernel
corresponds to the local receptive field (Source: Dumoulin and
Visin, 2016 [50]). 58

4.6 Multiply-accumulate unit. 59
4.7 Vivado HLS Flow: C Validation and RTL Verification (Source:

Xilinx Inc., 2013 [52]). 61

5.1 Example of a confusion matrix for a test dataset with five
different classes labelled as 0, 1, 2, 3 and 4 (Source: derived
from Aditya, 2015 [55]). 66

xii

5.2 Representation of throughput versus number of cores and FPGA
clock frequency. The width of the spheres is proportional to the
total resource utilisation of the FPGA. 70

5.3 Representation of throughput versus number of cores and FPGA
clock frequency. The width of the spheres is proportional to the
total resource utilisation of the FPGA. 72

A.1 ZynqNet architecture (Source: Netscope CNN Analyzer [32]). 85

B.1 Images from the test dataset (categories from A to J). 86

xiii

List of Tables

2.1 ZynqNet CNN architecture. Description of layers and hyper-
parameters. 23

3.1 List of the hardware installed in the computer used as training
station. 26

3.2 Relative energy and area saving factors by comparing INT8 with
FP32 operations. 35

3.3 Summary of the top-1 validation accuracy results obtained for
different training jobs. 38

3.4 List of the fractional lengths estimated by Ristretto for an 8-bit
fixed-point quantisation of the model. Values are given layer by
layer, for the input and output activations, weights and bias. . 39

3.5 Evolution of the model validation accuracy along the different
training stages. Quantisation and fine-tuning are performed
using an 8-bit fixed-point format. 40

4.1 Estimated memory requirements expressed in megabits. 45
4.2 Modified architecture of ZynqNet CNN for classification of 32

categories (each category is a letter of the alphabet). 47
4.3 Cache sizes declared as two dimensional arrays. 50

5.1 Rate of true positives (recall) and precision of the model for
each one of the classes, obtained from the simulation of the
RTL description model. 67

5.2 Accuracy comparison of previous works with the model proposed
in this thesis work. 68

5.3 Experiment 1. Post-synthesis resource utilisation and latencies as
a function of the clock frequency and the number of convolution
cores in parallel (FPGA device: Xilinx XCKU060). 70

xv

5.4 Experiment 2. Post-synthesis resource utilisation and latencies as
a function of the clock frequency and the number of convolution
cores in parallel (FPGA device: Xilinx XCKU060). 71

5.5 Resource comparison between the original floating-point Zyn-
qNet and the quantised version used in this thesis for sign
language recognition. 73

xvi

Chapter 1
Introduction

Artificial Neural Networks (ANNs) are computational models inspired by the
human brain’s neural circuits that aim to solve complex real-world problems
in fields as diverse as statistical data analysis, biology or economics.

ANNs consist of anything from hundreds to thousands, or even millions
of processing nodes (a.k.a. neurons) that are organised in a series of layers.
A typical neural network has an input layer, which connects the system to
the external inputs, an output layer, and the remaining layers in between
called hidden layers which are fully-connected with the layers on either side,
meaning that each neuron of a hidden layer is connected to every neuron in
the previous layer.

A neural network mimics a human brain mainly in two ways: 1) it
learns by example, through a process of training, hence the knowledge is not
programmed a priori, and 2) the knowledge is stored in the inter-connections
or synapses between the different neurons in the form of synaptic weights,
which can be understood as the grade of influence of an individual neuron
over the surrounding ones when fired.

During the 80s and the 90s, neural networks were developed as software
applications and were simulated in computers that used general-purpose
microprocessors because they offered a good trade-off among features like
small size, low price, low power and high performance. These computer
systems could perform complex tasks such as mammographic analysis [1] in
the field of medical imaging, or prediction of the sea-surface water tempera-
tures [2] in the field of palaeoceanography. The drawback of this approach
is that microprocessors have sequential von-Neumann architectures and
are not fully able to replicate the massive parallelism present on neural
networks. For that reason, efforts were made to implement ANNs as custom
hardware accelerators, since many applications, in fact, require high-speed

1

2 Introduction

operations. The first successful ANN implemented in hardware was realised
in 1991 using reconfigurable hardware, concretely on a logic cell array (LCA)
from Xilinx [3]. It could compute 4.48 billion CPS (or inter-connections per
second, meaning the rate of multiplication-accumulate operations during
testing phase), making it suitable for applications in computing vision and,
in particular, in industrial inspection tasks. Since then, technology advance-
ments in VLSI have accelerated the transition of artificial neural networks
from standard desktop computers and supercomputers to applications in
embedded systems. The possibility of having available neural networks as a
microelectronic component is very appealing as there is a need for its use in
decentralised or mobile/embedded systems (like the upcoming IoT devices).

1.1 Background and Motivation
Convolutional Neural Networks (CNNs) or ConvNets are a class of specialised
neural networks, known as deep neural networks, that are mostly used for
image recognition tasks because they are very efficient in pattern recognition
and feature extraction from the input images. In effect, they can be used in
any task where the input data presents some hierarchical structure, with
simple local patterns assembled in larger patterns which, in turn, are part
of bigger complex arrangements.

CNNs belong to a new category of networks known as Deep Neural
Networks (DNNs), which differ structurally from the early neural networks in
the fact that they have more than one hidden layer. Aside from convolutional
networks, there are other types of deep neural networks like autoencoders,
deep belief networks (DBN) and recurrent neural networks (RNN). In
particular, CNNs introduce a particular type of layer called convolutional
layer which is simply a filter sliding, or convolving, around the input image
computing element-wise multiplications.

Modern CNNs, as we know them today, derive from the works of LeCun
et al. [4] who in 1998 presented the first successful one, named LeNet5,
inspired by the ideas and previous works published by Fukushima [5].
The novelty here was to use an already known algorithm for the training
of the network, named backpropagation. Essentially, backpropagation is
what causes the network to learn. It is a feedback process where the output
produced by the network is compared with the output it is meant to produce.
The difference between them is used to modify the synaptic weights of the
connections between the nodes in the network, working backwards, that is,
from the output layer, through the hidden layers, back to the input layer.

After the appearance of LeNet5, research in CNNs continued progressing,
although slowly. At the same time, more computing power began to be

Introduction 3

available thanks to the development of powerful parallel Graphics Processing
Units (GPUs) which also became general-purpose computing tools due to
the arrival of CUDA, a C-like programming language for parallel computing,
especially suited for GPUs and developed by NVIDIA. It was not until
2010 that it was published one of the first implementations of a ConvNet
in a GPU [6]. Thanks to the parallel processing capabilities of GPUs, the
time spent for the training of CNNs could be reduced in two orders of
magnitude as compared with using a CPU [7]. The latter represented a
significant advance, as until then it had been not possible to study deep CNNs
with high-resolution input images due to the tremendous computational
power required for their training. Since then, deep neural networks have
been pushing the research in machine learning with renewed interest. In
particular, deep learning methodology is behind the best performing systems
in machine learning applications such as self-driving cars [8], grandmaster-
level computer chess programs with self-learning capabilities [9], machine
translator engines [10], speech-recognition [11] and so on.

It is indisputable that deep neural networks are one of today’s hot topics
in the research field of artificial intelligence. The potential for possible
applications is clearly growing by the day and companies like Google, Face-
book and Microsoft are investing a considerable amount of resources in the
development of new products and exploring different hardware architectures
that can take over GPUs. As an example, Intel recently announced the
release of its Neural Network Processor (NNP) [12] that will compete with
Google’s Tensor Processing Units (TPUs) [13], both new custom ASIC chips
made specifically for running deep neural networks. Given the above-stated
background, the main motivation behind this thesis work is twofold: to
gain insight into the mechanisms of artificial learning processes, and to
bring together one of the more exciting fields in today’s research with the
aspiration to develop applications that can contribute to society.

1.2 Project Goals and Main Challenges
The aim of this Master’s thesis is to design and implement a hardware-
accelerated convolutional neural network for the recognition of human sign
language. The system should be able to recognise the different hand positions
corresponding to each of the letters of the sign language alphabet. The
purpose is to endow the system with the ability to interpret fingerspelling
which is a method of spelling words just by using hand gestures.

In a first version, the input images are previously preprocessed and fed
to the neural network as a predetermined sequence of static images. In
a more elaborated version, the user can provide the input by means of a

4 Introduction

digital camera, and the video stream of images is captured and analysed by
the neural network.

To simplify things, the sign language of choice is preferably the Swedish
sign language (Svenskt teckenspråk or STS) because it is one-handed when
used for fingerspelling (in opposition, for instance, to the British system
that requires the two hands). It has a total of 29 positions, and most of
them are static except for the distinctive vowels å, ä and ö that require
additional hand motion.

The system’s goal is to be able to recognise and translate STS into a
written text message, thus the communication works only in one direction.
A possibility to be explored in a future stage is to transform the system into
a translation node allowing the communication in both directions between
two users.

The main challenges identified a priori for the realisation of the project
encompass different issues like the following:

• Selection of the proper CNN topology to perform the intended task.

• Selection of the proper hardware platform to implement the neural
network.

• Efficient hardware implementation of the algorithm with particular
attention to the on-chip memory limitations.

• Efficient number representation with minimal impact in the network’s
inference accuracy.

• Build a training dataset as large as possible from a broad group
of volunteers in order to obtain a trained model with the highest
prediction accuracy.

1.3 Approach and Methodology
Regarding the suitable hardware platforms, while GPU architecture is
remarkably like that of a neural network, an FPGA implementation is ideal
due to its compatibility with the high level of parallelism existent in artificial
neural networks. The limiting factor of such parallelism is the possible lack
of on-chip memory and the memory bandwidth causing bottlenecks when
moving data across physical chip boundaries. Furthermore, the option of
an FPGA seems more fitted than an ASIC for the implementation of a
hardware-accelerated CNN for prototyping purposes.

For the training of the network, a compelling approach that is known
as transfer learning is the preferred option. This method takes the com-
putational model of a ConvNet that has been already pretrained on a

Introduction 5

related task, preferably with the help of an extensive dataset. Then, the
output layer or classifier is removed and replaced by another one that fits
the number of categories required for the new task. Finally, the modified
network is retrained with the new dataset to fine-tune the weights by means
of backpropagation. The obtained new weights can be either hard-coded or
read from external memory by the hardware version of the neural network
implemented in the FPGA.

Finally, the following are additional aspects to be considered regarding
the FPGA implementation of a neural network that one can find in the
related literature:

1. Data types and bit-width. Floating-point operations are not na-
tively supported in most of FPGAs and its implementation adds
computational complexity. So, the alternative is to use fixed-point
arithmetic, much more straightforward and less resource consuming.
Regarding the number of bits needed to represent the network weights,
neither a broad dynamic range nor very high precision is needed. Be-
cause the weights obtained during the training phase are represented
in floating-point format, conversion to fixed-point format is required
when transferring these weights to the FPGA. By reducing the bit-
width, it is also reduced the size of the computation units, allowing
more operators within the same area of logic. According to Guo et
al. [14], 8-bit is the limit to ensure negligible accuracy loss although
very high-performance designs can be even achieved by using binary
weights (1 bit-width), as reported in [15] at the expense of accuracy
loss.

2. All-convolutional network approach. Neural networks that con-
sist only of convolutional layers are called all-convolutional networks.
Making use of this design strategy results in a more simpler design
and saves FPGA resources mainly in two ways: first, all-convolutional
networks need less memory bandwidth since they do not contain
any fully-connected layers (without the latter, there is no need to
load a new weight for every single MAC operation). Second, pooling
layers can also be eliminated from the network; pooling operations
are periodically inserted between successive convolutional layers to
perform down-sampling of the previous layer output, hence reducing
the number of parameters and computation in the network. However,
as demonstrated by Springenberg in a recent publication [16], adding
pooling operations in a network does not always improve the CNN
performance. Instead, it seems that if the network is large enough
relative to the dataset that it is being trained on, it can learn all the
necessary features and its invariants just with convolutional layers.

6 Introduction

3. Efficient convolution operations. Convolutional layers make ex-
tensive use of concurrent multiply-accumulate units (MAC units). An
efficient way to implement the convolution operation may be using
parallel computing structures like systolic arrays, as proposed by Kung
[17]. It is efficient because exploits locality: all operand data and
partial results are stored within the processor array itself, and there
is no need for any memory access during each operation. Each of the
processing elements in the array performs its computation as soon
as all the required data is available, and when finished, the resulting
data is propagated on to its neighbours, with no need of synchronism
with a global clock.

Chapter 2
Basic Concepts

First things first. This chapter covers the basic foundations and concepts
that will help the reader to understand how a neural network works, its
building blocks and different types of network structures or topologies.
Furthermore, the learning algorithm used by neural networks to learn from
a set of input examples is also explained. And finally, it introduces ZynqNet,
the neural network topology that has been implemented in the hardware
accelerator.

2.1 Foundations of Artificial Neural Networks

Neurons

Many of the terminology used for neural networks is borrowed from the
field of neuroscience which is not a surprise at all as the idea behind neural
networks is to try to solve complex problems by mimicking the human
brain structure. Of course, even the simplest brain of the humble fruit-fly
still presents an organisational complexity far from being replicated by
any artificial neural network developed by humans nowadays. Living brain
cells present complex behaviours which are not yet fully understood so the
concept of neuron in the context of artificial neural networks is just an
approximation of the functionality of a real biological neuron.

Hereby, in this context, a neuron is just a computational node with
one or more numerical data inputs and a single output. This output is
broadcasted, therefore allowing neurons to be interconnected with other
neurons in the fashion of super-structures known as layers. Each neuron
performs the linear combination of its weighted inputs, that is, it sums all
of the inputs, each one previously multiplied by its corresponding constant,

7

8 Basic Concepts

also known as weight. An additional extra term, the bias, is added to the
final sum of weighted inputs. The purpose of adding the bias is to work
as an offset value, and this is better understood after reading the next
paragraphs.

Figure 2.1: Representation of an artificial neuron with multiple inputs.
The bias bi is added to the linear combination of the neuron
weighted inputs x1, x2, ...xr and the obtained sum ai is then
used as the input parameter of the activation function f to
generate the neuron output yi (Source: derived from Tanikić
and Despotović, 2012 [18]).

By definition, neurons are non-linear units, and this is a valuable property
a neuron must have in order to be able to interpret non-linear real-world
data. The latter is achieved by applying a non-linear function, also known
as activation function, to the linear combination of weighted input. By
extension, neurons are also referred to as activations, and it is a term often
used in the field. Figure 2.1 is a representation of an artificial neuron as
described above.

Figure 2.2: Graphs for the sigmoid and the ReLU functions.

Sigmoid functions have been used in the past as activation functions
when modelling neural networks. They have a characteristic S-shape, and
the output of these functions tends to saturate when the input reaches
certain levels. Typical examples of sigmoid functions are the hyperbolic

Basic Concepts 9

tangent, tanh(z) or the logistic function, 1/(1+e−z). More recently, sigmoid
functions have been abandoned as they proved very difficult to train due
to its computational complexity and have been replaced by a much more
popular and still effective activation function known as ReLU defined as
f(z) = max(0, z). It states that the output of the activation function will
be zero for negative values (inactive) or the identity function for positive
values of the linear combination of the inputs.

The ReLU function is a much simpler, elegant solution, and very cheap
to implement in hardware. Essentially, sigmoid functions as well as the
ReLU function, aim to imitate the behaviour of the biological neurons by
transiting from an inactive state to an active state when the input signals
reach a certain threshold level.

Sigmoids belong to a larger family of functions known as discriminant
functions, as it squishes or maps the inputs into one of two possible values
(-1, +1) or (0, +1) depending on the sigmoid function of choice. Due to this
property, the neural network can be modelled as a decision tree providing
different outputs based on the value of its inputs.

In connection with the activation function, the purpose of the bias term
is to shift the activation output in order get better fitting between the
prediction and the input data. During the training phase of the neural
network, both the bias and the weights are refined in each iteration, achieving
better fitting and providing the neuron with the capability of learning. Very
often weights and bias are also referred to as the trainable parameters of
the network.

Layers

As mentioned in the previous section, neurons are grouped in bigger struc-
tures named layers. Typically, a neural network consists of an input layer,
an output layer and one or more layers in between also known as hidden
layers. The latter have no direct connection with the outside world (hence
the name “hidden”). The hidden layers are, in fact, the source for the ability
of the neural network to interpret non-linearities in the input data. Without
hidden layers, the output is directly connected to the inputs, and its value
corresponds to a linear combination of such inputs. Hence, this type of
network would be limited to be used only in linear decision problems, such
as linear classifiers.

By adding hidden layers, with its corresponding neurons performing non-
linear activations, the capabilities for problem-solving of the neural network
become greatly enhanced. With the proper training, neurons grouped in the
same layer get specialised at looking to some unique features in the input
data. For instance, in a neural network performing image recognition, each

10 Basic Concepts

layer is engaged in extracting specific features from the previous layer, such
as edges, shades or colours. What precisely a convolutional neural network
considers to be a significant feature is defined while learning.

Hidden Layers

Example of linear neural network for classification
problems with linear decision boundaries.

Example of deep neural network for classification
problems with multi-dimensional decision boundaries.

Figure 2.3: Example of a neural network without hidden layers used
in a binary classification problem (left) versus a neural network
with hidden layers performing as a non-linear classifier (right).

Fully-Connected and Convolutional Layers

Depending on the way neurons are connected to other neurons from the
adjacent layers, the latter can be classified as fully-connected layers or
convolutional layers, although convolutional layers are a subset of the fully-
connected ones. On a fully-connected layer, each neuron is connected to all
of the other neurons in the previous layer. An example of a very popular
neural network with this type of architecture is the so-called multilayer
perceptron (Figure 2.4) that has been used in the past for image and speech
recognition tasks.

Because each connection has associated its own weight, it is easy to
see that in the particular case of image recognition, where the input data
consist of relatively large pictures with thousands of pixels, the number of
weights required by a multilayer perceptron would grow enormously. A way
to deal with that is by using convolutional layers, where each neuron is
connected to a limited number of neurons in the previous layer. Not only
the number of weights gets reduced by limiting the number of connections,
but all the neurons in the same layer also share the weights. That is what
is known as weight sharing and allows to reduce the number of trainable
parameters drastically, which is particularly important if the neural network

Basic Concepts 11

is implemented on an FPGA with limited memory resources.

Figure 2.4: Diagram of a Multilayer Perceptron Network (Source:
Pavlovsky, 2017 [19]).

In principle, a convolutional neural network should have the same learn-
ing capabilities than a fully-connected one. The difference is that fully-
connected layers perform a global operation, as they can introduce any kind
of dependence derived from the input data, and convolutional layers perform
a local operation as each neuron is looking at a small portion of the data in
the previous layer and that is why they perform so well in image analysis
tasks. That small portion of data that is being analysed is also known as
the local receptive field or convolution window and the set of weights used to
calculate the weighted sum is known as kernel or filter. One can think about
it as applying a filter to an image by sliding it all along the pixels. Each
pixel of the output image is a linear combination of the values contained in
its corresponding local receptive field, which is formed by the current input
pixel and its neighbouring pixels, as depicted in Figure 2.5.

Figure 2.5: 2-D discrete convolution obtained by sliding the kernel
along the input image (Source: Intel Labs [20]).

Typically, in convolutional neural networks, a fully-connected layer is
placed at the final stage of the neural network as a classifier, to separate the

12 Basic Concepts

data into the various categories. Because each of its neurons has connections
to all the elements in the previous layer, they can extract any kind of
relevant dependencies from the input data. The fully-connected layer is the
cause for the high-level reasoning in the neural network.

Activation Volumes and Feature Maps

At this point, it is necessary to introduce the idea of volumes since the
input data is not organised just as a two-dimensional array but in a three-
dimension matrix or volume. Let’s consider an input image of size 8x8
and composed of 3 channels (Fig. 2.6), namely the standard RGB colour
channels. The latter adds a new dimension to the input data, in this case,
a depth of three channels, also referred as slices. Hence, the input data
constitutes, in reality, a volume of data of size 8x8x3. It follows that the
same applies to the kernel, which is not a 2-dimensional array of weights; for
instance, a typical 3x3 kernel forms a volumetric filter of size 3x3x3 actually,
as the kernel always has to have the same depth as the input volume.

*

Volumetric
convolutional

kernel
3x3x3

Local receptive
fields
3x3x3

B G R

Input volume
8x8x3

Rectified 2-D
feature map

6x6x1

Figure 2.6: Representing a full-colour RGB input image as a volume
and applying a volumetric convolutional filter.

Following with the example, after convolving each channel of the input
volume with its corresponding kernel slice, the obtained output is a set of
three feature maps. Then, these feature maps or matrices are added together
with its corresponding bias, and the final sum is passed to the activation
function or ReLU. The resultant 2-D matrix is an activation output or
rectified feature map obtained from the input. As might be expected, in

Basic Concepts 13

order to extract more feature maps from the input, it just takes another
different set of kernels and to convolve the input volume with them. One
can generate as many features as needed, depending on different factors like
the computational power, available memory or the type of input images one
wants to analyse. Eventually, all these feature maps are piling up creating a
3-D volume of data again, often referred to as activation or feature volume.

Hyper-Parameters: Kernel Size, Stride and Padding

Complementary to the weights and the bias, which are network parameters
that are refined or modified during the learning process, there is another
set of parameters intrinsic to the neural network that is used to specify the
structure of the layers. These parameters are known as hyper-parameters
and are configurable values which are set before starting the training process.
The main hyper-parameters of a CNN are the size of the receptive field,
the kernel size, the padding, the stride length, and the dimensions of the
activation volumes. Some of these hyper-parameters have been already
mentioned in the previous sections, and the rest are detailed by following.
There are other hyper-parameters, that are not listed here, that dictate the
behaviour of the training algorithm and how it learns the parameters from
the data. They are detailed in Chapter 3 which refers to the training of the
CNN.

Kernel size

The size of the kernels that is used in the tapestry of convolutional neural
network topologies available nowadays can be quite diverse. Typical sizes
are 1x1, 3x3, 5x5 and 7x7. The heuristic rule for using a specific dimension
relies upon the relative size of the feature that one needs to capture: the
smaller the size of the feature to be extracted, the smaller the filter.

Stride

Another parameter to be considered is the stride, which refers to how
the kernel slides along the input image. Typically, after performing the
convolution operation on a local receptive field, the filter is shifted by one
pixel, row-wise or column-wise, and placed over the next receptive field, and
the process goes on until completing the output feature. The term stride is
used to refer to the length of this displacement. It is also possible to use
a shift bigger than one pixel, or non-unity strides, as a way to reduce the
dimensionality of the activation volumes and the computational effort. For
instance, a stride of 2 will produce an output with half the dimensions of the
input (that is to say, the spatial dimensions of the input, height and width)

14 Basic Concepts

with a reduction factor of 4 in the total number of elements. An interesting
discussion about the heuristic motivations for using different stride values is
given by Kong and Lucey [21], who demonstrate that any non-unity stridden
convolution can be replaced by a unity stridden convolution without loss of
performance.

Padding

Padding is needed to keep the dimensions of the output volumes the same
size of the input volumes. The standard method is to use zero-padding
which consists in filling with zeros around the borders of the feature maps.
If no padding were applied, the spatial dimensions of the activation volumes
(height and width) would be reduced after each convolution progressively,
washing quickly away all the information data contained in the borders.
This effect can be seen more clearly by considering the following example,
where a 5x5 matrix is convolved with a 3x3 kernel. Without padding, the
result is a 3x3 matrix, and attempting to convolve that matrix with another
3x3 kernel will result in a 1x1 matrix. However, if the original 5x5 matrix
is padded with zeros all around the borders, the result would be another
5x5 matrix (dimensions keep the same size), and by padding this matrix
again, one can perform as many 3x3 convolutions as wished.

Figure 2.7: Example of 2-D matrix convolution with zero-padding
(Source: derived from Dertat, 2017 [22]).

Pooling Layers

Another commonly used type of layer is the pooling layer. Its purpose is to
reduce the spatial size (height and width, but not the depth) of the feature
volumes, and this is achieved by inserting pooling layers along the structure
of the network in a distributed way (see Figure 2.8).

Basic Concepts 15

Figure 2.8: 3-D representation of a convolutional neural network
with pooling layers (Source: Cord, 2017 [23]).

Mainly there are three types of pooling: max, min and average pooling.
As a matter of example, Figure 2.9 shows a typical max pooling layer,
with a filter of size 2x2 and a stride of 2. It decimates every slice of the
feature volume, discarding exactly 75% of the activations. The max pooling
operation would, in this case, take the maximum over four elements on the
receptive field delimited by the filter.

Figure 2.9: Example of a max pooling operation using 2x2 filters
and stride 2 (Source: Karpathy [24]).

More recently, neural network topologies have shown up with a new
approach, the all-convolutional net, consisting in to get rid of the pooling
layers, based on a late paper from Springenberg et al. [16], who propose
to discard the pooling layers in favour of an architecture that only consists
of successive convolutional layers. To reduce the size of the activation
volumes, they suggest the use of larger strides (typically a stride of 2) in
the convolutional layers once in a while. As a matter of fact, that approach
has also been implemented in Zynqnet [25], the network topology used in
this project.

It is worth to mention that the ZynqNet architecture shown in Figure A.1

16 Basic Concepts

has only a pooling layer located at the final stage of the neural network,
right after the convolutional layer conv10. This pooling layer performs
a global average pooling operation that generates a flattened vector with
dimension equal to the number of categories. That is an improvement also
inherited from the authors of the SqueezeNet [26] architecture, who replaced
the last fully-connected layer of the network with a convolutional layer and
a global average pooling. The main advantage behind this modification is
to reduce the memory requirements significantly, due to the vast amount
of parameters associated with a fully-connected layer. That, together with
the all-convolutional net idea, makes ZynqNet very suitable for FPGA
implementations.

2.2 Backpropagation Algorithm
In the previous section, it was stated that during the training phase of the
neural network, weights and bias are refined to get a better fitting between
the obtained output and the desired output, iteration after iteration. This
refinement mechanism is the one that makes possible that the neural network
learns from the given examples and get the ability to generalise when later,
during the test phase, is presented to new examples never seen before. This
learning algorithm is known as backpropagation and consists in nothing more
than the optimisation of a cost function, sometimes referred also as loss
function. The input parameters of this function consist of all of the trainable
weights and bias of the neural network, as many as hundreds of thousands,
or millions. During the training phase, the examples are fed to the input
layer of the neural network, and the data is propagated through the different
layers all the way to the output, where the neurons on the fully-connected
layer (which acts as a classifier) throw different values ranging on a specific
interval. Ideally, only the output neuron which corresponds to the right
category for the given input image should be active, and the rest of neurons
should be inactive or zero-valued, but in reality, all of the output neurons
display some value and the one with the most significant value will be the
answer given by the CNN. The approach for optimising the cost function is
to use the standard method of minimising the sum of the squared errors
(SSE), where the errors are the difference between the actual value of each
one of the output neurons and its target value. That needs to be done for
all of the hundreds of thousands of training samples so, this technique takes
the average of all of the SSE, and the result will be the total cost of the
network that needs to be minimised.

To find out the amount of change to be applied to the weights and bias
to minimise the cost function, the backpropagation algorithm calculates the

Basic Concepts 17

gradient of the function at a given starting point. Actually, it is the negative
of the gradient that is the vector pointing towards the local minimum.
Consequently, some weights will need to be increased whereas other weights
will need to be reduced. The amount of change will depend on how significant
is the activation value of the neuron in the previous layer associated to that
weight. Hence, the change should be proportional; the bigger the activation,
the bigger the change on the weights, and vice versa, therefore reinforcing
the connections between neurons that have a desired effect on the output,
and dimmering the ones that not. The net effect is to reduce the error and
approach the desired output to its target value.

The algorithm is computing the changes needed in the weights and bias
in order to find the local minimum of the cost function, by searching for
the optimal path downhill along the cost surface, which ideally is in the
direction of the negative gradient vector, and moving along that surface
in small iterative steps or deltas. However, it should be noted that this
calculation is done for each one of the training examples. For another
training example, these changes will have different values, and hence, in the
end, it is necessary to do an average of all of the desired changes in order
to obtain an average value that will be kind of proportional to the gradient
of the cost function. The name for this technique used for the training of
neural networks is known as gradient descent.

Given the large size of the training datasets, it takes so much compu-
tational effort to calculate each one of the steps downhill the cost surface
by trying to follow the optimal path, because the algorithm is taking into
account all of the training examples at once. In practice, a very handy
optimisation technique to speed-up the algorithm consists of randomly shuf-
fling the whole set of the training examples and divide it into small lots or
batches (also called mini-batches). Then, the backpropagation algorithm
will calculate the deltas, and the obtained gradient will not be optimal, but
just an approximation, as it will depend on the pictures contained in that
mini-batch. The next step will be taken by applying the algorithm in the
next mini-batch and so on.

Once the algorithm goes through all the mini-batches, which is called
an epoch, the algorithm reshuffles the training examples and creates new
mini-batches. This technique is extensively used nowadays and is known
as Stochastic Gradient Descent (SGD). As shown in Figure 2.10, the path
followed by the algorithm in order to find the local minimum is not a smooth
optimal path but rather a random path, although oscillating around the
optimal one.

At this point, a couple of question arises: How likely is it for the SGD

18 Basic Concepts

algorithm not to get trapped in a saddle point1? If not, is the local minimum
found by the SGD algorithm the best one among all of the minima contained
in the cost surface?

Figure 2.10: Stochastic Gradient Descent algorithm searching for
the local minimum (Source: Goh, 2017 [27]).

Given the fact that the cost function is a non-convex function in a
high-dimensional space, finding its absolute global minimum can be just a
daunting computational task. One can visualise the loss function as a surface
populated with thousands of local minima, maxima and even worse, saddle
points were the SGD algorithm can get stuck. An analytic answer providing
mathematical proof to this question is given by LeCun et al. [28] who
demonstrate that while multilayer networks present numerous local minima,
they are relatively easy to find, and they are all more or less equivalent in
terms of quality when trying to minimise the cost function. Complementary,
for the gradient descent algorithm may converge on a saddle point and spoil
further optimisation of the cost function, a recent work from Lee et al. [29]
demonstrates that the gradient descent can overcome this problem with
random initialisation of parameters of the cost function (bias and weights),
and the algorithm will almost surely converge to a local minimum.

Given the works mentioned above and prior experiences provided by
numerous practitioners, it can be concluded that the backpropagation
algorithm using the stochastic gradient descent is so far a mature and
proven method for the training of convolutional neural networks.

1A saddle point is a singular point on the surface of a multivariable function where all
the partial derivatives in the orthogonal directions are equal to zero, but the saddle point
is neither a local maximum nor a local minimum of the function.

Basic Concepts 19

2.3 Neural Networks are Universal Approximators
Neural networks are the ultimate regression algorithm. That is an attrac-
tive and alternative approach for understanding what hides behind such
fancy name of neural networks. One can look at them as universal function
approximators, in the same way as the Taylor and Fourier series are func-
tion approximation techniques. The mathematical proof for this statement
relies on the universal approximation theorem proven by Cybenko [30], who
demonstrated that feed-forward2 neural networks with only a single hidden
layer containing a finite number of neurons can approximate any continu-
ous function. Cybenko demonstrated the theorem for sigmoid activation
functions, but the theorem can be extended to other nonlinear activation
functions, provided they are continuous and bounded.

The following is an interesting and straightforward graphical demonstra-
tion provided by Nielsen [31] in his online inter-active book on how a neural
network can compute any arbitrary function. Let’s consider the most simple
case, represented in Figure 2.11, namely a single input neuron, a single
output neuron and a hidden layer with two neurons. The activation function
in the hidden neurons is a sigmoid. The graph in the right accounts only for
the effect of the top hidden neuron in the output. Initially, the parameters
w (weight) and b (bias) associated with that neuron are arbitrary values,
and the output still resembles a sigmoid curve. By changing those values,
as shown in Figure 2.12, the output becomes almost a step-function.

Figure 2.11: Single-input, single-output neural network with a
2-neuron hidden layer. The network output corresponds to the
contribution of the top hidden neuron alone (Source: Nielsen,
2015 [31]).

The b parameter controls the amount of shifting in the horizontal axis,
and the w parameter controls how steep the step-like function is.

2Feed-forward neural networks are a type of networks where there are no feedback
connections. Convolutional neural networks belong to this group.

20 Basic Concepts

Figure 2.12: Network output re-shaped like a step-function by modi-
fying parameters w and b (Source: Nielsen, 2015 [31]).

In Figure 2.13 the output reflects the combined effect of both hidden
neurons. The amount of shifting for each sigmoid function has been replaced
now by the bias parameters s1 and s2, and two extra weights, w1 and w2
have been added. The output is a linear combination of the activation
functions of both hidden neurons, where w1 and w2 are the coefficients.
These two parameters have the same magnitude but opposite sign, and
this produces a rectangular function at the output. The height of this
rectangular pulse is proportional to the magnitude of w1 and w2, and the
difference between s1 and s2 gives the width.

Figure 2.13: The network output corresponds to the linear combina-
tion of both hidden neuron activations (Source: Nielsen, 2015
[31]).

The next step is to add more pairs of neurons to the hidden layer in
order to concatenate a series of rectangular pulses in the output, as shown in
2.14. Now, the values inside the circles representing each one of the hidden
neurons correspond to the bias value, the before mentioned s parameter,
and again they correspond to the amount of shifting given to the sigmoid
function delimiting the rectangular pulses. Also, for each couple of hidden
neurons, there is associated a h parameter which corresponds to the height

Basic Concepts 21

of the rectangular pulses.

Figure 2.14: Approximation of an arbitrary function by adding ad-
ditional neurons in the hidden layer (Source: Nielsen, 2015
[31]).

At this point, it should be clear how by adjusting these parameters it is
possible to approximate any arbitrary function, like the blue curve in the
output plot, to a reasonable deviation degree, and also explains why neural
networks perform so well as non-linear classifiers, as mentioned in earlier
sections.

2.4 Example of a Convolutional Neural Network: ZynqNet
ZynqNet [25] is a modified version of a very recent architecture known with
the name of SqueezeNet [26]. The latter was released in 2016, and the most
remarkable trait of this CNN is that it can obtain the same level of accuracy
of other networks, but by using a factor x50 fewer parameters, which makes
it very suitable for mobile applications. Although SqueezeNet is already a
highly optimised architecture, ZynqNet pushes its design one step forward
and provides a series of improvements that make it more convenient for
FPGA implementations.

Table 2.1 is a description of the ZynqNet architecture, layer by layer,

22 Basic Concepts

together with their associated hyper-parameters. However, the architecture
of both ZynqNet and SqueezeNet is best envisaged using Netscope [32], a
web-based tool developed for visualising and analysing convolutional neural
network architectures. A visual representation of ZynqNet generated by
Netscope is illustrated in Figure A.1. In short, the core component of
SqueezeNet/ZynqNet is the so-called fire module, which can be split into
two layers, a squeeze layer followed by an expansion layer :

1. the squeeze layer consists of a 1x1 matrix convolution; although the
receptive field is just 1x1, one should note that the main effect of this
operation is on the third dimension, or depth, of the input volume,
where the depth is equal to the number of input channels. Hence, the
1x1 convolution results in the combination of all the input channels
into one, thus reducing the depth of the activation volume effectively.

2. the expansion layer, in reality, combines two parallel convolutional
layers that use different kernel sizes (1x1 and 3x3) and concatenates
both results into a single activation volume. The 1x1 convolutions are
not fitted to detect spatial structures, but as mentioned above, they
combine the channels in different ways. However, the 3x3 convolutions
can, indeed, detect structures and patterns in the images. Thus, by
combining different kernel sizes, one can obtain a much more expressive
model and, at the same time, reduce the number of parameters needed.

Detail of a fire module

Fire module L2

Fire module L3

Figure 2.15: Detail of the fire module in SqueezeNet (Source: derived
from Netscope CNN Analyzer [32] and Iandola, 2016 [26]).

Basic Concepts 23

SqueezeNet uses 8 of these fire modules (Figure 2.15) and a couple of
convolutional layers as an input and output layer. It also completely avoids
the use of fully-connected layers, which require large amounts of parameters.
Instead, SqueezeNet uses four pooling layers (three max and one average)
distributed along the network architecture, which does not require any
weights.

By contrast, ZynqNet does some optimisation on the SqueezeNet archi-
tecture:

Layer name Type Kernel Stride CH in WxH in CH out WxH out

conv1 Convolution 3x3 2 3 256x256 64 128x128

fire2/squeeze3x3 Convolution 3x3 2 64 128x128 16 64x64
fire2/expand1x1 Convolution 1x1 1 16 64x64 64 64x64
fire2/expand3x3 Convolution 3x3 1 16 64x64 64 64x64

fire3/squeeze1x1 Convolution 1x1 1 128 64x64 16 64x64
fire3/expand1x1 Convolution 1x1 1 16 64x64 64 64x64
fire3/expand3x3 Convolution 3x3 1 16 64x64 64 64x64

fire4/squeeze3x3 Convolution 3x3 2 128 64x64 32 32x32
fire4/expand1x1 Convolution 1x1 1 32 32x32 128 32x32
fire4/expand3x3 Convolution 3x3 1 32 32x32 128 32x32

fire5/squeeze1x1 Convolution 1x1 1 256 32x32 32 32x32
fire5/expand1x1 Convolution 1x1 1 32 32x32 128 32x32
fire5/expand3x3 Convolution 3x3 1 32 32x32 128 32x32

fire6/squeeze3x3 Convolution 3x3 2 256 32x32 64 16x16
fire6/expand1x1 Convolution 1x1 1 64 16x16 256 16x16
fire6/expand3x3 Convolution 3x3 1 64 16x16 256 16x16

fire7/squeeze1x1 Convolution 1x1 1 512 16x16 64 16x16
fire7/expand1x1 Convolution 1x1 1 64 16x16 192 16x16
fire7/expand3x3 Convolution 3x3 1 64 16x16 192 16x16

fire8/squeeze3x3 Convolution 3x3 2 384 16x16 112 8x8
fire8/expand1x1 Convolution 1x1 1 112 8x8 256 8x8
fire8/expand3x3 Convolution 3x3 1 112 8x8 256 8x8

fire9/squeeze1x1 Convolution 1x1 1 512 8x8 112 8x8
fire9/expand1x1 Convolution 1x1 1 112 8x8 368 8x8
fire9/expand3x3 Convolution 3x3 1 112 8x8 368 8x8

conv10/split1 Convolution 1x1 1 736 8x8 512 8x8
conv10/split2 Convolution 1x1 1 736 8x8 512 8x8

pool10 Avg. Pooling 8x8 - 1024 8x8 1024 1x1

loss Softmax - - 1024 1x1 1024 1x1

Table 2.1: ZynqNet CNN architecture. Description of layers and
hyper-parameters.

• SqueezeNet uses a 7x7 kernel in conv1, the first layer; this is typical

24 Basic Concepts

in many CNNs that use large kernels in the very first convolutional
input layer. ZynqNet replaces the 7x7 kernel by a 3x3, reducing the
number of MACC operations by a 5.4 factor while still maintaining
almost the same final accuracy (it only drops by a 0.8%).

• ZynqNet sticks to the all-convolutional-network design principle, and
does it so by replacing each one of the max pooling layers (together
with its subsequent 1x1 squeeze layer) by a 3x3 convolution with
a stride of 2. Although this modification increases the number of
parameters and MACC operations, it results in a very consistent and
unified architecture plus an increase of the final accuracy of 1.5 % [25].
Only the average pooling layer is left in the last stage of the network
for classifying purposes.

• ZynqNet implements a design where all the spatial dimensions of
the feature volumes are rounded to the nearest power of 2 (height,
width and number of channels) which assures that multiplications or
divisions, needed when accessing the feature elements from the FPGA
block RAM, are done with inexpensive shift operations.

Chapter 3
Training of a Deep Neural Network

This chapter covers different aspects related to the training process of the
neural network model. It gives an overview of the training framework
and the hardware details of the workstation used for the training. It also
explains the making of the training image dataset and the training-related
basic concepts such as data augmentation, overfitting and transfer learning.
Furthermore, a description of the most relevant training hyper-parameters
is given, and a summary of the training results is presented.

Finally, it brings some insight about an advantageous post-training tech-
nique known as network quantisation that allows for further size reduction
of the network and its implementation onto small embedded platforms by
using dynamic fixed-point representation.

3.1 Training Framework
The NVIDIA Deep Learning GPU Training System (DIGITS) [33] is the
software used for the training of the neural network model used in this
thesis work. DIGITS is an open-source deep learning software for image
classification; it is not a training framework as such but rather a wrapper
for the most popular training frameworks used nowadays, namely Caffe [34],
Torch [35] and TensorFlow [36]. All the latter are back-ends that integrate
open-source computer vision GPU libraries (OpenCV).

DIGITS provides a graphical web-based interface instead of dealing
with the command line as it is typically the case with the above-mentioned
frameworks. By doing so, it facilitates to monitor and manage neural
network training jobs, and analyse accuracy and loss in real time. The
primary goal is to rapidly train the proposed model from large image datasets
to make highly accurate image classifications. A very first step is obviously

25

26 Training of a Deep Neural Network

to create a large enough dataset which is discussed in the following sections.
The computations performed by the training framework consist in the

optimisation of the cost function described previously in Section 2.2 using
the backpropagation algorithm together with the stochastic gradient descent
(SGD). By this means, the neural network model acquires the feature
hierarchies from the raw training data and gains the ability to infer real-
world data. This capability is what is known as machine learning.

Overview of a GPU-based Training System

The training system (DIGITS) has been installed on a standard desktop
computer running on a Linux distribution (CentOS). An NVIDIA GPU was
added plus a new power supply, to power the GPU properly. The following
is a description of the hardware that can be found in the computer used for
the training of the neural network model:

Part Model Description

Mother board ASUS P8Z77-M PRO
CPU Intel i7-2600K (3.4 GHz)
GPU NVIDIA GeForce GTX 1080 Ti MSI Aero OC 11GB
RAM Corsair XMS3 4x16 GB (1.3 GHz)
HDD Western Digital WD10EZRX (1 TB, 6 GB/s)
Power Supply Corsair Builder Series CX600 V2 (600Watt)

Table 3.1: List of the hardware installed in the computer used as
training station.

As illustrated in Table 3.1, the training station makes use of one GPU
only which is enough to run a training job in just a few minutes. Most
likely, for a much more extensive training dataset than the one used for this
project, more GPU computation power is required otherwise so that the
training time can be kept at reasonable levels.

3.2 Making of a Training Dataset
As already stated in the preliminaries, the objective is that the neural
network can recognise human sign language, specifically the Swedish hand
alphabet used for fingerspelling, which is used in sign language to spell out
names of people and places for which there is not a sign. The Swedish
hand alphabet is illustrated in Figure 3.1. It is composed of 29 different
hand poses, of which three of them correspond to the distinctive vowels å,

Training of a Deep Neural Network 27

ä and ö. It should be noted that these vowels are accompanied by a whole
hand movement in the direction indicated by the arrows in the picture. For
that reason, they have been excluded from the training as they are not
static hand positions. Hence, it is 26 signs that the CNN should be able to
recognise.

Figure 3.1: Swedish hand alphabet (Source: Ene, 2015 [37]).

In order to have a better algorithm that can take better decisions, it
should learn from data that reflects the variety of the real world. For that
reason, the larger the training dataset, the better. But not only quantity
matters: a dataset with a million different cars would be useless if all of
them were facing to the left in the picture. Therefore, the dataset should
provide different points of view of the same object, and this is achieved by
using data augmentation techniques.

The images used for training must be varied and also hard to learn. For
this particular case, they must reflect the different traits one can find among

28 Training of a Deep Neural Network

the hands in the general population like skin colour, bone structure, finger
size and so on. It should be pointed out that the dataset has been created
from scratch since a dataset with such specificity and characteristics did
not exist previously. Thousands of pictures have been taken among more
than 50 volunteers who did not have any previous knowledge on Swedish
sign language.

The method used for that purpose was either to record or to take
pictures from the hands of the volunteers while they were trying to mimic
the 26 positions presented to them on a screen, where a video for learning
fingerspelling was being reproduced. In one hand, it can be expected that
the quality of the signs is not the best, in terms of precise positioning of
the hand and fingers, as most of the gestures were performed for the very
first time by the volunteers, but on the other hand, this fact adds enough
variance and error tolerance to the training.

Figure 3.2 is a small example of some of the pictures taken in several
sessions and locations, with different backgrounds and lighting conditions.

Figure 3.2: Representation of the Swedish sign alphabet by using
sample images used for the training.

Overfitting and Underfitting

Two commonly frequent problems to be avoided as much as possible during
the training of a neural network model are overfitting and underfitting.

Overfitting occurs when the model learns the dataset too well, either
because there is not enough variety in the dataset or it is not large enough.

Training of a Deep Neural Network 29

It can also be because the network is too complex or deep, and as a result
of this, the model is not only capable of extracting the critical features to
learn but also the noise, that is, the not relevant features. In other words,
the model is capable of memorising the examples but it cannot gain the
ability to infer a general rule, and it is not able to interpret anything else
that is not close to the learnt data.

The opposite extreme is underfitting. The network model may be
too simple to extract the right patterns from the training data and, as a
consequence, some of the significant features are considered as noise and
discarded as such.

Data Augmentation

Very often, it is not realistic or feasible to build up a large enough dataset
because of a lack of resources, that is, enough number of volunteers and the
time required to validate thousands of pictures before adding them in the
dataset. In order to increase variance to improve the training accuracy, one
can opt for data augmentation techniques to increase the size of the dataset.
Some of the most common transformations that can be done to an already
existent picture are horizontal or vertical flips, translations in any direction,
image scaling using an arbitrary factor, arbitrary cropping and image
rotations, both clockwise and counter-clockwise. All the ones mentioned
here have been used in this project with the result of increasing the initial
size of the dataset by a factor 5. Regarding rotations, the maximum applied
angle is ±20 degrees, to preserve the integrity of the symbol encoded by
the hand sign. Other tricks worthy to consider with the purpose to make
training really hard, but may require a more sophisticated image edition
software, are: masking out random square regions of the images (cutout),
the addition of Gaussian noise (with zero mean), modify image colours by
arbitrarily adjusting the hue values (this one is recommended in order to
mimic pictures taken with different illumination conditions) or applying
filters to blur the images.

An example of possible image manipulations on the same picture is
illustrated in Figure 3.3. Combining all of these techniques have the potential
to largely increase an initial dataset with a modest size.

Additionally, it can be seen in the pictures that the background behind
the hands is another factor to have into account. Some pictures were
purposely taken by positioning the hand against a white wall while other
pictures have been taken with the hand positioned in front of the volunteer’s
torso, adding to the background the shapes and colour patterns from the
person’s clothes. Moreover, in other pictures, the background contains many
other peculiar objects like windows, wall signs, light switches and other

30 Training of a Deep Neural Network

typical indoors elements. All these features make those pictures perfect
candidates for the training dataset as they are adding noise that the model
should learn to discard, while the ones with a blank background are preferred
for the test dataset.

Figure 3.3: Data augmentation techniques applied on a same picture.

Training, Validation and Test Dataset

At this point, it is convenient to clarify a relevant point regarding the image
dataset. Actually, not all the pictures taken from the volunteers are meant
for the training. They have been organised in three different subsets, by
using the following standard:

• First, there is the training set, which is the portion of images intended
to adjust the weights on the neural network.

• Then, there is a smaller subset known as validation set, which is
primarily used to minimise the overfitting. The weights are not being
adjusted with this data set, but they are just used to verify that any
increase in accuracy over the training dataset turns out into an increase
in accuracy over a dataset that has not been shown to the network
before, that is, the validation dataset itself. If, on the contrary, the
accuracy over the training dataset increases, but the accuracy over
the validation dataset stays the same or decreases, then the network
is overfitting, and the training should be stopped and introduce the
proper modifications.

Training of a Deep Neural Network 31

• And finally, another small portion is used as the test dataset, which
is the data used only for testing the obtained model, to confirm the
actual inference accuracy of the network. In particular, it is the
dataset used to test the neural network after training and once it has
been deployed on the FPGA.

Typically, the percentages used to split the entire dataset with these
partitions are 60-20-20, in the same order as listed above, but these numbers
are not strict and can vary substantially.

3.3 ImageNet and Transfer Learning
Another good reason to consider the use of the ZynqNet model for this
project lies in the fact that it has been previously trained on the ImageNet
dataset. The ImageNet project holds a popular image recognition contest
since 2010 [38] where neural networks get tested to see which model obtains
the better accuracy and has become de facto a standard benchmark for
image classification algorithms.

The challenge training dataset is made up of 1.2 million images, each
belonging to one of the 1,000 possible categories that cover a wide variety of
objects, animals and scenes. In the first year of the competition, every team
got at least 25% wrong. However, in 2017, about 75% of the competing
teams got an error rate below 5% which is considered to be at human error
level.

The notable advantage of having ZynqNet already trained with ImageNet
is that the model is already able to detect general image features, such
as edges or shapes. These fundamental skills can be transferred to a new
recognition task, by modifying the existent layers and retraining the model
on a new dataset. The latter is a very well known technique used in machine
learning known as transfer learning. The benefits of this approach are far-
reaching, as the new model is taking advantage of the expensive resources
used in the pretrained model such as hardware, image datasets or training
time, to acquire new recognition capabilities. For instance, it can take two
or three weeks to train a deep neural network model on ImageNet even by
using multiple GPUs.

In other words, transfer learning speeds up the training process by
reusing an already trained model. Furthermore, it eliminates the need to
invest large amounts of time and resources in the creation of a new and
extensive image dataset for training purposes, but just the necessary to
create a modest one, as it is the case for the dataset built for the present
project. The ZynqNet pretrained model can be found online and publicly
available at the author’s Git repository [39]. The file with the pretrained

32 Training of a Deep Neural Network

weights is used as the starting point for the backpropagation algorithm to
fine-tune the model for the hand sign recognition task.

A common strategy used to implement transfer learning is, first, to
replace the network classifier previously trained with ImageNet by another
classifier that matches the number of classes in the new dataset and then, to
retrain this new classifier with randomly initialised weights. Alternatively,
it can be advisable to fine-tune the rest of weights from the convolutional
layers or, keep the weight values from some of the earlier layers and fine-tune
only the layers closer to the classifier which are responsible for extracting
the high-level features from the dataset. This is based in the fact that
low-level features extracted in earlier layers of the network contain more
generic features, like edges, shapes or colours, that have the potential to
be useful in many other recognition tasks. However, by moving forward
through the layers, the features become progressively more and more specific
to the details of the classes contained in the original dataset; thus those
layers are more prone to be fine-tuned for the new task.

3.4 Training Hyper-Parameters
Several are the hyper-parameters one can adjust to explore the way of getting
better training results before deploying the model. The basic approach is
to run different training jobs where one parameter is changed each time.
Slight changes in the parameter’s value can have a significant impact on
the model’s training accuracy, so it is best to analyse the effect on each
parameter, one at a time. This strategy derives in the run of several jobs
where DIGITS provides a good tracking system of the obtained results and
the history of the changes.

Maximum Number of Epochs

The maximum number of epochs to use before stopping the training. An
epoch is the full pass of the backpropagation algorithm over the entire
training dataset. Some frameworks give the option to automatically stop
the training if the accuracy of the network reaches a plateau and it is not
improving after a certain number of epochs.

Batch Size

Batch or mini-batch size is a subset of images from the training dataset
that is used to evaluate the gradient of the loss function and update the
weights (see Section 2.2). Optionally, one can choose to shuffle all the
training images before each training epoch and shuffle all the validation

Training of a Deep Neural Network 33

images before each network validation. In this way, the batches are never
the same through the different epochs.

The batch size is proportional to how accurate is the calculation of the
gradient at each iteration of the backpropagation algorithm. A batch size
equal to the size of the training dataset gives the exact gradient or direction
vector in the search for the function global minimum, but it takes a lot of
computation time. In the other extreme, a batch size of one (with only
one image), is very fast to compute but it returns a gradient value very
inaccurate or noisy, not representative of the entire training set. Hence, it is
a trade-off between gradient accuracy and computation time. On the other
hand, noisy or inaccurate gradient values can also be desirable as it causes
oscillations that can help the algorithm not to get stuck in local minima or
saddle points (see Figure 2.10).

Learning Rate and Drop Factor

The learning rate affects the size of the steps taken in the direction of the
estimated gradient in order to minimise the network’s loss function. This
parameter scales the magnitude of the weight updates in each iteration of
training thus it determines how fast weights change. Typically, the learning
rate is a small value ranging between 0.01 and 0.0001. Given the fact that
the learning rate multiplies the computed gradient, it is a crucial parameter
which, if not properly chosen, it can make the network either fail to train
or take much longer to converge.

The learning can be kept constant, which is not recommendable, or it
can be decreased accordingly after each epoch by a certain amount defined
by the so-called drop factor. The decreasing rate or decay of the learning
rate can be expressed either by a constant or by an exponential function.

When using the transfer learning methodology to train a network on
a new task, it is common to use a smaller learning rate for the weights
associated to the convolutional layers, which are considered as the feature
extractor part of the network. In comparison, the learning rate used for the
output layer that contains the classifier needs a larger learning rate. The
reason for that is because the convolutional layers of the pretrained network
have already learned features that can be similar to the ones of interest
in the new dataset, so the weights are expected to be close to the optimal
values and there is no need to distort them too much.

Momentum

Momentum is a parameter that helps to accelerate the backpropagation al-
gorithm in the relevant direction. By providing momentum to the algorithm,

34 Training of a Deep Neural Network

the current step is influenced by past actions, as some proportion of the
last step is added to the current one, endowing the algorithm with a sort of
memory capability. That helps the training algorithm of not being trapped
in local minima or saddle points, improving the rate of convergence. Put
in other words, adding momentum is a technique that creates an adaptive
learning rate that varies for different weights.

In summary, the above described are some of the most relevant hyper-
parameters one is free to change during a training session. The downside of
having so many degrees of freedom is that there is no single method valid
for optimising a neural network’s accuracy, but one should rely more upon
its own experience and heuristic techniques, and go through a lot of trial
and error to find good values.

3.5 Post-Training Network Quantisation
There exist several compression techniques that aim to reduce the size and
resource utilisation of neural networks. Research in this field continues
nowadays by delivering new methods to widespread the use of deep neural
networks, where the main obstacle for this technology is the vast amounts
of memory required to store the weight parameters needed for classifying a
single image (which can be in the order of hundreds of megabytes). Some of
the most popular techniques are network quantisation [40], weight pruning
[41], regularisation [42] and knowledge distillation [43]. These methods
are typically applied at different design stages or can be applied more
effectively combined, as suggested by Tung and Mori [44], who propose
a deep network compression algorithm that performs weight pruning and
quantisation jointly, and in parallel with network fine-tuning.

For the present work, it has been considered that one of the more
hardware-effective techniques to apply after training the model would be
the network quantisation. It refers to the reduction of the required number
of bits to represent a quantity. This reduction is justified by the fact that
the training process is performed in the DIGITS environment using a 32-bit
floating-point format, and the learned weights and output activations are
expressed accordingly.

Hence, the main benefit of applying quantisation is an important reduc-
tion in storage size and memory access. For instance, using 8-bit integers
for weights and activations consumes four times less overall memory access
compare to the use of 32-bit floating-point numbers. Furthermore, it is also
much more efficient in terms of area and energy; according to Dally [45],
significant savings in both figures can be obtained, as listed in Table 3.2:

Training of a Deep Neural Network 35

Energy Saving Area Saving
INT8 Operation vs. FP32 vs. FP32

Addition 30x 116x
Multiplication 18.5x 27x

Table 3.2: Relative energy and area saving factors by comparing
INT8 with FP32 operations.

3.5.1 CNN Quantisation with Ristretto
The tool of choice used for the quantisation of the network is Ristretto,
developed by Gysel [46] which, as described by the author, is an auto-
mated CNN-approximation tool to condense 32-bit floating-point networks.
Ristretto takes a trained model as input and automatically extracts a
condensed network version. The output files obtained after the process
contain a standard description file of the network (a file with the extension
.prototxt) and the quantised network parameters.

Here is worth to note that quantisation, when used to directly approxi-
mate a model without retraining, this method is commonly referred to as
post-training quantisation. Instead, if retraining is performed after quanti-
sation, which is highly recommendable to make up for the loss of accuracy
produced by the approximation process, this is referred to as network fine-
tuning. Ristretto gives the option to automatically fine-tune the quantised
network which can further improve the final accuracy indeed.

The quantisation flow proposed by Ristretto is shown in Figure 3.4.

Figure 3.4: Ristretto’s network approximation flow to compress a
floating-point network into fixed-point (Source: Gysel, 2016
[46]).

As illustrated in the flow, during the first and second stages the dynamic
range of both weights and activations is analysed using statistical methods

36 Training of a Deep Neural Network

to find the proper fixed-point representation. The integer part of the fixed-
point numbers used to represent the activations are set aside with enough
bits to avoid saturation due to large values.

In the third stage, Ristretto performs a binary search to find the optimal
number of bits for the weights and layer activations. In deep neural network
models, the dynamic range of weights and activations are usually very
inconsistent and can differ between layers in the model. For that reason, at
this stage, firstly the weights are quantised, while the activations remain
in floating-point, and then an accuracy test using the training dataset is
performed in order to review the effect.

Then, another iteration follows but inverting the roles, that is, the
activations get quantised while the weights remain in floating-point and
then the effect is reviewed. Iteratively repeating the described process
allows Ristretto to find the optimal bit-width for weights and activations.
Once a good trade-off between fixed-point representation and classification
accuracy is found, the resulting network can be retrained, or in other words,
fine-tuned.

The fine-tuning is necessary to make up for the accuracy drop incurred
by quantisation. During this retraining procedure, the network learns how
to classify images with the new acquired fixed-point parameters. Ristretto
does not quantise layer activations to fixed-point during the fine-tuning
process, but uses floating-point activations instead, to enable Ristretto to
analytically compute the error gradient with respect to each parameter.

3.6 Training Results
Several training experiments have been run within the DIGITS framework
exploring the way up to an optimal accuracy. It is worth to mention that,
typically, the graphs used to visualise the training progress show both the
training and the validation accuracy plus the evolution of the loss function
(see Figure 3.5). As mentioned in earlier sections, the validation set is not
used to adjust the network weights but to verify that the model is not
overfitting. Therefore, the validation accuracy is the figure of merit in the
results being summarised here.

The size of the validation dataset has been kept constant to 163 images
during the different training jobs. The criteria used for the selection of the
images has been to have validation images that differ as much as possible
from the ones used in the training dataset, thus making the validation hard
to pass for the model.

The summary of the most significant results from the different ex-
periments is summarised in Table 3.3. In short, each of the performed

Training of a Deep Neural Network 37

Figure 3.5: DIGITS. Graph showing the progression of the training
along the different epochs. The quantities of interest are the
training accuracy, the validation accuracy and the value of the
loss function for both the training and the validation data.

experiments on the list has aimed to review the effect of one of the following
actions:

- an increase in the size of the training dataset;

- training only the classifier layer;

- training the input layer plus the classifier;

- training all the model layers.

Effect of Dataset Size

The results clearly show how data augmentation and increasing the size
of the training dataset have a direct impact on the improvement of the
validation accuracy. By looking at the accuracy results obtained in jobs
1 and 2, where only the classifier is being trained, one can see that the
accuracy can be slightly improved from 63.5% to 66.4% by increasing the
dataset size a significant 56%, but a further increase of the dataset, as

38 Training of a Deep Neural Network

described in job 4, does not translate into better accuracy, thus reaching a
limit.

Effect of Transfer Learning Methodology

The results of the experiments, where only the classifier has been trained,
show the beneficial impact of the transfer learning methodology. For instance,
the validation accuracy obtained for job 1 is quite remarkable, with a
value of 63.5% compared to the 63.0% top-1 validation accuracy obtained
for ZynqNet in the 1000-class ImageNet challenge (Gschwend, 2016 [25]),
considering the modest size of the training dataset (6,500 images) and that
only the weights of the classifier have been retrained.

Training After Validation
Job description dataset size augmentation accuracy

1. Training classifier only 1,500 6,500 63.5%
2. Training classifier only 2,160 10,183 66.4%
3. Training conv1 + classifier 2,160 10,183 71.9%
4. Training classifier only 2,668 13,743 66.4%
5. Training conv1 + classifier 2,668 13,743 76.6%
6. Training all layers 2,668 13,743 86.3%

Table 3.3: Summary of the top-1 validation accuracy results obtained
for different training jobs.

The explanation lies in the fact that the classifier performs its high-level
reasoning from the non-linear combination of the features extracted from
the image dataset. That is, it holds composite and aggregated information
obtained from all the preceding convolutional layers, which gives the capacity
of generalisation to the neural network.

Obviously, to further improve the accuracy, it is required to obtain better
high-level features from the training dataset, that are more specific to the
set of hand signs in question. Therefore, additional layers are added to the
training, as described for jobs 3 and 5, where the first convolutional layer
conv1 is trained jointly with the classifier, resulting in a slight improvement
of the accuracy.

Finally, the best result is achieved by fine-tuning all the convolutional
layers together with the classifier, where a final validation accuracy of 86.3%
is achieved as described in job 6.

Training of a Deep Neural Network 39

Post-Quantisation Results

The quantisation analysis performed by Ristretto considers fixed-point
representations with different bit-widths which results in a different accuracy
drop respect to the floating-point model for each case. The proposed bit-
widths for the quantised model are 16, 8 and 4 bits, being 8 bits the bit-width
that offers the best trade-off.

Fractional Length
Layer name CH in Weights&Bias CH out

conv1 0 7 -2
fire2/squeeze3x3 -2 6 -4
fire2/expand1x1 -4 6 -4
fire2/expand3x3 -4 7 -4
fire3/squeeze1x1 -4 6 -6
fire3/expand1x1 -6 7 -5
fire3/expand3x3 -6 7 -5
fire4/squeeze3x3 -5 8 -7
fire4/expand1x1 -7 7 -6
fire4/expand3x3 -7 8 -6
fire5/squeeze1x1 -6 7 -7
fire5/expand1x1 -7 7 -6
fire5/expand3x3 -7 7 -6
fire6/squeeze3x3 -6 8 -7
fire6/expand1x1 -7 7 -6
fire6/expand3x3 -7 8 -6
fire7/squeeze1x1 -6 7 -7
fire7/expand1x1 -7 8 -5
fire7/expand3x3 -7 8 -5
fire8/squeeze3x3 -5 8 -6
fire8/expand1x1 -6 8 -4
fire8/expand3x3 -6 8 -4
fire9/squeeze1x1 -4 8 -4
fire9/expand1x1 -4 8 -2
fire9/expand3x3 -4 9 -2
conv10 -2 9 -1

Table 3.4: List of the fractional lengths estimated by Ristretto for
an 8-bit fixed-point quantisation of the model. Values are given
layer by layer, for the input and output activations, weights and
bias.

40 Training of a Deep Neural Network

The accuracy drop estimated by Ristretto for this case is only 2.3%
respect to the final accuracy achieved by DIGITS of 86.3%. It can be seen
that, after fine-tuning the quantised model, this accuracy drop is not only
recovered but overturned, increasing the final accuracy of the model up to
87.1%. Table 3.5 summarises the evolution of the model accuracy along the
different training phases.

Training Phase Network Accuracy

DIGITS (dataset with 13,743 images) 86.3%
Quantisation to 8-bits (Ristretto) 84.0%
After fine-tuning 87.1%

Table 3.5: Evolution of the model validation accuracy along the differ-
ent training stages. Quantisation and fine-tuning are performed
using an 8-bit fixed-point format.

The quantised network obtained with Ristretto is summarised in Table
3.4, where the fractional length for the input activations, weights and output
activations are listed layer by layer.

By using dynamic fixed-point, different numerical representations can
be used for the layer activations and weights. It can be observed that layer
activations (denoted as in/out channels in the table) can be relatively big
compared to the weights. The latter requires more bits in the fractional
part in order to represent such tiny numbers.

0

Figure 3.6: Example of 8-bit dynamic fixed-point numbers. A number
with a negative fractional length of -1, means that its integer
length is 9, although its bit-width is 8 (Source: derived from
Gysel, 2018 [47]).

Training of a Deep Neural Network 41

On the contrary, activations can have values so large that do not fit
on an 8-bit representation and need to be compressed. That is why its
fractional length is negative, which denotes that the mantissa does not have
fractional part and the integer part needs to be extended, by padding the
right side of the mantissa using as many zeroes as defined by the negative
fractional length (see example illustrated in Figure 3.6). The hardware
accelerator has to take care of this zero-extension operation.

Chapter 4
Design and Implementation of a
CNN Hardware Accelerator

As already mentioned in the preliminaries, the present work is based on
ZynqNet, an FPGA-accelerated embedded CNN, designed by Gschwend [25].
This network architecture is already highly optimised for its implementation
on an FPGA device. It also has the advantage that it has been trained for
image recognition tasks and one can use the transfer learning approach to
retrain the neural network and use it for another image recognition task
such as recognition of human sign language, as described in the previous
chapter. Furthermore, the trained model is publicly available online in the
author’s Git repository [39].

This chapter is covering the different aspects related to the design of
a CNN hardware accelerator and its RTL implementation on a Xilinx
FPGA board. First of all, the project goals are presented, together with
the design requirements and the design strategy proposed for a successful
implementation. It continues with the description of the proposed C-based
model and the behavioural description of the hardware, module by module,
with a focus on the implemented optimisations.

Finally, the chapter concludes with a picture of the applied verification
methodology, both pre-synthesis a post-synthesis plus a summary of some
of the significant problems encountered during the design process.

4.1 Project Goals and System Requirements
The goal of the present thesis can be summarised in the following statement:

"Train Zynqnet for human sign language recognition, and fit the whole
neural network onto an FPGA chip achieving both proper inference accuracy

43

44 Design and Implementation of a CNN Hardware Accelerator

and throughput, given by images or frames per second (FPS)."
On the pursuit of this objective, the proposed design aims to provide

proof of concept of the transfer learning principle and brings the opportunity
to improve the ZynqNet architecture. The improvements are brought on
two major aspects:

1. to avoid external memory access, taking out of the equation the impact
in the performance due to external memory bandwidth limitations.
All the weights, bias, input image and intermediate feature maps
should fit in the on-chip memory of the FPGA.

2. the quantisation of the CNN network; in contrast with the 32-bit
floating-point format used in the original ZynqNet, the proposed
design will use 8-bit dynamic fixed-point for representing all the
weights and bias, input images and partial feature maps obtained after
each convolution operation.

As might be expected, the algorithmic description of the Zynqnet network
must be written from scratch and has to be adapted to the target goals,
ensuring the originality of the design presented in this work. The High-Level
Synthesis design process is the method of choice for that purpose, given the
complexity and the size of the project.

4.1.1 Memory Requirements
This section provides an estimation of the memory requirements to take into
consideration when choosing the proper FPGA to fit in the neural network.
It must have enough block RAM to allocate the necessary data at any time
during the convolution operations. These data consist of:

1. all the weights and bias generated during the training of the neural
network and that are loaded into the FPGA. The number of weights
per layer is calculated as follows:

#ofweights = input_channels · output_channels · kernel_size

where the kernel size can be either 3x3 or 1x1. Summing the weights
for all the layers gives a total of 1,794,294 weight elements. The
number of bias required per layer is just equal to the number of output
channels for that layer. That is a total of 3,456 bias elements.

2. enough cache memory to store the partial results after each convolution
operation. The size for that cache will be given by the largest feature
volume produced after a convolution, and that corresponds to the

Design and Implementation of a CNN Hardware Accelerator 45

convolution conv1 (see Table 4.2), which produces an output volume
of 64x128x128 elements. The design will implement two of these
memory caches, one for the input volumes and another one to store
the output volumes produced by each convolution operation.

Item Number of bits Mb

Weights 1, 794, 294 · 8 = 13.7
Bias 3, 456 · 8 = 0.03
Feature Map Cache 1 64 · 128 · 128 · 8 = 8
Feature Map Cache 2 64 · 128 · 128 · 8 = 8

TOTAL 29.73

Table 4.1: Estimated memory requirements expressed in megabits.

Table 4.1 summarises the estimated memory requirements for the project,
which turns out to be a little bit less than 30 Mb.

FPGA: Choosing the Right Device for the Project

When considering which FPGA would be the right choice for the present
project, mainly two reasons were taken into account:

1. a device with enough amount of resources adequate to contain the
whole CNN network, including all the necessary weights and bias
and, most importantly, enough on-chip memory to allocate the partial
feature maps produced after each convolution operation. The main
idea here is to avoid the access to external memory altogether, and to
use only the available memory on the FPGA chip, thus exploring the
possibilities for future small mobile applications. An additional advan-
tage to this approach is also a reduced system latency, in compliance
with the project goals stated above.

2. device readiness; reuse one of the many FPGA boards already avail-
able at the university department, provided that it fits the given
specification.

Both requirements meet in the Xilinx Board ADM-PCIE-KU3 [48] which
incorporates a Xilinx FPGA from the Kintex UltraScale family, device model
XCKU060 [49] and package version FFVA1156. This board uses Xilinx
PCI Express technology (PCIe), so it can be installed via PCI connector
into servers or workstations for its use in communications or data-centre

46 Design and Implementation of a CNN Hardware Accelerator

applications, where the host CPU can be used for additional computations
as well as the host system memory, that is accessed through featured DMA
IPs. The following are some of the highlights available in this FPGA:

• Maximum frequency of a global clock tree (BUFG): 725 MHz

• Maximum Distributed RAM (LUTs): 9.1 Mb

• Block RAM: 2160 blocks of 18 Kb each (38 Mb)

• DSP48E (multipliers): 2760 units

At first glance, it can be seen that the number of block RAM available
on this board is sufficient to cope with the memory requirements estimated
in the previous section. Moreover, there are available large amounts of multi-
pliers and distributed memory (registers) which facilitate the parallelisation
opportunities in the design. It also provides enough room for additional
blocks or more complex control units such as a MicroBlaze microprocessor
that could be added afterwards for further system development purposes
(see final conclusions in Chapter 5).

4.2 Adapting the ZynqNet Topology
Table 4.2 is a description of a slightly modified version of the ZynqNet
topology, adapted to the project specifications. The modifications, compared
to the original ZynqNet architecture described in Table 2.1, consist of the
following:

1. Undo the split of the conv10 layer and change the number of output
channels to 32. Since conv10 is the last convolutional layer, right
before the average pooling operation, the number of outputs should be
equal or greater to the number of categories that the neural network
can recognise, in this case, 26 different hand gestures used for Swedish
fingerspelling, hence 26 outputs that are extended to 32, as they are
rounded to the nearest power of 2.
Because ZynqNet was trained with the ImageNet dataset, the last
convolutional layer required 1,000 output channels, which corresponds
to the number of possible categories in which the images in the
ImageNet dataset are classified. The amount of memory required to
perform this operation exceeded the on-chip memory capabilities of
the original ZynqNet design; therefore it was split into two consecutive
convolutions with 512 output channels and the results concatenated
afterwards. In the present modified ZynqNet version this is not

Design and Implementation of a CNN Hardware Accelerator 47

necessary due to the smaller amount of output channels and a smaller
bit-width used for number representations (8-bit dynamic fixed-point).

Layer name Type Kernel Stride CH in WxH in CH out WxH out

conv1 Convolution 3x3 2 3 256x256 64 128x128

fire2/squeeze3x3 Convolution 3x3 2 64 128x128 16 64x64
fire2/expand1x1 Convolution 1x1 1 16 64x64 64 64x64
fire2/expand3x3 Convolution 3x3 1 16 64x64 64 64x64

fire3/squeeze1x1 Convolution 1x1 1 128 64x64 16 64x64
fire3/expand1x1 Convolution 1x1 1 16 64x64 64 64x64
fire3/expand3x3 Convolution 3x3 1 16 64x64 64 64x64

fire4/squeeze3x3 Convolution 3x3 2 128 64x64 32 32x32
fire4/expand1x1 Convolution 1x1 1 32 32x32 128 32x32
fire4/expand3x3 Convolution 3x3 1 32 32x32 128 32x32

fire5/squeeze1x1 Convolution 1x1 1 256 32x32 32 32x32
fire5/expand1x1 Convolution 1x1 1 32 32x32 128 32x32
fire5/expand3x3 Convolution 3x3 1 32 32x32 128 32x32

fire6/squeeze3x3 Convolution 3x3 2 256 32x32 64 16x16
fire6/expand1x1 Convolution 1x1 1 64 16x16 256 16x16
fire6/expand3x3 Convolution 3x3 1 64 16x16 256 16x16

fire7/squeeze1x1 Convolution 1x1 1 512 16x16 64 16x16
fire7/expand1x1 Convolution 1x1 1 64 16x16 192 16x16
fire7/expand3x3 Convolution 3x3 1 64 16x16 192 16x16

fire8/squeeze3x3 Convolution 3x3 2 384 16x16 112 8x8
fire8/expand1x1 Convolution 1x1 1 112 8x8 256 8x8
fire8/expand3x3 Convolution 3x3 1 112 8x8 256 8x8

fire9/squeeze1x1 Convolution 1x1 1 512 8x8 112 8x8
fire9/expand1x1 Convolution 1x1 1 112 8x8 368 8x8
fire9/expand3x3 Convolution 3x3 1 112 8x8 368 8x8

conv10 Convolution 1x1 1 736 8x8 32 8x8

pool10 Avg. Pooling 8x8 - 32 8x8 32 1x1

Table 4.2: Modified architecture of ZynqNet CNN for classification
of 32 categories (each category is a letter of the alphabet).

2. Change the number of input/output channels to 32 in the pool10 layer
for the same reason stated above. The pooling layer calculates the
average value for each one of the 8x8 input channels and the output
channel with the highest average value corresponds to the category
inferred by the neural network.

3. Remove the softmax layer. The softmax function (or normalised
exponential function) is often used in the final layer of a neural
network and gives the distribution of probabilities over each one of

48 Design and Implementation of a CNN Hardware Accelerator

the possible categories. This probability distribution turns to be very
useful in the ImageNet challenge, where one of the essential metrics to
understand how good is the performance of the neural network is the
top-5 error, which is the fraction of test images for which the correct
category is not among the five categories considered most probable by
the model.

4.3 Design Strategy
In a first approach, a plain, straightforward design, aiming at functionality,
not throughput, was developed. Being also the first time contact with the
HLS toolchain, the primary purpose was to keep things as simple as possible,
while the learning curve was getting steeper. In that sense, the design lacked
any of the primary HLS compiler directives that allow for the optimisation
of performance, like the partitioning of large arrays to speed up the access
to its elements, the unrolling of for loops to increase parallelisation or the
pipelining of functions. However, a successful implementation was obtained
with minimum utilisation of the FPGA resources and with an inference
accuracy slightly over the 80%, proving the feasibility of the project. The
performance of the circuit was its weak side, as expected, with a latency of
about 6 seconds to process one image at a clock frequency of 100 MHz.

Then, a second design aiming to improve the performance was carried
out, but this time incorporating strategies to accelerate the algorithm
performance, such as image block processing and array partitioning of the
cache memories listed in Table 4.1, which boosted the throughput of the
neural network to 6.3 FPS at a clock frequency of 250 MHz. Both approaches
are described in the following subsections.

4.3.1 Block Processing
Rather than processing the whole input image at once, the algorithm splits
the image channels into tiles or 2-D blocks of pixels. Then, those input
blocks are processed one by one producing the corresponding output blocks
after a certain amount of clock cycles. The data blocks are read and stored
from and into the memory caches at the right location under the action of a
memory controller that handles the memory offsets that need to be applied
at every moment.

The size of these blocks has been decided upon the channel dimensions
provided by Table 4.2, and corresponds to a block size of 8x8. As it can be
seen in the table, all the layer activations in Zynqnet are formed by channels
whose dimensions are multiples of this basic 8x8 block.

Design and Implementation of a CNN Hardware Accelerator 49

INPUT VOLUME
(up to 736 channels)

OUPUT VOLUME (up to 368 channels)

KERNEL 1
3x3

KERNEL 2
3x3

KERNEL 3
3x3

OUTPUT CHANNEL 1 OUTPUT CHANNEL 2 OUTPUT CHANNEL 3

∗∗∗ Convolution
Units

10x10 cache

8x8 caches

Input
operand_1
(shared)

Input
operand_2

Figure 4.1: Dataflow representation of the block processing approach.

Figure 4.1 illustrates the concept of block processing. The input volume
is formed by an arbitrary number of channels, where a channel is a two-
dimensional square array of real numbers, and each array is split in an
integer number of blocks1. The algorithm goes throughout the whole input
volume, channel by channel, one block at a time. Each 8x8 input block is
loaded in a small 10x10 cache2 and then used by the convolution unit as
one of the operands, being the kernel corresponding to that input channel
the other operand. The result of the convolution is stored in another 8x8
cache before being pushed by the memory controller to its proper location
in the larger feature map cache (see also Figure 4.2 for more detail).

1N.B. that the above-mentioned quantities, that is to say, the number of input and
output channels and the number of blocks per channel, are powers of 2. The latter is a
good design practice to apply to FPGA implementations whenever possible.

2This cache is oversized purposely in order to apply the padding before computing the
convolution and keep the original dimensions all along the different operations.

50 Design and Implementation of a CNN Hardware Accelerator

4.3.2 Array Partitioning
The way the data is accessed through the memory caches is undoubtedly
going to affect the performance. The caches that are susceptible of parti-
tioning are: 1) the cache that contains all the weights used by the neural
network, and 2) the caches that store the partial results of the convolutions
or activations.

The goal is to read the operands required by the convolution units as fast
as possible, namely the 8x8 data blocks from the input volume and the nine
elements that form the 3x3 kernels from the weight cache (or one element
for the 1x1 kernels). A simple way to achieve this goal is to define these
caches as two-dimensional arrays and then to split completely one of the
dimensions into distinct memory blocks that can be accessed concurrently.
In the case of the weights, it follows that the dimension to be partitioned
must be equal to the number of elements that form the 3x3 kernel, allowing
the reading of all the nine elements in the same clock cycle. Table 4.3
lists the size of the dimensions of the arrays as they have been declared in
the HLS source code, where the second dimension of each array has been
completely partitioned.

Cache Number of Elements Dim 1 Dim 2

Weights 1, 794, 294 199,366 9
Feature Maps 1 64 · 128 · 128 = 1, 048, 576 131,072 8
Feature Maps 2 64 · 128 · 128 = 1, 048, 576 131,072 8

Table 4.3: Cache sizes declared as two dimensional arrays.

Additionally, the memory caches have been implemented using dual-port
block RAM, allowing for the access of two elements in the same cycle. Hence,
for instance, reading all the 64 elements from one block would take only 4
cycles.

4.4 Model Operation and Hardware Description
The neural network model is best described with the pseudo-code listed in
Algorithm 1, but a cautionary note should be made here since the pseudo-
code is just an approximated description of the circuit operation and it
ignores the cases where the kernel size is 1x1 or the convolution stride is
equal to 2.

The input parameters of the top function (labelled as CNN) are the
trained weights and bias, and the hand gesture image to be classified, while

Design and Implementation of a CNN Hardware Accelerator 51

the output parameter is the letter of the alphabet inferred by the CNN
from the given image. As illustrated in Algorithm 1, in the first place, these
arrays passed as parameters to the function are loaded in their correspondent
on-chip memory caches, one for the weights (W), one for the bias(B) and
one for the input image (IFM). It is worth to mention that the loading of
the weights and bias is done only once, at the power-up of the system.

Then, the main loop of the CNN is processed, layer by layer, executing
the following operations:

1. load the hyper-parameters of the current layer, that is to say, the
dimensions of the input volume (height, width and number of input
channels), the dimensions of the activation or output volume generated
after the convolution, the stride, kernel size, and the fractional lengths
necessary for the dynamic fixed-point representation of the data: input,
output and weights/bias (see Table 3.4).

2. calculate the number of 8x8 blocks per channel that are going to be
processed, given the height and width of the channel.

3. iterate through all the input channels.

4. iterate through all the blocks of the current input channel.

5. load the data of the current 8x8 input block from the input feature
map cache (IFM) into the 10x10 cache and perform the padding. The
10x10 array is the matrix to be convolved by the convolution unit
later on.

6. iterate through all the output channels; from the current 8x8 input
block loaded in the previous loop, generate all of the 8x8 output blocks,
one for each output channel.

7. load the set of weights corresponding to the current combination of
input-output channels. A total of input_channels · output_channels
is the number of kernels required by the current layer to perform the
full convolution of the input volume.

8. perform the matrix convolution operation between the 10x10 block
and the 3x3 kernel (stride 1) and store the result into an 8x8 array
cache (result8x8).

9. each output channel is the result of the cumulative addition of the
convolution of each input channel with its corresponding kernel (see
Figure 4.1); hence, the obtained result is added to the previously
stored one in stored8x8(if a previous one exists already).

52 Design and Implementation of a CNN Hardware Accelerator

Algorithm 1 : Pseudo-code for the neural network algorithm
1: function CNN(weights, bias, input_image, &inferred_class)
2: W = LoadAllWeights(weights); . Only once, at power-up
3: B = LoadAllBias(bias); . Only once at, power-up
4: . Init the Input and Output ’Feature Map’ Caches, IFM and OFM
5: IFM = LoadInputImage(input_image);
6: OFM = 0;
7: for L = 0 to layers− 1 do . Main loop, iterate through layers
8: (CHin,CHout,Xin,Yin, ...) = LoadLayerDef; . Load hyperparams
9: blocks = Xin ∗ Yin/64; . Calculate blocks per channel
10: for ci = 0 to CHin − 1 do
11: for bl = 0 to blocks− 1 do
12: block10x10 = LoadBlock(IFM,bl, ci); . Load Op1
13: for co = 0 to CHout − 1 do
14: kernel3x3 = LoadKernel(W , ci, co); . Load Op2
15: result8x8 = 2DConvOp(block10x10, kernel3x3);
16: if (ci 6= 0) then
17: stored8x8 = LoadFromCache(OFM, bl, co);
18: result8x8 = result8x8 + stored8x8;
19: end if
20: if (ci == CHin − 1) then
21: bias = LoadBias(B, co);
22: result8x8 = ReLU (result8x8 + bias);
23: end if
24: Store2Cache(OFM, bl, co, result8x8); . Write-back
25: end for
26: end for
27: end for
28: IFM = OFM ; . Init input cache for the next Conv
29: end for
30: output32x1 = averagePooling(OFM); . Average pooling
31: [max_value, index] = max(output32x1);
32: inferred_class = index; . Return inferred category
33: end function

Design and Implementation of a CNN Hardware Accelerator 53

10. if the above-mentioned cumulative sum is complete (meaning that
all the input channels have been convolved), add the bias and apply
the activation function, which is a simple ReLU. When computing
the addition operations, the different fractional lengths are adjusted,
and the rounding-to-the-nearest method is applied. Furthermore,
keeping track of the possible overflows is done by applying saturation
arithmetic (for 8-bits, all the results are kept in the range [+127,
-128]).

11. the generated output volume that got stored in the output feature map
cache OFM now becomes the input volume of the next convolutional
layer.

12. when all the convolutions are completed, calculate the average pooling
of the last activation output; the result is a one-dimensional vector
with 32 elements. The index of the element with the maximum value
corresponds to the category inferred by the CNN.

The functional behaviour described by Algorithm 1 maps onto the block
diagram depicted in Figure 4.2. It consists of the necessary logic and control
blocks that transfer the data between the different memory caches and the
convolution unit. In the following subsections, a succinct description of the
different modules that constitute the circuit hierarchy is given in a top-down
order.

4.4.1 Main Process Unit
The Main Process unit reads the trained weights and bias from external
memory and writes them onto their corresponding internal caches, imple-
mented as dual-port block RAM. It reads the state of a bit flag to ensure
that this action is done only once.

Then, it reads the image containing the hand gesture to be classified
from external memory, in blocks of 8x8 pixels, and writes them back in the
IFM input cache. The rule applied here is to read the blocks that compose
the image from left to right, as illustrated in Figure 4.3. The left-to-right
convention is kept throughout the design whenever required.

Once this is done, the image starts to be processed by the neural
network, applying the convolutional layers in an orderly manner. The Main
Process unit keeps track of the successive convolutions performed all the way
through the neural network layers. It reads the hard-coded configuration
for each layer from an internal ROM that contains all the layer definitions,
namely the layer hyper-parameters such as channel size, number of channels,
kernel size, stride, and the fractional length to be used for the appropriate

54 Design and Implementation of a CNN Hardware Accelerator

8
 P

ar
ti

ti
o

n
s

IF
M

 C
A

C
H

E
2

4
,5

7
6

 x
 8

 x
 8

 b
it

s
=

1
.5

 M
b

O
FM

 C
A

C
H

E
1

3
1

,0
7

2
 x

 8
 x

 8
 b

it
s

=
8

 M
b

Weights
Block RAM

Fu
lly

p

ar
ti

ti
o

n
ed

:
1

0
0

 r
eg

is
te

rs

A
ri

th
m

et
ic

 L
o

gi
c

U
n

it

∗

W
EI

G
H

TS
 C

A
C

H
E

1
9

9
,3

6
6

 x
 9

 x
 8

 b
it

s
=

1
3

.7
 M

b

Bias

B
IA

S
C

A
C

H
E

3
,4

5
6

 x
 8

 b
it

s
=

0
.0

3
 M

b

24,576 rows

1
0

x1
0

 I
n

p
u

t
R

e
gi

st
e

r
ar

ra
y

8
 b

it
s

3
x3

K

e
rn

e
l

ar
ra

y
8

 b
it

s

9 Partitions

8
 P

ar
ti

ti
o

n
s

+

+

8
x8

 O
u

tp
u

t
re

gi
st

e
r

ar
ra

y
2

4
 b

it
s

131,072 rows

1
9

9
,3

6
6

 r
o

w
s

F T

La
st

 in
p

u
t

ch
an

n
el

?

ReLU

C
o

n
vo

lu
ti

o
n

U

n
it

 (
M

A
C

)

8
x8

b

lo
ck

s

8
x8

b

lo
ck

s

Weights
& Bias

GESTURE
IMAGE

“ABC … Z”

M
ai

n
 P

ro
ce

ss

U
n

it
A

vg

P
o

o
l

M
e

m
o

ry

C
o

n
tr

o
lle

r

C
O

N
V

O
LU

TI
O

N
 C

O
R

E

R
O

M
 L

ay
er

 D
ef

In
p

u
t

Fe
at

u
re

M

ap
s

D
u

al
-P

o
rt

B

lo
ck

 R
A

M

O
u

tp
u

t
Fe

at
u

re

M
ap

s

D
u

al
-P

o
rt

B

lo
ck

 R
A

M

3
x3 LR

F

Figure 4.2: Block diagram of the CNN hardware accelerator.

representation of the data in 8-bit dynamic fixed-point at each particular
convolution operation. All this parameters are listed in Table 4.2 and Table
3.4 respectively.

Design and Implementation of a CNN Hardware Accelerator 55

Finally, when all the convolutions have been completed, it computes
the average pooling of the last activation volume stored in memory, which
produces a vector of 32 elements or categories, one for each of the letters of
the alphabet, and looks at the category with the largest value. The vector
index of that category is the value returned through the output port and
corresponds to the letter of the alphabet inferred by the neural network
accelerator.

1 2 3 4

9 10

11
5 6

7
1 2

3 4

5 6 7 8 9 1
0

1
1

1
2

Feature Map Cache

Load Input
Image

Input image
(3 channels)

Figure 4.3: Representation of the loading process of the input image
into the internal cache.

4.4.2 Memory Controller
The memory controller keeps control of the offsets required to properly
access the data from the main caches (weights, bias and input/output
activation volumes), and it works closely together with the Main Process
unit and the Convolution Core, as they are continuously addressing data
from/into the different internal memory caches.

4.4.3 Convolution Core
The Convolution Core is the module that performs the matrix convolutions
iteratively, aiming to keep latency as low as possible. For that purpose, the
data blocks stored in the block RAM are transferred to smaller caches made
up by internal registers with much faster access. The convolution operation
is done by processing the input feature maps block by block, one at a time,
hence the output feature maps are also produced one block at a time. The

56 Design and Implementation of a CNN Hardware Accelerator

amount of latency needed to finish the whole convolution of an input volume
will depend on the number of channels and its size; therefore it will vary
from one layer to another, for they have different hyper-parameters.

The convolution processing unit requires two matrices as input operands:
the first operand is an 8x8 pixel block loaded from the input feature map
cache, and the second operand is a 3x3 kernel loaded from the weight cache.
As mentioned above, the memory controller is keeping track of the memory
offsets ensuring that the operands are accessed from the right memory
locations.

The weights are written into a 3x3 register array, and the 8x8 pixel
block is written onto a 10x10 register array, both implemented in the FPGA
as distributed RAM memory (based on LUTs3) which allows that all the
individual registers can be accessed simultaneously in the same clock cycle.
When a 3x3 kernel is used in the convolution, it is necessary to perform the
padding of the edges around the 8x8 block, hence the reason to use a 10x10
register array.

Padding

The rules applied to the padding operation are the following:

• if the edge to be padded corresponds to an edge placed at the border
limit of the feature map, then pad it with zeros (example block #4 in
Figure 4.4)

• otherwise, pad it with the neighbouring pixels from the adjacent blocks
(example block #11 in Figure 4.4)

The blocks are orderly processed according to the above-mentioned
left-to-right convention, conforming to its original position in the feature
map. There would be no difference in terms of latency though if blocks were
accessed in top-to-down precedence order. It is worth to remember here that
the feature map caches are partitioned by columns, consisting of 8 separate
dual-port block RAM that can be accessed concurrently in the same clock
cycle. The padding operation also greatly benefits from this partitioning;
for instance, the padding of the edges, corresponding to the upper and lower
rows on the 10x10 cache (see Figure 4.4), would require only one clock cycle,
as all the elements are located in different memory blocks. Whereas the
padding of the left and right columns is more expensive, requiring five clock
cycles to access those 20 elements.

3LUTs or Look-Up Tables are built out of SRAM bits and are typically used by FPGAs
to implement combinational logic or lookup tables associated to complex logic functions.

Design and Implementation of a CNN Hardware Accelerator 57

There is the possibility to re-use one of the current block columns for
the padding of the next block. By re-assigning the current values of the
registers in the column number 9 (see example block #11 in Figure 4.4) to
the column number 1, labelled as left in the figure, it eliminates the need
to access the block RAM to retrieve the data for that column. However,
this advantage gets overshadowed by the fact that the data for the padding
of the right column still needs to be retrieved from the block RAM, which
takes five clock cycles, so there is no reduction in latency by doing so.

44

0 0 0 0 0 0 0 0 0 0
0
0
0
0
0
0
0
0
0

11le
ft

ri
gh

t

upper

lower

11

upper

lower

le
ft

ri
gh

t

1 2 3

5 6 7 8

12109

1614 1513

2 3 4 5 6 7 8 9 10 1

10x10
register array

Feature map

Figure 4.4: Examples of the padding of the blocks forming the feature
maps. The numbering in the blocks indicates the processing
order, row-wise from left to right.

Convolution Unit

The 2-D convolution operation is performed by sliding the 3x3 kernel
throughout all the pixels contained in the current 8x8 block, that has been
previously padded, one pixel at a time. The kernel is centred over the pixel
that is going to be processed, which, together with its neighbouring pixels
surrounding it, form a pixel area termed as local receptive field4 (LRF), also
known as convolution window. The data content of this window, as it might

4See Section 2.1

58 Design and Implementation of a CNN Hardware Accelerator

be expected, is changing as long as the kernel is changing its position. For
that purpose, a small 3x3 register array has been implemented (labelled
as LRF in the block diagram) that stores the temporary content of the
convolution window.

Figure 4.5: The kernel (grey 3x3 matrix) slides over the padded
block (blue matrix with white borders) producing one pixel at
a time in the output matrix (in green). The grey area covered
by the kernel corresponds to the local receptive field (Source:
Dumoulin and Visin, 2016 [50]).

Once both the 3x3 array registers are loaded (the convolution window
and the kernel), the convolution unit can perform a partial convolution
computation, which is iteratively done pixel by pixel. By definition, a 2D
matrix convolution requires the flipping of the elements of the kernel matrix
in both dimensions, from left to right and from top to bottom, as shown in
the following example:

a b c
d e f
g h i

⇒
 i h g

f e d
c b a



This additional manipulation of the kernel by the hardware can be just
avoided, by previously flipping the weight kernels before loading them in the
FPGA cache. This action is done offline actually by the training framework
(NVIDIA DIGITS [33]) and it is advantageous because the convolution unit
can be simplified to a multiply-accumulate operation (MAC) and thus, be
implemented in hardware simply as a MAC unit as illustrated in Figure 4.6.

Design and Implementation of a CNN Hardware Accelerator 59

+

OUTPUT

Adder tree

Multiplier Array
3x3

CONVOLUTION
WINDOW (LRF)

3x3 KERNEL

a1 a2 a3 a4 a6a5 a8a7 a9

w1 w2 w3 w4 w6w5 w8w7 w9

Figure 4.6: Multiply-accumulate unit.

The performance of the MAC unit is improved by implementing an array
of 9 multipliers in parallel, which delivers the element-wise multiplication of
the two matrices in the same clock cycle, and then followed by an adder
tree that computes the total sum of the 9 elements.

The algorithmic description in C of the convolution operation makes
use of two nested for loops, one for each block dimension (see Listing 4.1),
which can be further optimised in terms of latency by unrolling the inner
loop. In that way, the convolution unit hardware can be parallelised, and
several block pixels can be processed at the same time. For instance, if the
inner loop is completely unrolled, as shown in the listed code, the compiler
creates 8 different convolution windows (each made of a 3x3 register array)
and the same number of kernel register arrays. In the same way, the compiler
implements 8 different MAC units with 9 multipliers and one adder tree
each. As a result, eight output pixels can be processed in the same clock
cycle.

4.4.4 Arithmetic Logic Unit

As previously described in Section 2.1 and also by the pseudo-code in
Algorithm 1, each output channel is composed by the total sum of the
convolutions of all the input channels by its corresponding kernels. The
accumulation of the input channel convolutions is stored in the output cache
(OFM). Once the convolution operation is completed for one block, the
arithmetic logic unit accumulates the partial outcome to its corresponding
output block, stored in the OFM cache, where the sum is performed as a
simple addition of 8x8 matrices.

60 Design and Implementation of a CNN Hardware Accelerator

void conv2d_3x3 (
int8_t in_cache [10][10] ,
int8_t kernel [3][3] ,
int16_t out_cache [8][8]
)

{
int8_t window_3x3 [3][3];
pragma HLS ARRAY_PARTITION variable = window_3x3 complete dim =0

CONV2D_3x3_ROWS :
for (int8_t ifm_row = 1; ifm_row < 9; ifm_row ++){

CONV2D_3x3_COLS :
for (int8_t ifm_col = 1; ifm_col < 9; ifm_col ++){
pragma HLS UNROLL

slide_window (in_cache , ifm_row , ifm_col , window_3x3);
out_cache [ifm_row -1][ifm_col -1] = macc_3x3 (window_3x3 , kernel);

}
}

}

Listing 4.1: C code for the 2-D convolution operation.

Dynamic Fixed-Point Arithmetic, Rounding and Overflow Handling

Since the implemented design uses 8-bit dynamic fixed-point for data repre-
sentation, the decimal point can vary its position according to the fractional
lengths given in Table 3.4. In order to be able to perform dynamic fixed-point
arithmetic, the unit is endowed with the following functionalities:

• track the position of the decimal point after multiplication of two
quantities.

• align the decimal point between quantities before addition.

• align the decimal point of the addition/multiplication result to the
proper fractional length using bit-shifting operations.

• when applying bit shifting, quantities are not truncated but rounded;
the rounding method applied is the rounding-to-nearest method, with
rounds the quantity to the closest representable number in the direction
of positive infinity.

• handle the overflows using a saturating overflow rule (magnitudes are
kept in the range [+127, -128] which corresponds to the range of 8-bit
signed integers).

Design and Implementation of a CNN Hardware Accelerator 61

Bias Addition and ReLU Activation Function

The arithmetic logic unit also adds the corresponding bias to the output
when all the input channels have been convolved, performing an element-
wise addition between the bias (a scalar) and an 8x8 matrix. After adding
the bias, the ReLU activation function is applied, which consists in zeroing
all the negative values in the matrix. The final result is stored back in the
output cache.

4.5 Behavioural Model Validation and RTL Verification
This section describes the methodology used to validate both the C-based
algorithm description that models the behaviour of the neural network,
and the verification of the RTL description obtained after the successful
synthesis of the model.

4.5.1 Validation of the C-based Model Description
The Vivado HLS Design Suite from Xilinx [51], supports complete bit-
accurate validation of the C model, at the pre-synthesis phase, and also
provides a productive C-RTL co-simulation verification solution after the
synthesis of the proposed solution.

Figure 4.7: Vivado HLS Flow: C Validation and RTL Verification
(Source: Xilinx Inc., 2013 [52]).

The validation of the C-based algorithm behaviour has been tested
at different levels. At an initial step, a script has been used to generate

62 Design and Implementation of a CNN Hardware Accelerator

random input matrix volumes with user-defined number of input channels
and sizes. Random weight kernels and bias are also generated by the
script, accordingly to the number of output channels and the kernel size.
Additionally, it computes the 2-D convolution of the given matrices, adds
the bias and applies the ReLU activation function to the obtained result.
Afterwards, the script was modified in order to generate and compute results
using a dynamic fixed-point representation of the quantities. The randomly
generated input and the weights are stored in different text files, as well as
the result of the convolution, which later are used as golden data files by
the C model validation testbench.

The testbench is defined on top of the function to be synthesised, namely
the function that contains the neural network algorithm. Hence, the test-
bench contains the main() function definition from where the call is made.

On a second step, once the convolution functionality has been validated,
a layer-by-layer analysis approach has been taken, using the intermediate
feature maps generated by DIGITS as a golden data and compared to the
intermediate feature maps generated by the C algorithm. In that way, the
validation of the neural network is done layer after layer, by checking that
the obtained data matches the golden results. Accordingly, one can check
that the different implemented functionalities work as expected, like the
use of different kernel sizes (1x1 or 3x3) combined with the use of different
stride lengths, the block processing approach used for the convolution, the
fixed-point arithmetic and so on.

Ultimately, in the last step, once the whole neural network proofs to
infer the correct prediction for a given image, another testbench is used
to measure the inference accuracy of the network. For that purpose, a
test dataset of 136 pictures never seen by the neural network during the
training phase, is used (see results in Chapter 5). Thus, one can compare the
inference accuracy rate obtained by the C algorithm with the one obtained
during the training.

4.5.2 Post-Synthesis RTL Verification
Finally, the RTL design obtained after the synthesis needs to be verified.
Typically, one can program the target FPGA device with the generated
RTL netlist and with the help of a digital logic analyser check the target
signals or ports. Alternatively, the Vivado HLS design toolchain offers
a verification solution named C/RTL co-simulation which reuses the pre-
synthesis C testbench (using same input files for image, weights and bias)
but the output is actually generated by the RTL implementation, not the C
algorithm, and compared with the testbench golden output (see results in
Chapter 5).

Design and Implementation of a CNN Hardware Accelerator 63

4.6 HLS Limitations and Issues
This section summarises the most significant problems encountered during
the design phase and the workarounds or solutions proposed to tackle them.

Once the functionality of the C-based algorithm was validated, to boost
the throughput of the convolutional neural network proved to be the more
challenging part of the project. Although the HLS flow dramatically en-
hances the productivity, it takes quite a lot of time to dominate the methodol-
ogy and to write optimised algorithms from a hardware designer perspective.

HLS Limitations

• Unrolling loops with variable bounds. This type of loops cannot
be unrolled, and as a consequence, it prevents pipelining from being
applied. That is the case for the neural network, where each layer
is defined by hyper-parameters with different values. As depicted
in Algorithm 1, one can see that several nested loops listed in the
pseudo-code are bounded by variable quantities, like the number of
layers, or the number of input/output channels. The very inner loop
of this algorithm, the one that iterates through the output channels,
has the potential to be unrolled and produce several output blocks
in parallel. One way to work around the unrolling limitation is to
describe this behaviour explicitly in the code, meaning to say, by
making in the same loop iteration as many function calls as output
blocks in parallel are to be produced. That is done in conjunction
with the memory controller which has to adjust the memory offsets
before calling the due functions so they can properly access the data
to be processed from the large feature map caches.

• Pipelining. The pipeline compiler directive can be applied to both
loops and functions, and greatly improve the throughput. Pipelining a
function though, automatically completely unrolls all the loops in the
body of that function (except those with variable bounds as mentioned
in the previous point) and that also includes the loops contained in
subordinate functions. In that sense, the designer does not have much
control over the final area obtained after synthesis, so performance is
traded-off by an area that is not finely optimised.

• C simulation of large arrays. Another problem encountered when
using very large arrays is that the C simulation may run out memory.
That is the case for the cache that stores the weights. The cause for
this behaviour is that, by default, the array is placed in the smaller
stack memory, instead of the heap memory, which uses local disc space

64 Design and Implementation of a CNN Hardware Accelerator

and can grow dynamically as much as needed. The best solution is to
declare such arrays as static with a negligible impact on the code, in
opposition to the typical use of the malloc() function, which obliges
two have two different versions of the code, one for the simulation and
another one for the synthesis, because malloc() cannot be synthesised
by the HLS tool.

Other Issues

• Demo setup. The original idea has been to provide proof of concept
of a neural network being able to recognise human sign language, by
means of a demo setup which requires the use of a digital camera, a
PC-based system for processing the images and the hardware accel-
erator proposed in this thesis, deployed on a Xilinx FPGA for the
image classification. To make this possible, apart from the hardware
accelerator, it also needs the design of additional modules that bring
up the required functionality, such as streaming of the images from
the camera to the host CPU, pre-processing of the captured images
and implement the communication interface between the FPGA and
the CPU. As mentioned in an earlier section, the FPGA of choice is
the Xilinx Board ADM-PCIE-KU3, from the Kintex UltraScale family,
which mostly benefits from the SDAccel development environment
designed by Xilinx [53]. This FPGA device targets standard 64-bit
x86-based workstations, and is installed via the PCIe connector. Un-
fortunately, the SDAccel environment, although it brings powerful
tools also comes at the expense of a more complex design flow that
requires additional training. Given the project’s time constraints
together with the learning curve required by SDAccel, it has not been
possible to complete a satisfactory working demo setup.

• Test the RTL design in real hardware. Initially, the verification
of the RTL design was meant to be done with the standard HDL
verification tools provided by MATLAB, specifically, the FPGA-in-the-
loop simulation flow [54] that uses the Simulink software environment
to directly stimulate the implemented design on a real FPGA with
input image files an then analyse its response. Moreover, any internal
signals can be monitored by using an integrated logic analyser included
in the Simulink tool menu. Unfortunately, at the moment there is no
available FPGA board support package that includes the definition
files for this specific board, which allows for the verification flow
proposed above. Additionally, power consumption measurements have
not been performed either for the same reasons exposed here.

Chapter 5
Results and Conclusions

This chapter includes the results obtained from the different accuracy
tests and experiments conducted on the hardware accelerator. Accuracy
is assessed with a test dataset, and the obtained data is used to build
a confusion matrix and to calculate the recall and the precision of the
model. Finally, the area and performance results from the different solutions
obtained during the exploration of the design space are presented and
reviewed.

5.1 Accuracy Results

As described in a previous chapter, a training dataset and a validation
dataset were used to train the model (see Section 3.2). Now, once the
RTL design has been obtained and verified, a test dataset is going to be
used to measure the inference accuracy of the implemented solution. This
small set of 136 images contains hand gestures taken against a white wall
background (see Figure B.1 in Appendices) which should make it easier for
the hardware-embedded network to recognise them.

Confusion Matrix

The obtained results have been taken to construct a confusion matrix,
like the one shown in Figure 5.1, which is a table used to describe the
performance of a neural network model on a set of test data for which the
classes or categories are known.

65

66 Results and Conclusions

Figure 5.1: Example of a confusion matrix for a test dataset with
five different classes labelled as 0, 1, 2, 3 and 4 (Source: derived
from Aditya, 2015 [55]).

The terms in the matrix diagonal correspond to true positives, meaning
the number of times an actual class has been correctly inferred by the model,
while the rest of the elements out of the diagonal are the false positives or
the number of times an actual class has been confused by another one.

Table 5.1 is a simplified view of the obtained confusion matrix which
contains two important metrics: the true positive rate (TPR, also termed
as recall or sensitivity) and the model precision. The precision metric is
a different way to look at the results; for instance, in Figure 5.1 it can be
seen that the input class 4 has been correctly predicted all the times (367
times), but it can also be seen that not every time the model predicted the
class 4, the prediction was correct. For example, regarding class 3, it has
been confused by class 4 in 15 occasions, and seemingly class 2 has been
confused by class 4 in 18 occasions. Hence, precision measures how accurate
is the classifier when predicting positive instances.

Looking at the actual data presented in Table 5.1, it can be seen that,
for example, the worst TPR corresponds to class F with a 25% rate, while
the precision for the same class is 100%. In another case, class N presents
very low values for both indexes, of 40% and 50% respectively. In both cases,
the data reveal possible weak points of the neural network performance.

Indeed, the data obtained by the confusion matrix can largely help when
trying to fix these issues. In order to improve the TPR and the precision,
different actions may be required before retraining the model again, such
as increasing the number of images for a specific class or, on the contrary,
drop-out some images that could be problematic for the training. For the
sake of the project, the refinement of the training dataset has not been taken
further, and the focus has been kept in the optimisation of the hardware.

Results and Conclusions 67

Test Accuracy

In overall, the classification test accuracy of the proposed accelerator is
80.1%, which is a little bit below compared with the final 87.1% validation
accuracy obtained after fine-tuning the model with Ristretto (see Table 3.5).
The difference must be accounted to the fact that the validation dataset
and the test dataset are not equal, but nonetheless, a test accuracy about
80% should be considered rather satisfactory.

TPR
Class #positives (recall) Precision

A 6 100.0% 54.5%
B 6 85.7% 100.0%
C 2 50.0% 100.0%
D 5 100.0% 71.4%
E 3 60.0% 50.0%
F 1 25.0% 100.0%
G 2 40.0% 100.0%
H 4 80.0% 100.0%
I 4 80.0% 80.0%
J 5 100.0% 100.0%
K 5 100.0% 83.3%
L 6 85.7% 85.7%
M 4 80.0% 100.0%
N 2 40.0% 50.0%
O 5 83.3% 83.3%
P 5 83.3% 71.4%
Q 3 75.0% 75.0%
R 3 75.0% 100.0%
S 6 100.0% 85.7%
T 5 100.0% 100.0%
U 6 100.0% 75.0%
V 4 80.0% 100.0%
W 5 100.0% 83.3%
X 3 60.0% 50.0%
Y 4 60.0% 100.0%
Z 5 83.3% 83.3%

Test dataset size: 136 images
Total number of positives: 109
Overall test accuracy: 80.1%

Table 5.1: Rate of true positives (recall) and precision of the model
for each one of the classes, obtained from the simulation of the
RTL description model.

It is worth to mention that the obtained test accuracy is not a hardware-

68 Results and Conclusions

dependant quantity, considering that the algorithm has been described
properly. It depends on the training methodology and how good the attained
weights are. Once the weights are hard-coded in the FPGA hardware, the
accuracy of the accelerator must be the same whatever the chosen design to
implement the algorithm is.

Accuracy Comparison with Previous Works

Table 5.2 shows a comparison of previous works that used a very similar
training methodology like the one described in this report. The list of works
showed in the table are not hardware implementations of a CNN though,
but actually, what it is worth to compare is the results obtained from the
training phase. The transfer learning method has been adopted in all the
cases except in one, where the neural network was trained from scratch with
randomly initialised weights, and the number of categories to classify by
the models is similar in all cases.

Hand alphabet Transfer Validation
Proposed method (#categories) ConvNet Learning Accuracy

Garcia-Biesca [56] American (24)1 GoogleNet Yes 72.0%
Bheda-Radpour [57] American (24 + 10)2 custom No 82.5%
Kang et al. [58] American (24 + 7)3 CaffeNet Yes 85.5%
This work Swedish (26) ZynqNet Yes 87.1%

Table 5.2: Accuracy comparison of previous works with the model
proposed in this thesis work.

5.2 Resource Utilisation and Performance
Design space exploration has been performed in various ways to find an
optimal hardware with the desired functionality. The different solutions
obtained have been split into two groups, labelled below as experiment 1
and experiment 2.

The reason for having these two separate sets of results is because a
different approach has been taken for each one when describing the algorithm
in C. The coding approach in experiment 1 has been to avoid conditional

1American sign language includes two non-static gestures that have been removed
from the dataset, which are J and Z. Therefore, the size of the set gets reduced to 24.

2Signs for representing the digits from 0 to 9 have been included in the dataset.
3Signs for representing the digits 1, 3, 4, 5, 7, 8, and 9 have been included in the

dataset.

Results and Conclusions 69

branching as much as possible, thus separating different functionalities
into different functions or methods. For instance, there is a function used
for the 3x3 convolutions and another one for the 1x1 convolutions. Both
functions have large portions of code in common, so more area is required
to implement them.

On the other hand, the coding approach in experiment 2 completely
embraces conditional branching, unifying similar methods in one function
body and using if-else statements when required, thus obtaining a more
compact code. The purpose for having these two approaches is to test which
one results in a better task schedule, and therefore, a better performance of
the RTL design synthesised by the HLS compiler.

The other two variables used during the design exploration are the clock
period and the number of convolution cores in parallel. As shown in Tables
5.3 and 5.4, for different combinations of these two variables one can obtain
hardware solutions with different performance and area requirements. The
resource utilisation is expressed in the tables as a percentage of the total
available, and the performance is given in terms of latency and throughput,
expressed in milliseconds and frames per seconds respectively, where the
latter refers to the number of images that can be classified per second by
the hardware accelerator.

Regarding the convolution core (see the module in Figure 4.2), the
potential for parallelisation of this module relies on the fact that the output
channels can be computed concurrently, block by block. The maximum
number of output channels that can be processed in parallel can be deter-
mined with the help of Table 4.2, which describes the ZynqNet architecture,
layer by layer. The minimum number of output channels is 16, as defined for
layers fire2\squeeze3x3 and fire4\squeeze3x3. The number of output
channels for the rest of layers is a multiple of 16. Hence, it turns out that
16 is the maximum number of output channels that can be processed in
parallel, using one convolution core per channel.

Experiment 1

In experiment 1, two separate functions for 3x3 and 1x1 convolutions have
been implemented, and the maximum number of convolution cores that
could be synthesised is 4 per function (8 in total). When trying to implement
8 cores, the proposed solution run out of resources.

Table 5.3 shows the data obtained from the different solutions im-
plemented during the experiment. The amount on block RAM remains
immutable because it is used for the storage of the weights, bias, input
images and intermediate activations, which have precisely defined sizes. The
number of convolutions cores has a clear impact in the utilisation of the

70 Results and Conclusions

other FPGA resources, specially DSP48 multipliers and LUTs. The more
cores, the more consumed area, but also the system throughput improves.
Seemingly, by increasing the system clock frequency, the performance also
increases significantly, although at the cost of a slight increase in area.

#cores TCK BRAM DSP48 FF LUT Latency Throughput
(x2) [ns] % % % % [ms] [FPS]

1 10 69 23 6 47 302.8 3.3
1 7.5 69 23 8 48 271.8 3.7
1 4 69 23 15 48 188.4 5.3
2 10 69 47 8 59 266.0 3.8
2 7.5 69 47 11 59 240.9 4.2
2 4 69 48 20 59 169.7 5.9
4 10 69 71 10 71 247.8 4.0
4 7.5 69 71 14 71 247.8 4.4
4 4 69 72 28 72 159.0 6.3

Table 5.3: Experiment 1. Post-synthesis resource utilisation and
latencies as a function of the clock frequency and the number of
convolution cores in parallel (FPGA device: Xilinx XCKU060).

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

75 100 125 150 175 200 225 250 275

Th
ro

u
gh

p
u

t
(F

P
S)

Clock Frequency (MHz)

Experiment 1

4 cores

2 cores

1 core

Figure 5.2: Representation of throughput versus number of cores and
FPGA clock frequency. The width of the spheres is proportional
to the total resource utilisation of the FPGA.

Results and Conclusions 71

The task scheduler elaborated by the HLS compiler clearly shows the
convolution operations running in parallel. However, the bottleneck in the
performance is mostly due to the fact that the output blocks processed by
the convolution units cannot be stored concurrently, as they share the same
block RAM partitions, so this step is done sequentially.

Nonetheless, a rather acceptable classification rate of 6.3 images is
achieved at 250 MHz and with 8 convolution cores. On the other end of the
spectrum, there is a much smaller and slower solution, but with a factor 6
less power consumption, with 3.3 FPS at 100 MHz and with only 2 cores.

Figure 5.2 illustrates in a more visual view the data displayed in Table
5.3. The width of the spheres is proportional to the area consumed by the
proposed solution, which depends on the number of cores and the system
clock frequency.

Experiment 2

The results obtained for experiment 2 are illustrated in Table 5.4 and Figure
5.3 respectively, in a similar way as it was done for experiment 1. In this
experiment, the methods for 3x3 and 1x1 convolutions have been unified in
a single function, and conditional branching is used instead.

#cores TCK BRAM DSP48 FF LUT Latency Throughput
- [ns] % % % % [ms] [FPS]

1 10 69 23 4 30 287.7 3.5
1 7.5 69 23 6 28 272.5 3.7
1 4 69 23 9 26 217.0 4.6
2 10 69 24 5 32 250.0 4.0
2 7.5 69 24 6 30 235.1 4.3
2 4 69 24 10 28 182.0 5.5
4 10 69 24 5 32 231.5 4.3
4 7.5 69 24 6 30 216.2 4.6
4 4 69 24 10 28 164.4 6.1
8 10 69 25 5 34 222.0 4.5
8 7.5 69 25 6 32 206.7 4.8
8 4 69 25 11 30 155.5 6.4

Table 5.4: Experiment 2. Post-synthesis resource utilisation and
latencies as a function of the clock frequency and the number of
convolution cores in parallel (FPGA device: Xilinx XCKU060).

For experiment 2, the number of convolution cores in parallel could be
increased up to 8. Further increasing up to reach the limit of 16 have not

72 Results and Conclusions

been possible because the C/RTL co-simulation failed every time (the reason
for that behaviour is not clear yet). It can be seen that the area is barely
increased by a rise in the number of cores. A more thorough inspection
of the scheduled tasks showed that only one convolution process runs at
a time, no more function instances are found running concurrently. The
scheduler does not start the processing of another output channel until the
current computed output block is stored in the BRAM memory. Hence, the
HLS compiler only generates one single instance for the convolution process.
Surprisingly, the obtained performance is almost similar to the one achieved
in experiment 1 for the solution with the fastest throughput, but the resource
utilisation is decreased by almost a factor 3. This is a clear indication again
that performance could be further improved if additional partitions were
done to the BRAM blocks that store the layer output activations because
this would allow the concurrent storing of the processed blocks.

It is also observed that all the solutions obtained with different com-
binations of number of cores and clock frequency utilise almost the same
area; the increase of either number of convolution cores or clock frequency
always results in a significant increase of performance with minimal effect
in the resource consumption.

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

75 100 125 150 175 200 225 250 275

Th
ro

u
gh

p
u

t
(F

P
S)

Clock Frequency (MHz)

Experiment 2
8 cores

4 cores

2 cores

1 core

Figure 5.3: Representation of throughput versus number of cores and
FPGA clock frequency. The width of the spheres is proportional
to the total resource utilisation of the FPGA.

Results and Conclusions 73

Comparison of Resource Utilisation and Performance

A comparison of resource utilisation and performance is made against
the original ZynqNet from Gschwend [25], derived from SqueezeNet, and
SqueezeJet, proposed by Mousouliotis and Petrou [59], which is a small
FPGA convolutional layer accelerator for SqueezeNet with the aim to enable
the development of mobile computer vision applications as described by the
authors.

The comparison is just illustrative to evaluate the effect of adopting
techniques such as transfer learning and network quantisation used in this
work. It is also worth not to forget that the performance results obtained
by ZynqNet and SqueezeJet are obtained from the 1000-class ImageNet
challenge, so the classifier layer has a larger latency compared to the 32-class
classifier used for the sign recognition task.

Gschwend, Mousouliotis & Petrou,
2016 [25] 2018 [59] This work

Topology ZynqNet SqueezeJet SqueezeJet ZynqNet
Derived from SqueezeNet4 SqueezeNet SqueezeNet SqueezeNet4
Dataset ImageNet ImageNet ImageNet Hand alphabet
Platform xc7z045 [60] i3-71005 [61] xc7z020 [60] xcku060 [49]
Company Xilinx Intel Xilinx Xilinx
Technology [nm] 28 14 28 20
Representation Floating-point Floating-point Fixed-point Fixed-point
Bit-width 32 32 8-166 8
Frequency [MHz] 100 2,400 100 100
Use off-chip RAM Yes Yes Yes No
BRAM [18Kb] 996 - 270 1492
DSP48 739 - 186 700
FF 137K - 31K 35K
LUT 154K - 21K 113K
Latency [ms] 1955 169.2 333.1 222.0
FPS 0.51 5.9 3.0 4.5

Table 5.5: Resource comparison between the original floating-point
ZynqNet and the quantised version used in this thesis for sign
language recognition.

As shown in Table 5.5, the amount of BRAM blocks used by the ac-
celerator proposed in this thesis work is still a 50% larger compared to

4The used topology is derived from SqueezeNet.
5The authors of SqueezeJet have also implemented the network in a Intel CPU for

comparison purposes.
68-bits is used to represent weights and bias, and 16-bits is used for the activations.

74 Results and Conclusions

the original ZynqNet. However, as stated in the project goals, this design
completely avoids to access external memory and keeps everything in the
on-chip memory of the FPGA, that is weights, bias, the input image and
the intermediate layer output activations (the input image gets overwritten
later by the subsequently computed layer activations). ZynqNet suffers from
the fact of adopting the floating-point representation; otherwise, the BRAM
utilisation would be similar to that of SqueezeJet.

The number of DSP48 multipliers used in this design is similar to
ZynqNet, whereas SqueezeJet uses about one-fourth of them. Again,
ZynqNet would likely reduce the number of DSPs drastically if quantised.
In comparison to SqueezeJet, the design proposed in this work makes more
extensive use of the multipliers due to the block processing approach. How-
ever, this allows a 10x10 image tile to be convolved in only two clock cycles,
reducing the inference latency and boosting the number of frames per second
(up to 6.4 FPS at 250 MHz).

5.3 Conclusions
In light of the results exposed in the previous section, the following conclu-
sions can be drawn. Firstly, it is demonstrated that the transfer learning
methodology is an effective technique to be used as the starting point for
the training of a neural network model on a new task, whenever it is not
possible to build a more extensive training dataset due to lack of resources.
Additionally, data augmentation is always a good asset to be used for the
sake of improving the size and quality of the dataset. In the same direction,
the results also showed that accuracy was further improved as more images
obtained from more volunteers were included to the training dataset.

After obtaining a satisfactory trained model, further optimisation has
been achieved by applying quantisation. This network compression tech-
nique has allowed obtaining a compressed version of the model that uses
8-bit dynamic fixed-point representation, which granted a posterior imple-
mentation of a hardware accelerator that does not require any access to
external memory to fetch data, thus improving the accelerator performance.

Regarding the hardware generation methods used for this thesis work,
the results confirm the benefits of using the HLS methodology for the design
of deep neural networks in general. However, it requires a long learning
curve, and the obtained RTL may not be as perfectly optimised as desired,
but the benefit in using HLS comes from the notable gain in productivity,
which in turn, translates into a more efficient exploration of different design
alternatives.

Of course, the coding style has a significant impact on the obtained hard-

Results and Conclusions 75

ware solutions, as it has been demonstrated in the performed experiments.
For instance, conditional branching has proven to be the right coding style
to embrace, as it allows to obtain designs with the same performance but
using much fewer resources.

Finally, regarding the accelerator performance, the results in Table
5.3 and Table 5.4 show that the block processing strategy is efficient and
furthermore, by processing the output channels concurrently with imple-
menting various convolution cores in parallel, the throughput can be further
improved. However, as expected, the bottleneck is produced when trying to
store those parallel-processed 8x8 blocks for the different output channels
as it cannot be done concurrently. Therefore, additional partitioning of the
output feature cache is needed. By applying this action, it is expected that
the performance gets improved even more.

5.4 Future Work
As mentioned above, the output cache that stores the layer activations
should be further partitioned for greater performance to be achieved. For
instance, for eight convolution cores to run in parallel, the output cache
should be split accordingly into eight new partitions. Table 4.3 describes the
activation caches, which are defined as 2-dimensional matrices of 131,072 x
8 elements and, as already described in Section 4.3.2, the second dimension
of these caches has been completely partitioned into 8 banks of 131,072 x 1
elements each to improve performance. Now, the extra boost in performance
requires also the partition of the first dimension, which would allow storing
multiple 8x8 blocks in parallel, as many as new partitions. Accordingly, the
memory controller needs to be carefully modified to manage the new cache
organisation.

Besides, further network compression to spare FPGA resource utilisation
can be still done, from the hand of weight pruning. Pruning removes the
weights which do not have a significant impact in any of the network output
classes, and this is done by approximating the small weight values with
zeros, with virtually no accuracy degradation. Different frameworks exist
nowadays that can analyse the model and perform the pruning automatically
using different methods [62], [63].

Finally, to set a demonstrator that can show the performance of a neural
network in real-time can probably be a good starting point for another
thesis work, where the recognition task can be similar to the one described
in this report. Alternatively, the task of recognising static hand signs can
be extended to the dynamic domain with the use of 3D-CNNs [64] which
can detect actions or movements from a video stream, though they might

76 Results and Conclusions

require more computational power. A 3D-CNN would solve the problem
for detecting, for instance, the non-static signs used for fingerspelling the
characteristic vowels ä, å and ö in the Swedish hand-alphabet, or could
even be used for more complex tasks as large-scale video classification.
There exist several off-the-shelf CMOS camera modules for streaming video
to the FPGA [65], [66]. It would also require the implementation of a
soft microprocessor core such as MicroBlaze, a 32-bit RISC microprocessor
designed for Xilinx FPGAs, which would perform the preprocessing of
the video images (like object location) before feeding the images to the
neural network for inference. As shown in the results, with the resource
utilisation required for the implementation of ZynqNet in a Kintex UltraScale
XCKU060, there is room enough for the implementation of a MicroBlaze
and additional logic modules. Regarding the FPGA device used for this
project and other similar versions which provide connectivity through the
PCI Express bus standard (PCIe), it would be highly recommendable to
adopt the SDAccel development environment provided by Xilinx [53].

References

[1] A.P. Dhawan, Y. Chitre, and C. Kaiser-Bonasso. ”Analysis of mammo-
graphic micro-calcifications using Gray-level image structure features”.
In: IEEE Transactions on Medical Imaging. June 1996.

[2] Björn Malmgren and Ulf Nordlund. ”Application of artificial neural
networks to palaeoceanographic data”. In: Palaeogeography, Palaeocli-
matology, Palaeoecology 136.Issues 1-4 (Dec. 1997), pp. 359–373.

[3] Charles E. Cox and Ekkehard Blanz. ”GANGLION – A fast hardware
implementation of a connectionist classifier”. In: Proceedings of the
IEEE on Custom Integrated Circuits Conference. May 1991.

[4] Yann LeCun, Yoshua Bengio, and Leon Bottou. ”Gradient-based
learning applied to document recognition”. In: Proceedings of the
IEEE. Vol. 86. Issue 11. Nov. 1998.

[5] Kunihiko Fukushima. ”Neocognitron: A self-organizing neural network
model for a mechanism of pattern recognition unaffected by shift in
position”. In: Biological Cybernetics 36 (1980), pp. 193–202.

[6] Dan Claudiu Ciresan et al. ”Deep Big Simple Neural Nets Excel on
Handwritten Digit Recognition”. In: Computing Research Repository
abs/1003.0358 (2010).

[7] Dominik Scherer, Hannes Schulz, and Sven Behnke. ”Accelerating
Large-scale Convolutional Neural Networks with Parallel Graphics
Multiprocessors”. In: Proceedings of the 20th International Conference
on Artificial Neural Networks: Part III. ICANN’10. Springer-Verlag,
2010, pp. 82–91.

[8] Yuchi Tian et al. ”DeepTest: Automated Testing of Deep-neural-
network-driven Autonomous Cars”. In: Proceedings of the 40th Inter-
national Conference on Software Engineering. ICSE ’18. 2018, pp. 303–
314.

77

78 REFERENCES

[9] David Silver et al. ”Mastering Chess and Shogi by Self-Play with a
General Reinforcement Learning Algorithm”. In: Computing Research
Repository abs/1712.01815 (2017).

[10] Yonghui Wu, Mike Schuster, and Zhifeng Chen et al. ”Google’s
Neural Machine Translation System: Bridging the Gap between Hu-
man and Machine Translation”. In: Computing Research Repository
abs/1609.08144 (2016).

[11] Veera Ala-Keturi. ”Speech Recognition Based on Artificial Neural
Networks”. In: Helsinki University of Technology (2004).

[12] Naveen Rao. Intel Nervana Neural Network Processors (NNP) Redefine
AI Silicon. Oct. 2017. url: https://ai.intel.com/intel-nervana-neural-
network-processors-nnp-redefine-ai-silicon (visited on 06/01/2019).

[13] Norman P. Jouppi et al. ”In-Datacenter Performance Analysis of a
Tensor Processing Unit”. In: ACM/IEEE 44th Annual International
Symposium on Computer Architecture (ISCA). Toronto, 2017, pp. 1–
12.

[14] Kaiyuan Guo et al. ”A Survey of FPGA Based Neural Network Accel-
erator”. In: Computing Research Repository abs/1712.08934 (2017).

[15] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. ”Bina-
ryConnect: Training Deep Neural Networks with binary weights during
propagations”. In: Computing Research Repository abs/1511.00363
(2015).

[16] Jost Tobias Springenberg et al. ”Striving for Simplicity: The All
Convolutional Net”. In: Computing Research Repository abs/1412.6806
(2014).

[17] H. T. Kung, Bradley McDanel, and Sai Qian Zhang. ”Adaptive Tiling:
Applying Fixed-size Systolic Arrays To Sparse Convolutional Neural
Networks”. In: ICPR. IEEE Computer Society, 2018, pp. 1006–1011.

[18] Dejan Tanikić and Vladimir Despotović. ”Metallurgy – Advances in
Materials and Processes”. In: 2012. Chap. 7 - Artificial Intelligence
Techniques for Modelling of Temperature in the Metal Cutting Process.
url: http://dx.doi.org/10.5772/47850.

[19] Vojtech Pavlovsky. Introduction To Artificial Neural Networks. 2017.
url: https://medium.com/@temi.ayo.babs/multi-layer-perceptron-
for-beginners-6aee246c6a03 (visited on 06/01/2019).

[20] Intel Lab’s River Trail Project. Bringing Parallelism to the Web with
River Trail. url: http://intellabs .github. io/RiverTrail/tutorial/
(visited on 06/01/2019).

https://ai.intel.com/intel-nervana-neural-network-processors-nnp-redefine-ai-silicon
https://ai.intel.com/intel-nervana-neural-network-processors-nnp-redefine-ai-silicon
http://dx.doi.org/10.5772/47850
https://medium.com/@temi.ayo.babs/multi-layer-perceptron-for-beginners-6aee246c6a03
https://medium.com/@temi.ayo.babs/multi-layer-perceptron-for-beginners-6aee246c6a03
http://intellabs.github.io/RiverTrail/tutorial/

REFERENCES 79

[21] Chen Kong and Simon Lucey. ”Take it in your stride: Do we need
striding in CNNs?” In: Computing Research Repository abs/1712.02502
(2017).

[22] Arden Dertat. Applied Deep Learning - Part 4: Convolutional Neural
Networks. 2017. url: https://towardsdatascience.com/applied-deep-
learning-part-4-convolutional-neural-networks-584bc134c1e2 (visited
on 06/01/2019).

[23] Matthieu Cord. Global Average Pooling in Deep ConvNets. 2017. url:
http://webia.lip6.fr/~cord/pdfs/news/2017CordPoolingDeepNets.
pdf (visited on 06/01/2019).

[24] Andrej Karpathy. Stanford University Course CS231n: Convolutional
Neural Networks for Visual Recognition. url: http://cs231n.github.
io/convolutional-networks/#pool (visited on 06/01/2019).

[25] David Gschwend. ”ZynqNet: An FPGA-Accelerated Embedded Con-
volutional Neural Network”. MA thesis. ETH Zürich, 2016.

[26] Forrest N Iandola et al. ”SqueezeNet: AlexNet-level accuracy with
50x fewer parameters and <0.5 MB model size”. In: arXiv preprint
arXiv:1602.07360 (2016).

[27] Gabriel Goh. Why Momentum Really Works. 2017. url: http://distill.
pub/2017/momentum (visited on 06/01/2019).

[28] Yann LeCun et al. ”The Loss Surface of Multilayer Networks”. In:
Computing Research Repository abs/1412.0233 (2014).

[29] Jason D. Lee et al. ”Gradient Descent Converges to Minimizers”. In:
29th Annual Conference on Learning Theory. Vol. 49. Proceedings of
Machine Learning Research. PMLR, June 2016, pp. 1246–1257.

[30] George Cybenko. ”Approximation by superpositions of a sigmoidal
function”. In: Mathematics of Control, Signals and Systems 2.4 (Dec.
1989), pp. 303–314.

[31] Michael A. Nielsen. ”Neural Networks and Deep Learning”. In: Deter-
mination Press, 2015. Chap. 4 - A visual proof that neural nets can
compute any function. url: http://neuralnetworksanddeeplearning.
com/chap4.html (visited on 06/01/2019).

[32] David Gschwend. Netscope CNN Analyzer. 2016. url: https : / /
dgschwend.github.io/netscope/quickstart.html (visited on 06/01/2019).

[33] NVIDIA Corporation. DIGITS: Interactive Deep Learning GPU Train-
ing System. url: https://docs.nvidia.com/deeplearning/digits/digits-
user-guide/index.html (visited on 06/01/2019).

https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-584bc134c1e2
https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-584bc134c1e2
http://webia.lip6.fr/~cord/pdfs/news/2017CordPoolingDeepNets.pdf
http://webia.lip6.fr/~cord/pdfs/news/2017CordPoolingDeepNets.pdf
http://cs231n.github.io/convolutional-networks/#pool
http://cs231n.github.io/convolutional-networks/#pool
http://distill.pub/2017/momentum
http://distill.pub/2017/momentum
http://neuralnetworksanddeeplearning.com/chap4.html
http://neuralnetworksanddeeplearning.com/chap4.html
https://dgschwend.github.io/netscope/quickstart.html
https://dgschwend.github.io/netscope/quickstart.html
https://docs.nvidia.com/deeplearning/digits/digits-user-guide/index.html
https://docs.nvidia.com/deeplearning/digits/digits-user-guide/index.html

80 REFERENCES

[34] Yangqing Jia. CAFFE - Convolutional Architecture for Fast Fea-
ture Embedding. url: https://github.com/BVLC/caffe (visited on
06/01/2019).

[35] Ronan Collobert, Koray Kavukcuoglu, and Clement Farabet. Torch -
A Scientific Computing Framework for LuaJIT. url: http://torch.ch
(visited on 06/01/2019).

[36] Google Brain Team. TensorFlow - An open source machine learning
framework for everyone. url: https://www.tensorflow.org (visited on
06/01/2019).

[37] Johanna Ene. Johanna Ene’s Blog - Det Hemliga Språket (The Secret
Language). 2015. url: http://www.tandskoterskan.net/det-hemliga-
spraket/ (visited on 06/01/2019).

[38] image-net.org. ImageNET Challenge. url: http://image-net.org/
challenges/LSVRC/ (visited on 06/01/2019).

[39] David Gschwend. ZynqNet Trained Model. 2016. url: https://github.
com/dgschwend/zynqnet/tree/master/_TRAINED_MODEL (visited
on 06/01/2019).

[40] Raghuraman Krishnamoorthi. ”Quantizing deep convolutional net-
works for efficient inference: A whitepaper”. In: Computing Research
Repository abs/1806.08342 (2018).

[41] Pavlo Molchanov et al. ”Pruning Convolutional Neural Networks
for Resource Efficient Transfer Learning”. In: Computing Research
Repository abs/1611.06440 (2016).

[42] Guoliang Kang, Jun Li, and Dacheng Tao. ”Shakeout: A New Regular-
ized Deep Neural Network Training Scheme”. In: AAAI - Association
for the Advancement of Artificial Intelligence. 2016.

[43] Geoffrey Hinton, Oriol Vinyals, and Jeffrey Dean. ”Distilling the
Knowledge in a Neural Network”. In: NIPS Deep Learning and Repre-
sentation Learning Workshop. 2015. url: http://arxiv.org/abs/1503.
02531.

[44] Frederick Tung and Greg Mori. ”CLIP-Q: Deep Network Compression
Learning by In-Parallel Pruning-Quantization”. In: 2018 IEEE Con-
ference on Computer Vision and Pattern Recognition, CVPR 2018,
Salt Lake City, UT, USA, June 18-22, 2018. 2018, pp. 7873–7882.

[45] William Dally. High-Performance Hardware for Machine Learning
[Tutorial, Neural Information Processing Systems (NIPS)]. 2015. url:
https://media.nips.cc/Conferences/2015/tutorialslides/Dally-NIPS-
Tutorial-2015.pdf (visited on 06/01/2019).

https://github.com/BVLC/caffe
http://torch.ch
https://www.tensorflow.org
http://www.tandskoterskan.net/det-hemliga-spraket/
http://www.tandskoterskan.net/det-hemliga-spraket/
http://image-net.org/challenges/LSVRC/
http://image-net.org/challenges/LSVRC/
https://github.com/dgschwend/zynqnet/tree/master/_TRAINED_MODEL
https://github.com/dgschwend/zynqnet/tree/master/_TRAINED_MODEL
http://arxiv.org/abs/1503.02531
http://arxiv.org/abs/1503.02531
https://media.nips.cc/Conferences/2015/tutorialslides/Dally-NIPS-Tutorial-2015.pdf
https://media.nips.cc/Conferences/2015/tutorialslides/Dally-NIPS-Tutorial-2015.pdf

REFERENCES 81

[46] Philipp Gysel. ”Ristretto: Hardware-Oriented Approximation of Con-
volutional Neural Networks”. In: Computing Research Repository
abs/1605.06402 (2016). url: http://arxiv.org/abs/1605.06402.

[47] Philipp Gysel. Ristretto: Approximation Schemes. 2018. url: http:
//lepsucd.com/?page_id=639 (visited on 06/01/2019).

[48] Alpha Data Parallel Systems Ltd. ADM-PCIE-KU3 User Manual.
June 2017. url: https ://www.alpha- data.com/pdfs/adm-pcie-
ku3%20user%20manual.pdf (visited on 06/01/2019).

[49] Xilinx Inc. UltraScale Architecture and Product Data Sheet: Overview.
2018. url: https://www.xilinx.com/support/documentation/data_
sheets/ds890-ultrascale-overview.pdf (visited on 06/01/2019).

[50] Vincent Dumoulin and Francesco Visin. A guide to convolution arith-
metic for deep learning. 2016. url: https://github.com/vdumoulin/
conv_arithmetic/blob/master/gif/same_padding_no_strides.gif
(visited on 06/01/2019).

[51] Xilinx Inc. Vivado Design Suite - HLx Editions. url: https : / /
www.xilinx .com/products/design- tools/vivado.html (visited on
06/01/2019).

[52] Xilinx Inc. Introduction to High-Level Synthesis with Vivado HLS
(2013.3 Version). 2013. url: http://users.ece.utexas.edu/~gerstl/
ee382v_f14/soc/vivado_hls/VivadoHLS_Overview.pdf (visited on
06/01/2019).

[53] Xilinx Inc. SDAccel Environment User Guide. url: https://www.xilinx.
com/support/documentation/sw_manuals/xilinx2018_3/ug1023-
sdaccel-user-guide.pdf (visited on 06/01/2019).

[54] MathWorks Inc. FPGA-in-the-Loop Simulation. url: https : / / se .
mathworks.com/help/supportpkg/xilinxfpgaboards/fpga- in- the-
loop-simulation.html (visited on 06/01/2019).

[55] Aditya. How to interpret scikit’s learn confusion matrix and classi-
fication report? 2015. url: https://stackoverflow.com/questions/
30746460/how- to - interpret - scikits - learn- confusion-matrix - and-
classification-report/30748053#30748053 (visited on 06/01/2019).

[56] Brandon Garcia and Sigberto Alarcon Viesca. ”Real-time american
sign language recognition with convolutional neural networks”. In:
Proceedings of Machine Learning Research. 2016, pp. 225–232.

[57] Vivek Bheda and Dianna Radpour. ”Using Deep Convolutional Net-
works for Gesture Recognition in American Sign Language”. In: Com-
puting Research Repository abs/1710.06836 (2017).

http://arxiv.org/abs/1605.06402
http://lepsucd.com/?page_id=639
http://lepsucd.com/?page_id=639
https://www.alpha-data.com/pdfs/adm-pcie-ku3%20user%20manual.pdf
https://www.alpha-data.com/pdfs/adm-pcie-ku3%20user%20manual.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds890-ultrascale-overview.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds890-ultrascale-overview.pdf
https://github.com/vdumoulin/conv_arithmetic/blob/master/gif/same_padding_no_strides.gif
https://github.com/vdumoulin/conv_arithmetic/blob/master/gif/same_padding_no_strides.gif
https://www.xilinx.com/products/design-tools/vivado.html
https://www.xilinx.com/products/design-tools/vivado.html
http://users.ece.utexas.edu/~gerstl/ee382v_f14/soc/vivado_hls/VivadoHLS_Overview.pdf
http://users.ece.utexas.edu/~gerstl/ee382v_f14/soc/vivado_hls/VivadoHLS_Overview.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_3/ug1023-sdaccel-user-guide.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_3/ug1023-sdaccel-user-guide.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_3/ug1023-sdaccel-user-guide.pdf
https://se.mathworks.com/help/supportpkg/xilinxfpgaboards/fpga-in-the-loop-simulation.html
https://se.mathworks.com/help/supportpkg/xilinxfpgaboards/fpga-in-the-loop-simulation.html
https://se.mathworks.com/help/supportpkg/xilinxfpgaboards/fpga-in-the-loop-simulation.html
https://stackoverflow.com/questions/30746460/how-to-interpret-scikits-learn-confusion-matrix-and-classification-report/30748053#30748053
https://stackoverflow.com/questions/30746460/how-to-interpret-scikits-learn-confusion-matrix-and-classification-report/30748053#30748053
https://stackoverflow.com/questions/30746460/how-to-interpret-scikits-learn-confusion-matrix-and-classification-report/30748053#30748053

82 REFERENCES

[58] Byeongkeun Kang, Subarna Tripathi, and Truong Q. Nguyen. ”Real-
time sign language fingerspelling recognition using convolutional neural
networks from depth map”. In: 2015 3rd IAPR Asian Conference on
Pattern Recognition (ACPR) (2015), pp. 136–140.

[59] Panagiotis G. Mousouliotis and Loukas P. Petrou. ”SqueezeJet: High-
level Synthesis Accelerator Design for Deep Convolutional Neural
Networks”. In: Computing Research Repository abs/1805.08695 (2018).

[60] Xilinx Inc. Zynq-7000 SoC Data Sheet: Overview. 2018. url: https:
//www.xilinx.com/support/documentation/data_sheets/ds190-
Zynq-7000-Overview.pdf (visited on 06/01/2019).

[61] Intel Corporation. Product Brief: Intel NUC Kits NUC7i3BNK and
NUC7i3BNH. 2016. url: https ://www.intel .com/content/dam/
www/public/us/en/documents/product-briefs/nuc-kit-nuc7i3bnh-
nuc7i3bnk-brief.pdf (visited on 06/01/2019).

[62] Carl Lemaire, Andrew Achkar, and Pierre-Marc Jodoin. ”Structured
Pruning of Neural Networks with Budget-Aware Regularization”. In:
Computing Research Repository abs/1811.09332 (2018).

[63] Tianyun Zhang et al. ”A Systematic DNN Weight Pruning Framework
using Alternating Direction Method of Multipliers”. In: Computing
Research Repository abs/1804.03294 (2018).

[64] Shuiwang Ji et al. ”3D Convolutional Neural Networks for Human
Action Recognition”. In: IEEE Transactions on Pattern Analysis and
Machine Intelligence 35 (2010), pp. 221–231.

[65] ArduCAM. OV7670 Camera Module. url: http://www.arducam.
com/products/camera-breakout-board/0-3mp-ov7670/ (visited on
06/01/2019).

[66] ON Semiconductor. MT9M114 Evaluation Board - User’s manual.
url: https://www.onsemi.com/pub/Collateral/EVBUM2524-D.PDF
(visited on 06/01/2019).

https://www.xilinx.com/support/documentation/data_sheets/ds190-Zynq-7000-Overview.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds190-Zynq-7000-Overview.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds190-Zynq-7000-Overview.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/nuc-kit-nuc7i3bnh-nuc7i3bnk-brief.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/nuc-kit-nuc7i3bnh-nuc7i3bnk-brief.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/nuc-kit-nuc7i3bnh-nuc7i3bnk-brief.pdf
http://www.arducam.com/products/camera-breakout-board/0-3mp-ov7670/
http://www.arducam.com/products/camera-breakout-board/0-3mp-ov7670/
https://www.onsemi.com/pub/Collateral/EVBUM2524-D.PDF

List of Acronyms

AI Artificial Intelligence. v

ANN Artificial Neural Network. 1

CNN Convolutional Neural Network. 2, 13

FPS frames per second. 41

GPU Graphics Processing Unit. 2, 3

HLS High-Level Synthesis. iii

NNP Neural Network Processor. 3

ReLU Rectified Linear Unit. 8, 9, 12

RTL Register-Transfer Level. iii, iv, 41

SGD Stochastic Gradient Descent. 16, 17

TPU Tensor Processing Unit. 3

83

Appendix A
ZynqNet

Figure A.1: ZynqNet architecture (Source: Netscope CNN Analyzer [32]).

85

Appendix B
Test Dataset

B2 B3 B5 B7B6 B8B1

C1 C2 C3 C5

D1 D2 D3 D4 D5

A1 A2 A3 A5 A6 A7

E2 E3 E5 E6 E7

F2 F3 F4 F5

E3

G2 G3 G5 G6 G7

H1 H2 H3 H5 H6

I1 I2 I3 I6 I7

J1 J2 J3 J5 J6

Figure B.1: Images from the test dataset (categories from A to J).

86

Implementation of an 8-bit
Dynamic Fixed-Point
Convolutional Neural Network
for Human Sign Language Recognition
on a Xilinx FPGA Board

RICARDO NÚÑEZ PRIETO
MASTER´S THESIS
DEPARTMENT OF ELECTRICAL AND INFORMATION TECHNOLOGY
FACULTY OF ENGINEERING | LTH | LUND UNIVERSITY

Printed by Tryckeriet i E-huset, Lund 2019

R
IC

A
R

D
O

 N
Ú

Ñ
EZ PR

IETO
Im

plem
entation of an 8-bit D

ynam
ic Fixed-Point C

onvolutional N
eural N

etw
ork for H

um
an Sign Language R

ecognition on a X
ilinx FP

G
A

 B
oard

LU
N

D
 2019

Series of Master’s theses
Department of Electrical and Information Technology

LU/LTH-EIT 2019-688
http://www.eit.lth.se

	Ricardo Núñez Prieto LTH_Master_Thesis.pdf
	Abstract
	Popular Science Summary
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Background and Motivation
	Project Goals and Main Challenges
	Approach and Methodology

	Basic Concepts
	Foundations of Artificial Neural Networks
	Backpropagation Algorithm
	Neural Networks are Universal Approximators
	Example of a Convolutional Neural Network: ZynqNet

	Training of a Deep Neural Network
	Training Framework
	Making of a Training Dataset
	ImageNet and Transfer Learning
	Training Hyper-Parameters
	Post-Training Network Quantisation
	CNN Quantisation with Ristretto

	Training Results

	Design and Implementation of a CNN Hardware Accelerator
	Project Goals and System Requirements
	Memory Requirements

	Adapting the ZynqNet Topology
	Design Strategy
	Block Processing
	Array Partitioning

	Model Operation and Hardware Description
	Main Process Unit
	Memory Controller
	Convolution Core
	Arithmetic Logic Unit

	Behavioural Model Validation and RTL Verification
	Validation of the C-based Model Description
	Post-Synthesis RTL Verification

	HLS Limitations and Issues

	Results and Conclusions
	Accuracy Results
	Resource Utilisation and Performance
	Conclusions
	Future Work

	References
	List of Acronyms
	Appendix ZynqNet
	Appendix Test Dataset

