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Abstract

The many benefits of storing data in the cloud have driven more and more parties
to outsource their storage needs. But, as data leaves the owner’s domain it is
exposed to the risk of unauthorised access, because now, it is the cloud service
provider who is responsible for access control.

This thesis studies applicable techniques that allows the owner to apply en-
cryption to the data, without losing distribution possibilities when it is uploaded
to cloud services. Techniques that ensure that the cloud service provider can never
see the plaintext data and thus decrease the risk of it being exposed. Two ways of
achieving this cryptographically is proxy re-encryption (PRE) and attribute-based
encryption (ABE). These two types of asymmetric primitives can generate a one-
to-many relationship between public and private keys. This allows several parties
to decrypt data protected under the same public key. However, both approaches
suffer from drawbacks related to key revocation and in some cases performance.

Our research is mainly focused on overcoming these two issues. We also want
to evaluate whether encryption and distribution are two properties that can be
achieved in contexts with high performance requirements. By modifying, imple-
menting and evaluating PRE and ABE in combination with symmetric encryption
we show that both techniques can obtain both encryption and distribution with
high performance. The issue with key revocation is using time stamps which make
keys invalid beyond a certain time. Consequently, this means that the key revo-
cation process is not perfect as keys are not revoked instantly.

Keywords: proxy re-encryption, attribute-based encryption, secure cloud storage,
key revocation, file sharing
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Popular science summary

Most of us use cloud services to store and share our personal files.
But have you ever reflected over whether it is you or the cloud service
provider that is in control of your data? The only real protection you
have that nothing malicious is done with your files, is your trust in
the provider. That they manage your data the way they are supposed
to. You might be okay with this, after all, it is just some personal
photos and your favourite recipes. But what happens when the data in
question is, for example, highly sensitive surveillance footage?

During the last decade, our way of stor-
ing data material has changed vastly.
We have gone from storing data locally
on our phone and computer, to having
everything backed up in the cloud. The
same goes for corporations, it is much
easier to store data in the cloud than
having to build your own infrastructure
for the same purpose. However, stor-
ing data outside of the own domain is
not without risks. Once data is up-
loaded in the cloud, it is the cloud ser-
vice provider’s responsibility to keep it
safe and provide access to authorised
parties. This means that the service
provider is in full control of reading and
editing all data within its domain. For
individuals, this may be acceptable, but
for corporations with highly sensitive
data, this is out of the question.

The consequences of data leakage can
be enormous for corporations. In 2013,
Yahoo was breached and information
about 3 billion users was exposed. The

breach knocked 350 million dollars off
the selling price when Yahoo was bought
by Verizon. This is just one of many ex-
amples when poor data management
has led to sensitive data being exposed.
So, how do companies that outsource
their storage ensure that their data at
rest is safe and shareable?

Proxy re-encryption (PRE) and
attribute-based encryption (ABE) are
two types of cryptographic techniques
that can be used overcome this prob-
lem. By deploying any of these two
techniques it is possible to encrypt data
before it is uploaded to the cloud, this
while it is still possible to share without
having to disclose the private key. How-
ever, not without consequences; both
schemes suffer from drawback of being
slow. Thus, if it should be feasible to
deploy on large amounts of data, the
process must be improved. Another
difficulty that arises when we look at
sharing is the possibility of revoking ac-
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cess that has previously been granted.
In this thesis we have investigated how
we can benefit from the characteristics

of these schemes, while still overcoming
their drawbacks.
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Chapter 1
Introduction

With the many advantages that cloud services provide, it has become common for
companies to outsource their storage needs to cloud services. The cloud providers
are responsible for safeguarding and keeping data accessible for its clients. How-
ever, while these services ease the access and distribution of data they also come
with various security concerns. As soon as data is uploaded to a cloud storage, its
owner loses control. It is now up to the service provider to ensure that no unau-
thorised access is made. This is a very undesirable situation as customers with
high security requirements might not trust the provider or is not legally allowed
to. Consequently, the provider may miss out on potential customers and clients
may have to choose a more complex solution. A simple, but not very practical
approach, would be to encrypt all data before uploading it. However, this makes
data impossible to share without disclosing the private key.

1.1 Background

As demand for cloud services has grown sharply in recent years, the concern regard-
ing security have gained increased focus. Clients have grown more aware of the fact
that they put their data at risk when outsourcing their storage needs. Hence, it
would be beneficial if data could be encrypted before it leaves the owner’s domain.
However, the properties of cryptographically secure and distributable oppose each
other if conventional symmetric or asymmetric encryption is applied. This as the
private key must be disclosed for another party to decrypt data.

A common approach adapted in many of today’s widely known cloud storages
is local encryption. The customer to such a service uploads its data in plaintext,
thereafter the service provider encrypts each data block with a randomly generated
symmetric data encryption key (DEK). A cluster of DEKs are then encrypted
under a key encryption key (KEK). The DEKs are often stored physically close
to the data while the KEKs are stored in a key management service. These
processes and systems are under the control of the service provider, meaning that
the provider has full control to decrypt and read the data stored within its system.

To ensure that only the owner can grant decryption privileges to its data, a
more sophisticated solution is needed. A solution that overcomes the issue with
distribution of encrypted data and safe key management. It is the ambition of
this thesis to adapt and apply available protocols to requirements set in a cloud
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2 Introduction

service. We will also assess if there is a possible solution that fulfils the desired
properties.

1.2 Project aims

How can access control be deployed on data located outside the owner’s domain?
What are the limitations and consequences of introducing possible solutions and
how can they be solved or mitigated? The main goal of this master thesis is to
investigate cryptographic schemes and their practical use to secure the transport,
storage and distribution of end-to-end encrypted data. It also aims on providing
solutions for overcoming/mitigating issues of deployed schemes and finally, evalu-
ate to what degree the schemes are fit for use.

The questions this report aims to answer are the following:

Question one: In a practical way, can data be protected so that it cannot
be read by the storage provider, this while it is possible for the owner to
grant access to other parties?

Question two: Is it possible to not only grant access to data to other parties,
but also efficiently revoke it in practice?

Question three: Can operations as encryption, (re-encryption,) and decryp-
tion be performed efficiently enough on large data volumes without intro-
ducing significant time delays?

1.3 Method

The first step consisted of researching fields of interest and related work. Initially,
the use-case of which this thesis was focusing on had to be defined. The use-
case require a one-to-many relationship between public and private key. Thus,
the project was initiated with a research study to identify techniques that fulfilled
this requirement. Once the research was completed a few primitives within each
area of interest was selected. The primitives in focus was chosen firstly on their
characteristics, and secondly on their level of recognition as sound primitives in
academia.

The second step was to analyse and mitigate/solve issues related to the crypto-
graphic schemes of interest. This was done by first gaining in depth knowledge of
each primitive and its limitations. The insights from the analysis of the schemes
were applied in a high-level design in which solutions to overcome found issues
were introduced.

In the third step the schemes were implemented and modified to introduce
solutions earlier presented in the high-level design. This was first done in proto-
types in which each primitive was implemented (if not already existing) with the
presented solutions. The prototypes were then run to collect initial information of
how they performed. These prototypes would then work as the base for the end
product in which a data stream was encrypted from end-to-end. The end product
would ultimately work as a confirmation of a successful deployment of the chosen
primitives.
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1.4 Related work

In 1998, Blaze, Bleumer and Strauss introduced what they called atomic proxy
cryptography [5], a solution where an untrusted intermediary with a proxy key
can transform a ciphertext encrypted under a party’s public key to be decrypted
by another party’s private key. In this solution the intermediary learns nothing
about the private keys of the two parties, nor sees the underlying plaintext of the
ciphertext. At a first glance, this seems to be an excellent approach to solve this
thesis’s posed problem. On the other hand, the protocol contained some serious
security flaws and undesired features. For instance, the protocol was not collusion
resistant, meaning that if the intermediary colluded with one of the parties, they
could extract the other party’s private key. Also, the protocol allowed ciphertexts
to be transformed in both directions with the same proxy key, a feature known as
bidirectionality. However, the basic idea of transforming ciphertext so it can be
decrypted under another key pair than the pair it originally was encrypted under
has huge potential.

Since the introduction of atomic proxy cryptography, a new category of cryp-
tography has emerged, proxy re-encryption (PRE). PRE are trying to make use
of the basic idea of Blaze et al. while improving features, and security of the keys
involved in it.

The features of PRE schemes were loosely defined until 2003 when Anca and
Yevgeniy wrote a paper [2] in which they more formally defined the properties of
it. Among other things, they determined that it was possible to divide PRE into
two categories; unidirectional and bidirectional schemes.

In 2006, an important paper [3] was presented by Ateniese, Fu, Green and
Hohenberger. It was a PRE scheme which its authors had achieved to be unidi-
rectional and collusion safe. Furthermore, the scheme had several other desirable
properties in addition to the two mentioned. Now a more useful scheme existed
that secured the master key under the discrete logarithm assumption. Unfortu-
nately, the scheme designed by Ateniese et al. was inadequate in one aspect; it was
not CCA-secure.

The first unidirectional and replayable chosen ciphertext attack secure PRE
primitive, secure in the standard model, was presented in 2011, when Libert and
Vergnaud included the use of one-time signatures into their scheme. Now they
had overcome the weakness in the work of Ateniese et al. although the operations
needed are mathematically more complex.

A second type of cryptographic system that is useful in similar contexts as
PRE is so called attribute-based encryption (ABE). It was first introduced by
Sahai and Waters in [19] as an extension of identity based encryption. Sahai et al.
made an abstraction of identities and instead let these be defined by descriptive
attributes. The attributes would then be used to describe decryption rights in keys
and ciphertexts. Only if the attributes in key and ciphertext matched to a specified
point, then a ciphertext could be successfully decrypted. Bethencourt, Sahai and
Waters introduced the first ciphertext-policy ABE primitive in [4]. They made
use of "AND" and "OR" gates as they constructed access policies of attributes,
an access policy would then be associated with a ciphertext. A key on the other
hand, was associated with a set of attributes. Decryption would then only be
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successful if the set of attributes in the key passed through the access policy in
the ciphertext. This resulted in a stronger sense of access control than the original
ABE scheme.

Access policies can either be related with ciphertexts or keys, depending on
which a primitive of ABE can be said to belong to ciphertext-policy respectively
key-policy.

1.5 Thesis outline

Chapter 2 (Theory) explains the basic theory needed to understand the crypto-
graphic primitives deployed.

Chapter 3 (System requirements) describes the system environment and use
cases that this thesis has in focus.

Chapter 4 (System analysis of applicable techniques) evaluates whether inter-
esting cryptosystems are applicable in our system and use cases. The discussions
in this chapter results in the decisions of which primitives that should be further
investigated. Also, issues related to deploying certain cryptosystems are analysed.

Chapter 5 (Design) describes solutions to the identified issues of each type of
cryptosystem. These solutions work as a base for the implementation step.

Chapter 6 (Implementation) presents the underlying construction of the cho-
sen cryptographic primitives, key expiration property, and optimisation. In this
stage a proof of concept is constructed, showing that the designed solutions are
theoretically and practically applicable.

Chapter 7 (Performance results) presents the results obtained during bench-
marking of the implemented and discussed cryptographic primitives.

Chapter 8 (Discussion) contains a discussion about the benchmarking results.
The applied cryptosystems are also discussed and analysed regarding their perfor-
mance.

Chapter 9 (Conclusions) Presents the conclusions of this master thesis project.



Chapter 2
Theory

In this chapter we describe the theory needed to understand the work done in
this thesis. We assume that the reader has some basic knowledge about cryp-
tography, like symmetric and asymmetric encryption. We will nevertheless begin
by explaining asymmetric encryption because it is such a central concept in this
thesis.

2.1 Asymmetric cryptography

Asymmetric cryptography is a cryptosystem where, in contrast to symmetric cryp-
tography, a user possesses a pair of keys, instead of just one. A key-pair consists of
one public key and one private key. The private key is, as the name suggests, kept
private, just as a symmetric key. The public key, on the other hand, is actively
published so that anyone can use it. The keys are mathematically linked so that
performing an operation using one of the keys, the other key will invert that op-
eration. Figure 2.1 shows a typical case where Alice sends an encrypted message
to Bob. Alice and Bob do not have a pre-shared key as in the case when using
a symmetric cryptosystem. Instead, Bob publishes his public key pkBob, which
Alice uses to encrypt the message m and produce the ciphertext c. She then sends
the ciphertext to Bob who uses his private key skBob together with the decryption
algorithm to decrypt c and recover the plaintext message m.

The advantage here is that Alice (or anyone else) can send encrypted messages
to Bob, without having a shared key beforehand.

2.2 Hybrid cryptography

Hybrid cryptography is the technique of combining both symmetric and asym-
metric cryptography to be able to make use of the advantages they offer while
minimising their shortcomings.

A good of example of where hybrid cryptography is used in practice is in the
transport layer security protocol (TLS) [11]. In TLS, an asymmetric algorithm is
used to exchange a symmetric key securely between two communicating parties.
After they both have agreed on a key to use, they can continue to communicate
securely using symmetric encryption and decryption of the data they transmit and
receive.

5
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Alice
Bob's public key

Bob
Public key

Private key

Message

Encrypt(pkBob, m) Decrypt(skBob, c)

MessageEncrypted message Encrypted message

Figure 2.1: Alice using asymmetric encryption to send a message
securely to Bob.

2.3 Proxy re-encryption

Proxy re-encryption (PRE) is a technique where it is possible to take a message
encrypted under one asymmetric key-pair and encrypt that message again, using a
so-called re-encryption key, in such a way that the re-encrypted message becomes
encrypted under another key-pair [3]. An example can be seen in Figure 2.2. Here,
Alice encrypts a message to Bob using asymmetric encryption as described in Sec-
tion 2.1. Alice sends the encrypted message to the proxy, instead of Bob, and Bob
instead delegates the decryption to Charles. Using his own private key skBob and
Charles’s public key pkCharles, Bob produces a re-encryption key rkBob→Charles
that can re-encrypt ciphertexts that was encrypted with Bobs public key to an-
other ciphertext that is encrypted under Charles’s public key. Bob provides the
re-encryption key to the proxy. When Charles asks the proxy server for the mes-
sage, the proxy uses the ciphertext c and the re-encryption key rkBob→Charles to
produce the ciphertext c′, which is sent to Charles. Charles uses his own private
key skCharles to decrypt the ciphertext and recover the plaintext message m.

2.3.1 Directionality

Anca and Yevgeniy [2] define the two types of categories that PRE schemes can
be divided into. They can either be bidirectional or unidirectional.

In a bidirectional scheme, re-encryption keys can be used to re-encrypt en-
crypted messages both ways. So, if there is a re-encryption key that can re-encrypt
messages from Alice to Bob, that means that the same key can also be used to
re-encrypt messages from Bob to Alice.

In a unidirectional scheme, re-encryption keys can only be used to re-encrypt
encrypted messages one way, say from Alice to Bob, but not from Bob to Alice.
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Alice
Bob's public key

Bob
Public key

Private key

Message

Encrypt(pkBob, m)

ReKeygen(skBob, pkCharles) 

Proxy

ReEncrypt(ReKBob->Charles, c)

Re-encryption key 
Bob->Charles

Encrypted message

Encrypted 
message

Re-encrypted 
message

Charles's 
Public key 

Charles 
Public key

Private key Decrypt(skCharles, d) 

Message

Re-encrypted 
message

Figure 2.2: Bob delegating decryption of a message, originally in-
tended for himself, to Charles via PRE.

2.3.2 Single-hop and multi-hop

The notions of single-hop and multi-hop property of PRE schemes refer to how
many times an encrypted message can be re-encrypted. In a multi-hop scheme,
given a set of re-encryption keys rki→i+1, rki+1→i+2 . . . and a set of parties i, i +
1, i + 2, . . ., a ciphertext can be re-encrypted several times. First from i to i + 1,
then from i+ 1 to i+ 2, and so on. In a single-hop scheme, only one re-encryption
is possible. This means that when a ciphertext is re-encrypted from i to i+ 1, the
resulting ciphertext cannot be further re-encrypted from i+ 1 to i+ 2, even if the
re-encryption key rki+1→i+2 exists.

2.3.3 Collusion resistance

Collusion resistance refers to inability to extract the private key of the delegator in
the case where the proxy and a delegatee collude with each other. In particular, it
should not be feasible to combine a re-encryption key from A to B and the private
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key of B to recover the private key of A:

rkA→B + skB 6→ skA

2.3.4 Transitivity

A scheme is transitive if it is possible for the proxy to re-delegate decryption
capability without involvement of the delegator. Practically, this means that if
the proxy can combine two or more re-encryption keys, and by this achieve a new
delegation, then the scheme is transitive. Transitivity can be described as:

rkA→B + rkB→C → rkA→C

Transitivity is often an unwanted property since the delegator cannot be en-
sured that parties, other than the originally intended ones, are not given decryption
privileges.

2.3.5 Interactivity

If the private key skB of the delegatee is needed in the generation of the re-
encryption key rkA→B , then the scheme is interactive. This implies that the
delegatee must trust the party performing the key generation with its private
key. It also, however, gives the delegatee the possibility to either accept or reject
delegations, since it is active participation is required to create the re-encryption
key.

2.3.6 Algorithms in unidirectional single-hop proxy PRE

A unidirectional single-hop PRE scheme consists of a tuple of algorithms (Setup,
Keygen, ReKeygen, Encrypt1, Encrypt2, ReEncrypt, Decrypt1, Decrypt2) [14].
They have the following properties:

• Setup(λ) → params: The setup algorithm takes a security parameter λ
and produces a tuple of global parameters params. These parameters are
publicly available to everybody in the system.

• Keygen(params)→ (pkA, skA): The key generation algorithm produces a
key-pair for a party A.

• ReKeygen(params, skA, pkB) → rkA→B : The re-encryption key gener-
ation takes a private key belonging to a party A, skA, and a public key
belonging to a party B, pkB , and produces a re-encryption key rkA→B

• Encrypt1(params, pkA, m) → c′: The level 1 encryption algorithm en-
crypts the message m under the public key pkA and produces a ciphertext,
that can only be decrypted by the party A.

• Encrypt2(params, pkA, m)→ c: The level 2 encryption algorithm encrypts
the message m under the public key pkA and produces a ciphertext, that
can be re-encrypted to the party B, or decrypted by the party A.
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• ReEncrypt(params, rkA→B , c) → c′: The re-encryption operation re-
encrypts a level 2 ciphertext c encrypted under the public key pkA, into
a level 1 ciphertext c′ encrypted under the public key pkB .

• Decrypt1(params, skB , c
′)→ m: The level 1 decryption operation decrypts

a ciphertext c with the private key skB into plaintext m.

• Decrypt2(params, skA, c
′)→ m: The level 2 decryption function decrypts

a level 2 ciphertext with the private key skA into the plaintext m.

2.4 Attribute-based encryption

Attribute-based encryption (ABE) is a more advanced cryptosystem than the con-
ventional version of asymmetric encryption. Here, private keys and ciphertexts are
associated with access policies and attributes. Access policies can either be asso-
ciated with ciphertexts, called ciphertext-policy ABE (CP-ABE) or with private
keys, called key-policy ABE (KP-ABE).

In ABE, access control is performed by matching attributes between a private
key and the ciphertext. If the attributes in the private key overlap with the at-
tributes in the ciphertext, decryption is successful. In this type of cryptosystem
an authority generates a public key and a master key. The authority can now
generate private keys and associate them with either an access policy or an at-
tribute set, depending on the type of ABE used. These keys are then distributed
to their intended parties. Once a message is encrypted, either an access policy or
an attribute set, depending on the type ABE, is associated with the ciphertext.
Once a party decrypts a ciphertext, it will only be successful if his private key
fulfils the requirements of the ciphertext.

2.4.1 Access policy location

The access policy can be in either the private key or in the ciphertext.

Key policy

In key-policy attribute-based encryption (KP-ABE), the access policy is placed
in the private key generated by the authority. An attribute set is placed in the
ciphertext.

Ciphertext policy

In ciphertext-policy attribute-based encryption (CP-ABE), the access policy is
placed in the ciphertext (the opposite of KP-ABE) and an attribute set is placed
in the private key.

2.4.2 Access structures

Let P be a set of attributes and ΓP a set of subsets of P (ΓP ⊆ 2P ), in other words,
ΓP is an access structure for P . Let C be a qualified subset of ΓP (C ⊆ ΓP ). Add



10 Theory

yet another attribute to C to create the resulting set B. If it is always true that B
is also a qualified subset then the access structure is a monotone access structure,
described as

if C ∈ ΓP and C ⊆ B ⊆ 2P then B ∈ ΓP .

OR

Admin AND

Employee Developer

Figure 2.3: A simple monotone access structure.

In Figure 2.3, a simple monotone access policy is represented. In this policy
the two subsets (Admin) and (Employee, Developer) are authorised to decrypt
the associated ciphertext. So, any party, whose key contains all the attributes of
at least one of the subsets in a ciphertext, can decrypt it.

2.4.3 Algorithms in ABE

• Setup() → pk, mk: The setup process generates the public key pk, the
master key mk.

• Keygen(mk, a) → ska: The key generation process takes as input the
master key mk and a set of attributes or an access policy a. It outputs a
private key ska.

• Encrypt(pk, a, m)→ ca: The encryption function takes as input the public
key pk, a set of attributes or an access policy a and a plaintext message m.
It outputs a ciphertext ca.

• Decrypt(ska, ca)→ m: The decryption function takes as input a private key
ska and a ciphertext ca. If the attributes and access policy in the key and
ciphertext overlap, the decryption is successful, and the function outputs
the plaintext m.

2.5 Discrete logarithm problem

Given a large prime number p and the multiplicative group Z∗p, it is very hard to
compute discrete logarithms of the elements of this group. This is known as the
discrete logarithm problem (DLP). Let g be a primitive root of Z∗p, p a prime and a



Theory 11

an arbitrary element in Z∗p. Then the element ga mod p can easily be calculated,
however given g mod p and ga mod p it is hard to calculate a.

2.6 Elliptic-curve cryptography

Elliptic curve groups are very important to cryptography since they can be con-
structed in such a way that bilinear pairings can be realised.

An elliptic curve group is constructed by defining an elliptic curve, E : y2 =
x3 + ax + b, over a finite field. This group has one binary operation, called the
group law, denoted as ⊕. A line between two points at the curve will always
intersect the curve at a third point, with the exception when l is a tangent on
E, since any line l : y = cx + d substituted into the curve E will give a cubic
polynomial with three roots. When computing the result of group law applied to
two points, P and Q, we draw a line through P and Q which will intersect E at
the third point 	R. 	 denotes the point mirrored in the x-axis. The result R
is the third intersection point, mirrored in the x-axis, namely P ⊕ R = R. The
computation is the same for the group law applied to a point P and itself, except
the line l is then the tangent through P [10].

Computation of the group law is described graphically in Figure 2.4 where the
group law is applied to the point P1 four times, denoted as P 4

1 . The curve is in
this example visualised in R, for simplicity. In reality, it would of course be some
finite field F∗q .

E

P1

P2

P3

P4

x

y

Figure 2.4: Dot operations on an elliptic curve.

If we repeat the group law operation with P1, n times, we get Pn = Pn1 . The
problem of finding n given P1 and Pn1 , is called the elliptic curve discrete logarithm
problem (ECDLP) and is the corresponding problem to the DLP in the elliptic
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curve groups setting.

2.7 Bilinear pairings

Let G0 and G1 be two cyclic groups of the same order q, then bilinear paring is a
map

e : G0 ×G0 → G1

which satisfies

Bilinearity : For all P,Q ∈ G0 and all a, b ∈ Zq: e(P a, Qb) = e(P,Q)ab.

Non-degeneracy : For all P ∈ G0 and P 6= 0: e(P, P ) 6= 1.

Computability : e is efficiently computable.

2.8 Cryptographic attack models

There are several attack models that can be considered when evaluating the se-
curity of a cryptographic scheme. They all assume some restrictions/capabilities
of an adversary. One important aspect of the security in an attack model is the
ciphertext indistinguishability. It refers to the situation where an adversary is
given a ciphertext that is an encryption of one out of two known plaintexts. If
the adversary cannot distinguish which of the two plaintexts that the ciphertext
is an encryption of, then the scheme achieves ciphertext indistinguishability, also
referred to as IND. The IND property can be defined in different attack models.

The indistinguishability under different attack models can be formally defined
by a game where the adversary plays against a challenger. If the adversary, after
playing the game, cannot distinguish which plaintext that has been decrypted
with a greater probability than 1

2 + ε, where ε is some negligible function, then the
scheme is indistinguishable under the attack model. In [20], Sako defines the three
commonly used security notions indistinguishability under chosen plaintext attack
(IND-CPA), indistinguishability under chosen ciphertext attack (IND-CCA) and
indistinguishability under adaptive chosen ciphertext attack (IND-CCA2). There
also exists a slightly relaxed definition of IND-CCA2, called indistinguishability
under replayable chosen ciphertext attack (IND-RCCA), introduced by Canetti,
Krawczyk and Nielsen in [8].

In the IND-CPA game setting, the adversary is provided with an encryption
oracle which takes a plaintext as input and gives encryption of that plaintext as
output. The game is played in 4 phases.

1. The adversary makes any polynomially bounded number of operations in-
cluding queries to the encryption oracle.

2. The adversary outputs two messages m0 and m1 to the challenger where
m0 6= m1. The challenger selects a random value b ∈ {0, 1} and encrypts
the message mb and outputs the resulting ciphertext cb to the adversary.

3. The adversary now repeats Phase 1.
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4. The adversary outputs a guess b′ ∈ {0, 1}. If b′ = b, the adversary wins the
game

In the IND-CCA, IND-CCA2 and IND-RCCA game settings, the adversary is, in
addition to the encryption oracle, also provided with a decryption oracle which
takes a ciphertext as input and gives the decryption of that ciphertext as output.
The game is played in 4 phases.

1. The adversary makes any polynomially bounded number of operations in-
cluding queries to the encryption oracle and decryption oracle.

2. The adversary outputs two messages m0 and m1 to the challenger where
m0 6= m1. The challenger selects a random value b ∈ {0, 1} and encrypts
the message mb and outputs the resulting ciphertext cb to the adversary.

3. (a) (IND-CCA) The adversary may not perform any additional operations
in this step

(b) (IND-CCA2) The adversary now repeats Phase 1, with the exception
that it cannot query the decryption oracle for the decryption of cb.

(c) (IND-RCCA) The adversary now repeats Phase 1, with the exception
that it cannot query the decryption oracle for the decryptions of any
ciphertexts that decrypt to m ∈ {m0,m1}.

4. Eventually, the adversary outputs a guess b′ ∈ {0, 1}. If b′ = b, the adversary
wins the game.

2.9 Security models

When proving the security of a cryptographic primitive, it is usually not possible
to prove it secure without putting any restrictions on adversaries or making other
assumptions [21]. Therefore, there exists different models in which one assumes
some things to be true, to be able to complete the proof. Two of these models are
of extra interest to us; standard model and random oracle model. This since they
will be used later on to compare schemes of interest.

2.9.1 Standard model

In the standard model an adversary is only limited by time and computational
power. The security of cryptographic primitives in the standard model are of-
ten based on complexity assumptions, which states that some problem cannot be
solved in polynomial time. Schemes which security only rely on these complexity
assumptions are said to be secure in the standard model. While security in this
model is highly desirable, it is also very difficult to construct security proofs which
achieves it [17].

2.9.2 Random oracle model

It is common that cryptographic primitives use pseudo-random functions to ap-
proximate random values. However, pseudo-random functions do not, as the name
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suggest, produce truly random values, only values that are more or less difficult
to predict. When trying to prove the security of the primitive, this becomes a
problem if one cannot also prove that the pseudo-randomness does not affect the
security of the rest of the primitive. The random oracle model is a way to circum-
vent this problem by replacing all pseudo-random functions with random oracles.
These are hypothetical functions that do in fact return truly random values [6].



Chapter 3
System requirements

In this chapter we present the system, the different parties within it and their
relationship to each other. Furthermore, we define the requirements that the
system should fulfil.

3.1 Prerequisites

The system in question consists of three categories of different parties:

Customer: The customer is the owner of the data it produces.

Proxy: The proxy provides the storage service to the customer.

Partner: The partner is a party that the customer has delegated data
access to.

PartnerPartner

CustomerCustomer
Proxy

Partner

Customer

Data provider
service

Data receiver
service

Storage provider

Figure 3.1: Schematic view of the system.

In the system there is a variable number of customers and partners, but there is
only one proxy. Any single customer may delegate data access to several partners

15
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and any single partner may have been delegated data access from several cus-
tomers. Customers produce data, encrypts it, and uploads it to the proxy. The
customers may download historic or live data from the proxy. Partners that have
been delegated access to a customer’s data may also download either historic or
live data belonging to that customer from the proxy.

3.2 System requirements

The following requirements roughly define the properties that the system described
above should have.

3.2.1 Minimal trust in Proxy and Partners

The customer does not trust the proxy, and so the proxy must not be able to
decrypt any data that it stores for a customer. Furthermore, the proxy should
not have the ability to delegate access to a customer’s data to a partner without
the customer’s participation. The customer does not fully trust the partner and
assumes that both the partner and the proxy might collude and combine their
information. In that event, it must be unfeasible for them to reconstruct any
secret information belonging to the customer.

3.2.2 End-to-end encryption

To ensure that data is not accessible to anyone other than the parties that should
have access (i.e. the customer and partners with access) the data should be en-
crypted end-to-end. This means that the data should never exist in plaintext
from the moment it is produced and encrypted, to arrival and decryption at an
authorised partner.

3.2.3 Performance / Video data encryption capability

The data that will be transmitted is relatively large, and so the system must
be able handle encryption, (re-encryption,) and decryption of that data at their
respective location. Since the system should be able to provide live access to data
produced by the customer, it is important not to add too much overhead in these
processes that would consequently introduce delays.

3.2.4 Temporary decryption privileges capability

The customer should be able to revoke previously delegated access of a partner,
or alternatively restrain the delegation to certain time periods so that the partner
cannot access new data after that time. Ideally, the customer should not need to
rely on the proxy to enforce this access revocation.
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3.2.5 Single point of communication

The system should not require that a customer and a partner need to communicate
directly with each other in order to not disclose any secret information to the proxy.
All communication should be allowed to go through the proxy.





Chapter 4
System analysis of applicable techniques

In the following chapter, techniques for encrypting data are discussed based on
their properties and how they can be applicable in the context of this thesis.
In summary, a system which allows for dynamic delegation and revocation of
decryption privileges is desired. The owner of the data should be the only authority
that delegates these privileges, and the need for other trusted parties, e.g. for key
generation, should be avoided.

4.1 Symmetric encryption

As a first step, the simplest type of encryption is considered, symmetric encryption.
There are several problems with this type of cryptosystem. Firstly, a private
key is used to encrypt data. If the encryption takes place in an unsafe place,
in a camera for example, it is not ideal to store the key there. Secondly, to
achieve some sort of revocation of decryption privileges, the symmetric key would
need to be periodically changed. Thereafter, it would need to be distributed
to all devices performing encryption, and all parties with continued decryption
privileges. Thirdly, the private key is stored at a potentially large number places,
which increases the risk for it leak. If it does, all data encrypted with that key is
compromised. Conclusively symmetric encryption alone is not enough to achieve
the properties we want.

4.2 Conventional asymmetric encryption

Using asymmetric encryption would solve the problem with having to store a
private key at devices performing encryption. Asymmetric encryption is instead
done using a public key. This key can safely be stored anywhere. However, in
order to achieve the possibility to revoke decryption privileges, the key-pair would
still need to be periodically changed and distributed to all parties. The public
key to the devices that perform encryption, and the private key to parties with
continued decryption privileges. This is still a very impractical way of achieving
our requirements. Therefore, conventional asymmetric encryption is not enough.

19
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4.3 Attribute-based encryption

A more advanced form of asymmetric encryption is ABE. During the setup process
of the cryptosystem, a public and master key is generated. When an authority
generates a new private key, this is done by combining the master key with a set of
attributes. This would consequently mean an owner of data can produce several
private keys that can decrypt data encrypted under its public key, a one-to-many
relationship between public and private keys. Additionally, the use of attributes
can be used to achieve fine-grained access control and in particular revocation of
decryption privileges. This makes ABE to a strong candidate as cryptosystem
for enabling distribution of encrypted data, considering that each data owner will
be its own authority, and control the key generation and encryption process of
generated material under their public key. By controlling encryption and key
generation, the customer is in full authority of delegation of decryption privileges
of their data.

4.3.1 Key-policy

In key-policy ABE (KP-ABE) private keys are associated with access policies and
ciphertexts are associated with descriptive attributes. This means that the key
issuer is the one who controls which ciphertexts a key can decrypt and not the
encryptor. The encryptor only includes a set of descriptive attributes into the
ciphertext [4]. This is not an issue in our system since the encryptor and key
generator is the same party. It is however not desirable that any other process
than the encryption process should govern the access policy. Changes in the system
setup could then potentially result in issues directly related to the use of KP-ABE
if for example some process or party wants to encrypt a message but do not, for
some reason, fully trust the key generator.

4.3.2 Ciphertext-policy

In ciphertext-policy ABE (CP-ABE) private keys are associated with attributes
and ciphertexts are associated with access policies (the reversed of KP-ABE).
Since the access policy now instead is included into the ciphertext, the encryptor
is the party who controls which keys that can decrypt the ciphertext. This is
a more suitable property for our requirements since the encrypting unit should
define which type of keys that should be able to decrypt the resulting ciphertext.

An important scheme in the ABE category is the scheme presented by Bethen-
court, Sahai and Waters in [4] 2007. They introduced the first scheme of the type
CP-ABE. However, the scheme was only proved to be secure in the generic group
model [22]. Four years later Waters presented an improved scheme in [22] (from
this point referred to as W11) that had similar characteristics as [4] but secure in
the standard model.

In both [4, 22], the authors describe that by adapting the technique proposed
by Canetti, Halevi and Katz [7] both schemes can be made CCA2-secure without
complex modifications of the original designs. This is achieved by signing cipher-
texts and verifying that signature before decrypting. If the verification fails, the
decryption returns an error.
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4.4 Proxy re-encryption

Proxy re-encryption does also have properties which makes it suitable for dis-
tributing data in a cloud storage. With PRE, it is possible to delegate decryption
privileges to other parties, without having to disclose the private key. Instead,
ciphertexts are re-encrypted so that they can be decrypted with other parties’ pri-
vate keys, thus achieving a one-to-many relationship between public and private
keys.

A property worth investigating is how bilinear pairings affect the performance
of a scheme in practice. While they provide features important for cryptography,
they are also computationally expensive to realise compared to hash functions
which usually replaces pairings in pairing free PRE schemes. The scheme pro-
posed by Chow, Weng, Yang and Deng in [9] for example, does not make use of
pairings. This scheme is in turn only proved secure in the random oracle model.
By using pairings, the scheme can be kept secure in the standard model and it
allows relatively simple and powerful ways of constructing PRE.

Another aspect of PRE schemes that is highly relevant in the current research
is CCA2-security. Protection against RCCA can be realised using some sort of
verification of ciphertexts. This needs to be done before any ciphertexts are re-
encrypted by the proxy or decrypted by a partner or customer. For example,
Libert and Vergnaud realises this in [14] (from this point referred to as LV11),
using one-time signatures (OTS) similar to [7]. This is however not as simple as
in the case of [4, 22] due to the extra re-encryption step. Therefore, it introduces
much more complexity in the scheme. For example, comparing the number of
pairing operations in [14] and the scheme proposed by Ateniese, Fu, Green and
Hohenberger in [3] (from this point referred to as AFGH06), one can see that in
AFGH06 there is only one pairing. This is done in the re-encryption operation. In
LV11 on the other hand, there is one pairing in the encryption operations, two in
the re-encryption operation, five in the decryption of level one ciphertexts and three
in the decryption of level 2 ciphertexts and additionally signing and verification
operations. Zhao et al. have a similar approach in [23] as LV11, but without OTS.
However, they also require a significant increase in number of pairings compared
to AFGH06.

4.4.1 Proxy re-encryption properties

The existence of a proxy in PRE causes some additional properties to arise, which
may or may not be of interest depending on the use case. The following reasoning
establishes what kind of PRE scheme we need to look for to use in our system.

Directionality

Bidirectionality allows re-encryption of messages in both ways, which in itself is not
something bad, and our system requirements does not prohibit it. One could argue
that bidirectionality would leave the possibility for partners to send data back to
the customer, the same way the customer sent the partner data, open. This can
be a good thing as it is not implausible that this feature would be desirable in the
future. Even though it is not part of the requirements today. However, we have
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yet to discover any scheme achieving bidirectionality, without the need of both the
customers and the partners private key in the re-encryption key generation process.
This violates the system requirements as no party should trust one another and
so, no party want to disclose their private key to another party.

Unidirectionality is in a sense a stronger property than bidirectionality since
a unidirectional scheme can provide communication both ways, just as a bidi-
rectional scheme does, by simply creating re-encryption keys for both ways. For
example, in a setting where Alice and Bob want to communicate with each other,
two unidirectional keys rkAlice→Bob and rkBob→Alice, will achieve the same com-
munication capabilities as one bidirectional key ReKAlice↔Bob. So, in conclusion
we want to find solution utilising a unidirectional scheme.

Transitivity

Transitivity is not a property that would be in any way useful in this system.
Customers delegates decryption privileges to specific partners only, and it should
only be the customer that produces these delegations. However, if the scheme used
in the system would be transitive, it would probably not be a problem anyway since
to utilise that property there should exist re-encryption keys such that rkA→B
and rkB→C . If A is a customer, then B is a partner. But partners never delegate
decryption privileges to anyone else and so there will never be any re-encryption
key rkB→C .

Collusion resistance

Collusion resistance is a vital property that any scheme used in this system needs.
The private key of a customer is of course secret because with it one can decrypt
any data produced by the customer. Since we do not trust the proxy which
holds the re-encryption keys nor do we trust all the partners, the scheme must be
resistant against collusion between partners and the proxy.

Interactivity

At first sight, it may not seem that an interactive scheme would incur any problems.
The partner does have to share their private key, which in general is bad, with
a customer to accept delegations. But, if the partner’s key-pair is only used in
this particular system, what harm is there to share their key with that customer?
It becomes a problem when one considers whether different customers trust each
other. Since a partner can accept delegations from several customers, then, if
customers A and B both have delegated decryption rights to partner C, both A
and B possess C’s private key skC . This means that for example B can decrypt
data produced by A, that has been re-encrypted to C. To avoid this problem, we
consider schemes that are not interactive.

Single-hop or multi-hop

This property does not influence the choice of scheme in this case, since data will
only be re-encrypted once, from a customer to a partner. Therefore, a scheme
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with single-hop is sufficient. However, a scheme with multi-hop capability is not
necessarily bad, but it will never be used.

4.5 Overview

The reasoning in this chapter boils down to a decision tree of usable cryptosystems,
which can be seen in Figure 4.1. The techniques that are of interest and that we will
continue to investigate are PRE and ABE. PRE schemes should be unidirectional,
non-transitive, non-interactive and collusion resistant. ABE schemes should use
ciphertext-policy and be either monotonic or non-monotonic access structures.

The matter of capability to grant temporary decryption privileges will be fur-
ther discussed in the next chapter. Revocation of issued keys is a fundamental
problem in cryptography. We will however see that it is possible to attribute keys
and ciphertexts with time stamps in such a way that keys will expire and not be
able to decrypt ciphertexts produced after the keys expiration date.

Encryption 

Symmetric Asymmetric 

ABE Conventional PRE

BidirectionalUnidirectionalMonotonic Non-monotonic

Figure 4.1: Decision tree for use of cryptosystem.





Chapter 5
Design

In this chapter the asymmetric schemes, chosen in Chapter 4, are deployed on the
specified system and solutions for overcoming issues are presented. The schemes
are deployed along with symmetric encryption and time stamps for key revocation.

5.1 Hybrid encryption

We have established that PRE and ABE are the most promising techniques to
use in order achieve the system requirements. It is however, not enough to only
apply PRE or ABE on the data that needs protection. Since PRE and ABE are
asymmetric encryption techniques, they suffer from the drawbacks of being slow
compared to symmetric encryption. Thus, they are not suitable to encrypt of
arbitrary data. A common approach to overcome this is to use hybrid encryption.
In such approach the advantages of both asymmetric and symmetric encryption
are incorporated into one solution. This is done by firstly, encrypt the data with
a symmetric encryption scheme using a randomly generated symmetric key, which
is relatively fast and effective. These steps can be seen in Figure 5.1 where data is
encrypted using symmetric encryption and the key is encrypted using asymmetric
encryption. Once the data has been encrypted, the asymmetric scheme encrypts
the key used by the symmetric encryption with the public key of the asymmetric
scheme. This approach of using hybrid encryption is more practically realistic than
without. Since asymmetric schemes can only encrypt elements from the group they
are instantiated with, any arbitrary data would first need to be chunked up into
pieces that can be encoded as a group element. All these pieces would then be
encrypted by the relatively costly asymmetric encryption algorithm, which makes
the whole process impractical.

By combining symmetric and asymmetric encryption it is possible to ensure
that the system is feasible from a performance perspective. This while benefiting
from the properties of the asymmetric scheme.

5.2 First design

The following sequence diagrams show a first design of how both PRE and ABE
schemes (see Figure 5.2 respectively Figure 5.3) would be used in combination with
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Symmetric key Data Public key 

Figure 5.1: The basics of hybrid encryption.

a symmetric scheme. The diagrams show the steps required to give decryption
privileges and transfer an arbitrary message to a partner.

5.2.1 Proxy re-encryption

Customer (A) Partner (B)Proxy

params = Setup()

pkA, skA = Keygen(params)

 pkB 

rkA->B = ReKeygen( 
params, pkB, skA) 

pkB, skB = Keygen(params)

 rkA->B 

cm = Encryptsym(k, m)

ck = Encryptasym( 
params, pkA, k)

c = (ck, cm)  c 

c'k = ReEncrypt( 
params, rkA->B, ck)

c' = (c'k, cm)  c' 

k = Decryptasym( 
params, skB, c'k)

m = Decryptsym(k, cm)

Figure 5.2: Sequence diagram for PRE with symmetric encryption.

In Figure 5.2 the result of combining PRE with symmetric encryption can be
viewed. In this cryptographic system the proxy is an active participant with the
purpose of re-encrypting relayed messages.

1. Setup()→ params: The proxy generates the global parameters params to
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be used in the PRE system.

2. Keygen(params)→ skA, pkA: The customer generates its public key pkA,
and private key skA from the parameters params.

3. Keygen(params) → skB , pkB : The partner generates its public key pkB ,
and private key skB from the params. The public key is sent to the cus-
tomer.

4. ReKeygen(params, pkB , skA)→ rkA→B : The customer combines its pri-
vate key skA with the public key pkB it received from the partner, along with
the global parameters params and generates a re-encryption key rkA→B .
The re-encryption key is sent to the proxy.

5. Encryptsym(k, m)→ cm: The customer generates a random symmetric key
k and encrypts message m with a symmetric encryption scheme.

6. Encryptasym(params, pkA, k) → ck: The random symmetric key k gen-
erated in the previous step is encrypted with the public key pkA of the
customer in an asymmetric PRE scheme.

7. The ciphertext c is a tuple consisting of the encrypted message cm, and the
encrypted key ck used in the symmetric scheme. This tuple is sent to the
proxy.

8. ReEncrypt(params, rkA→B , ck) → c′k: The proxy re-encrypts the en-
crypted symmetric key ck into a ciphertext c′k with the re-encryption key
rkA→B it earlier received from the customer.

9. The new tuple c′ containing c′k and cm is sent to the partner.

10. Decryptasym(params, skB , c
′
k)→ k: The partner decrypts the re-encrypted

ciphertext c′k with its private key skB and obtains the symmetric key k.

11. Decryptsym(k, cm) → m: With the symmetric key k it extracted in the
previous step the partner decrypts ciphertext cm and obtains the message
m.

5.2.2 Attribute-based encryption

In the Figure 5.3 ABE is combined with symmetric encryption to transfer a mes-
sage from the customer to the partner, without disclosing the master key or re-
vealing the ciphertext content to the proxy. The proxy is not participating in the
cryptographic system, it is only relaying information between the two parties.

1. Setup() → pk, mk: The customer generates a public key pk and a master
key mk.

2. Keygen(mk, a) → ska: By combining the master key mk and a set of
attributes a the customer generates a private key skA∗ .

3. Encryptsym(k, m) → cm: The customer generates a random symmetric
key k and encrypts the message m using a symmetric encryption scheme to
produce the ciphertext cm.
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Customer PartnerProxy

pk, mk = Setup(U)

ska = Keygen(mk, a)

cm = Encryptsym(k, m)

cΓ,k = Encryptasym(pk, Γ, k)

c = (cΓ,k, cm)  c 

 c 

 ska 

k = Decryptasym(ska, cΓ,k)

m = Decryptsym(k, cm)

Figure 5.3: Sequence diagram for ABE with symmetric encryption.

4. Encryptasym(pk, Γ, k)→ cΓ,k: The symmetric key k used in the symmetric
encryption is now encrypted using an CP-ABE scheme with the public key
pk of the customer, and an access policy Γ.

5. The resulting ciphertext c which is sent is a tuple of the encrypted symmetric
key cΓ,k and the encrypted message cm.

6. Decryptasym(ska, cΓ,k)→ k: The partner decrypts the ciphertext cΓ,k con-
taining the symmetric key k with its private key ska. This step is only
successful if the attribute set a fulfils the requirements of the access policy
Γ in the private key and ciphertext.

7. Decryptsym(k, cm)→ m: In the last step the partner decrypts the cipher-
text cm with the symmetric key k extracted from the previous step to obtain
the message m.

5.3 Generation rate of symmetric keys

An important thing to note in the designs in Section 5.2, is that it is not required
to randomly generate a new symmetric key for each message that should be en-
crypted. Depending on the practical setting, such as in live video stream, the
additional computations required by the asymmetric encryption may impose per-
formance problems. Because of that, we may allow us to use each symmetric key
to encrypt several messages, say x of them. When doing so we can remove Step 6,
Step 8 and Step 10 in Section 5.2.1 as well as Step 4 and Step 6 in Section 5.2.2,
in the process x− 1 out of x times. This means that we can arbitrarily reduce the
level of impact the PRE or ABE scheme has on the performance at the expense
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of security. In the case where PRE is used, security is lowered in the sense that a
partner is potentially able to decrypt data that has not been re-encrypted and sent
to them by the proxy. This is because previously received re-encrypted data may
have exposed the symmetric key for that data. The symmetric key can therefore
be viewed as a session key for the time that it is used. It is important to ensure
that the initialisation vector is properly randomised and not re-used [11].

5.3.1 Revocation of decryption privileges

As mentioned in Section 3.2.4 the system requires some form functionality to
revoke previously delegated data access. One way to achieve this could be to
embed time information in the encrypted data and re-encryption keys, in such a
way that a re-encryption of a ciphertext will only yield correct data, if the time
information used during encryption matches the one in the re-encryption key. With
such an approach the customer can have full control over whether a partner has
access to their data, by periodically generating new re-encryption keys for new
time periods. When the customer wishes to revoke access from a partner, they
simply stop generating new re-encryption keys for that party. Another way to
achieve revocation of decryption capabilities can be done by throwing away the
re-encryption keys stored at the proxy. This would result in the immediate stop of
re-encryption of material to the dedicated recipient of the deleted key. However,
this assumes that the data owner trusts the proxy to perform this task. If the
trust for the proxy is low, the data owner can choose to decrease the size of the
time periods and obtain a more fine-grained revocation to the cost of having to
perform the re-encryption key generation process more frequently.

In practice, it would probably be useful to use a combination of them both.
This way, the customer can request that the proxy should discard a certain re-
encryption key to immediately revoke the corresponding partner’s decryption priv-
ileges. However, since the proxy is only partially trusted by the customer, the
customer cannot fully trust that a key really is discarded (revoked) until the end
of that time period. But, the customer does at least have a bounded time span
that decryption privileges may persist after they have requested it to be removed.

5.4 Final design

The design outlined in Section 5.2 does not completely cover the system require-
ments. First of all, there is no way of revoking previously issued decryption privi-
leges. In ABE there is, but we will specify that explicitly in the design. Secondly,
we need to be able to lower the time spent on the computationally expensive
asymmetric operations.

5.4.1 Proxy re-encryption

Combining the concept of temporary decryption delegation, by embedding time
information in ciphertexts and re-encryption keys, and introducing sessions for
symmetric keys we arrive at the following design, described in Figure 5.4.
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1. Setup()→ params: The proxy generates the global parameters params to
be used in the PRE system.

2. Keygen(params)→ skA, pkA: The customer generates its public key pkA,
and private key skA from the parameters params.

3. Keygen(params) → skB , pkB : The partner generates its public key pkB ,
and private key skB from the params. The public key is sent to the cus-
tomer.

4. ReKeygen(params, pkB , skA, t) → rkA→B,t: The customer combines its
private key skA with the public key pkB it received from the partner along
with a time period and the global parameters params. From this it generates
a re-encryption key rkA→B,t, which is valid during the time period t. The
re-encryption key is sent to the proxy.

5. Encryptsym(k, m) → cm: The customer either generates a new random
symmetric key k or use a previously generated symmetric key and encrypts
message m with a symmetric encryption scheme.

6. Encryptasym(params, pkA, k, t) → ck,t: If a new symmetric key k was
generated in the previous step, it is encrypted with the public key pkA of
the customer in an asymmetric PRE scheme. If a previously generated key
was used in the previous step, the encryption of that key is re-used.

7. The ciphertext c is a tuple consisting of the encrypted message cm and the
encrypted key ck,t used in the symmetric scheme. This tuple is sent to the
proxy.

8. ReEncrypt(params, rkA→B,t, ck,t) → c′k: The proxy re-encrypts the en-
crypted symmetric key ck,t into a ciphertext c′k with the re-encryption key
rkA→B,t it earlier received from the customer. If ck,t is equal to the en-
crypted symmetric key from the previous iteration, the re-encryption of
that key is re-used.

9. The new tuple c′, containing c′k and cm, is sent to the partner.

10. Decryptasym(params, skB , c
′
k) → f : If c′k is equal to the re-encrypted

symmetric key from the previous iteration, the partner re-uses the decrypted
key from that iteration. Otherwise, the partner decrypts the re-encrypted
ciphertext c′k with its private key skB and obtains the symmetric key k.

11. Decryptsym(k, cm) → m: With the symmetric key k it extracted in the
previous step the partner decrypts ciphertext cm and obtains the message
m.

5.4.2 Attribute-based encryption

Temporary decryption delegation can be achieved with the previous design by
including a time period in the access policy of the ciphertext and as an attribute
in generated keys. However, we will specify it explicitly that the key generation
algorithm and the encrypt algorithm always takes a time period as input. Similarly,
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Customer (A) Partner (B)Proxy

params = Setup()

pkA, skA = Keygen(params)

 pkB 

rkA->B,t = ReKeygen( 
params, pkB, skA, t) 

pkB, skB = Keygen(params)

 rkA->B,t 

cm = Encryptsym(k, m)

c = (ck,t, cm)  c 
c'k = ReEncrypt( 

params, rkA->B,t, ck,t)

c' = (c'k, cm)  c' 
k = Decryptasym( 
params, skB, c'k)

m = Decryptsym(k, cm)

ck,t = Encryptasym( 
params, pkA, k, t)

Performed once per
unique symmetric key=

Figure 5.4: Sequence diagram for temporary PRE with hybrid en-
cryption and re-use of symmetric keys.

as above, symmetric session keys are also included. The sequence diagram can be
viewed in Figure 5.5.

1. Setup()→ pk, mk,: The customer generates a public key pk and a master
key mk.

2. Keygen(mk, a, t) → ska,t: By combining the master key mk, a set of
attributes a, and a time period t the customer generates a private key ska,t.

3. Encryptsym(k, m) → cm: The customer either generates a new random
symmetric key k or use a previously generated symmetric key and encrypts
the message m using a symmetric encryption scheme to produce the cipher-
text cm.

4. Encryptasym(pk, Γ, k, t) → cΓ,t: If a new symmetric key was generated
in the previous step it is now encrypted using an CP-ABE scheme with
the public key pk of the customer and an access policy Γ. Otherwise, the
encryption of the key generated in the previous iteration is re-used.
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5. The resulting ciphertext c which is sent is a tuple of the encrypted symmetric
key cΓ,t, and the encrypted message cm.

6. Decryptasym(ska,t, cΓ,t) → k: If cΓ,t equals ciphertext from the previous
iteration the decrypted key from that iteration is re-used. Otherwise, the
partner decrypts the ciphertext cΓ,t containing the symmetric key k with its
private key ska,t. This step is only successful if the attribute set a and the
time period t in the private key fulfils the requirements of the access policy
Γ and the time period t in the ciphertext.

7. Decryptsym(k, cm)→ m: In the last step the partner decrypts the cipher-
text (cm) with the symmetric key k, extracted from the previous step, to
obtain the message (m).

Customer PartnerProxy

pk, mk = Setup()

ska,t = Keygen(mk, a, t)

cm = Encryptsym(k, m)

cΓ,t = Encryptasym(pk, Γ, k, t)

c = (cΓ,t, cm)  c 

 c 

 ska,t

k = Decryptasym(ska,t, cΓ,t)

m = Decryptsym(k, cm)

= Performed once per
unique symmetric key

Figure 5.5: Sequence diagram for temporary ABE with hybrid en-
cryption and re-use of symmetric keys.



Chapter 6
Implementation

In the previous chapter the potential and issues of different types of cryptosys-
tems were discussed and concluded. The decision fell on ABE and PRE as they
accommodate properties of special interest for this thesis objectives. In the start
of this chapter the choice on which specific schemes to focus on is made. This is
then followed up with the necessary modifications for overcoming shortcomings in
these. And finally, proof is presented that the security of the modified schemes
still is preserved.

6.1 Choice of schemes

As discussed in Section 4.4, there are several PRE and ABE schemes with different
properties. Regarding PRE, with help of the analysis made by Nuñez, Agudo and
Lopez in [18], the two schemes AFGH06 and LV11 are found to be suitable for
our needs. They are both well renowned schemes and they fulfil the required
properties. The big difference between them is that AFGH06 is IND-CPA and
relatively fast, while LV11 is IND-RCCA and relatively slow.

When it comes to ABE, the choice fell on the scheme W11. Just like AFGH06
and LV11, it is too a well renowned scheme fulfilling the required properties.

The implementation of the schemes needed to be based on a cryptographic
library containing operations for elliptic curve cryptography and bilinear pairing.
We found the library Charm [1] to be very well suited for this. It is a framework
intended for prototyping of cryptosystems using the high-level language Python.
However, computationally intensive operations are performed by native C modules,
in order to keep the performance at a high level. Implementations of AFGH06
and W11 were already present in Charm, but it lacked one for LV11, which we
implemented ourselves. In order to implement the LV11 scheme, an OTS scheme
was required. We decided to implement and use the simple hash-based signing
algorithm described by Lamport in [13]. Furthermore, a benchmarking program
was written and used to measure the performance of all the schemes and their
following modified versions.

Lastly, the possibility to combine PRE and ABE with symmetric encryption,
to achieve the desired hybrid encryption, described in 5, was implemented.

33
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6.2 CCA2-security of attribute-based encryption

The original ABE scheme W11, presented by Waters in [22], is not CCA2 secure,
but, as discussed in Section 4.3, it can be made IND-CCA2 if the modification
presented by Canetti, Halevi and Katz in [7] is applied on the scheme. As W11
already existed as an implementation in the Charm library we extended this and
added the feature needed for CCA2 security. We make use of the Lamport OTS
[13] to accomplish ciphertext verification, to ensure that ciphertexts are unaltered
at the point of decryption.

Let Encrypt and Decrypt denote the original encryption and decryption al-
gorithms in W11. Furthermore, SigGen, Sign, V erify are the key generation,
signing and verification algorithms respectively, in the Lamport OTS scheme. Γ is
some access policy, ska a with the attribute set a, and pk the public key. We can
now define modified versions of the original algorithms, to construct a new CCA2-
secure version of the W11 scheme, which we will call W11-CCA2. The operations
in W11-CCA2 are defined as following:

Encrypt’(pk, Γ, m): (1)
c′ ← Encrypt(pk, Γ, m)
svk, ssk ← SigGen()
c = (svk, c, Sign(ssk, c))
Return: c

Decrypt’(ska, c): (2)
svk, c′, σ ← c
if V erify(svk, c′) 6= 1 : Return invalid
m← Decrypt′(ska, c

′)
Return: m

6.3 Expiration property of re-encryption keys

As discussed in Section 5.3.1, the system requires some way to revoke decryption
rights that has previously been delegated to a partner. ABE inherently has this ca-
pability. For example, using ciphertext-policy ABE, messages would be encrypted
using an access policy that requires a specific time stamp. For PRE however, it is
not that simple. The trivial way to do it, as mentioned before, would be for the
proxy to stop re-encrypt material for a partner whose decryption rights has been
revoked. However, in this case there are no cryptographic insurances that material
would not get re-encrypted anyway and distributed to the partner. There is only
a matter of trust in that the proxy does what it is supposed to do.

The better option would be to embed the time data into the re-encryption
keys, so that they are only valid for data encrypted with matching time data.

6.3.1 A first attempt

In our first attempt to embed time data, the customer would sign time stamps of a
chosen granularity with their private key. This can be done in advance and these
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signed time stamps are then used during encryption. Note that it only makes
sense to embed time data when performing level 2 encryption. This since the
purpose is to assure that re-encryption keys have valid time stamps, and only level
2 encrypted messages can be re-encrypted.

AFGH06

To realise this construction in the PRE scheme AFGH06, let us recall the level
2 encryption, re-encryption key generation and level 2 decryption algorithms. G
and GT are two groups of prime order with the bilinear mapping e : G × G →
GT . The global parameters are params = (g, Z) where g is a random generator
in G and Z = e(g, g) is a random generator in GT . The two users, A and B,
have one key-pair each; (pkA, skA) = ((Za1 , ga2), (a1, a2)) and (pkB , skB) =

((Zb1 , gb2), (b1, b2)) respectively. R←− denotes a random number generator.

Encrypt2(params, pkA, m): (1)
g ← params
Za1 ← pkA

r
R←− Z∗q

c = (gr, m · Za1·r)
Return: c

ReKeygen(params, skA, pkB): (2)
a1 ← skA
gb2 ← pkB
rkA→B = gb2·a1

Return: rkA→B

Decrypt2(params, skA, c): (3)
gr, m · Za1·r ← c
a1 ← skA
m = m · Za1·r/e(gr, ga1)
Return: m

Let us now introduce a new algorithm called SignT imestamp. skA = a1, a2

is the private key of user A and t is an element representing a time stamp.

SignTimestamp(skA, t): (4)
a1 ← skA
st = ta1

Return: st

The actual time stamps can be anything representing some time interval. For
example, the string ’2018-36’ could represent the 36th week of 2018. The ob-
ject representing the time interval is encoded into Zq before it is given to the
SignT imestamp algorithm. We assume that the time stamp t is public knowl-
edge, but since DLP is hard, st is not feasible to compute for someone that does
not possess skA, i.e. anyone else but the customer.

We can now modify the level 2 encryption, re-encryption key generation and
level 2 decryption algorithms, to construct a new version of the AFHG06 scheme
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with ability to make temporary delegations, as

Encrypt2’(params, pkA, m, st):
(5)

g ← params
Za1 ← pkA

r
R←− Z∗q

cst = (gr, m · Za1·r·st)
Return: cst

ReKeygen’(params, skA, pkB , st):
(6)

a1 ← skA
gb2 ← pkB
rk
A

st−→B
= gb2·a1·st

Return: rk
A

st−→B

Decrypt’2(params, skA, cst, st): (7)
gr, m · Za1·r·st ← c
a1 ← skA
m = m · Za1·r·st/e(gr, ga1·st)
Return: m

We will refer to this scheme as AFGH06 Temp. v1. To verify that the modi-
fications hold, let us check the decryption of a level 2 encrypted message, and the
decryption of a re-encrypted message. The parameter params is omitted below.
For decryption of a level 2 message

m = Decrypt′2(skA, cst, st)

= Decrypt′2(skA, Encrypt
′
2(pkA, m, st), st)

= Decrypt′2(skA, (gr, m · Za1·r·st), st)

=
m · Za1·r·st

e(gr, ga1·st)

=
m · Za1·r·st

Za1·r·st

= m
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and decryption of a re-encrypted message

m = Decrypt1(skB , c
′
st)

= Decrypt1(skB , ReEncrypt(rk
A

st−→B
, cst))

= Decrypt1(skB , ReEncrypt(ReKeygen
′(skA, pkB , st), Encrypt

′
2(pkA, m, st)))

= Decrypt1(skB , ReEncrypt(g
a1·b2·st, (gr, m · Za1·r·st))

= Decrypt1(skB , (e(gr, ga1·b2·st), m · Za1·r·st))
= Decrypt1(skB , Z

r·a1·b2·st, m · Za1·r·st))

=
mZa1·r·st

(Zr·a1·b2·st)
1
b2

=
mZa1·r·st

Zr·a1·st

= m

It is easy to verify that the signed time stamp st need to match, in the en-
crypted message and in the re-encryption key, when decrypting a re-encrypted
message or else the decryption will fail.

LV11

The same idea can be applied for the LV11 scheme, but due to the more complex
nature of this scheme, we need to modify all algorithms. G and GT are two groups
of prime order, with the bilinear mapping e : G×G→ GT . The global parameters
are params = (g, u, v, Sig) where g, u and v are random generators in G.
Sig = (SigGen, Sign, V erify) is a strongly unforgeable OTS. The two users, A
and B, have one key-pair each; (pkA, skA) = (ga, a) and (pkB , skB) = (gb, b)
respectively. The original algorithms is defined as

Encrypt1(params, pkA, m): (8)
g, u, v ← params
ssk, svk ← SigGen

r, t
R←− Z∗q

c1 = svk, c3 = e(g, g)r ·m, c4 = (usvk · v)r

c′2 = pktA, c
′′
2 = g1/t, c′′′2 = pkrtA

σ = Sign(ssk, (c3, c4))
c = (c1, c

′
2, c

′′
2 , c

′′′
2 , c3, c4, σ)

Return: c

Encrypt2(params, pkA, m): (9)
g, u, v ← params
ssk, svk ← SigGen

r
R←− Z∗q

c1 = svk, c2 = gpkA·r, c3 = e(g, g)r ·m, c4 = (usvk · v)r

σ = Sign(ssk, (c3, c4))
c = (c1, c2, c3, c4, σ)
Return: c
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ReKeygen(params, skA, pkB): (10)
rkA→B = pk

1/skA
B

Return: rkA→B

Re-encrypt(params, rkA→B , c, pkA): (11)
u, v ← params
c1, c2, c3, c4, σ ← c
if e(c2, uc1 · v) 6= e(pkA, c4) : Return invalid
if V erify(c1, σ, (c3, c4)) 6= 1 : Return invalid
t
R←− Z∗q

c′2 = pktA, c
′′
2 = rk

1/t
A→B , c

′′′
2 = ct2

c′ = (c1, c
′
2, c

′′
2 , c

′′′
2 , c3, c4, σ)

Return: c′

Decrypt1(params, skB , pkB , c
′): (12)

g, u, v ← params
c1, c

′
2, c

′′
2 , c

′′′
2 , c3, c4, σ ← c

if e(c′2, c′′2) 6= e(pkB , g) : Return invalid
if e(c′′′2 , uc1 · v) 6= e(c′2, c4) : Return invalid
m = c3/e(c

′′
2 , c

′′′
2 )1/skB

Return: m

Decrypt2(params, skA, pkA, c): (13)
g, u, v ← params
c1, c2, c3, c4 ← c
if e(c2, uc1 · v) 6= e(pkA, c4) : Return invalid
if V erify(c1, σ, (c3, c4)) 6= 1 : Return invalid
m = c3/e(c2, g)1/skA

Return: m

These algorithms can be modified in the following way, to embed the time
stamp and construct a new scheme with the ability to make temporary delegations

Encrypt’1(params, pkA, m): (14)
g, u, v ← params
ssk, svk ← SigGen

r, t
R←− Z∗q

c1 = svk, c3 = e(g, g)r ·m, c4 = (usvk · v)r, c5 = g
c′2 = pktA, c

′′
2 = g1/t, c′′′2 = pkrtA

σ = Sign(ssk, (c3, c4))
cst = (c1, c

′
2, c

′′
2 , c

′′′
2 , c3, c4, c5, σ)

Return: cst
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Encrypt’2(params, skA, st, m):
(15)

g, u, v ← params
ssk, svk ← SigGen

r
R←− Z∗q

c1 = svk, c2 = gskA·r, c3 = e(g, g)r·st ·m, c4 = (usvk · v)r, c5 = gst

σ = Sign(ssk, (c3, c4))
cst = (c1, c2, c3, c4, c5, σ)
Return: cst

ReKeygen’(params, skA, pkB , st): (16)
rk
A

st−→B
= pk

st/skA
B

Return: rk
A

st−→B

Re-encrypt’(params, rk
A

st−→B
, cst, pkA): (17)

u, v ← params
c1, c2, c3, c4, c5, σ ← c
if e(c2, uc1 · v) 6= e(pkA, c4) : Return invalid
if V erify(c1, σ, (c3, c4)) 6= 1 : Return invalid
t
R←− Z∗q

c′2 = pktA, c
′′
2 = rk

1/t

A
st−→B

, c′′′2 = ct2 = pkr·tA

c′st = (c1, c
′
2, c

′′
2 , c

′′′
2 , c3, c4, c5, σ)

Return: c′st

Decrypt’1(params, skB , pkB , c
′
st): (18)

g, u, v ← params
c1, c

′
2, c

′′
2 , c

′′′
2 , c3, c4, c5, σ ← c′st

if e(c′2, c′′2) 6= e(pkB , c5) : Return invalid
if e(c′′′2 , uc1 · v) 6= e(c′2, c4) : Return invalid
if V erify(c1, σ, (c3, c4)) 6= 1 : Return invalid
m = c3/e(c

′′
2 , c

′′′
2 )1/skB

Return: m

Decrypt’2(params, skA, pkA, cst): (19)
c1, c2, c3, c4, c5 ← cst
if e(c2, uc1 · v) 6= e(pkA, c4) : Return invalid
if V erify(c1, σ, (c3, c4)) 6= 1 : Return invalid
m = c3/e(c2, c5)1/skA

Return: m

We will refer to this scheme as LV11 Temp. v1. One extra component, c5,
had to be added to the ciphertext, so that the verification of the ciphertext’s well-
formedness would remain intact. We verify the correctness of these modifications
by again, decrypting a level 2 encrypted message and a previously re-encrypted
message:
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m = Decrypt′2(skA, cst, st)

= Decrypt′2(a, Encrypt′2(pkA, m, st), st)

= Decrypt′2(a, (svk, ga·r, e(g, g)r·st ·m, (usvk · v)r, σ), st)

=
e(g, g)r·st ·m
e(ga·r·st, g)

1
a

=
e(g, g)r·st ·m
e(g, g)

a·r·st
a

=
e(g, g)r·st ·m
e(g, g)r·st

= m

m = Decrypt′1(skB , c
′
st)

= Decrypt′1(b, ReEncrypt′(rk
A

st−→B
, cst))

= Decrypt′1(b, ReEncrypt′(ReKeygen′(skA, pkB , st), Encrypt
′
2(pkA, m, st)))

= Decrypt′1(b, ReEncrypt′(g
b·st
a , (svk, ga·r, e(g, g)r·st ·m, (usvk · v)r, σ)))

= Decrypt′1(b, (svk, ga·t, g
b·st
a·t , ga·r·t, e(g, g)r ·m, (usvk · v)r, σ)))

=
e(g, g)r·st ·m
e(g

b·st
a·t , ga·r·t)

1
b

=
e(g, g)r·st ·m
e(g, g)

b·st·a·r·t
b·a·t

=
e(g, g)r·st ·m
e(g, g)st·r

= m

The above constructions do accomplish the goal of putting an expiration date
on re-encryption keys. In fact, the solution is of course not restricted to be used
with time stamps to achieve expiration dates. Arbitrary data can be given to the
SignTimestamp function, and the encrypted data and re-encryption key would
need to have matching embedded data, which would allow for any type of cate-
gorisation, not only by time.

However, the solution decreases the scheme’s flexibility due to the need of
secret information during level 2 encryption. Algorithm 5 and Algorithm 15 take
the parameter st = ta1 , which clearly needs access to the secret value a1, when
constructed. In the general case, where we need other parties than the customer
itself to encrypt messages under the customers public key, this imposes a problem.
The customer does now need to distribute signed time stamps to whoever is doing
the encryption. Although, as mentioned before, multiple signed time stamps can
of course be created and distributed in advance, perhaps at system setup, so that
no interaction is required during runtime.
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6.3.2 A second attempt

The introduction of time stamps into the LV11 and AFGH06 schemes results in
an unwanted issue, each time stamp must be generated and distributed to the
point where data will be encrypted. The aim of the second attempt is to remove
the need to distribute time stamps, these should be possible to generate at an
arbitrary point without the need of secret data.

In [14], Libert and Vergnaud published a new version of their previous article
[15]. In this version, they introduced a scheme with temporary delegation, that
do not require any secret information during the level 2 encryption operation.
Basically, the time information t is protected by randomising the function FA(t) =
gt · ga2 , where ga2 is the second element of user A’s public key. This gives us the
term (gt · ga2)r = g(t+a2)r. We will call this scheme LV11 Temp. v2.

We can use the same approach to make another modification of AFGH06,
which we will call AFGH06 Temp. v2. Instead of providing a signed time stamp
as input to Algorithm 5, a time stamp (encoded into Zq) is directly given as input
to the algorithm, and the second part of the user’s public key is used to define the
same function Fa(t) as above. Compared to the original AFGH06, a second level
ciphertext looks like (g(a2+t)r , m · Za1·r) instead of (gr, m · Za1·r), and the level
2 encryption algorithm is modified as

Encrypt2”(params, pkA, m, t):
(20)

g ← params
Za1 , ga2 ← pkA

r
R←− Z∗q

Fa(t) = ga2 · gt = g(a2+t)

Return: ct = (Fa(t)r, m · Za1·r)

As we can see, no secret information is required by the algorithm. The re-
encryption key generation algorithm is altered similarly, by dividing the exponent
in the re-encryption key by a2 + t, so that these cancel each other out at the
re-encryption step.

ReKeygen”(params, skA, pkB , t):
(21)

a1, a2 ← skA
gb2 ← pkB
rk
A

t−→B
= gb2·a1/(a2+t)

Return: rk
A

t−→B

Lastly, the level 2 decryption algorithm is modified to

Decrypt”2(params, skA, ct, t): (22)
g(a2+t)r, m · Za1·r ← c
a2 ← skA
m = m · Za1·r/e(g(a2+t)r, ga1/(a2+t))
Return: m

The correctness of the modifications can be verified by decrypting a level 2
ciphertext and a previously re-encrypted ciphertext
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m = Decrypt′′2(skA, ct, t)

= Decrypt′′2((a1, a2), Encrypt′′2(pkA, m, t), t)

= Decrypt′′2((a1, a2), (g(a2+t)·r, m · Za1·r), t)

=
m · Za1·r

e(g(a2+t)·r, g
a1

a2+t )

=
m · Za1·r

Za1·r

= m

m = Decrypt1(skB , cb,t)

= Decrypt1(b2, ReEncrypt(rk
A

t−→B
, ca,t))

= Decrypt1(b2, ReEncrypt(ReKeygen
′′(skA, pkB , t), Encrypt

′′
2(pkA, m, t)))

= Decrypt1(b2, ReEncrypt(g
b2·a1
a2+t , (g(a2+t)·r, m · Za1·r)))

= Decrypt1(b2, (e(g
b2·a1
(a2+t) , g(a2+t)·r), m · Za1·r))

= Decrypt1(b2, Z
b2·a1·r, m · Za1·r)

=
m · Za1·r

Z
b2·a1·r

b2

=
m · Za1·r

Za1·r

= m

Security proof

This version of AFGH06 looks promising. We extend the security proof of theorem
3.1 in [3], to verify that the security is still intact. The proofs are copied directly,
possibly with some minor differences in notations, and with our own extensions
added in bold text.

• Standard security.

1. On input (g, ga, gb, gc, Zbc
2

, Zd), the simulator sets y = gc, W =
e(y, y) and obtains the tuple (y = gc, yα = ga, yβ = gb, yγ =

g, W β/γ = Zbc
2

, Wαβ/γ = Zd) for α = aac , β = b
c , γ = 1

c The
global parameters params = (y, W ) and the target users public key
pkT = (W β/γ , gt) are sent to A.

2. For j = 1 up to poly(k) time periods, A can perform the
following:

(a) For i=1 up to poly(k), A can request the following:
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i. a delegation from T to an honest party for the time pe-
riod lj . S randomly selects (r(i,1), r(i,2))

R←− Zq and sets
rkT→i,lj = yγr(i,2)/(t+lj) and pki = (W r(i,1) , yβr(i,2)). rkT→i,lj
and pki are sent to A.

ii. a delegation to T from an honest party, for the time pe-
riod lj . The simulator uses either the recorded value r(i,1)

or generates a new random values for the party i and sets
rki→T ,lj = (gt)r(i,1)/(r(i,2)+lj). pki and rki→T ,lj are sent to
A.

iii. a delegation to T from a party corrupted by A, for the
time period lj . A can generate these internally by running
(pki, ski)← KeyGen and computing rki→T ,lj = (gt)i1/(i2+lj).

3. Eventually, during the last time period j, A must output a chal-
lenge (m0, m1, τ) where m0 6= m1 and τ is its internal state infor-
mation. The simulator randomly selects b ∈ {1, 0} and computes the
ciphertext cb = (yα(t+lj), mbW

αβ/γ). S sends (cb, τ) to A and waits
for A to output b′ ∈ {0, 1}.

4. If b = b′, then S guesses ”d = abc”, otherwise S guesses ”d 6= abc”

If d = abc then this is a perfect simulation. If d 6= abc thenmb is information-
theoretically hidden from A, since Wαβ/γ = (Zd) was chosen independently
from yα = (ga). Thus, if A succeeds with probability 1

2 + ε, then S succeeds
with probability 1

2 + ε
2 . This contradicts the extended decision bilinear Diffie-

Hellman (eDBDH) assumption. The additional term in the delegation
keys and the cipher text has no effect on S’s chance of success, it
still contradicts the eDBDH assumption.

• Master secret security.

1. On input (g, ga) in G1, output the global parameters (g, Z) and the
target public key pkt = (Za, gt2), where Za = e(g, ga) and t2 is a
random element in Zq.

2. For j = 1 up to poly(k) time periods, A can perform the
following:

(a) For i = 1 up to poly(k), A can request:
i. a delegation from T to a party corrupted by A, for the
time period lj . S randomly selects (r(i,1), r(i,2))

R←− Zq,
sets rkT→i,lj = gar(i,2)/(t2+lj), pki = (W r(i,1) , gr(i,2)), and
ski = (r(i,1), r(i,2)), and sends (pki, ski, rkT→i,lj ) to A.

ii. a delegation to T from a party corrupted by A, for the time
period lj . A can generate these delegations internally by
running (pki, ski) ← KeyGen() and computing rki→T ,lj =

(gt2)i1/(i2+lj)

iii. Eventually, A must output a purported for T of the form
(α, β). The simulator returns the value α.
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The simulation is perfect, thus A must not be able to recover the master
secret key of T, despite accepting and providing numerous delegations to T,
because otherwise, S can efficiently solve the DLP in G1. The additional
term in the delegation keys has no effect on S’s chance of success,
it still contradicts the discrete logarithm assumption."

6.4 Pre-processing of group element exponentiations

In almost all the scheme algorithms there are exponentiations involved and they
are a relatively costly operation to perform. As one can see in AFGH06 and
LV11, group elements in the global parameters and public keys are repeatedly
exponentiated in the scheme algorithms. Therefore, there may be of interest to
pre-process exponentiations of these group elements. The Charm framework [1]
provides a feature to do this, and the affect this have on the benchmarking results
can be seen in Chapter 7. This feature does of course require extra memory and
this should definitely be taken under consideration if the hardware running some
part of the system have memory constraints or if the number of elements that are
pre-processed can become very large. To get an idea about how much memory
that are required for storing the pre-processed information we look at the source
code for the PBC library [16].

For an element e ∈ G with order q and an integer k (default k = 5), the
pre-processing information for element e will consist of a table with the size
(
⌊

log2 q
k

⌋
+ 1) · 2k · element_representation_size. For example, using the curve

called "SS512" in the Charm library, the group G1 will have order 2159. The el-
ement representation size is 16 bytes, and so the space required is (

⌊
159
5

⌋
+ 1) ·

25 · 16 bytes = 1024 bytes. This is a relatively small amount of data and should
not impose any problems when pre-processing a pre-determined amount of group
elements. But, if for example the proxy wants to pre-process re-encryption keys,
where the number of keys can grow, it could be of interest to take the extra memory
requirements needed for the pre-processing into consideration.

6.5 Proof of concept

In order to show how these concepts can be used in practice, a prototype for
streaming video through proxy re-encryption was built.

6.5.1 GStreamer

GStreamer is a library and framework for constructing software that processes
multimedia [12]. The framework is built with modularity in mind and the basic
building blocks when creating software that utilises GStreamer is called elements.
Elements take incoming data, processes the data and outputs the result. These
elements are chained together to form pipelines that processes the media data that
is fed into it. The first and last elements of the pipeline are typically called sources
and sinks. For example, the source could come from a video file on a disk, and the
sink could be a video player that displays the video on a monitor.
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Video source Video filter 1 Video filter 2 Video sinkVideo filter n...

Figure 6.1: Video flows from a video source through any number of
filters that do some sort of processing and finally into a video
sink.

6.5.2 Design

In the described system in Chapter 3, video is produced inside the customer’s do-
main, it is stored and re-encrypted in the proxy’s domain and then finally down-
loaded and decrypted in the partner’s domain. This means that all three PRE
operations are executed independently in different domains. To simulate this en-
vironment, three different programs were written; encryptor, re-encryptor and
decryptor. The encryptor encrypts some video source and produces a file with
the result, which represents the data stored at the proxy. The proxy can then
run re-encryptor with the encrypted data as input and produce a new file with
the re-encrypted data. This is the data that should be sent to the partner. The
partner can run decryptor, to decrypt the data and recover the original video
stream.

The actual code that does the PRE operations was implemented as an GStreamer
element, which means that it is not in any way specific to the above programs, but
can be used in any GStreamer pipeline. The element performs the PRE operations
by calling the appropriate functions in the instantiated scheme from the Charm
library. In this prototype, the LV11 Temp. v2 scheme is used, but it can easily
be exchanged to another PRE scheme as they all follow the same interface. The
element encrypts any incoming data by calling the level 2 encryption algorithm
and writing the resulting encrypted data as output, prepended by the total size
of the encrypted data chunk. The need to prepend each encrypted chunk of data
with its size, comes from that when the proxy is going to read the encrypted data,
in order to re-encrypt it, there is no telling exactly how much data will have been
buffered each time the element is asked to perform re-encryption. Therefore, by
first reading the size of encrypted data chunk, the element can wait until it has
accumulated an amount of data, equal to the size of the data chunk, before it per-
forms the re-encryption. The same process is done when decrypting. Figure 6.2
illustrate how data flows through the element during the different PRE operations.
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Video data Encryption
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data Video data
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Figure 6.2: How the element performs the PRE operations on the
video data.



Chapter 7
Performance results

This chapter contains all data collected from testing the different schemes from
Chapter 6. To evaluate their performance, two different type of benchmarks were
performed. The first measured the schemes performances in terms of execution
time and the other in terms of size. The same elliptic curve was used for each
scheme, which was a super-singular curve with a 512-bit base field, referred to as
"SS512" in the Charm library.

7.1 Execution time

To evaluate the execution time, a small benchmarking program was written using
the Python language. It uses a built-in benchmarking functionality in the Charm
library that is able to measure the execution time of specific operations. What
is worth noting is that it only measure the mathematical operations that are
performed in the native C modules, which means that the results should not
be influenced by the overhead of the relatively slow Python language. For each
scheme, the benchmarking program ran each algorithm 500 times, measured the
execution times, and the reported the mean value.

7.1.1 Hardware used

Even though the main purpose of the results is to compare the different schemes
with each other, it may also be of interest to know which hardware benchmarking
was performed on. This if some operations are to be run on hardware with limited
performance and we want to know roughly what results we may expect from such a
device. The hardware specifications used for our benchmarking were the following:

CPU : Intel i7-7700K @ 4.20 GHz

RAM : 16 GB @ 2400 MHz

7.1.2 Proxy re-encryption schemes

This subsection contains all data collected from the test runs performed on the
PRE schemes, which in turn can be divided into implementations with and without
pre-processed group elements.
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Without pre-processed group elements

Table 7.1 and Table 7.2 shows the execution time of each algorithm in the PRE
schemes, without the use of pre-processed group elements.

Table 7.1: Benchmark of AFGH06 and its temporary delegation
versions, without pre-processed group elements.

CPU Time (µs)
Operation AFGH06 AFGH06 Temp. v1 AFGH06 Temp. v2
Encrypt1 877.8 777.4 781.6
Encrypt2 1106.8 1069.0 2390.9
Re-keygen 965.7 970.9 953.9
Re-encrypt 589.3 592.1 589.1
Decrypt1 86.5 84.4 86.4
Decrypt2 1620.7 1583.4 1563.8

Table 7.2: Benchmark of LV11 and its temporary delegation ver-
sions, without pre-processed group elements.

CPU Time (µs)
Operation LV11 LV11 Temp. v1 LV11 Temp. v2
Encrypt1 5857.2 5737.4 10037.9
Encrypt2 3797.6 4744.4 5771.7
Re-keygen 977.2 970.1 3903.5
Re-encrypt 4315.9 4337.4 9626.6
Decrypt1 3328.3 3416.8 5735.4
Decrypt2 2064.4 2064.8 919.6

With pre-processed group elements

Table 7.3 and Table 7.4 shows the execution time of each algorithm in the PRE
schemes, with the use of pre-processed group elements.
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Table 7.3: Benchmark of AFGH06 and its temporary delegation
versions, with pre-processed group elements.

CPU Time (µs)
Operation AFGH06 AFGH06 Temp. v1 AFGH06 Temp. v2
Encrypt1 723.3 741.7 718.9
Encrypt2 176.9 219.7 323.1
Re-keygen 135.3 135.7 142.9
Re-encrypt 591.8 591.2 592.9
Decrypt1 83.9 86.1 84.9
Decrypt2 745.9 737.1 752.5

Table 7.4: Benchmark of LV11 and its temporary delegation ver-
sions, with pre-processed group elements.

CPU Time (µs)
Operation LV11 LV11 Temp. v1 LV11 Temp. v2
Encrypt1 3248.1 3225.8 6289.9
Encrypt2 2921.8 3074.4 4032.3
Re-keygen 4893.8 4987.9 10970.7
Re-encrypt 2669.8 2743.7 6202.7
Decrypt1 3316.9 3341.2 5823.8
Decrypt2 2066.3 2110.0 889.0

7.1.3 Attribute-based encryption schemes

To get a comparable result between PRE and ABE, only one attribute was included
in the access structure used to encrypt the ciphertext, as well as only one attribute
in the generated encryption key. This attribute represents the time stamp used
in PRE so that the two alternatives have comparable properties. This subsection
contains data collected from test runs of ABE, which in turn can be divided into
implementations with and without pre-processed of group elements.

Without pre-processed group elements

Table 7.5 shows the execution time of each algorithm in the ABE schemes, without
the use of pre-processed group elements.
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Table 7.5: Benchmark of W11 and W11-CCA2 without pre-
processed group elements.

CPU Time (µs)
Operation W11 W11-CCA2
Keygen 5125.0 5123.7
Encrypt 6968.8 9487.2
Decrypt 3062.5 3226.5

With pre-processed group elements

Table 7.6 shows the execution time of each algorithm in the ABE schemes, with
the use of pre-processed group elements.

Table 7.6: Benchmark of W11 and W11-CCA2 with pre-processed
group elements.

CPU Time (µs)
Operation W11 W11-CCA2
Keygen 3437.5 3457.1
Encrypt 4437.5 6891.6
Decrypt 3062.5 3243.5

7.2 Object sizes

When using any of the schemes, they are going to require some extra storage for
the different objects. Ciphertexts are going to be larger and in PRE, the proxy
will potentially be storing a very large number of re-encryption keys. In ABE, it
is instead the user that will store a potentially large number of decryption keys.
Table 7.7 and Table 7.8 shows the additional space needed by the PRE schemes
in ciphertexts and re-encryption keys.

Table 7.7: Size of objects that needs to be stored in a large amount
using AFGH06 and its temporary delegation versions.

Size (bytes)
Object AFGH06 AFGH06 Temp. v1 AFGH06 Temp. v2
Re-encryption key 90 90 90
Level 1 ciphertext 348 348 348
Level 2 ciphertext 264 264 264
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Table 7.8: Size of objects that needs to be stored in a large amount
using LV11 and its temporary delegation versions.

Size (bytes)
Object LV11 LV11 Temp. v1 LV11 Temp. v2
Re-encryption key 90 90 180
Level 1 ciphertext 630 630 990
Level 2 ciphertext 450 450 630

Table 7.9 shows the additional space needed by the ABE schemes in ciphertexts
and decryption keys.

Table 7.9: Size of objects that needs to be stored in a large amount
using W11 and W11-CCA2.

Size (bytes)
Object W11 W11-CCA2
Decryption key 270 270
Ciphertext 444 540





Chapter 8
Discussion

In this chapter, we discuss the different aspects of PRE and ABE, as well as the
results and insights gained during the work on this thesis.

8.1 Applications and properties

Although it is possible to accomplish our goal with both PRE and ABE, the
two techniques will result in a system with very different properties. One of the
main differences is where the actual delegation transformation of the data takes
place, meaning, where are the keys containing the information about whether
a partner has decryption right to certain data stored and managed, as well as
where the ciphertexts are decrypted/re-encrypted by these keys. Using PRE, the
transformation takes place at the proxy, when a ciphertext encrypted under a
customer’s public key is re-encrypted to a ciphertext encrypted under a partner’s
public key, given that a valid re-encryption key exists of course. The computational
cost of doing this is paid by the proxy. Using ABE on the other hand, the same
transformation is in a sense performed directly at the partner when decrypting the
ciphertext, given that they have a valid decryption key. In this case, the partner
pays the computational cost.

The task of doing the transformation does not only require a higher compu-
tational cost, but it also requires a more complex system. It requires the ability
to receive new decryption/re-encryption keys and store them safely, mapping the
keys to the right data packages and so on. There could be a problem with doing
this at the partner side, if it for example should be implemented by some software
developed by another party than the storage service provider. In other words, it
is more difficult for third-party applications to provide support for the service if
it requires complex implementations.

Another important difference between the two is that, while we have PRE
schemes that can "attribute" ciphertexts and re-encryption keys with for example
time stamps, ABE has the possibility to make complex access policies. This opens
up for more possible use cases where decryption privileges can be delegated based
on more than just a single attribute as in PRE.
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8.2 Security

The nature of PRE schemes make it fundamentally hard to achieve IND-CCA2.
Two ciphertexts, where the second one is a re-encryption of the first on, are both
well-formed ciphertexts. But they both decrypt to the same plaintext which vio-
lates the rules of CCA2-security. However, Canetti, Krawczyk and Nielsen defined
a slightly relaxed variant of CCA2 in [8] which they called replayable chosen ci-
phertext attack (RCCA). This variant essentially the same as CCA2, except that
it allows an attacker to generate new ciphertexts that decrypts to the same plain-
text as another given ciphertext. Canetti, Krawczyk and Nielsen also finds that
for most practical applications it is sufficient for a scheme to achieve IND-RCCA
instead of IND-CCA2. Because of this, we consider the LV11 scheme [14], which
achieves IND-RCCA, to have a high level of security even though it cannot be
given the IND-CCA2 label.

Attribute based encryption does not have same inherent properties that make
it hard to achieve IND-CCA2 as PRE. Here we can more easily achieve the full
notion of IND-CCA2, which of course is desirable. However, PRE and ABE work
very different in practice and have a lot of different properties, which we consider
being of more gravity when it comes to deciding which one to use, especially when
comparing IND-RCCA and IND-CCA2 since they are very close to each other.

The PRE scheme AFGH06 [3] lacks the protection against CCA that the
schemes above have, but in return, its construction is much simpler. This also
means that it is faster than the others. Even though it is highly desirable to reach
CCA security, this scheme could still be of interest if the performance is of special
importance. Maybe CCA secure alternatives are just too slow to be practical in
certain cases. However, in the end the scheme is vulnerable against CCA. A CCA
means that the attacker has some sort of possibility to retrieve information from
re-encryptions or decryptions of ciphertexts, of the attackers choosing. One could
take measures to minimize the chance of such attacks being possible in the system,
but never be sure that there are not any. If the data being protected is sensitive,
which it in most cases are, this scheme should not be used. It has however served
a good purpose during our work due to its simpler construction which made it
easy to work with and understand. Progress from work with this scheme did help
us while working with the other schemes.

8.2.1 Key revocation

A crucial part of access control is access revocation. A data owner may at any time
want to revoke access privileges from certain parties. As mentioned in Section 4.3
and Section 4.4 the drawbacks of both ABE and PRE is the lack of efficient ways
to revoke existing keys. The use of time stamps in keys and ciphertexts achieves
some sort of lazy revocation. Once a partner or the proxy no longer have a key
with time stamps matching the current time period, the partner has in some sense
been revoked. The fact that an old key is still valid for older data, which do have
a matching time stamp, should however not be a problem. After all the partner
did have access to that data and may as well have copied and stored the data
elsewhere during that time period. Therefore, it makes no difference that old keys
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are still valid even though the partner is not being delegated any new keys.
The PRE implementations, a first attempt and a second attempt, presented

in Section 6.3, are two approaches of achieving lazy revocation of keys. Both
approaches embed time data into ciphertexts and re-encryption keys. The first
attempt makes use of signed time stamps. These must be produced at the lo-
cation where the private key of the owner exists, which consequently results in a
distribution problem, as these signed time stamps must be distributed to all points
where encryption occurs. If more fine-grained time periods are used, this opera-
tion must be performed more frequently. In [14], Libert et al. present a version
of their own LV11 scheme, which uses a technique to generate time stamps using
only the data owner’s public key. The second attempt borrows this technique to
modify the AFGH06 scheme, to a version that also has this property. By doing
this we overcome the distribution problem in the first attempt and thus allowing
for more fine-grained time stamps without having to first distribute these.

If the owner of data can trust the cloud service provider to perform actions
correctly on demand, such as destroying re-encryption keys, PRE can achieve
instant revocation, since data can no longer be re-encrypted if the re-encryption
key no longer exists. This would of course require partial trust for the service
provider. Regarding ABE, it is only possible to achieve lazy revocation, at least in
our design. It could be possible that one can achieve instant revocation using non-
monotone access structures, by expressing that revoked partners do not qualify to
decrypt. However, the investigation in this property is outside the scope of this
thesis.

8.3 Performance

The performance is another important factor because our system should support
streaming of data without adding unacceptable delays. Let us initially look at
the differences between PRE and ABE by comparing the content of Figure 5.2
and Figure 5.3 as this will give a good picture of the differences between the two
cryptosystems. PRE requires more steps to distribute data compared to ABE,
but depending on the individual schemes and settings, one cannot say that ABE
would perform better. Naturally, some operations are executed more frequently,
some have direct impact on the performance, while others should have a very low
or no impact. The operations Setup and Keygen in both PRE and ABE as well
as ReKeygen in PRE, are only performed during setup and when new delegations
are issued and should thus have no direct impact on performance. The time
critical operations are primarily Encrypt1, Encrypt2, ReEncrypt, Decrypt1, and
Decrypt2 for PRE, and Encrypt and Decrypt for ABE, as these will be performed
for each data packet.

The benchmarking results found in Table 7.1 and Table 7.2 displays the differ-
ences between the two PRE schemes AFGH06 and LV11 and as viewed there is a
noticeable variation in time needed for the same operations in the both schemes,
AFGH06 is considerably faster in the performance-affecting operations as they in
general require less complex computations (at the cost of security) than LV11. So,
we can within a type of cryptosystem see vast differences depending on construc-
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tion and implementation. The benchmarks performed for ABE contained only one
attribute, a time stamp, so that the comparison between the two cryptosystems
would be balanced. The down-part of this is that ABE is that it is not utilised as
it is meant to be, thus the benchmark should be seen as a best-case scenario.

ABE on the other hand have fewer operations needed to perform the same
objective as PRE and if we look at the values in Table 7.2 (LV11, original, without
pre-computations) for LV11 and compare these with the values in Table 7.5 for
W11 [22] (W11, original, without pre-computations) we can see that encryption-
decryption from end-to-end is more or less the same. However, the advantages of
ABE are also its disadvantages. As access policies and attribute lists grow larger
so does the computational time needed to encrypt and decrypt the material, thus
if fine-grained access control is a requirement then the consequences will be large
ciphertexts and reduced performance. The penalty for adding more attributes vary
between schemes and implementations, the increase is often linear with varying
steepness depending on how the scheme is constructed. The consequence of this
might be that a less specific access policy is used, which directly affects security
in order to maintain high performance.

8.3.1 Symmetric to asymmetric key ratio

Asymmetric encryption may introduce delays as time critical data is streamed, an
approach of mitigating this penalty would be by creating sessions where symmetric
keys are re-used. This would mean that the operations of the asymmetric scheme
would not have to be applied to each individual package but rather instead to
a session of packages. The symmetric key now only has to be encrypted, (re-
encrypted) and decrypted once for the session of data packages protected with the
same symmetric key. If the time delays in a stream is too large, then the symmetric
key generation ratio can be decreased. If there is margin for a lower ratio, then
the frequency of new symmetric keys can be increased. However, the consequences
of symmetric key sessions are decreased security and weaker access control. If a
symmetric key is compromised more data is exposed than the standard scenario
of one unique symmetric key per data package. Also, decryption delegation would
include all data in a session instead of single packages. Ultimately the ratio of
symmetric keys is a trade-off between security and performance, the good part in
this is that it is a very flexible value that can be changed at a moment’s notice.

8.4 Financial considerations

All computational operations performed, and memory used to store data are fi-
nancial expenses, it is thus in the interest of both cloud storage provider and
customer to keep these down to a necessary minimum. The use of ABE schemes
may result in larger amounts of storage utilised compared to PRE as ciphertexts
grow in size with access policies and so will CPU time. However, if attributes are
used sparsely in ABE, the load on the system is equivalent to when PRE is used.
The benchmarks performed for ABE contained only one attribute, a time stamp,
so that the comparison between the two cryptosystems would be balanced. The
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down-part of this use of ABE is that it is not utilised as it is meant to be thus the
benchmark should be seen as a best-case scenario.

The size of re-encryptions keys generated in a PRE scheme with a 512-bit curve
for the various PRE schemes can be seen in Table 7.7 and Table 7.8. Consider the
LV11 scheme with temporary delegation version 2. Then a re-encryption key takes
180 bytes to store. The number of keys that the proxy needs to store if one assumes
that every customer continuously delegates decryption privileges to every partner
can be calculated by #k = nc ·np ·kf · t where nc is the number of customers, np is
the number of partners, kf is the key frequency and t is the duration a key is stored.
Let us exaggerate and say that we have 10,000 customers, 100 partners, the key
frequency is 365 keys per year (a key is valid for 1 day) and we store keys for 1 year.
Then the amount of storage required would be 180 bytes

key · 36 · 109 keys = 65.7 GB,
which with the storage price of today is negligible.

The storage required for the additional cryptographic data that is appended to
ciphertexts when using any of the schemes it is also a minor problem. This does of
course depend on the type of data that is stored, and more specifically, how much
data that is encrypted each time. In our case this is video data and according
to Axis Site Designer, a tool that can show an estimated bandwidth for a camera
with a certain set of settings, a modest camera recording at the resolution 800x600
with 5 frames per second, the bandwidth is estimated to be 325 kb/s. Let us again
assume we are using the LV11 scheme with temporary delegation version 2 and
that we are storing level 1 ciphertexts. This requires an additional 990 bytes for
each ciphertext. The average part of the ciphertext size that that belongs to the
additional cryptographic data is then 990 bytes

990+ 325·103
5 bytes

= 1.5% which is quite small
in a very pessimistic setting.

So, what will most likely be the major expense is CPU time spent on per-
forming the computationally heavy operations in the ABE or PRE scheme. ABE
and PRE differ here on where these operations take place. PRE will place the
heavy computational operations at the proxy. In fact, the load on the proxy will
be linear to the amount of simultaneous re-encryption operations performed at a
given moment. In ABE all cryptographic operations will be distributed between
the encryptor and decryptor. ABE does not require the proxy to store anything
but ciphertexts and this without any additional required operations, it is not par-
ticipating in the cryptographic protection which of course becomes cheaper for the
proxy.





Chapter 9
Conclusions

This master’s thesis has investigated techniques to encrypt data before it is stored
outside the owner’s domain, inside cloud storage services, this while still assur-
ing it is distributable. The study showed that there are two existing techniques
which show promising characteristics; proxy re-encryption, and attribute based en-
cryption. However, both techniques have drawbacks and limitations, whereof the
common one is key revocation. In an attempt to mitigate the issue of revoca-
tion related to PRE, we developed what we call signed time stamps, which could
be integrated into already existing PRE schemes. These time stamps assure re-
encryption keys are only valid for ciphertexts with matching time stamps.

PRE can achieve a stronger level of key revocation than ABE if we can assume
that the cloud storage provider can be trusted to destroy keys on demand. If this
assumption cannot be made, PRE and ABE can be seen as somewhat equal in
their limitation of key revocation which is that it can take up to the duration
between two following time stamps before the revocation is effective.

Asymmetric encryption in general is very inefficient in encrypting/decrypting
large amounts of data, as a way of mitigating this, hybrid encryption can and
should be used. The end product of this thesis deploys hybrid encryption. First,
data is encrypted using symmetric encryption with a randomly generated. Sec-
ondly, the randomly generated key is then encrypted with the public key of the
asymmetric scheme.

The operations commonly used in PRE and ABE primitives; such as bilinear
pairings, and exponentiations are rather expensive to perform and may thus result
in performance issues if executed frequently. We introduce an approach in which
random symmetric keys are reused within a session of data packages, this to reduce
the amount of expensive operations performed by the asymmetric scheme. By
using this along with hybrid encryption the performance penalties of PRE or
ABE can be reduced arbitrarily, meaning that the size of sessions determines the
reduction impact.

Question one: In a practical way, can data be protected so that it cannot be read
by the storage provider, this while it is possible for the owner to grant access to
other parties?

Yes, granting access to encrypted data to third parties can be done rather
easily with the use of either PRE or ABE.
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Question two: Is it possible to not only grant access to data to other parties, but
also efficiently revoke it in practice?

Yes, but to a limited extent. In PRE it is possible to instantly revoke access
if we can trust that the cloud storage provider discards a re-encryption key
when requested. Otherwise, for both PRE and ABE, the revocation can
take up to the duration between two following time stamps.

Question three: Can operations as encryption, (re-encryption,) and decryption be
performed efficiently enough on large data volumes without introducing significant
time delays?

Yes, performance requirements can be met. Depending on requirements the
time delay can be dynamically mitigated if a small decrease in security and
access control is acceptable, this as a symmetric key can be reused within a
session of data packages.

9.1 Future work

As our research mainly focused on achieving low-trust storage with multiple parties
involved, interesting areas of study have been excluded by our scope (i.e. lack of
time) and thus are there still a lot of aspects left to further investigate. As the
posed system which this thesis focus on is relatively complex and contains multiple
parties testing of the cryptosystems in a more realistic environment have been left
as future work. We are curious to see how an actual implementation in a realistic
scenario would behave and what issues that may arise. This may be issues related
to performance as our testing were performed on only one machine and did not
take issues with e.g. transport into account.

As we only have investigated cryptographic primitives based on bilinear pair-
ing, alternative techniques to realise similar schemes have not been examined.
Hence, it would be of interest to widen the group of primitives and evaluate if a
better alternative exists to the bilinear schemes.

There exists some research where PRE and ABE are combined in a single
scheme. It would be interesting to investigate this idea further to see if it possible
to achieve a solution having both the advantages of PRE and ABE at the same
time, i.e. the re-encryption of ciphertexts at the proxy and fine-grained access
control by attributing ciphertexts and keys.

Key revocation was an important part in our research and we did investigate
and test methods to perform it. It was successful in some way but not completely
satisfying as the revocation is "lazy" as we have described earlier. A revocation
process that revokes keys instantly would be highly desirable and with more time
we would have investigated it further. A more specific property regarding key re-
vocation that would be interesting to look further into is the use of non-monotone
access structures in ABE. The use of non-monotone access structures could possi-
bly allow for a more efficient key revocation process.
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