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Abstract

This Master’s thesis project aims to explore the possibility of a mixed simulation
environment in which parts of a software model for emulating a hardware design
may be swapped with their corresponding RTL description. More specifically, this
work focuses on the sofware model for Arm’s next-generation Mali GPU, which
is used to understand system on chip properties, including functionality and per-
formance. A component of this model (written in C++) is substituted with its
hardware model (written in SystemVerilog) to be able to run simulations in a sys-
tem context at a faster emulation speed, and with higher accuracy in the results
compared to a pure-software model execution. For this, a "co-simulation" envi-
ronment is developed, using SystemVerilog’s DPI-C as the main communication
interface between C++ and SystemVerilog. The proposed environment contains
new software and hardware blocks to enable the desired objective without major
modifications in neither the software Mali model nor the substituted component.
Metrics and results for characterizing this co-simulation environment are also pro-
vided, namely timing accuracy, data correctness and simulation time with respect
to other previously available simulation options. These results hope to show that
the proposed environment may open new use-cases and improve development and
verification time of hardware components in a system such as the Mali GPU.
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Popular Science Summary

Hardware-software model co-simulation for GPU IP development: Soft-
ware and hardware under the same simulation

The possibility of combining hardware designs and software in the same sim-
ulation environment opens new options and improves significantly the flexibility
of verification processes as well as characterization time of electronic designs. A
practical method to realize this is developed and presented in this work for the
case of a real Graphics Processing Unit IP.

Nowadays electronics designers and manufacturers compete in an increasingly
faster race to be able to provide the best and most efficient solutions to the market’s
expectations. The easiest example is the tendency of smartphone designers to
provide a brand-new mobile phone model every year to meet consumers’ demand.
To meet these tighter and tighter deadlines, these companies need to find new
ways of designing and verifying their products faster and more efficiently. In this
context enters the work presented in this thesis: One of many possible solutions
to improve the verification time of a hardware unit/block.

Digital electronic circuits are commonly designed and modelled using Hard-
ware Design Languages (HDLs), which are similar to computer languages such
as C or Java, but different in the sense that HDLs actually describe the physical
layout and connections of a digital circuit. These HDL designs can be simulated
to verify their correct performance and characteristics with very high detail but,
at the same time, this type of simulations are costly in terms of computational
time and resources, due to the nature of the magnitudes and mechanisms being
replicated on the computer running the simulation.

On the other hand, software is written in computer languages directly, com-
piled to machine language and run sequentially by computers, in a much faster
and efficient manner. Therefore, what if the best of the two could be combined
to simulate a digital design in which only a specific internal block is described in
a HDL while the rest of the design is a software program? This would allow to
reduce the simulation time of that block greatly, while at the same type preserve
the accuracy that a simulation of a HDL design can provide.

This thesis work is based on a specific part of Arm’s next-generation Mali
Graphics Processing Unit (GPU), for which a solution for mixing hardware and
software in the same simulation is proposed. For this specific case, such mechanism
will allow to improve the development and testing time of new features for a Mali

vil



hardware IP, while at the same time open new use-cases for future work in this
direction.
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Chapter 1

Background

In this introductory chapter several terms and concepts, which are the basic foun-
dation from which this thesis work is built, are presented and explained. The
first section will focus on the Graphics Processing Unit (GPU), discussing its dif-
ferences with a Central Processing Unit (CPU) and presenting an example very
related to this work: the Mali-G72 by Arm. Following this, the concept of co-
simulation is introduced, for which the definition of a hardware model simulation
and software models for hardware designs need to be provided and described first.
Finally, a collection of previous works that are relevant for this thesis are shown
and discussed, from which abundant information for both implementation options
and metrics for the results can be extracted.

1.1 The Graphics Processing Unit

A GPU is a specific processor optimized for those calculations primarily needed
in graphical operations. These calculations are usually parallelized and performed
in floating-point representation, requisites important for rendering 3D graphics.
This specific hardware architecture allows for a processing power several orders of
magnitude higher than a conventional CPU in the previously mentioned tasks [1].

The GPU used to be a hardware component exclusive to static machines and
computers, as its use usually implied an increased complexity in the system as
well as a higher power consumption (in opposition with superior performance for
graphical tasks). However, technological advancement has allowed the miniatur-
ization and power optimization of the GPU, turning it into a suitable solution for
superior graphical performance in mobile devices like smart-phones.

1.1.1 Functional differences between a GPU and a CPU

A CPU is a general-purpose circuit capable of executing common computer in-
structions, such as arithmetic and logic operations or writes/reads to the system’s
memory. CPUs exploit the concept of pipelining, as well as other mechanisms,
to provide a very high instruction throughput with a reasonable power consump-
tion. It is the basic building block of a modern computer system due to the fact
that, in principle, it is optimized to perform any operation and has access to every
subsystem of the main architecture.
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The vast majority of programs are typically written in a manner such that its
operations are executed sequentially [2]. Due to this, a single CPU is optimized to
run this type of tasks as fast as possible. This is a very important obstacle for im-
proving the computational efficiency of programs or algorithms that are inherently
paralelizable, such as 3D graphics rendering, machine learning or cryptography.
GPUs are a solution to this inconvenient, as their architecture is designed to handle
efficiently parallel tasks.

A typical CPU architecture contains few cores, accompanied with cache mem-
ory to make the handling of several software threads simultaneously feasible. On
the other hand, a GPU is designed with hundreds of cores capable of processing
thousands of threads at the same time. This means an occasional advantage for
the GPU with respect to CPU, which will be able to accelerate certain software
over a factor of 100 compared to a CPU. Furthermore, a GPU will achieve this
speedup being more power and cost efficient than a CPU [3].

1.1.2 An example of GPU architecture: The Mali-G72

With the aim of introducing the reader to a system similar to the one in which this
work has been based on, as well as to show an example of a GPU architecture, the
Mali-G72 is presented in this section. This Arm’s mobile GPU is one of the most
popular commercial solutions for a wide range of devices. Only in 2016, more than
one billion Mali GPUs were shipped. Depending on the main requisite for each
system, different Mali models are available, each with specific emphasis on high
performance, high area efficiency or ultra-low power consumption. The Mali-G72
is the most powerful model in the "High performance" family [4].

arm
MALI™-G72

Inter-core task management

Execution Execution Execution
engine 0 engine 1 engine 2

Quad state Quad state Quad state

Message fabric

Load/store unit WVarying unit

Shader core 1 2
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Memory management unit
L2 cache

AMBA®4ACE | AMBA® 4 ACE |AMBA”4ACEJ| | AMBA® 4 ACE
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S eee—

Figure 1.1: Mali-G72 high-level architecture - Arm [4]
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In general terms, this GPU is composed of up to 32 cores, each of which
contains several execution engine blocks, a message fabric and some specific units,
like the Texture Unit (TU). Along this array of cores, other caches, interfaces
and blocks complete the architecture of this system. As it has previously been
presented, this system exploits the inherent parallelization of tasks such as graphics
rendering and machine learning by employing several computing cores for running
many threads simultaneously.

The work of this thesis is focused on the top-level interface of the TU for the
next-generation Mali GPU.

1.2 Hardware-software model co-simulation

In this section, two of the most widely used principles for simulating hardware
designs, hardware models simulation and software models, will be described in
order to later introduce the concept of co-simulation, the general idea behind this
thesis work.

1.2.1 Hardware simulation

Digital hardware designs are typically written in a Hardware Description Language
(HDL), such as VHSIC Hardware Description Language (VHDL) or Verilog. These
computer languages are created to allow a designer to describe the behavior of a
digital electronic circuit from a higher-level perspective, while still being precise.
Designs written in a HDL may undergo processes like synthesis (for netlist gener-
ation) or compilation for simulation in specific tools designed for these languages.

Looking more closely into the latter, behavioral simulation for HDL compiled
code is typically realized using an event-driven approach. In an event-driven sim-
ulation, time is represented as an integral multiple of the resolution, which is
the minimum time unit in the simulation. Any simulation contains two phases:
Statement execution and Fvent processing which are executed in every time step.
In the former phase, for each event (a statement containing a signal in a VHDL
sensitivity list, for example), a new value and the time when a target signal will
be changed are created and stored in a queue, forming a value/time pair called
transaction. In the Event processing phase, transactions happening in the current
time are removed from the queue. For each removed transaction, if it represents a
value change of a signal, it will be treated as an event, triggering the signal update
[5].

Event-driven simulation is the most popular mechanism for simulating hard-
ware designs due to the accuracy it offers and moderate efficiency in computational
expense. However, this approach is still costly, making the simulation of very big
or complex systems slow.

1.2.2 Software models for faster hardware simulation

Software models are programs written in any computer language which mimic
the intended behavior (and optionally other features) of a digital system with
different degrees of accuracy. These are very valuable for exploring design options,
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simplify verification of certain parts of a system or be used as a golden reference
for hardware verification. Software models of a hardware design can be classified
according to the level of abstraction they provide [6]. From lowest to highest:

Continuous time. Operations are described as continuous actions, p.e.
the behavior of an analog electronic circuit using differential equations.

Discrete-event. Activities are grouped into time points called events.
Changes in the inputs of a digital circuit will trigger toggles in intermediate
nets resulting in a change of the outputs in times that may be irregularly
spaced. This level of abstraction provides relevant simulation information
such as propagation delays in combinational logic, glitches and clock edges.
This is a model-wise analogy to event-driven simulations for digital circuits,
described in the previous section.

Cycle-accurate. A cycle-accurate model uses clock edges as the basic
timing unit. These level of abstraction can’t provide propagation delays or
glitches, as all activities between clock edges will be grouped at the positive
or negative edge. Therefore, activities happen "immediately", or after an
integer number of clock cycles. This is usually the abstraction level chosen
for use as a golden reference in verification of hardware designs for its balance
between accuracy and complexity.

Instruction-accurate. In this level of abstraction, activities are expressed
in steps of "one microprocessor instruction". Effectively, every step of such
simulation contains several cycles of processing. This is used to simulate
complex software, such as operating systems. Since the time count in these
simulations is in terms of instructions, the only possible mapping to real
time units would be to assign a processing time (p.e. in clock cycles) for
each instruction.

Transaction-accurate. If the system is too complex for an instruction-
accurate approach, transaction-accurate models are used. In this type, the
behavior of the system is expressed as interactions between components.
These interactions are called transactions. The time for every transaction
depends on what is actually being modeled, but may range from thousands
to millions of clock cycles. These models are most common in early phases
of a design, to explore different options and evaluate how they affect the
system as a whole.

The main reasons encouraging the use of software models over HDL descrip-
tions for a given hardware design are:

Faster implementation time, as software languages are, in general, less ver-
bose and demanding for the designer.

Higher flexibility, since options for configuring the behavior of the modeled
system can be toggled very easily.

Improved computational cost of simulations, as the resulting "simulation"
is simply an object code that can be directly executed by a computer, in
opposition to HDL compiled code for running simulations in a dedicated
event-driven simulation software.
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In opposition to these advantages, hardware models generally cannot replace
HDL described systems when:

e A high accuracy for the behavior of the system is required.

e The design is to be translated into a netlist (except for some High-Level
Synthesis (HLS) languages, such as Catapult-C). They may only be used
for simulation /verification purposes and not for physical implementation.

1.2.3 Co-simulation

For several reasons, which will be introduced shortly, it is very convenient and
interesting to simulate simultaneously software and hardware models under a com-
mon framework. Such simulation, in which one or several pieces of software and
hardware are communicated in some manner to provide a single result output, is
called "Hardware-software model co-simulation".

This mechanism allows mixing these different entities under a common test-
bench, while still moderately preserving the loose coupling between them. In other
words, if the co-simulation framework is well designed, most blocks can, for ex-
ample, be replaced for an updated simulation with a new version of a hardware
component while maintaining the former software. Co-simulation can therefore be
very interesting for design exploration, where it provides a fast solution for testing
new features and evaluating how they affect the system as a whole.

Another scenario where the use of co-simulation can be advantageous is in
full-system integration, since nowadays virtually every electronic system is a com-
bination of software and hardware. A possible flow would be to verify software and
hardware separately, using the corresponding methods and tools for each, and then
use co-simulation to verify that the two entities can work together as expected.

Finally, co-simulation also allows a more efficient parallel development of the
hardware and software components of a system, which is directly beneficial for
shortening development times nowadays that time-to-market is becoming shorter
and shorter [7].

Since hardware designs are typically verified in tools based off event-driven
simulation, the most common approach to enable co-simulation is integrating (via
different solutions) the capability of running external object code in some HDL
simulation tool. Some examples of these solutions will be presented and discussed
in the following section.

1.3 Previous works on co-simulation environments

Simulations combining hardware and software models can be implemented in dif-
ferent ways, of varying complexity and results, depending on the engineering needs
and available flows. One example is the use of scripting languages in Electronic
Design Automation (EDA) tools to interface with Register-Transfer Level (RTL)-
level signals in the own tools’ default simulation environment. One example could
be using the language Tcl inside Xilninx’s Vivado simulator to generate and drive
stimuli to a hardware block for unit-level testing.
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Another typical example in the industry is SystemVerilog DPI (Direct Pro-
gramming Interface), an interface that allows to communicate SystemVerilog code
with foreign languages (typically C, C++ or SystemC, among others).

Apart from these examples, several academic works further prove the value
of co-simulation. For instance, Stefano Centomo et al. present the results of
a tool-independent environment for co-simulation using SystemC to describe the
hardware part of the design and Functional Mock-up Interface (FMI) as the bridge
between the RTL description of the design and the rest of the system modeled in
software using the tool Modelica. In this case, the main metric used to determine
the usefulness of this approach is the average CPU time that the environment takes
to simulate a second of simulation time which, in this case, yields very promising
results. However, the authors point out some shortcomings in FMI, such as the
fact that event-driven simulation is not possible [8].

On a similar note, but more closely related to this Master’s thesis, the work
of Dominik Widhalm et al. presents the use of Perl for creating test stimuli
and environment templates for the simulated verification of SystemC described
hardware designs [9]. Four different methods are compared: code generation,
which becomes complicated because for some basic constructs a C code has to
be developed; code conversion, that is, to convert Perl code directly into C code,
which presents the problem of outputting unreadable C code; code transformation,
similar to the previous but using the intermediate constructs of the Perl interpreter
and the embedding approach, that takes on running the actual Perl script in a real
Perl environment running inside the SystemC simulation domain. To compare
these different methods, a single test case is used: a linear voltage ramp used as
input to an ADC, letting the simulation build the respective histogram for every
voltage step, and then merging all the histograms to calculate the static parameters
of the ADC. The results are varied, but an important contribution from this work
are the metrics used for comparison of the different methods:

e Lines Of Code (LOC) required to implement the test case.
e Size of the resulting executables.
e Runtime: Total simulation time of the test case.

This study is concluded stating that the preferred option should be the em-
bedded approach, as it is re-usable in every possible test-case, only having to
change the Perl script to be used in that case. The only disadvantage is the fact
that runtimes are longer than in other methods due to including the whole Perl
environment embedded on SystemC. However, this inconvenient might be over-
shadowed by the overall saved time thanks to re-usability.

An additional interesting work, from industry in this case, is that of Michael D.
McKinney, Senior Member of the Technical Staff in Texas Instruments [10], who
describes the integration of Perl, Tool command language (Tcl) and C++ into a
simulation-based verification environment for Application-Specific Integrated Cir-
cuit (ASIC) designs. In such proposed environment, simulations that combine
HDL designs with software models (one written in Perl, in this case) are executed
in the following manner: The HDL simulator is invoked, which then loads a core
Tcl subroutine, responsible for several front-end tasks related to the simulator,
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Graphical User Interface (GUI) and VHDL verification environment. Later in
each test-specific file, another Tcl routine is invoked again to execute a Perl in-
terpreter, which will run the Perl-written reference model to generate the stimuli
and expected output of the RTL unit under test. Tcl is then responsible again for
driving these stimuli to the RTL design being simulated, control the simulation
time execution (interestingly for the sake of this thesis work) and read the output
generated, in order to compare it with that of the golden reference.

This approach, which yields very interesting results, does however present
several inconveniences that are very relevant to discuss. First, since Perl and Tcl
are different languages, they cannot share the interpreter, or the internal variables
that each use. This was solved in [10] using files to write and read data between
processes. However, this creates a considerable overhead due to the creation,
writing, reading and parsing of the files. In addition, both processes need to agree
on the internal format of the files, which can be a feature difficult to implement.
Secondly, this approach grants complete control of the simulator to Tcl, which is
a good solution for automating the flow and tests. However, this also means that
the HDL debugging features that are present in the simulator are not available,
creating an additional layer of complexity for the debugging of the RTL design.
Finally, other issues arise as a result of choosing Tcl as the controller of the flow,
along with the way this integration is realized. One is the fact that syntax errors in
the Tcl scripts cannot be detected until runtime, due to the interpreted nature of
the language. Another is that Tcl will sometimes be busy many real-time seconds
operating with files (which are sometimes very long and heavy). This causes the
simulator to appear "hung" for some time. Finally, once Tcl has completed the
needed operations for a specific phase, it runs time steps for the simulation with the
appropriate command. Since the simulator updates its GUI and other elements
every time a "run" command is executed, if the time-step for each call to this
command is too small, the GUI will keep refreshing every time, causing again an
additional overhead to execution time as well.
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Chapter 2

Challenges and objectives

In this chapter the specifics on the challenges and objectives of this thesis work will
be presented. For this matter, the main actors have to be described, namely the
Mali GPU software model and Mali’s TU block. Once the scenario is presented,
different options to implement co-simulation will be discussed and compared. Fi-
nally, the chosen option that complies best with all constraints and was found the
most suitable is shown, with a motivation for this decision.

2.1 Main actors in this work

Before presenting the objectives and challenges of this work, it is necessary to
briefly describe the two main actors on which this study is built upon: The software
model for Arm’s Mali GPU and the RTL implementation of the TU, a hardware
unit which is part of the hardware micro-architecture of this GPU.

2.1.1 The Mali model

The Mali model is a C++ software developed by Arm which mimics the behavior
of the Mali’s GPU hardware, taking advantage of the flexibility that software
can provide in opposition to HDL. For future reference, it is relevant to highlight
that its abstraction level can be considered as in between the cycle-accurate and
discrete-event levels, following the classification presented in section 1.2.2. It is
also commonly referred to as cycle-approzimate.

The model exposes a top-level interface for other applications. This interface,
in the form of a C library, provides functions for creating an instance of the model,
configure it or perform tasks that the top-level of the GPU would receive in a
real implementation, such as processing certain graphics jobs. Once the model
completes a top-level task, it will output a file containing the memory addresses
and data that the Mali GPU would have written for that task in a real system.
This can also be referred to as memory dump. The objective of the proposed co-
simulation solution is to be able to run these tasks on the model to simulate the
processing of graphics jobs just in the same way as it is "traditionally" done in
the model, with the particularity of using the TU’s RTL in place of the model’s
counterpart.
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The model is one of the main actors in this work, and its operation and special
characteristics determine to some extent how the final solution was designed and
the main principles behind its performance and behavior. For instance, the model
will read values from the previous cycle at the rising edge of the next, will process
that data, and finally provide an output in the falling edge of that same cycle.

2.1.2  The Texture Unit (TU)

The Texture unit is a hardware block contained in the Mali micro-architecture
responsible for processing several graphics operations with, surprisingly, textures.
Jobs received by this unit are processed in a pipelined manner with the order for
each job not necessarily being preserved in the output. That is, a job #0 which
arrives before another job #1 may be finished by the pipeline after job #1 is.

The RTL implementation of this unit is also one of the major actors in this
work, as its inclusion in a co-simulation with the software model for the rest of
the GPU has been the main motivation for this thesis work. More specifically, its
interface is where a great part of the co-simulation work has been carried out, so
it is relevant to mention in a summarized manner the different sub-interfaces it
exposes:

e A control interface, with signals to monitor the state of the unit and receive
basic configuration.

e A message input interface, that receives texturing messages from other
parts of the GPU.

e A message output interface, that sends texturing result messages to other
parts of the GPU.

e A shared data interface, that reads shared data from other entities in the
GPU micro-architecture that may be required in texturing operations, such
as state, current operation status, etc.

e Two Advanced eXtensible Interface (AXI) interfaces for requesting
data from other memories in the GPU to internal caches.

Finally, it is important to note that this hardware Intellectual Property (IP)
is described in HDL with SystemVerilog. This fact will condition the options
available for co-simulation, since the execution of object code is also conditioned
by the event-driven simulation tool which, at the same time, is constrained by the
possibilities existent in the specification of the HDL in which the hardware design
being simulated is described.

2.1.3 Objectives of the proposed co-simulation environment

As was mentioned before, software models of a hardware design are a key resource
for tasks like design exploration, behavioral emulation of the real system or per-
formance evaluation. For the case of Arm’s Mali, the C+-+ model allows to realize
these tasks, as well as testing early features and others advantages. A different
approach to software models for realizing these tasks would be simply designing a
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hardware block and simulating its behavior and performance once implemented.
However, the development time penalty for every iteration in this latter case is
much higher, and so is the computational cost of the simulation, which can become
a real problem for top-level tests.

The main motivation for this thesis work is to explore whether the best of the
two worlds can be combined: the accuracy of a typical RTL simulation (event-
driven) with the speed and flexibility of a software model run. To achieve this, it
is necessary to create a co-simulation environment where, in this specific case, the
TU in the Mali model has been effectively substituted by its corresponding RTL
block. The expected outcome of such setup is a testbench where both inputs and
outputs are those that the Mali model would require/produce standalone but with
the added detail/accuracy in the TU part of the design that would be expected
from a GPU’s RTL top-level simulation, with a much lower computational cost in
comparison to running the equivalent simulation for the RTL description of the

whole system.

HDL simulator
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Figure 2.1: High-level diagram of the co-simulation environment

The co-simulation environment that this thesis aimed to create is specific to
the case of executing a Mali model top-level run (such as a graphical job of some
kind). The main particularity, and the main reason to speak of “co-simulation”
is that the TU class in the model will effectively be replaced with its RTL block,
in a way such that the model’s execution hands over the stimuli to the TU’s
RTL (instead of simply letting the TU class process them), which will then, via
the event-driven simulator (Cadence’s Xcelium in this case) process the texturing
messages and output texturing result signals. These output signals will be read
by the model, which will process them and use them for the rest of the tasks
necessary in the graphics job that was run. At the end of the job execution, the
model will output the written memory by the result of the job in a file. In other
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words, the co-simulation will run a job in the Mali model, written in C+4, whose
TU is actually not software, but a RTL block, written in SystemVerilog. This idea
is shown in the high-level representation of Figure 2.1, where synthesizable RTL
blocks are depicted in dark blue, non-synthesizable RTL in light blue, software in
yellow and output files of the simulation in orange.

To enable the effective substitution of this unit’s RTL in the model execution,
the data for each interface in the TU (see section 2.1.2) has to be handled in
the final co-simulation solution in a way such that the model can process data
generated from the event-driven simulation of RTL and, on the opposite, that the
RTL can process data sent in from the C++ object code execution.

Moreover, since the model execution cannot handle discrete-events with as
high precision as an event-driven simulation, timing mismatches and delays in
data transitions should be taken into account if a seamless co-simulation is de-
sired. These may affect performance metrics or the total cycle-count of a complete
graphics job run, but shouldn’t make notable differences in the functionality and
data correctness.

An extra possibility is that the model may obviate hardware elements or sub-
systems that are necessary for the real GPU to work, but maybe not essential or
trivial if the system is inspected in a pure functional level, as in the case of most
software models. For example, a 256-bits wide bus in RTL may be represented
as a class in C++ whose members are the different fields of the original message.
Therefore some interface logic and /or data storage may be necessary in any of the
two sides (software or RTL) to overcome this issue.

2.2 Co-simulation options and solution

The challenges described in this chapter for implementing a co-simulation for this
specific case may be overcomed via different ways. Several practical possibilities
exist in order to simulate a hardware design with a software component and, in-
versely, run a program which interacts with a hardware design simulation. The
options are very diverse, each with its own advantages and disadvantages. There-
fore, only those actually considered for this work will be briefly introduced in this
section, with a motivation on why it might or not be the best solution for this
concrete scenario. In the end, the chosen alternative will be presented, along with
the reasons why it is considered the most suitable.

2.2.1 Description and comparison of possible options

Three candidate methods to implement the proposed co-simulation environment
are presented now: Tcl, SystemVerilog’s Direct Programming Interface (DPI) and
DPI-C and SystemC. These are an interesting set of options, since each com-
municate with RTL designs and/or software models in a different way, and with
different advantages and disadvantages.
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Tel

Tcl is a high-level, interpreted programming language which was developed by John
Ousterhout as a scripting solution for his Very-Large-Scale Integration (VLSI)
layout tool Magic [11]. Since this was one of the very first software of its category,
and due to the open-source licensing that both Magic and Tcl were released with,
Tcl has become a de facto standard for command scripting in most popular EDA
and Computer-Aided Design (CAD) tools. Apart from being multi-platform, it can
be used for many different tasks, becoming an interesting candidate for scripting
an entire work flow, including verification under simulation [12].

A moderately successful example of using Tcl for co-simulation of a hardware
and software model in the same environment was presented in Michael D. McKin-
ney’s work, in Section 1.3. This solution had some inconveniences, mainly because
of the problem of sharing data between Perl and Tcl, but is very illustrative of
how Tcl can be a powerful language for the purpose of co-simulation.

From the experience of the author of this thesis work, and the research con-
ducted, Tcl presents two major problems:

e The real-time overhead it introduces if used as the driver/controller of the
simulation. Applicable in general to any Tcl-driven simulation flow. Caused
by the fact that Tcl interacts with the HDL, event-driven simulator every
time it needs to change the value of a signal or control simulation time.

e The data coherence with other computer languages. This is not a
problem if Tcl is used in a typical case (driving stimuli of a RTL Device
Under Test (DUT) and collecting the output for processing) but is very
relevant if software models become an actor in the simulation, as they are
commonly written in some other language.

The first problem can be overcome if it is taken into account during the design
phase of the Tcl scripts that will control the simulation. The main idea is basically
to try to reduce as much as possible Tcl commands that interact directly with the
HDL code, such as force, run, etc. To achieve this, some testbench-exclusive RTL
units may be necessary. An example-comparison of this approach would be to
improve the trivial algorithm:

1. Drive every input signal to the DUT using force.
2. Execute the run command for "clock period" seconds.
3. Repeat every clock cycle.

with the more efficient option:

1. Drive all stimuli in an ordered manner to a behavioral First In First Out
(FIFO) memory, using force.

2. Execute the run command for "simulation-length" seconds. The FIFO will
output stimuli signals in the desired manner every clock cycle.

As the reader will imagine, the faster approach requires the implementa-
tion/use of a behavioral FIFO, which in most HDLs is, however, not a complex
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task. With this improvement, calls to run are dramatically reduced and, therefore,
the simulation time.

Regarding data coherency, the difficulties seem to be more complex. In [10],
the solution of using files to share data variables between languages comes with
a huge performance impact, as well as complications in the implementation. One
could rapidly think that there might be a better way to communicate Tcl with
some other language. In the specific case of this thesis work, the challenge would
be to interface a C/C++ software model with /from Tcl scripts. According to Tcl’s
wiki [13], this can be somewhat easier than for other languages, since Tcl is a C
library. It is then possible to create and call a Tcl interpreter from a C program,
and also to wrap C/C++ code to make it callable from a Tel script.

In summary, it is actually possible to use Tcl as a means to implement a
co-simulation environment with a software and hardware model, but several non-
idealities will come at a cost.

SystemVerilog's DPI and DPI-C

According to the IEEE’s SystemVerilog language specification [14], DPI is an in-
terface between SystemVerilog and some other foreign programming language in
which two layers exist isolated: the SystemVerilog layer and the foreign language
layer. Any programming language may be used as the foreign language, since the
SystemVerilog side is absolutely indifferent in that sense. However, SystemVer-
ilog currently has only one foreign language layer defined: for the C programming
language.

DPT allows importing functions or similar constructs from the foreign language
and, similarly, to export SystemVerilog subroutines to the foreign language: tasks
and functions. For imported and exported subroutines, a rich subset of SystemVer-
ilog data types is supported by the interface, being most of them C-compatible
types, packed types and user-defined types built from types of the two previous
categories.

For the case of a software model written in C++, it is possible to import
and export subroutines, always assuring that in the language boundary only C
types and conventions are used. If C++ features need to be supported by DPI for
some reason, linkage semantics and the whole foreign language layer would have
to be defined for it. This includes defining how actual arguments are passed to
SystemVerilog, how they can be accessed from C-++, how SystemVerilog specific
data types are represented in C++ (by translating them to and from C-like types),
etc.

Another important fact to take into account in this case is that some DPI
imported subroutines (from the foreign language to SystemVerilog) will require
that the context of their call is known. This is the case for subroutines that
will call exported subroutines (from SystemVerilog to the foreign language) or
access SystemVerilog objects as part of their execution. For this situation, the
subroutines have to be specified as context, triggering a special instrumentation in
their call instances that can provide the mentioned context. This however, presents
the downside of decreasing simulation performance, and will affect directly the
intended setup for this work, since the main idea is that calls to the top-level
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interface functions of the Mali model happen from a SystemVerilog testbench with
those functions as DPI imports, which will then call functions imported in the
model from SystemVerilog’s subroutines to interact with the RTL testbench.

SystemC

SystemC is a set of C++ classes and macros that provide a transaction-level
interface for modeling and verification purposes of hardware designs written in a
HDL. This is a very interesting solution for models written in C++, as SystemC
can be used directly as a means to communicate with a RTL hardware design.

The interoperability with SystemVerilog is, in principle, quite straightforward.
SystemC modules can instantiate SystemVerilog modules and vice-versa, effec-
tively creating a single module hierarchy with mixed languge components. Simi-
larly, SystemC can call SystemVerilog tasks and functions, and SystemVerilog can
call SystemC methods, which matches most design flow requirements and also pro-
vides a higher simulation efficiency. In fact, even SystemC signals can be bound
to SystemVerilog ports and vice-versa [15]. Another advantage is that, since Sys-
temC is part of C+-, no extra interfaces or components are necessary between
the model and HDL design.

However, despite all the previous positive facts about the use of SystemC for
mixed simulation purposes, several complications exist:

e Because SystemC typically uses SystemVerilog’s DPI as the communication
bridge with SystemVerilog, and DPI defines a C interface, but not a C++
one, DPI cannot be used to traverse SystemC hierarchy, since handles to
instances or objects are not easily possible.

e SystemC offers a transaction-level abstraction, which provides a lower detail
when compared to the SystemVerilog scheduler.

e Because of the previous, an extra service layer is necessary on top of DPI
to take care of the synchronization between the two "worlds".

Regarding the software side, yet more disadvantages exist:

e To use SystemC in a software model, the model has to be designed consid-
ering the support for these classes or, at least, providing some compatible
interface.

e Currently every EDA vendor uses proprietary binaries for SystemC. This is
an inconvenience if the simulation setup needs to be ported often, or if a
more general work flow is in place.

e Following the stated above, each EDA tool will have compatibility for Sys-
temC only for specific gcc compiler versions, which limits the options for
the software model implementation.

e If a robust and long-lasting interface with a HDL simulation is desired,
SystemC may again not be a good option, as it means using the C++
Application Binary Interface (ABI) directly. The problem is that C+-+’s
ABI has changed several times historically, and this represents a risk in
this case, as the compatibility of the SystemC interface can be lost when
re-compiling for a new version [16].
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Comparison of the three options

The three options previously presented to implement co-simulation in this work
have different advantages and disadvantages, which the reader will probably have
already detected in each one’s description. To serve as a quick summary, pros and
cons of each option are presented in Table 2.1, Table 2.2 and Table 2.3, for Tcl,
SystemVerilog’s DPI and SystemC respectively.

TcL
Advantages Disadvantages
De-facto in EDA tools Big overhead for simulations
Discrete-event level Complex embedding in C++

Table 2.1: Advantages and disadvantages of Tcl as a co-simulation
tool

SYSTEMVERILOG’S DPI
Advantages Disadvantages
Widely supported by EDA tools -
Discrete-event level -

Computational overhead is low -
Well-defined interface for C language -

Table 2.2: Advantages and disadvantages of SystemVerilog's DPI
as a co-simulation tool

SYSTEMC
Advantages Disadvantages
Low computational overhead Proprietary binaries for each tool
Easy integration with SV Transaction level

_ C++ ABI changes
- Limited compatibility with gcc versions

Table 2.3: Advantages and disadvantages of SystemC as a co-
simulation tool

2.2.2  Choice of co-simulation tool: SystemVerilog's DPI-C

In the end, SystemVerilog’s DPI, with its definition of the foreign language interface
for the C language, DPI-C, was chosen as the tool with which the proposed co-
simulation environment would be implemented. The main reasons for this decision
are:
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e The interface between C and SystemVerilog is well defined and consistent
and since no extra elements (like the case of SystemC for C++) are intro-
duced, the feasibility of this solution is assured so long as the C standard
and SystemVerilog’s DPI-C definition remain as they are at the moment of
writing this document.

e SystemVerilog, with DPI-C, is supported by most, if not all, EDA vendors,
and is fully-supported with Cadence’s Xcelium simulator, which was used
for this thesis work.

e It is the most logical option for the specific case of the Mali model, as it
already exposes a C top-level interface with a set of functions to create
an instance to the model, configure it and execute tasks with it, such as
graphics jobs.

e In contrast with the previous, if another option was to be used for im-
plementing a co-simulation environment between the Mali model and RTL
designs, an important refactoring of the model’s code would be necessary.
This is completely out of the scope of this project.

e The computational overhead introduced by DPI-C, although existing due
to effects like the context of imported subroutines, is much lower than in
other solutions, permitting an efficient implementation of the co-simulation
environment.

After presenting the reasons for selecting this tool, some important and more
detailed background information about the data equivalency between SystemVer-
ilog and C and SystemVerilog functions and tasks will be given hereunder, as they
represent a central part of this work and the basic theory behind the co-simulation
environment implementation.

Data equivalency between languages

The equivalency between data types of SystemVerilog and C is very well defined in
DPI. Specifically, Annex H in SystemVerilog’s language specification is dedicated
to the foreign language specification of C for DPI, and all the details on data
representation are clarified. However, to simplify as maximum as possible the
implementation of the languages interface part of the co-simulation environment
created in this thesis, only the basic types mapping was used. These one-to-one
relations, extracted from the SystemVerilog’s language specification, are shown in
Table 2.4. It is worth noting that the encodings for the bit and logic types are
usually given in a separate file, svdpi.h, which is implementation-dependent and
typically provided by each EDA vendor with their HDL simulators.

Rules for functions and tasks

Functions and tasks of SystemVerilog, also collectively referred to as "subroutines",
allow the division of large procedures into smaller ones. Both can contain input,
output or input/output arguments, and will have visibility of variables and signals
in their same scope or module. These constructs are the main enablers of the
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SystemVerilog type C type
byte char
shortint short int
int int
longint long long
real double
shortreal float
chandle void *
string const char *
bit unsigned char
logic/reg unsigned char

Table 2.4: Mapping of SystemVerilog and C data types [14]

communication between SystemVerilog and C via DPI, as they can be exported to
C from SystemVerilog, and then imported in C as external functions. Likewise, C
functions can be imported in SystemVerilog.

Following the SystemVerilog’s language specification, several rules distinguish-
ing tasks from functions exist, very relevant for this work:

e A task may contain time-controlling statements, such as a call to the sim-
ulator software to run the current simulation for a specific amount of time
units.

e A function can enable other functions, but cannot enable a task, while a
task may enable other tasks and functions.

e A nonvoid function shall return a single value, while a task or void function
don’t need to return a value.

e A nonvoid function can be used as an expression’s operand, being the value
of that operand the value that the function would return.

Because of these rules, and since in the suggested co-simulation environment the
software model will be responsible for controlling the testbench clock and the sim-
ulator time steps, the following decisions were made regarding tasks and functions:

e Since only tasks can contain time-controlling statements, and for the sake
of simplification, all exported subroutines given to the software model with
the objective of writing values in SystemVerilog will be tasks.

e Because tasks can enable other tasks and also functions, but not the other
way around, the top-level interface C functions provided by the software
model will be imported in SystemVerilog as tasks.

e To improve readability and, again, simplify the setup, all exported subrou-
tines given to the software model with the objective of reading values in
SystemVerilog will be functions.



Chapter 3

Implementation and results

In this chapter, the details of the actual work developed in this thesis work are
presented and explained. The solution created to satisfy the constraints given by
the objectives shown in Chapter 2 is composed of several software and HDL blocks
and constructs, which specifics will be explained, along with the reason behind
such design. Following this, the results achieved with the proposed co-simulation
environment for GPU IP development will be shown, with some metrics that are
considered relevant for this case. Some of these metrics will be presented against
other manners of simulating a top-level system test for a RTL block with the aim
of highlighting the strenghts and weaknesses of the co-simulation solution.

3.1 The co-simulation environment

A general diagram of the final co-simulation environment that was created is shown
in Figure 3.1 where, apart from the color correspondence explained for Figure 2.1
in Section 2.1.3, now RTL blocks in SystemVerilog with DPI-C functions and tasks
are depicted in pink, a collection of functions in C that interact with SystemVerilog
objects in red and C++ classes with imported SystemVerilog tasks and functions in
green. In this proposed co-simulation environment, the testbench is a very simple
block which acts only as the main simulator "container". It has some basic logic to
instantiate the software model and call its top-level functions (via a model top-level
wrapper written in C), as well as an instance to the RTL wrapper or, from now on
in this text, co-simulation wrapper. The co-simulation wrapper is a structural RTL
block which contains an instance to the RTL IP, in this case, Mali’s TU, along
with some interface logic necessary for co-simulation purposes. Finally, the Mali
model has been modified to include a custom TU class, from now on, co-simulation
class, which effectively replaces the C++ class that modeled the TU behavior
and acts as an interface between the software model’s TU interface and the co-
simulation wrapper. It is important to note that, although testbench logic and the
co-simulation wrapper both exist in the testbench, they are completely isolated
from each other, being the custom Mali software model the only communication
channel possible between them.
As the diagram hints, the co-simulation environment relies on DPI-C to:

1. Allow the testbench to create an instance of the software model, by using
DPI-C imported functions from the model top-level wrapper.

19
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2. Allow the testbench to call a top-level model’s function to run a graphics
job, using the same imported functions as before.

3. During model execution, let the co-simulation class of the custom software
model call TU co-simulation wrapper’s imported SystemVerilog tasks and
functions to write and read signals to/from TU’s RTL, respectively.
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Figure 3.1: General diagram of the final co-simulation environment

The result of this co-simulation environment, in general terms, is a framework
for executing top-level software model simulations in the same manner as a typical
model run but with the added value of using TU’s RTL model in place of the
original C++ class responsible of modeling this GPU block. A more in-depth and
detailed explanation of each block developed for implementing this co-simulation
environment is provided hereunder.

3.1.1 SystemVerilog testbench and logic

As explained earlier, the SystemVerilog testbench is the starting piece of the co-
simulation environment. This HDL block contains some basic logic to create a
Mali software model instance and communicate with its top-level interface via the
C-written model top-level wrapper (see Section 3.1.2), along with an instance of
the co-simulation wrapper that contains the TU’s RTL.

First of all, the testbench contains a set of declarations, among them, the
instantiation of the co-simulation wrapper, import statements for the DPI-C func-
tions used to interface the top-level of the custom Mali model and several variables
that will later be used inside the begin block. The most relevant variables to men-
tion are:
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e Arguments with which the software model will be initialized. Among them,
a flag specifically developed in this thesis work to state that it is the custom
model for co-simulation that wants to be instantiated.

e Path to the graphics job that will be run in the co-simulation setup.

o A print_stats flag whose value tells the testbench whether or not model run

statistics should be printed out.

Initialize model

—F model != null

$fatal

1 Run graphics job in model

print_stats

T

|

Print statistics of model run

Figure 3.2: Flow chart of the testbench logic

Following the flow chart in Figure 3.2., the testbench logic works as follows.
When the simulation starts, the testbench creates and initializes an instance of
the software model using a C imported function from the model top-level wrap-
per, checking that this instance has been correctly created. If, for some reason,
the instance does not exist at this point, the testbench returns a fatal error and
terminates the simulation. Otherwise, the simulation will continue, and a graphics
job will be run in the model using another C imported function from the top-level
wrapper. At this point, the custom Mali model will run the graphics job, in-
teracting with the co-simulation wrapper of the TU when necessary without the
testbench intervention. If any execution error happens, the model is responsi-
ble for handling such situation. In practice, an error condition in the model will
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simply be automatically converted by the simulator in a fatal error. Having the
model finished the graphics job, the testbench will then finalize by checking if the
print_stats flag was set. If so, model statistics of the graphics job run will be
required using another C imported function.

3.1.2 Model top-level wrapper

Written in C, between the simulation testbench and the custom Mali model, the
model’s top-level wrapper acts as a simplified DPI-C compatible interface between
the model’s top-level functions and the testbench logic. This block exposes several
high-level C functions to the HDL testbench all of which internally call model’s
top-level functions. These wrapper’s functions can be imported and called from
SystemVerilog to create and control a model instance.

Mali model

| —— |

parse_SIaumens0

DPI-C imported function calls from SystemVerilog

Figure 3.3: Block diagram of C-written model top-level wrapper

A block diagram representing this entity is given in Figure 3.3 and a summa-
rized explanation of each function is given hereunder:

e initialize model() is responsible for creating an instance of the custom
Mali model with the specified arguments/modifiers. These arguments are
parsed and converted to the format used by the model’s top-level interface
in the auxiliar function parse arguments().
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e power on() performs several operations in the model, such as register
writes, mimicking the behavior of a power-on sequence of the GPU. This
function was heavily used for debugging the communication between the
testbench and the Mali model in the beginning of this thesis work, but
has not been included in the final testbench logic, as it is not relevant for
characterizing the behavior of co-simulation with the TU.

e run_graphics job() encapsulates the necessary operations to request the
model to compute a certain graphics job, given as a separate input file.

e print_statistics() will request the model to print the statistics obtained
from running the graphics job with the previous function.

Finally, an important bit of this entity deserves a more detailed explanation,
the DPI-C handler svScope. This variable exists in any SystemVerilog environment
using DPI-C to communicate C object code with SystemVerilog and represents, as
its name suggests, the current scope in the HDL hierarchy for which the imported
C functions have visibility. Every time a C function needs to interact in some way
with the HDL hierarchy (p.e. calling an imported SystemVerilog function/task
or returning a result value), it will try to do so at the level specified by svScope,
effectively being blind to any other levels of the hierarchy.

This fact brought many problems at the beginning of this thesis work, as the
previously presented functions were called from the testbench and would return
a value to the testbench, but also some would call SystemVerilog imported func-
tions/tasks to interface with the co-simulation wrapper of the TU’s RTL. More
concretely, the run_ graphics_job() execution would, at a given point in time,
arrive to the co-simulation class, which would try to communicate with the co-
simulation wrapper, using a wrong svScope (still pointing to the testbench). The
solution to this problem was to let all of these functions modify the current svScope
in the necessary way to ensure that the hierarchical reference pointed by svScope
was always the intended.

3.1.3 SystemVerilog co-simulation wrapper

The SystemVerilog co-simulation wrapper was developed to act as a bridge in-
terface between the RTL implementation of the TU and the custom Mali model
or, more specifically, the co-simulation class of the custom model. Within it, a
collection of logic, registers, tasks and functions are responsible for enabling com-
munication via DPI-C to the co-simulation class, adapt the data received from
the model for the TU’s RTL to consume and adapt the data output from the TU
for the model to consume. This entity works in such a way that for both the
co-simulation wrapper and the TU’s RTL the communication is transparent and
direct, except for some effects introduced that will be explained later. A block
diagram of the co-simulation wrapper is shown in Figure 3.4 and the details on
each part of it are given hereunder.
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Co-simulation class calls to imported tasks/functions

//RTL co-simulation wrapper

Co-simulation logic ‘

Shared data bank

Figure 3.4: Block diagram of RTL co-simulation wrapper

Exported tasks and functions

To implement a way for the co-simulation class to interface with RTL signals, a
number of tasks and functions were implemented in SystemVerilog, one or more
for each of the interfaces of the TU (see Section 2.1.2). Tasks were chosen as
the mechanism for the model to write values into RTL signals, being one of the
main reasons that tasks can consume simulation time, while functions do not grant
this possibility. Similarly, functions were chosen as the manner for the model to
read values of signals. This is essential for the case of driving the clock signal.
Because the model controls the simulation, it needs to control the clock as well
and, therefore, be able to advance the simulation time every time a clock edge is
generated.

All of these tasks and functions are declared as DPI-C exports, so that the co-
simulation class can import them as extern "C" functions and use them seamlessly
from a software point-of-view. At this point, these subroutines simply allow the
writing or reading of certain variables in the co-simulation wrapper.

Co-simulation logic

Data signals are treated differently in the software model and in the RTL imple-
mentation. This might yield some cases where, for example, some data may wait
N cycles in the model to be available as a struct or object, while that same data
in the RTL implementation would be received, in smaller words, during those N
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cycles. Another case sharing the solution that is going to be presented is that
of RTL input signals wider than 64 bits, which cannot directly cross the DPI-C
interface with native C/SystemVerilog variable representations. The only possible
approach to solve this is to divide the transmission of this type of data between
model and RTL in several calls to the same task, once the data is available in the
model, and use some extra logic in the co-simulation wrapper to manage that data
in a way the RTL interfaces can accept. Such approach, used in every input signal
affected with dedicated variables and logic in each case, is shown in two diagrams
on Figure 3.5, where shift register #0 and #1 are two separate SystemVerilog
variables. The decision of using two separate variables for this implementation is
mainly to ensure that a wrapper-stored signal can be offloaded to some RTL unit’s
input port while new data for the same port is being written by the model at the
same time.

When some signal affected by this situation is to be written, the process in
Subfigure 3.5a will trigger. The model side of the setup will be responsible of
writing only one byte in every task call, so that this new byte will be shifted left
into a "shift register #0". When the last byte is written to this register, a flag will
be set to indicate that the loaded value can be copied to the "shift register #1".
The value stored every cycle in shift register #1 depends on some logic, depicted
in Subfigure 3.5b. The output value (connected to the corresponding input signal
of the RTL interface) will always be a M-1 to 0 slice of the register, being M the
width of the RTL interface. Every clock cycle, the new value of shift register #1
can either be:
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e That of shift register #0 (has the highest priority).

e The previous value shifted right M bits (the new data word is connected to
the RTL input).

e The previous value, if for some reason the word offload has to be paused.
This is the case for some of the input signals, and depends on the type of
interface being used. For example, handhsake-based interfaces will require
this if the slave marks "not ready" at some point of the transmission.

The last detail worth mentioning for input signals is that those whose data
representation in the model are directly mappable to variables or signals in Sys-
temVerilog are directly updated by the model but also others have to be registered
before being connected to the RTL interface for timing alignment or other reasons,
like the one just presented. As a result, these signals will suffer a one-cycle delay
as a side-effect.

Regarding output signals from the TU’s RTL, the intermediate logic of the co-
simulation wrapper simply bypasses values in most cases. However, some signals
which are wider than 64 bits have to be sliced in some way for the model to be
able to read them in successive calls to SystemVerilog functions through the DPI-C
interface. For these cases, a combinational copy of these signals is updated in the
wrapper in the form of a byte vector of length %, where M is once again the total
width of the signal in bits.

Shared data bank

While designing the part of the co-simulation environment corresponding to the
shared data interface of the TU, a previously overlooked fact was found. As men-
tioned in Section 2.1.2; this interface reads data stored in other parts of the GPU
micro-architecture required for texturing operations. In the software model imple-
mentation of this interface, the raw data structures that are read are given directly
to the TU class while, in the RTL implementation, the shared data interface ac-
tually contains signals used to address a memory satellite inside the TU. The
signals that would directly map to those the software model exposes to the former
TU class are, in fact, one of the interfaces of this internal RTL memory satellite.
Therefore, some mechanism was needed to overcome this interfaces’ misalignment.

The implemented solution bypasses the RTL memory satellite and allows the
custom Mali model to write the shared data directly to the internal consumer
deeper into the TU’s RTL implementation. A diagram of this structure can be
observed in Figure 3.6. Additional hardware is introduced in the co-simulation
wrapper in the form of a "shared data bank". This bank contains M lanes, one
for each type of data, which at the same time contain I indexes each. This yields
a total of M - I registers, of varying sizes depending on the data.

The access to this shared data bank can be done either by the custom software
model via SystemVerilog exported tasks, to write into some specific lane and lane
index, or either by the RTL data consumer, to address a specific piece of data and
read it. However, the select signals of the data consumer, as well as the actual
data signals are internal to the TU RTL implementation. To effectively bypass the
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Figure 3.6: Block diagram of the co-simulation wrapper’s shared
data bank

memory satellite and give visibility to this signals from the co-simulation wrapper’s
perspective, two methods are put into place:

e For the input data signals to the consumer, their value is permanently al-
tered during the simulation, using the SystemVerilog force statement. This
allows to "connect" these internal signals directly to the output of the shared
data bank’s lanes, forcing the simulator to overlook the actual connection
that the signals would normally have considering the RTL logic.

e For the select signals of the data consumer, which are outputs, their value is
used in a combinational statement in the shared data bank to continuously
address their corresponding bank lane using hierarchical expressions. An
illustrative example of such expressions would be:

u_texture unit.u_ data_ consumer.select signal 0

Which, in this case, would return the current value of the data consumer’s
signal select signal 0.

3.1.4 The model's co-simulation class

Most of the work put into the model during this thesis was carried out in a new class
designed for the purpose of co-simulation with the TU, the co-simulation class.
This class effectively replaces all the code related to the TU in the Mali model with
a new implementation that communicates the rest of the model’s units with the
TU’s RTL implementation. A flag in the software model was created specifically
to indicate the TU interface class whether to spawn the normal TU class or the
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co-simulation class via a factory pattern, making the use of this setup very easy
from the model side.

To interface with the co-simulation RTL wrapper, the co-simulation class im-
ports the SystemVerilog, DPI-C exported tasks and functions provided by the
wrapper as extern C functions, to write and read the value of RTL signals, respec-
tively. This, along with several logic developed to solve the timing and behavioral
differences between the model’s and RTL implementation’s TU interfaces allows
for the seamless communication between software and RTL in this level of the
GPU. A high-level block diagram of this co-simulation class is shown in Figure
3.7.

Rest of model

A r A
Co-simulation class
- r I r
Message interface
] [y
¥ [
Clock
AXIIF1 AXIIF2 driving and
Clheicgls Input logic Output logic

A A

RTL wrapper exporied tasks and functions

Figure 3.7: Block diagram of the co-simulation class

The co-simulation class is mainly structured in two parts. First, an entity
containing the input and output logic for the message interface, the clock and
other control signals’ logic and the shared data interfaces (which is actually a
part of the input logic for the message interface in the real implementation). The
second entity would contain the instances to the two AXI interfaces (which share
a common class).

All the operations performed in the co-simulation class are divided in two main
methods following the model’s general operation: the compute method, which
contains all the work to be executed in a clock cycle, and the advance method,
each corresponding roughly to the positive and negative semi-cycles of the clock,
respectively. Flow charts for each of these methods are shown in Figure 3.8. An
additional reset method is also present which, in this specific case, simply asserts
the reset for a fixed time in the RTL wrapper.

The operation of the AXI interfaces will be presented at the end of this section,
since their behavior is completely independent from the rest of the co-simulation
class at runtime. What is most important at this point is the fact that the compute
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Figure 3.8: Flow charts of co-simulation class’ main methods

and advance methods are responsible for driving the RTL wrapper’s clock signal.
compute will set the clock signal value to '1’, and run the simulation for the time
corresponding to half a clock cycle. Similarly, advance will set the clock signal
value to ’0’ and run the simulation for the same amount of time. The input and
output message logic are explained in detail hereunder.

Input and output message logic

The input and output message logics of the TU co-simulation class have probably
been the central part of this work, as most of the timing and behavioral alignment
necessary to couple the model’s TU interface and the RTL wrapper was realized
in this part of the design. These logics are quite complex, specially that of the
input messages, as can be seen in Figure 3.9. Since the specific details of every
part of the program are not really relevant for the purpose of this thesis work,
some states are marked in the indicated flow chart, which can be used to explain
in a summarized manner the operations that this part of the system performs.
However, before moving into the logic’s internals, in order for the reader to
understand the reason behind why this logic functions in the way it does, it is
necessary to present some basic information about the input and output message
interfaces. In general terms, both are typical handshake interfaces [17], in which:

e A master generates a valid signal to indicate when a new data is available.

e A slave generates a ready signal to indicate that it can accept the data.
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A transfer occurs when both the valid and ready signal are set.

If during a data transmission of several cycles (valid set), the slave unsets
ready, the master will have to wait until the slave can process new data to
continue.

With this information, it is now easier to explain the input logic operation.

First,

several flags are used for indicating or acknowledging states to the RTL

wrapper’s logic, some of which are actually signals in the input interface of the
TU. These flags are:

ready, read from the RTL wrapper, received from the TU input interface
via an imported function.

valid, sent to the RTL wrapper via an imported SystemVerilog task.

waiting, which indicates that the TU’s interface unset ready and the logic is
on hold until it is set again.

message_ ongoing, which indicates that a data transmission of several mes-
sages is taking place in the input interface.

Other flags are internal to the co-simulation class’ input logic, like buffer pop or
buffer _walid.

The operation of the input message logic is now summarized by describing
some of the relevant states in an order which hopes to be more comprehensible for
the reader:

On State 4, normal operation is carried out once a full message has been
received from the model during a transmission to the TU’s RTL input in-
terface. The received message is written to the RTL wrapper.

On State 6, no new messages were received from the model and the RTL is
still available to process messages, so the end of a message stream has been
reached, and the co-simulation class will set the valid signal to "1’ only one
more cycle (to account for timing differences).

On State 2, the TU has indicated that it is not ready to receive further
messages yet, so the co-simulation class will have to wait. Because of timing
adaptation (a new message is received from the model, but ready = "0’ in
the same cycle), the received message has to be buffered, to be provided to
the RTL interface once it is ready again.

On State 3, the buffer enable is detected because of a "stop" in the RTL
interface, so the interface connecting the input logic of the co-simulation
class to the rest of the model communication network is disabled, indicating
that no further messages can be received at the time. This change will
become effective on the next clock cycle.

On State 7, a waiting state is detected, and all the signals and flags are
handled accordingly. If at this point a ready = ’1’ is detected from RTL,
the buffer pop flag will be set, triggering the buffer mechanism in the next
clock cycle.
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e On State 1, the mechanism triggered in State 7 during the previous cycle
pops out the stored message from the buffer, writes it to the RTL wrapper
and re-enables the interface connecting the input logic of the co-simulation
class to the rest of the model communication network in the next clock cycle.

e On State 5, a special situation where the RTL input interface indicates
"not ready" and also the last received message from the model at that same
cycle is the last of a transmission, is processed.

Moving on to the output logic, which corresponding flow chart is depicted in
Figure 3.10, the overall functioning is quite straightforward. For this interface,
the model is always presented as "ready", so the corresponding ready signal is
always written to '1’ to the RTL wrapper. The RTL walid signal is then checked
to detect new output messages. If no new message is available, this logic has
finished. Otherwise, the output data is read from the RTL wrapper, parsed and
converted into model objects and finally a GPU model’s communication packet is
created with those objects to be sent to the internal communication network as a
TU output message.

Write "ready”
to RTL
Read "valid"
from RTL

T
Read output
data from RTL

Parse output
data to model F
objects

l

Create a GPU
comm. packet

Figure 3.10: Flow chart of output message logic of co-simulation
class

Although the output logic may seem much simpler compared to the input one
just by looking at its flow chart, the amount of effort put into its development and
debugging was practically equal to its input counterpart. Most of the complexity
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is concentrated in the creation of the communication packet to be sent as a TU
output message. A lot of work was put into this phase which is, probably, the most
critical, since messages incorrectly constructed will trigger problems in other parts
of the GPU model later during execution. The details on this implementation
cannot be provided due to the proprietary nature of the information, but it might
seem obvious that the task of implementing this process was far from trivial.

The AXI interface class

As explained earlier, the TU has two AXI interfaces to read data that might not be
available in internal caches from other memories in the GPU. These interfaces were
implemented in the co-simulation class by designing a single "AXI interface" class,
exploiting the fact that the actual signals for both interfaces are exactly equal,
being only the connection endpoint of each different (and the data they transport).
This class, when instantiated, can be configured to function as the "interface
1" or "interface 2". Therefore, depending on which version of the interface is
instantiated, the instance will use either the imported SystemVerilog tasks and
functions corresponding to "interface 1" or "interface 2". The chosen version
of the AXI interface instance will also determine to which model’s internal AXI
arbiter the interface is connected, and therefore other AXI parameters such as the
ID range. To be able to communicate with the model’s arbiters, the AXI interface
class also contains an "AXI master", which simply implements a master of this
protocol in the model. Finally, this class follows the previously mentioned model
convention of having two main methods for the clock cycle operations and a reset.

Two different sets of operations are performed in this class: read requests and
read responses inside the compute method. The former are always the first to
happen, and will trigger at some point a read response as an answer. A flow chart
of the compute method is presented in Figure 3.11. The very first thing to check by
the AXI interface class is if, for the implemented interface, there is a read response
available. If not, the execution jumps directly to the read request logic (which will
be explained later on in this text). If a read response is found, it will be fetched
from the corresponding AXI arbiter via the AXI master instance, and formatted
from a model object to several values that can be written to RTL signals. Then,
the memory data pointed by the response is read, and all the signals (response
data and AXI control signals) are finally written to the RTL wrapper using the
appropriate imported SystemVerilog tasks.

The logic for read requests is more complex, as depicted in Figure 3.12. Again,
some groups of actions in the flow chart named states have been made to explain
the operation in an easier manner. A nominal execution (without co-simulation
induced conditions) of this logic would :

1. Read AXI read request signals of the implemented AXI interface from the
RTL wrapper.

2. If the AXT’s request walid is unset, no request is currently happening, and
therefore no more operations are performed. Otherwise, the request data
that was read is encoded into a model’s object.
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Figure 3.11: Flow chart of compute method of AXI interface class

. The master would accept data "always", so the fifo_en flag would be unset

as well.

. The request will then be sent to the corresponding arbiter using the internal

AXI master instance (State 4).

The previous procedure would occur only in an ideal execution. However,

to implement co-simulation for these interfaces a problem arised. Sometimes the
instance to the AXI master would flag that it cannot accept new read requests
(probably by some side-effect dependent on the model’s implementation). This
resolves into a timing problem, as the RTL expects to have sent a new requests in
the very same cycle as the master indicates it can’t accept that new request. To
overcome this inconvenience, another type of buffer-mechanism was implemented,
in this case represented as a FIFO queue. How this mechanism works can be
explained using the flow chart marked states:

e State 2 marks the beginning of the described issue: A new read request

is generated by RTL but the master cannot accept new requests at the
moment. The FIFO mechanism is then enabled, and the current new read
request is pushed to the queue, finishing the operations of the read request
logic in this cycle.

In the next cycle the most common scenario is that the master can accept
new data again, which will take the execution to State 3. At this point,
the FIFO contains the previous read requests that could not be send, and
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there is a new request received from RTL. The old request will be fetched
from the queue, sent via the AXI master to the corresponding arbiter and
the new request will be pushed to the FIFO. As the reader may expect, this
mechanism will therefore result in additional delays every time this problem
manifests.

e At a given point in time after the previous states have happened, no more
new read requests will be received from the RTL wrapper, but an old re-
quest will still be outstanding, stored in the FIFO queue. This corresponds
to State 1, where this last request will be popped out from the FIFO and
sent to the AXI arbiter via the AXI master. Finally, the FIFO will normally
be disabled, since the implementation assumes that no more than one out-
standing request will ever exist in the queue (if a second one ever happens
to be stored, an error condition was implemented).
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Figure 3.12: Flow chart of read request logic of AXI interface class
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Finally, it is only worth to mention that the advance method for this class is
trivial, and simply calls the advance method of the AXI master instance.

3.2 Results and analysis of the co-simulation environment

In this section different metrics will be presented with numbers to characterize the
proposed co-simulation environment and to compare it with other previously avail-
able simulation options. First, the graphics job used in simulation for obtaining
these metrics will be briefly discussed to better understand the results. Then the
timing accuracy of the co-simulation environment will be compared to that of the
model, with the full-system RTL’s as a reference. After that, the data correctness
of this setup is discussed. Finally, the total simulation time of the proposed envi-
ronment is compared with two different RTL setups: the texture replay testbench
and the full-system, being the model runtime the absolute reference.

3.2.1 The reference graphics job

In order to better understand the results that will be presented later in this chapter,
it is convenient to show and discuss briefly the input stimuli that were used as a
reference for the testing of this co-simulation environment and which operations
these stimuli trigger in the different actors present in the simulation. However, to
be able to explain this easily, it is also necessary to very briefly introduce OpenGL
ES, which will help the reader understand what a GPU needs to do to process
a graphical job and, therefore, give sense to the explanation about the reference
benchmark used in this work.

OpenGL for Embedded Systems (GLES) is a subset of the OpenGL Appli-
cation Programming Interface (API) for computer graphics rendering whose aim
is to render 2D and 3D computer graphics typically used in applications such as
video games, for example, and commonly accelerated using GPUs. This API is
standardized and multi-platform, being one of the most commonly used. Avoiding
most details, Figure 3.13 shows a block diagram of the pipeline of GLES. What
is most relevant to understand is that, in general terms, the GPU needs to realize
the following operations to implement graphics rendering using GLES [18]:

1. Obtain input triangles’ vertices (vertexes) from application.

2. Execute the vertex shader, which is the program responsible for performing
calculations on vertexes.

3. Execute rasterization, which is the process by which every primitive with 3D
coordinates in the scene to render (polygons, lines, points, etc.) is converted
to a two-dimensional image.

4. Execute the fragment shader which is the program responsible for apply-
ing operations to fragments (results of rasterizing primitives). Texturing
operations are performed during this phase.

5. Perform other operations per-fragment and build the framebuffer (pixels
arranged as a two-dimensional array).
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Figure 3.13: Block diagram of GLES 3.1 pipeline [19]

The graphics job used for obtaining the metrics presented in this chapter is a
very simple set of operations intended to be a basic test of the TU from a GPU
top-level perspective. These operations are summarized as follows:

1. Initialize the GPU and load system’s memory with the input data.

2. Execute a very basic vertex shader, that performs calculations for a rectan-
gle.

3. Execute a simple fragment shader that will simply apply a texture to the
previous rectangle.

4. Finish execution by composing the image resulting of the previous opera-
tions.

Because of the nature of this test, the computational time invested in the
texturing operations is much higher with respect to the other phases, making this
test very suitable for characterizing the co-simulation environment proposed in this
work. However, one additional fact must be known. Due to the time constraints,
and the implementation complexity and debugging required for this simulation
environment to work (specially on the message interface part of the co-simulation
class in the software-model side), in the end the co-simulation environment could
only run the presented test for one tile, that is, for a final image built out of 16x16
pixels, out of the bigger image that the full test would build. This is not ideal,
as the "setup" time that the simulation takes (all the workload until the vertex
shader, included) is then comparable or even longer to the time spent on texturing
operations while, in the full test, the length of the fragment shader is enough
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to mask out the time overhead of previous phases, and provide more meaningful
metrics. This effect and its consequences in the different metrics will be further
discussed in the following sections.

3.2.2 Timing accuracy

If the co-simulation setup is to be used for performance or computational time
estimations, an interesting metric to characterize this environment is its effect in
the total cycle count of a simulation. In this case, the absolute reference would be
the number of clock cycles spent in a RTL simulation, since it corresponds to the
exact time that the chosen graphics job will take to be executed in real hardware.
Before presenting the results, the reader must note that the total cycles difference
in the co-simulation environment is caused by several factors, all related to how
the environment was implemented, being some of which:

e Several input data to the RTL implementation of the TU is registered in
the co-simulation wrapper before it is fed to the TU, with the mechanism
explained in Figure 3.5. An example of this is the input messages received
from other parts of the GPU. This results in a one-clock cycle delay for
those signals every time their value is changed by the co-simulation class.

e In a similar fashion, the data of read responses in AXI transactions will also
suffer additional delays, when compared to the nominal execution of the
software model. In the model, every transaction happens instantly, bypass-
ing the fact that the count configuration of a specific AXI interface might
result in several data transmissions for the same AXI ID. An example of this
is a situation in which count=/ and the data width for that AXI interface is
64 bits. In a RTL implementation (like that of the TU in the co-simulation
environment) this will result in 4 data transmissions of 64-bits width, each
taking one clock cycle, for the AXI ID corresponding to the current response.
In the model, however, such response, with its data, is received in one single
cycle. Therefore a count-1 cycles delay will be introduced in the AXI inter-
faces in the co-simulation environment with respect to the software model.
This effect, however, is beneficial for the co-simulation environment with
respect to a top-level simulation in the RTL description of the GPU, as the
behavior is the same for this case.

Time metric Model  Co-simulation RTL
Active cycles 1733 1981 1918
Relative difference -10.68% 3.18% -

Table 3.1: Cycle count relative difference of software model and
co-simulation with RTL-only simulation

Bearing the previous consideration, the relative difference in cycle count for
this specific job compared side-by-side to the pure software model is shown in
Table 3.1, where the active cycles roughly correspond to the clock cycles that



Implementation and results 39

the simulation took processing actual workload, which is a portion of the to-
tal simulation cycle count. The relative difference is a comparison between the
model /co-simulation active cycles versus RTL’s, following Expression 3.1.

CCrrL

Diff(%) = (=55

—1)-100 (3.1)
Although the model seems to exhibit a further deviation when compared to
the co-simulation environment, it is also true that the total cycle count of the
simulation is not very high, and the software model is designed to provide more
accurate timing metrics with longer simulations. All in all, the co-simulation
result seems promising, and quite close to that of the RTL design simulation,
suggesting that this environment would be a good candidate for computational
time estimation and performance correlation solutions in a top-level context.

3.2.3 Data correctness

The most important metric to evaluate whether the achieved solution is valuable or
not is the data correctness, or whether the output data generated in simulation by
the co-simulation setup is correct. This is essential for the validity of the developed
environment, as no functional verification would be possible if this requisite is not
fulfilled. To evaluate data correctness, the output memory dump generated by
the nominal software model (see Section 2.1.1 and Figure 3.1) is compared to the
memory dump generated by the modified model at the end of the co-simulation,
as the Mali model is, of course, functionally correct.

The memory dump generated during the job run in the co-simulation envi-
ronment was equal to that generated by the model, therefore proving the data
correctness of this solution.

3.2.4  Simulation time

An additional metric to take into consideration to characterize the co-simulation
environment is simulation time, or the real time in seconds that this setup takes
to complete a job run. The idea behind evaluating this metric is to assess whether
the proposed co-simulation environment gives any advantage in simulation speed
over, mainly, the same simulation run with Mali’s full RTL representation. If this
is proved, then the co-simulation would prove to be an interesting approach to, for
example, iteratively check the effect of unit-level design changes in the performance
of the whole GPU system in an agiler manner.

Obtaining this metric wasn’t straightforward. The main approach would sim-
ply be to measure the real-time execution of each simulation setup independently
and compare them. However, Arm’s infrastructure forces the use of the Cadence
toolchain (and for this case, the Xcelium simulator) in a server cluster shared
with many other users. The effect of this is that the simulation times vary in
every execution, depending on the number of active users and the current load
that the system is handling at that moment. To overcome this inconvenience in
the best possible way, the simulation for each setup (model, co-simulation, texture
replay and RTL) was run 30 times each. In this way, statistics like the maximum,
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minimum, and average simulation time for each setup could be obtained, giving
a more faithful image of the result. However, the chosen statistic to make the
actual comparison was the minimum simulation time of each case, as it provides
the information with the least influence from the variability of the underlying
infrastructure.

Additionally, the fact that the graphics job that could finally be run in the
co-simulation environment is short in terms of texturing operations (see Section
3.2.1) means that the simulation time figure as is may not be as relevant as could
be to characterize the proposed environment. Furthermore, for all the simula-
tion runs, except for the software model, the Xcelium simulator is used, and this
program introduces an extra time overhead since the time it is invoked until the
time when the actual simulation starts. This overhead is not significant in longer
simulations, but it is in this particular case. For all this reasons, and because the
most meaningful result would be obtained from a texture-heavy job run (or, in
other words, a job in which all phases are very short with respect to the fragment
shader), the simulation time results will be presented for the 4 different setups
for two cases: the full reference graphics job and for only the fragment-part of it
(which would be the difference between the time taken to execute the full job and
the time taken to execute all the phases up until before the fragment shader).

Finally, before discussing the results, and as it has been advanced before in
the text, the simulation time of an additional setup was also measured: a texture
replay simulation. This would correspond to a different test for the TU which
had been used in the past for the same purposes as the proposed co-simulation
environment. In this test, a RTL testbench in which the TU is the DUT drives
TU’s inputs with stimuli read from a file, which are previously created by running
the nominal model and dumping (and partially parsing) all the transactions in
the input interfaces of the TU interface class, effectively emulating, at least at a
functional level, the system behavior and interaction with the TU.
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Figure 3.14: Relative slowdown of the different simulation options
with respect to the software model

The simulation time comparison for the two presented cases is shown in Figure
3.14. The number used as a relative comparison of the co-simulation, texture
replay and RTL simulations versus a model run time is the slowdown (Sgown) in
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simulation time, as expressed in Expression 3.2, which is simply the inverse of the
speedup (S).
1 _ tsim

Siown = 573 (3.2)

StMmodel

As can be observed, in both cases the co-simulation environment is the closest
simulation option to the model in terms of simulation speed. Very interesting to
highlight is the fact that the co-simulation environment is also much faster than
the common simulation of the full-system RTL, confirming the initial expectation
that the the proposed environment would be a faster but still accurate solution for
evaluating in a top-level context changes in a hardware unit. The co-simulation
also seems to be faster than the texture replay test. This seems reasonable if one
thinks how the stimuli to the TU’s RTL representation are generated in each case.
In co-simulation, it is the model that interactively creates and sends stimuli to the
TU’s RTL, taking advantage of its much faster execution as object code. On the
other hand, the textre replay simulation will use some testbench logic to open, read
and parse the stimuli data from the replay files, spending a lot of computational
time in these tasks before the stimuli for the TU are ready.

Finally, regarding the absolute slowdown numbers, discussions with experi-
enced engineers in this GPU system yield that, if a longer simulation in terms
of texture operations could have been run in the co-simulation environment, the
slowdown for all cases will probably be in a middle point between the numbers
in Subfigure 3.14a and Subfigure 3.14b. Therefore, an approximate slowdown of
around 2.5 could be expected for the co-simulation environment which, compared
to an approximate slowdown of around 20-30 for the RTL simulation would still
give a significant advantage to the co-simulation environment in terms of simula-
tion time.
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Chapter 4

Conclusions and future work

In this chapter a summarized overview of the thesis project developed will be
provided, recalling the objectives that this thesis aimed for and the decisions taken
for implementing the proposed co-simulation setup. Some comments on the results
obtained will also be included, along with a final conclusion. Finally a brief section
on future work that can be derived from the work in this thesis is included.

4.1 Conclusions

This Master’s thesis project, titled Hardware-software model co-simulation for
GPU IP development had one primary objective: To investigate the feasibility
of a mixed simulation environment where some parts of a software model (of a
hardware system) can be swapped with their corresponding RTL description, and
which advantages may this possibility offer. Another expected outcome of this
work was that the resulting environment would open new use-cases, or improve
tasks like design exploration or performance correlation in a system’s top-level
context. All of these objectives were pursued for a specific case: Arm’s next-
generation Mali GPU, of which its C++ software model, along with the RTL
description in SystemVerilog of one of its internal blocks, the texture unit, were
the main actors.

The implementation carried out to realize this environment makes use of Sys-
temVerilog’s DPI-C to enable the communication between the object code of the
software model of the GPU with the RTL description of the texture unit. Several
new sub-blocks had to be developed to adapt the interfaces of both the texture
unit class in the model and the RTL representation of the texture unit in a way in
which none of this two elements had to be modified. The resulting co-simulation
environment complies with the expected objective of effectively replacing a compo-
nent in the software model with its RTL representation, permitting the simulation
of a subset of a graphics job that had been previously utilized for both model and
full-system RTL simulations.

In general, interesting results were obtained with the proposed co-simulation
environment, bearing in mind the additional conditions that the length of the
graphics job used for characterizing the environment introduces. The timing ac-
curacy, in terms of total clock cycles, is quite close to that of the full-system RTL,
with a difference of around 3%. This might put this proposed environment as an
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interesting candidate for tasks like performance correlation or computational time
estimation. Regarding data correctness, or whether the output data generated
by the co-simulation environment corresponded to the expected, the outcome was
positive, and this environment can therefore be used for functional verification in
this case. Finally, the simulation time of this setup was compared to that of two
RTL testbenches: the texture replay and the full-system RTL, being the model
runtime the absolute reference for all. The general outcome of this metric eval-
uation is that the co-simulation environment was the fastest solution after the
model, being able at the same time to provide a higher level of detail with respect
to the software model in the TU part of the design thanks to the use of its RTL
representation.

For the author of this work, this Master’s thesis has been extremely valu-
able in terms of knowledge and experience, as the nature of the work demanded
a certain level of understanding of both software and hardware languages. This
work also demanded a rather deep understanding of the tools utilized to realize
the proposed implementation. More specifically, a lot of time was spent study-
ing the SystemVerilog language specification (specially for details on Subroutines
and the Direct Programming Interface), and Cadence’s Xcelium documentation,
as the computer environment for running the co-simulation setup also had to be
developed prior to actually implementing the mixed simulation. Finally, the op-
portunity of developing this thesis work based on a real, complex design in a
company like Arm was also an invaluable experience, from which the author has
learn a lot, both personally and professionally.

4.2 Future work

The amount of future work that this project opens up is considerable. Therefore,
a selected group of suggestions are presented hereunder:

e The most immediate upgrade for the proposed co-simulation environment
would be to continue the implementation work on the message interface
part of the co-simulation class, to enable longer and more complex
simulations to be run in mixed simulation.

e An interesting study that time did not permit in this work is evaluating
the feasibility of using the proposed co-simulation environment for perfor-
mance correlation simulations, since it could maybe be used to substitute
the software model in certain situations when a higher level of accuracy is
necessary in the TU part of the system.

e According to the results of this thesis work, it may be interesting to extend
the idea of co-simulation to other units in the GPU system. However,
this would actually require a combined effort of many engineers, because
the software implementation of these units would need a minimum level of
alignment with the RTL implementation to allow co-simulation in a fashion
such as the one suggested in this work. This might be something worth
keeping in mind if one of these units’ software model implementation is ever
developed from scratch at some point in the future.
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e Starting again from the premise that this work might be interesting to con-
tinue developing, an automated environment could be created in which,
if a specific unit in the software model complies with some defined design
rules, a co-simulation setup can be automatically generated in SystemVer-
ilog. To make this feasible, a set of rules or guidelines on how to design
a software model unit to comply with the requirements would have to be
developed, and put into practice when a new GPU unit is written in the
Mali model.

e In a related, opposite approach, another co-simulation case could also be
studied: a full RTL setup in which only one or several units are
replaced with their software model C+-+ implementation. This
option would also open new use-cases, such as design or features exploration
of the system when a new block is developed in the software model before
its RTL implementation is ready.
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