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Abstract

The thesis explores efficient implmentation strategies for the European Spallation
Source (ESS) linear accelerator simulator. The target simulator needs to run at
real time, requires high computation accuracy, and should be scalable for high
density beam scenarios. The high data processing, communication, and storage
requirements due to a large data set, along with a strict accuracy requirement,
poses a critical implementation challenge for traditional computing platforms.

To tackle these issues, this thesis uses a scalable platform with hybrid comput-
ing capabilities and the Open Computing Language (OpenCL) framework for an
unified programming model. The hybrid computing platform allows for mapping
tasks to the most suitable hardware and explores heterogeneous memory hierar-
chy to fast data shuffling. The OpenCL framework allows functional portability
and scalability across different target devices such as CPU, Graphics Processing
Unit (GPU) and OpenCL accelerator devices like with Field Programmable Gate
Arrays (FPGA) and Digital Signal Processor (DSP) arrays. The computational
intensive tasks of the simulator can be conveniently mapped to the accelerators,
where computational parallelism is explored.

The targeted simulator is implemented in a Xilinx hybrid computing platform,
consisting of an Intel i7 CPU, an Nvidia 960 GPU, and a Xilinx Kintex Ultra-scale
FPGA. Comparing to the benchmark (a C++ based implementation), we are able
to accelerate the ESS simulator by more than 80x on the GPU and 25x with FPGA,
with the same simulation accuracy (double precision floating point). We identified
the implementation bottleneck on the specific platform, which is the memory band-
width. This leads to our future work. One important future task is to investigate
different hybrid computing platforms of different vendors, considering computa-
tion capability, memory bandwidth, as well as design software. Moreover, different
data types will be examined, including fixed-point, double/single-precision floating
point, or custom floating point.

The structure of the thesis report: Due to it’s broad nature, the report has
focus on the core content in chapters 1-4, while the theory and implementation
details are described in appendix A-E.
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Popular Science Summary

Accelerating Linac Simulator using heterogeneous hardware architec-
tures

The European Spallation Source is
one of Europe’s largest research infras-
tructures to bring new insights into the
challenges of science and innovation in
fields as diverse as material and life
sciences, energy, environmental tech-
nology, cultural heritage,solid-state and
fundamental physics by the end of the
decade.

A 5MW, long pulse proton ac-
celerator is used to reach this goal.
The particles in this beam contains
so much of energy, that the loses to
the super-conducting structures become
marginally critical. An accurate and
real-time simulation model to predict
the behaviour of the particles is required
to minimize the losses.

There are two approaches to model
the particle behaviour, one is to use an
approximation with the envelop of the
beam and the other is to model each
particle and track them. The envelop
method can run real-time, but has dis-
crepancies to the actual behaviour of
the beam at high energy configurations,
hence a computationally intensive mult-
particle simulation model is required
to provide realistic behaviour. This is
achieved by supporting non-linear be-
haviour such as space charge (particle
to particle interactions).

The multi-particle simulation algo-
rithm has linear and non-linear at-
tributes, where the linear section can
map efficiently to the graphic proces-
sor hardware architecture, while the
non-linear section can map more effi-
ciently to the flexible FPGA fabrics.
To make the multi-particle simulation
model run real-time, a computing plat-
form that can support graphic proces-
sors and FPGA accelerators are re-
quired.

The thesis proposes to use a hy-
brid computing platform with FPGA,
GPU and CPU to provide the efficient
mapping of the multi-particle simula-
tion model. A unified development en-
vironment and a scalable platform is de-
veloped by using a software stack build
based on OpenCL framework. This al-
lowed to develop the system in a rapid
design phase and maximize the code re-
use.

We were able to accelerate the lin-
ear part of the simulation model by upto
89x on the given set of hardware. Differ-
ent ways to further optimize the solution
are also explored.
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Chapter1
Introduction

In this section, the background of the European Spallation Source (ESS) Linear
Accelerator simulator is presented. The design challenges associated with the
simulator and a hybrid computing platform to tackle these challenges is proposed.
Related work done in the field is explored and discussed. The design methodology
and tools used in the thesis are also introduced.

1.1 Background

The ESS is a scientific laboratory constructed in cooperation with 17 European
Countries to produce the brightest beam to date for use in materials research. At
ESS as shown in Fig. 1.1, a stream of neutrons will be created using a linear proton
accelerator and a fixed tungsten target. The proton beam has a peak power of 125
MW with a duty cycle of 4% for an integrated power of 5MW on the target. Such
beam requires precise and accurate control to minimize losses in the superconduct-
ing structures, therefore an accurate multi-particle on-line simulator is needed to
provide more realistic beam information and tuning guidance. Existing on-line
simulators for proton linear accelerators (Linacs) are mostly developed based on
an envelope model. For a majority of applications, such an approximation brings
in lower computation load and hence a real time execution model. But for high
power beam applications, these approximations of the beam produces marginal
discrepancies in the simulator results. It also doesn’t support the capability to
simulate using real beam distributions and take into account space charge (inter
particle interactions).

Figure 1.1: ESS Linear Accelerator

The ESS proton Linac will be commissioned and operated with the use of
an on-line model. This is a simulator, which uses live readouts from the con-
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2 Introduction

trol system to provide the most accurate description of the running accelerator as
possible, given the rapid response required during operation. Today the available
simulators are divided in two groups: (1) beam envelope simulators, providing fast
results but only of average quantities of the beam, and (2) multi-particle tracking
simulators, providing accurate results but in a time not suitable for live operations.

The multi-particle tracking simulation model can provide an accurate simula-
tion result and support for space charge. However, these are arrived at the expense
of increased computation complexity, that reaches Tera matrix multiplications for
the required test configurations. This scale of computation requires a high density
parallelism and can be taxing on the traditional computational methodology to
provide efficient mapping to hardware. When the linear tasks are coupled with
non-linear behaviour modelling (space-charge), a suitable hardware with flexible
architecture is required. A heterogeneous architecture based on CPUs, GPUs and
FPGA accelerators is proposed as a solution.

This thesis project will explore the possibility to accelerate a multi-particle
tracking simulator with the goal to bring this family of simulators in the on-line
environment of a modern accelerator. The simulator code used for this project
will be ESS Linac Simulator (ELS) developed and integrated in the ESS control
infrastructure. The core of the simulators can also be used in other applications,
such as astronomy to model the interaction between the galaxies and stars.

1.2 Related Work

The envelop based model can be run real-time without the need for further op-
timizations. Due to the simplifications inherent to the model, it cannot account
for the non linear behavior that is needed at higher energy configurations to pro-
vide realistic beam predictions. Whereas, the Multi-particle model due to the
(heavy) computation requirements requires hardware equal to a super computer
for obtaining the results within an acceptable execution time frame.

The work[2] focuses on the use of split-operator methods to integrate single-
particle magnetic optics techniques with parallel Particle in Cell (PIC) techniques.
By choosing a splitting scheme that separates the self-fields from the complicated
externally applied fields, they are able to utilize a large step size and still retain
high accuracy. Similarly, Trace 3D [7] simulator uses envelope approach to pre-
dict the beam behavior. The work [1] points to a complete implementation of
the on-line simulation system, which acquires real-time information from the lin-
ear accelerator, then the on-line simulator performs the simulation and provides
important statistical information to the control room. Reducing the simulation
time will shorten the duration for retuning the accelerator, and there is a need
for retuning before different scientific experiments. The disadvantages of these
methods are that, the optimizations are applied over the algorithm level, by using
numerical approximations and smart application of physics that can only converge
for the test configurations that they were designed for. This lead to discrepancies
with the actual results beyond an acceptable margin, when the model is scaled for
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beam configurations required at ESS ( beam with larger particle density moving
with high energy).

HPSim[8] is an implementation done with Nvidia CUDA[23] platform at it’s
core for accelerating the Linac simulation. A python based API to the implemen-
tation is available, and results of the acceleration with and without space charge
simulation are provided with the publication. It performs the implementation in
the state of the art(at time of publication) NVIDIA Tesla K20 GPU and Intel
Xeon E5520 2.27GHz processor cluster. The implementation benchmarked a re-
sult of about a second with (4960 RF gaps + 206 quads + 460 drift spaces) for 32K
particles. Since CUDA is proprietary, it is locked to Nvidia and doesn’t support
acceleration over other vendor architectures. Although, it takes it in a similar di-
rection as this thesis work, it doesn’t consider any hardware level optimizations or
steps in utilizing a better data precision. This also doesn’t support a flexible hard-
ware configuration, limiting the capabilities needed for mapping non-linear tasks
to FPGA, while utilizing the GPU architecture for linear tasks of the simulation
model.

The non linear behavior of the simulation, doesn’t efficiently map to a GPU
architecture due to thread divergence and reduction attributes [4]. Therefore, a
flexible hardware platform is required for efficient mapping of the hardware to the
optimal task. This can provide maximum processing and power efficiency. [19] is
a study on how well, a FPGA performs within the context of the OpenCL imple-
mentation against GPU and CPU. However, at the time of writing we couldn’t
find a similar work on the multi-particle model that utilizes a CPU, GPU and
FPGA based hybrid computing platform.

1.3 Multi-particle Simulation Model

The multi-particle simulation model is based on the principles of Hamiltonian to
represent the behavior of the particle moving in a given space. Each particle is
represented by a vector in phase space of dimension 6 as a function of distance.
Given the initial conditions the particle state after moving a distance L in drift
space can be modeled with a transport matrix as shown in equations 1.1, 1.2 and
1.3. The β is the velocity of the particle scaled to the velocity of light.

x̄1 = Rdrift × x̄0 (1.1)

Rdrift =



1 L 0 0 0 0
0 1 0 0 0 0
0 0 1 L 0 0
0 0 0 1 0 0
0 0 0 0 1 L

β2
0γ

2
0

0 0 0 0 0 1

 (1.2)

γ0 =
1√

1− β2
0

(1.3)
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A FODO(FOcus and DefOcus) cell is a basic block used in any Linac and provides
an oscillatory behavior to the envelop of the beam. For the test-case configuration,
the FODO cells are iterated over to match the required complexity of an actual
test configuration. The transport matrix is modified, when the space-charge and
other non-linear behavior is included in the simulation. The FODO cell constitute
of quadrupole magnet spaces focusing the beam on X and Y axises separated by
drift spaces as shown in Fig. 1.2. The transport matrices for quadrupole spaces
are derived based on [12]. Fig. 1.3 shows the envelope of the beam oscillating in
the x axis with reference to distance(expressed in units of L).

Figure 1.2: The Fodo cell structure.

A more elaborate description on the quadrupole and drift space matrices in
context to Hamiltonian principles, and related physics theory is discussed in the
Appendix A.

1.4 Design Challenge

The multi-particle simulation model, is intensive in computational and memory
requirements. Due to high power beam used at ESS, a test scenario will have a
particle count of million particles and their states computed over a million frames.
The computation complexity of 1012 matrix multiplications needs to be mapped
to the hardware. With the double precision data, 48 Mega bytes of memory is
required at each frame. This demands a proper memory hierarchy with large and
slow memory like off-chip memory interfaced with small and fast on-chip memory.
Thus, the shuffling and arrangement of data also becomes a critical task to enhance
the memory access efficiency, while meeting the bandwidth requirement for massive
parallelism in hardware. The non-linear part of the simulator, such as space charge
behavior and obtaining the statistical information at each frame will be also be
mapped to hardware, and this can be straining for GPU hardware architecture.

This demands a flexible hardware configuration, to off-load different work loads
to different hardware architecture based on their efficiency. A unified hardware
platform is required for the flexible hardware configuration and also to provide
maximum code re-use in a small development time-frame.
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Figure 1.3: Beam state parameter X versus unit distance S.

The memory traffic and memory access rate is directly related to the data type
used and hence the feasibility of fixed point implementation and it’s throughput
versus accuracy needs to be studied.

Depending on the demand and usage scenario, such as to be used on-line or off-
line brings in the requirement for a scalable platform. The target solution should
be able to meet the real-time performance requirement of the on-line simulation
scenario, where as for off-line simulation the cost of hardware will be an added de-
ciding factor. A scalable and functionally portable solution provides improvement
to performance by scaling, adding or upgrading the hardware platform without
the need for modifying the software.

1.5 Hybrid Computation

In this thesis, we explore the concept of hybrid computation to tackle the afore-
mentioned design challenges by mapping the target algorithm in an efficient way
to different hardware platforms (CPU, GPU and FPGA).

1.5.1 System Architecture

This allows task level parallelism and also enables assigning the task best suited for
a particular hardware architecture. The mapping of the multi-particle simulation
model into a hybrid computation platform can have the FPGA assigned with non-
linear tasks, while GPU performing linear tasks. The hardware top-view as in Fig.
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Figure 1.4: Hybrid computing hardware overview.

1.4 of the hybrid platform is to have the host processor connected to the devices
using PCIe link for control and data transfer

1.5.2 OpenCL Framework and Resource Mapping

Figure 1.5: Software stack and task mapping.

To provide a unified development environment for different hardware, we de-
signed a software stack based on OpenCL framework. The Fig.1.5 shows the
layered approach, that allows scheduling tasks with system level synchronization
of devices. A given set of tasks can be assigned to CPU, FPGA and GPU based on
the execution efficiency. This also expands the flexibility of the system further by
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allowing either to enhance the entire system performance by simultaneous multi-
device execution of the same task [6][19] or by mapping non-linear tasks to the
FPGA , while routing linear tasks to the GPU. This allows to adapt the simulator
performance based on the test configurations. The task behavior are expressed
using OpenCL kernels which are loaded to the device during the run-time.

1.6 Design Tools and Methodology

Since the thesis focuses predominantly at the system level, we had the require-
ment to use different set of design tools, while still aiming to provide a unified
development environment. The use of QT framework for GUI and QMake tools
enable cross-platform compilation of the host binary. The Matlab and Vivado
HLS were used to build the hardware emulation and use it to study different data
types and their trade-off. SDAccel from Xilinx provides the development environ-
ment for analysing and implementation of FPGA based OpenCL kernel. The Fig.
1.6 shows the main design tools used such as Matlab, Vivado HLS, QT creator,
SDAccel and other system tools. All the block diagrams were made using draw.io.

Figure 1.6: Design Tools used in the thesis.

The plots and golden reference data used for verification in other design phases
were generated from the Matlab simulation model. By having a cross-platfrom and
device independent implementation, we were able to provide maximum code re-
use and develop a hybrid computing platform within the time frame of the thesis
project.
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Chapter2
Hybrid Computing Platform

This section introduces the hybrid computing platform, and how it provides a
unified development environment. OpenCL framework is used to implement the
platform, and the software stack used is exposed. The GUI and scalability features
are also discussed.

For supporting a scalable and flexible hardware configuration, a hybrid com-
puting platform is required. To enable these features while, providing a unified
development environment we make use of OpenCL framework and the layered soft-
ware stack. As the inherent feature support for a hybrid computing platform, the
system can handle task level parallelism and allows to assign sub-tasks to different
hardware architectures and to provide maximum throughput for a given configu-
ration as shown in the Fig. 2.2. Since the multi-particle simulation model consist

Figure 2.1: The Task Partition in Hybrid Computing.

of linear and non-linear behaviour, the hybrid computing platform can map the
linear part of the task to the graphic processor architecture, while the non-linear
to the FPGA architecture providing the optimal throughput with efficient power
utilization at the system level. The hardware and software architecture of the

9



10 Hybrid Computing Platform

hybrid computing platform is explored next.

2.1 System Hardware Architecture

The hardware architecture of the hybrid computing platform consist of a host
processor, connected to FPGA and GPU accelerator cards by PCIe interface. By
using the OpenCL framework, different configurations of device can be utilized to
scale up the hybrid computing platform. The functional portability coupled with
layered architecture allows hot plug’n play support to any OpenCL complaint
devices.

Figure 2.2: The hardware architecture.

2.1.1 Host Processor

For the host processor, we used an Intel I7 6700 HQ which is a quad core proces-
sor based on the Skylake architecture. In addition to the four cores with Hyper
threading clocked at 2.6 - 3.5 GHz, the chip also integrates an HD 530 GPU and a
dual channel DDR4 2133 memory controller. The host processor runs the software
stack and manages the device execution.

2.1.2 OpenCL Devices

The OpenCL maps the algorithm efficiently into different hardware architecture,
and we implemented GPU and FPGA based accelerators configuration. The
FPGA card from Alpha Data, ADM-PCIE-KU3 is used for testing the OpenCL
implementation on the FPGA. There are two DDR 3 RAM channels which pro-
vides a data bandwidth of 72 bits per sec (with 8 bit reserved for Data Correction)
at the rate 1600 Million samples per second. The PCIE link to the host processor
is PCI Express R© Gen3 x8 . The FPGA hosted on the accelerator is Xilinx Kin-
tex Ultrascale XCKU060 - FFVA1156. The Fig. 2.3 shows the other peripherals
present on the target accelerator card.
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Figure 2.3: The FPGA accelerator card ADM-PCIE-KU3.

The graphics processor, we used in the implementation is a Nvidia 960M;
an upper mid-range, DirectX 11-compatible graphics card for laptops unveiled
in March 2015. It is based on Nvidia’s Maxwell architecture (GM107 chip) and
manufactured in 28 nm. The GTX 960M offers 640 shader units clocked at 1097 -
1202 MHz (Boost) as well as fast GDDR5 memory (128 bit, 5000 MHz effective,
80 GB/s).

2.2 System Software Stack

Figure 2.4: The software stack overview.

A layered approach is used to design the host application, to support scalability
and maximum code re-use. The top layer is graphic user interface, which provides
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access to test configuration and device selection. The device management layer
maps tasks to different hardware, while the OpenCL host frame work and Vendor
driver establish a device independent application development process. The device
layer is the OpenCL kernel, which maps the device behaviour to the algorithm. A
detailed overview of each layer is provided next.

2.2.1 Graphic User Interface

The Layer 4 handles the graphical user interface and provides with a basic test
configuration and device selection as shown in the Fig. 2.5. QT framework is
used to build the graphic elements and the interactions between them.

Figure 2.5: The QT based Graphic Interface.

The GUI handling is allocated to a thread, while the layer 3 is executed in a
different thread as shown in the Fig. 2.6

Figure 2.6: The layer 4 and layer 3 communication.

The timer is used to periodically update the GUI elements based on the device
status. A mutex (binary semaphore) is used to share the resources between the
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graphic user thread and the device management thread.

2.2.2 Device Management

The device management layer is critical in managing the device execution and
routing the tasks to different hardware devices.

Figure 2.7: The OpenCL program flow

As shown in the Fig 2.7 the device kernel needs to be loaded to the appropriate
hardware devices. For GPU and CPU, the device kernels can be compiled on-line
and hence can be re-used for different GPU and CPU devices. Since the generation
of binary for FPGA takes hours to complete, an off-line compilation process is used
instead.

The device management layer also handles the execution range of the device,
and manages the synchronization between the devices. A detailed overview of this
layer is presented in the Appendix D.

2.2.3 Intermediate Layer 2 and 1

The Fig. 2.8 shows the layer 2 and layer 1 and how they interface the application
layer to the hardware. The Installable Client drivers maps the underlying vendor
implementation to the OpenCL API, thus separating the application layer from the
hardware specific drivers. This also enables connection of new OpenCL compliant
devices.
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Figure 2.8: Layer 2 and 1.

2.3 Cross-Platform Build

Figure 2.9: The Host code Compilation.

The Qmake is used to link the libraries(OpenCL and QT framework) together
and is configured to have build support for Linux, Windows and Mac operating
system. The Fig 2.9 represents the compilation flow of the library to produce the
host binary files. The required Makefiles are generated and can be used to build
the source code.



Chapter3
OpenCL Device Implementation

In this chapter, the mapping of algorithm to different hardware architectures is
explored. Layer 0 in the software stack (OpenCL kernel) for CPU, GPU and
FPGA is implemented and then optimized for the architecture.

3.1 OpenCL Kernel

Figure 3.1: OpenCL Abstractions in Processing and Memory levels.

The OpenCL has a well defined Memory and Kernel programming model,
which allows to express the parallel concurrency into the target hardware as shown
in the Fig 3.1. This allows describing the behavior of a thread, and their synchro-
nization within a computation unit.

The unit of work performed by a thread is termed work item, and a collection
of work items forms a work group in OpenCL. By using these abstraction with

15
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their execution space (NDRange space), allows scheduling these work units across
parallel frames of data.

Figure 3.2: The OpenCL execution model with NDRange and Mem-
ory scope.

The Fig 3.2 shows a 2 dimensional NDrange (execution space for the work-
items) with a set of work groups, with each work group representing a set of
work items. The memory scope of global memory, local memory and private
memory also follows the same hierarchy. The global memory is shared between
all of the work groups, while the local memory is shared within a work group
and the private memory has it’s scope limited to a work item. By using these
abstractions, the transport matrix computation is mapped to the target hardware
providing maximum throughput by efficient utilizing of the available parallelism.
More detailed information can be found in the OpenCL text[18] and other vendor
specific documents.

3.1.1 Frame Partition and Subframe Scheduling

Figure 3.3: The subframe scheduling and partition
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After implementing the OpenCL kernel, two parameters can be used to fine-
tune the kernel to the hardware architecture. As shown in the Fig. 3.3, by assigning
a proper value for work group size, the OpenCL allows to determine the size of the
sub-frame and by declaring the NDRange space, the number of sub-frame divisions
to be scheduled across the available computation units within a hardware device
can also be computed. If there are too many subframes, there is an overhead
associated with scheduling them to the available computation units, and if there
are too little, the amount of available parallel resources in the hardware cannot be
fully utilized.

3.2 OpenCL Implementation on CPU

The Host DDR memory holds the frame data and transport matrix. First, the
transport matrix is moved to the cache of each SIMD core, while subframes are
moved from DDR memory to cache, executed across the available SIMD cores and
moved back to the DDR memory. AVx instruction sets provides vectorization at
each SIMD core.

Input: framein, Tmatrix
Output: frameout
for i < Depth do

localFramein[i] = framein[i]
end
for i < Depth do

localFrameout[i] = localFramein[i] ×Tmatrix
end
for i < Depth do

frameout[i] = localFrameout[i]
end

Algorithm 1: Pseudo code for CPU work-item.
For the implementation in CPU, the NDRange is declared as the total number

of particle in a frame divided by the depth of the kernel(size of the subframe). Here
the work item and work group points to the same hardware SIMD core, and the
depth represent the size of subframe moved to their local cache. An efficient burst
transfer is implied between the cache and the off-chip DDR memory by moving
the data as a chunk.

Target Implementation Execution Time Gain
c++ benchmark 3.277 s -
opencl depth 16 208.781ms 15.71
opencl depth 32 217.781ms 14.87
opencl depth 64 194.781ms 16.63
opencl depth 128 228.781ms 14.15

Table 3.1: OpenCL on CPU results.

A test configuration of 1024 × 1024 particles for 15 iterations were used to
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fine-tune the depth of the kernel for the CPU used. As per the table 3.1 a kernel
depth of 64 was optimal for the I7 6700 HQ processor for a similar work load.

These training workloads needed to be performed for fine-tuning the imple-
mentation for a different set of CPU which may have more hardware resources
available.

3.3 OpenCL Implementation on GPU

The GPU architecture is designed for handling parallelism in a massive scale and
in order to map the algorithm to the it’s architecture, a different set of parameters
and behaviour description is required. The entire frame data and transport matrix
is moved the GDDR5 RAM in the GPU accelerator card. The frames are divided
into sub-frames and allocated across different computation units. The Transfer
matrix is stored into the local cache of the computation unit. Each subframe
is transported to output subframe and the results moved back to the GDDR5
memory.

For mapping these processes to OpenCL kernel, each work item associates
with a processing element or thread in computation unit, and a computation unit
is mapped to a work group. Thus, the size of the subframe which is allocated to
a computation unit can be decided by using the parameter local work group size.
The NDRange space should be the total number of particle count from the test
configuration. Synchronization between the work items in a work group needs to
be provided and are done at the end of these three sub-tasks using a local memory
barrier. The implementation as shown in the Fig. 3.4 consist of these sub-tasks:
Reading to local memory of computation unit, computation unit execute and write
from local memory of the computation unit.

Figure 3.4: The GPU OpenCL implementation.

Similar to the CPU implementation, a training test configuration is used to
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fine-tune the kernel implementation for the required work-load. As shown in the

Target Implementation Execution Time Gain
c++ benchmark 3.277 s -
opencl work group size 32 45.781ms 72.82
opencl work group size 64 37.93ms 86.46
opencl work group size 128 not feasible -

Table 3.2: OpenCL on GPU results.

table3.2 work-group size of 64 provided the optimal execution time for this case.

3.4 OpenCL Implementation on FPGA

By taking advantage of the fact that the FPGA starts off as a blank computational
canvas, the user can decide the level of device customization that is appropriate
to support a single application or a class of applications. In determining the level
of customization in a device, the programmer can take advantage of the fact that
kernel compute units are not placed in isolation within the FPGA fabric. FPGA
devices capable of supporting OpenCL programs can include, but are not limited
to, the following components:

• DMA engines.

• I/O peripherals such as PCIe and Ethernet.

• Memory controllers

• Custom interconnects

• OpenCL compute units

• RTL-based accelerators

Since we are using Xilinx based FPGA accelerator card, the implementation
details are related to the infrastructure local to Xilinx OpenCL implementation.
As shown in the Fig. 3.5, the FPGA is partitioned into two regions: the static
region and the OpenCL region. The Static region provides the control and com-
munication to the host computer, while the compute units generated from user
kernel functions are placed in OpenCL region. These compute units (Computa-
tion units) are highly specialized to execute a single kernel function and internally
contain parallel execution resources to exploit work-group level parallelism. By
placing multiple compute units of the same type in the OCL Region, developers
can easily scale the performance of single kernels across larger NDRange sizes.
By placing multiple compute units of different types in the OCL Region, devel-
opers can leverage task parallelism between disparate kernels. In this way, the
massive amounts of parallelism available in the FPGA device can be customized
and harnessed by the SDAccel developer. This is different from CPU and GPU
implementations of OpenCL which contain a fixed set of general purpose resources
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Figure 3.5: The FPGA OpenCL implementation.

3.4.1 Implementation

In this section, we describe the implementation of the multi-particle simulation
model on the FPGA. The initial frame data is stored into the FPGA Off-chip
memory using PCIe from the host CPU, while the transport matrix is stored in
the register banks of each computation units. A computation unit also consist of
FIFO structures with highly parallel execution units. The transported frame is
also stored in the off-chip DDR memory after execution.

We explored memory hierarchy and parallelism at two levels to provide the
optimal throughput for the memory bandwidth. As in the Fig 3.6, we have multiple
instances of computation units interfaced to the off-chip DDR memory and each
computation units have independent execution of vector arrays with dedicated
local memory. Next, we discuss the memory level and processing level optimization
applied at each computation units

Figure 3.6: FPGA architecture top-view.
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Figure 3.7: Vector array top view.

3.4.2 Memory Optimizations

Off-chip memory access and on-chip memory bandwidth to match the consumption
rate of parallel processing elements is critical for a high throughput design.

Figure 3.8: Memory optimizations

In order to efficiently transfer data from the off-chip (DDR) memory, burst
transfer is inferred into the local memory of each computation unit as shown in
the Fig. 3.8. The local memory is split into six FIFOs where, the memory mapped
data from the off-chip memory is transformed into a streaming data, processed
and transferred back. 12 words per clock bandwidth can be achieved by the six
instances of FIFOs to match the consumption rate of the vector arrays. The
transfer matrix column data is also stored in 6 different register banks to provide
efficient vectorization.

3.4.3 Processing Optimizations

Fig. 3.7 shows the block diagram of the computation units (vector array). By
storing the transport matrices in register banks, our architecture allows access to
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6 column elements and executes the vector operations in (A.4) onto the streaming
data from the local memory. These are pipelined and the results are accumulated
in vector register. There are two instances of these vector execution blocks in a
computation unit and each of these parameter are scalable. By subdividing the
read, execution and write sub blocks, a data-flow optimization is also applied at
this stage, to reduce the effective latency of the entire block to max latency of the
sub-blocks.

3.4.4 Performance Analysis

By increasing the number of computation units to 8, we were able to maximize
the throughput for the DDR 3 off-memory bandwidth. Fig. 3.9 shows efficient
utilization of the memory bandwidth.

Figure 3.9: The OpenCL Computation units of 8 allows more con-
sistent memory bandwidth utilization.

The HW emulation mode in SDAccel was used to generate a quick analysis
of the kernel performance. For a test configuration with 4096 particle count, the
kernel performance is listed in the table 3.3.

Target Implementation Kernel
Depth

Computation
units

Execution
Time

Gain

FPGA Kernel w/o opt 16 1 3.06ms -
FPGA Kernel w/o opt 512 1 2.010ms 1.52
FPGA Kernel w opt 512 1 .259ms 11.815
FPGA Kernel w opt 512 4 .085ms 36
FPGA Kernel w opt 256 8 0.075ms 40.8

Table 3.3: kernel performance with different configurations.
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Further Optimizations for FPGA

Since the memory bandwidth and storage is directly related to the data type
representation, a study is performed for feasibility of different word-lengths. A
hardware utilization for float precision and fixed precision is also studied.

4.1 Fixed Point Feasibility

Whether Fixed point data type is feasible with the beam simulation model, can
decided by analysing the dynamic range of the beam data and then by analysing
the amount of noise injected due to quantization. A suitable word-length then
needs to be selected to provide an optimal utilization of memory.

4.1.1 Dynamic Range

For studying the beam behaviour, a test configuration of 1024 particles iterated
over 5001 FODO cells is set. It was found that, the beam state parameters always
lie within a fixed dynamic range as shown in the Fig 4.1 It is also evident that, the

Figure 4.1: The dynamic Range of the beam with binary weights of
the data.
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occurrence of certain bits are much more frequent than others. This property can
be used for lossless compression of the frame and hence provide a lesser memory
storage.

4.1.2 Quantization Error

The quantization error is due to assigning the real value numbers to the fixed
domain space defined by the word length. There are three major sections were the
quantization error is injected into the implementation model. Assuming a different
word length is used for frame and for transport matrix:

• Quantization error at converting the initial frame and transport matrix to
fixed domain.

• Quantization error at computation stage

• Quantization error due to truncation the results down to the frame word
length.

To model these behaviour into simulation , a hardware emulation model is devel-
oped in Matlab with FI toolbox. More details of the emulation model is presented
in Appendix B and C. The behaviour of the beam frame is studied for extended
iterations as shown in the Fig. 4.2. The word length of 40 bits provides an optimal
level of accuracy against the double precision.

Figure 4.2: The accumulated error for different word-lengths
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4.2 Data-type Trade-off

Next, fixed point vs float precision implementation is studied in the context of
hardware utilization against the memory utilization. As shown in the Fig. C.1
the hardware model of the compute unit using Vivado HLS is synthesized. This
provides a good context to study the FPGA utilization in hardware and their
accuracy.

Figure 4.3: The HLS test bed and instance of computation unit.

The data bandwidth into the model and out of the model is set to 32 bits/transfer
with the depth of the FIFO set as 256 × 6 words(for 256 particles). In table 4.1,
the worst case latency is shown as the sum of read, execution (Multiply Frame)
and write stage. From the analysis on the model, we see that, the min net latency
is 1538 clock ticks (memory transfer), due to the data-flow optimization.

Instance Latency Min(ticks) Latency Max(ticks)
Read Buffer 1538 1538
Multiply Frame 778 778
Write Buffer 1538 1538
Net 1538 3856

Table 4.1: Performance results of the design.

The data flow optimization interleaves the sub-blocks to reduce the effective
latency of the model to that of the latency of the critical block. It can be seen
that, the latency for computation is less compared to the memory transfer. Thus
for this design, memory bandwidth is the main bottle-neck.

4.2.1 Hardware utilization

FPGA resources utilizations varies with the data types as it has a direct impact
on the bus, memory and the overall architecture due to the flexible nature of the
FPGA fabric. The table 5.2 shows hardware utilization for fixed point against
float precision. For the same word length, the float utilizes less DSP slices when
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compared to the fixed precision due to the wider multiplier instances needed for
fixed point. However, the LUT and FF resource utilization is higher for float.

DataType LUT FF DSP48E BRAM
fixed point 32 bits 4738 4581 144 24
fixedpoint 40 bits 6250 5261 180 48
Float single precision 7961 10943 60 24
Float double precision 16431 21794 168 48

Table 4.2: Hardware utilization across different data types.

4.2.2 Accuracy Comparison

The deviation from double precision is measured for the frame generated from
the HLS model. The table 4.3 shows the accuracy for different data types. It is
noteworthy to mention, for the same word-length, the fixed precision has lower
error compared to the float precision.

DataType Mean Square Error
fixedpoint 32 bits 1.39e−06

fixedpoint 40 bits 5.26e−09

Float single precision 4.446e−06

Float double precision -

Table 4.3: Hardware accuracy across different data types.
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Results and Analysis

The results of the implementation for different device type is showcased here. Af-
terwards, the results for different data types, comparing the accuracy with hard-
ware utilization is also discussed.

Implementation Device Memory
Type

Memory
Bandwidth

Execution
speed.

C++ CPU i7 6700HQ
@3.3 GHz

DDR4 128 bit @
2133 MHz

1x

OpenCL CPU i7 6700HQ
@3.2 GHz

DDR4 128 bit @
2133 MHz

16x

OpenCL GPU Nvidia 960M
@1.2 GHz

GDDR5 128 bit @
5000 MHz.

89x

OpenCL FPGA AlphaDataKU3
@350 MHz

DDR3 128 bit @
1600 MHz

28x

Table 5.1: Comparison of linear model execution speed across dif-
ferent devices

DataType LUT FF DSP48E Memory
bandwidth
reduction

M.S.E

FP-32 1.4% 0.6% 5 % 2x 2.34e−07

FP-40 1.8% 0.7% 6.5 % 1.67x 5.26e−09

Float-single 2.4% 1.6% 2% 2x 4.46e−06

Float-double 4.9% 3.3% 6% - -
Total 331k 663k 2.7k - -

Table 5.2: Hardware utilization and processing accuracy for different
data types

Table 5.1 shows the implementation results of the linear model across the test
hardware, when double precision data is used. In general, OpenCL framework
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provides significant performance improvement over C++ framwork, due to the ef-
ficient mapping of resources. Table 5.1 also provides a general trend towards GPU
favoring linear part of the simulation model, while FPGA performs better than a
CPU. It is worthwhile to be emphasized here that the memory bandwidth is the
implementation bottleneck for the simulator and the memory access capabilities
of different devices, to some extent, decides the performance.

Table 5.2 lists the simulation accuracy and hardware utilization (of FPGA)
of different data types. It is seen that the processing occupies very little FPGA
resources, confirming the analysis that memory bandwidth is the limiting factor.
It also is evident that there is more parallelism available to exploit provided the
incoming data rate can be enhanced. To increase the memory bandwidth, one
approach is to improve the number of memory banks or upgrade the memory
technology, while the other approach is by utilizing a smaller word length for data
computations. It is interesting to see that, for the same word-length, the fixed
point provides better precision than a single float precision. Moreover, by using a
40 bit word length, a bandwidth reduction of 1.67× to the memory access can be
achieved compared to a double precision data type.



Chapter6
Future Work

The thesis has explored hybrid computing platform with a device configuration of
CPU, GPU and FPGA. We have mapped efficiently the linear behaviour of the
multi-particle simulation model to the hardware architectures. However, the key
areas that can improve the functionality and efficiency further are listed below.

• Implement space charge task and other non linear models into the hybrid
computing platform

• Improve memory bandwidth utilization by using compression, increased I/O
channels and custom data-types

• Explore other high-performance hybrid computing configurations

In addition to these key areas, the accuracy with data types, improvement in
the software stack, and usage of compression techniques to improve the memory
storage and bandwidth are also critical.

The accuracy of the simulation model is a direction to explore further, the
thesis used the double precision as the reference and this leaves with the question,
which is a better representation than double precision? A real beam data from
the accelerator is needed to make further steps at optimizing the accuracy of the
model.

The software stack requires the development of an autonomous task partition
layer, that manages the execution and task allocation across different devices with
an adaptive control feedback. Similar works [6] and [22] utilizes the task scheduler
with multi-device support and adaptive task partition based on the performance
of the device.

Considering that there is more hardware processing left for parallelism, meth-
ods to reduce the off-chip Memory access frequency will increase the performance
further. Compression methods to reduce the size of the frame allocated in the
DDR memory and to decompress them during the execution is a novel method
to tap in more parallelism for a bandwidth constrained scenario. This allows to
utilize more FPGA on-chip memory which is faster and also reduces the access
frequency to the off-chip memory.
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AppendixA
Beam Simulation Theory

In this chapter, the theory and physics used to implement the multi-particle sim-
ulation model is discussed.

A.1 Theory

In order to model the beam dynamics, while providing a realistic behaviour and
support for non-linear particle interaction in the beam, a multi-particle based
simulation model is utilized. [9] provides with some of the existing simulation
models used in the linear accelerators around the world.

The dynamics of the particles in a beam is fundamentally described based on
two steps;

• By representing all the equations of motions affecting the particles

• Then, to solve them to provide the solution for their behaviour.

. Newtons second law as in equationA.1 represents the of motion of particle once,
the forces are known.

dp

dt
= F, (A.1)

Though this method can be used, most of the times the electric field and
Magnetic fields in an accelerated beam are specified as a function of location rather
than time. Hence, a Hamiltonian mechanics based methodology is followed, as it
allows for representing the particles as a function of distance along the beam line.

Approaching this problem with Hamiltonian method, makes it simpler to rep-
resent the moving particles through a potentially complex sequence of electric
and magnetic fields. [12] provides with derivations of the equations and explains
how the Hamilton’s equation generalized as in equation A.2 where xi are the co-
ordinates of the particle(i = 1...N in an N dimensional co-ordinate space), pi are
the components of momentum and H is the Hamiltonian.

dxi
dt

=
∂H

∂pi
,
dpi
dt

=
∂H

∂xi
, (A.2)
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A.2 can be used to derive for a relativistic particle moving in an electromagnetic
field, with the Hamiltonian defined as

H = c
√

(p− qA)2 + (mc)2 + qφ (A.3)

Substituting the electromagnetic potential in a particular region of space into
Hamiltonian allows to derive the equation of motion of the charged particles mov-
ing through the region.

By employing this method, it is possible to find solutions to these equations
for commonly used structures/components in the linear accelerators.

A.2 Linear Accelerator Structures

There are different structures, for controlling the beam behaviour and these struc-
tures can be modelled as transport matrices. The quadrupole and drift space
structures that we used for the thesis, is described below.

A.2.1 Drift Space.

The region of space ,where there are no electric or magnetic fields present is con-
sidered as the drift space, where particles are drifting. The derivations on how the
equations are solved can be referred from the text, [12] and is not reproduced here
as such.

The linear transfer map in matrix form can be expressed for a particle as shown
in equation A.4,

x̄1 = Rdrift × x̄0 (A.4)

,where xi is the phase space vector with components constructed from the dynamic
variables, such as the position and momentum in 3-dimensional space.

x̄ =


x
px
y
py
z
∂

 (A.5)

and the R_drift can be represented as shown in equation A.6

Rdrift =



1 L 0 0 0 0
0 1 0 0 0 0
0 0 1 L 0 0
0 0 0 1 0 0
0 0 0 0 1 L

β2
0γ

2
0

0 0 0 0 0 1

 (A.6)

here, β0 is the velocity of the reference particle scaled by the speed of light, L the
unit distance under consideration and γ0 is given by the equation A.7.

γ0 =
1√

1− β2
0

(A.7)
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A.2.2 Quadrupole Structures

Multipole magnets are one of the important components used in a linear accel-
erator. They constitute a family where, the dipoles are used for steering, the
quadrupole are used for focusing and sextupoles provides with corrections in the
chromatic aberrations. In an accelerator beam line, the purpose of quadrupole
magnets is to control the beam size by providing transverse focusing. Similar
to the drift space, the Matrix to map the behavior of the particle across the
quadrupole region of space can be represented as in the equation A.8.

Rquad =



cos(ωL) sin(ωL
ω 0 0 0 0

−sin(ωL) cos(ωL) 0 0 0 0

0 0 cos(ωL) sin(ωL
ω 0 0

0 0 ωsin(ωL) cos(ωL) 0 0
0 0 0 0 1 L

β2
0γ

2
0

0 0 0 0 0 1


(A.8)

The equation A.8 can be manipulated to provide for focusing in the x axis or in
the y axis by changing the parameters. More details are presented in the Matlab
functional model section as, it is performed for the Fodo cells.

A.3 Matlab Functional Model

The functional model is verify the functionality and act as a reference for other
tests performed. Analysis of the simulation model is also performed. The initial
state for the simulation model is generated with the configurations set from ESS.

A.3.1 Initial particle state

The initial state of particle are generated by the given set of parameters provided
from ESS. The particle beam are uniformly distributed in a circular region of
space. These are then transformed into an ellipsoidal space by multiplying with
the transformation matrix.

ȳ0 =



√
βx

σx
0 0 0 0 0

− αx√
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1√
σxβx

0 0 0 0

0 0
√

βy

σy
0 0 0

0 0 − αy√
σyβy

1√
σyβy

0 0

0 0 0 0
√

βx

σx
0

0 0 0 0 − αz√
σzβz

1√
σzβz


× x̄0 (A.9)

Equation A.9 shows for x̄0 being transformed into ellipsoid space ȳ0 as per the
alpha and beta parameters provided.
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A.3.2 Fodo cell simulation

The pseudo code for the Fodo cell is given below as Algorithm 2. The beaminit

and the transfer matrices are generated by the initialization script. The variable
beambehav is a 3 dimensional variable storing the phase space vector of each par-
ticle for the 5 states within a cell for the max number of cells provided.

Data: beaminit, Rdrift, Rfoc, Rdefoc
Result: Generate beambehav

initialization;
celln = cellmax
particlecnt = particlemax
while celln < cellmax do

while particlecnt < particlemax do
if celln == 0 then

beambehav= Rfoc × beaminit;
beambehav= Rdrift × beaminit;
beambehav= Rdefoc × beaminit;
beambehav= Rdrift × beaminit;
beambehav= Rfoc × beaminit;

else
beambehav= Rfoc × beambehav;
beambehav= Rdrift × beambehav;
beambehav= Rdefoc × beambehav;
beambehav= Rdrift × beambehav;
beambehav= Rfoc × beambehav;

end
end

end
Algorithm 2: Pseudo code for Fodo cell simulation.

A.4 Application Benchmark and Verification

To compare the performance of the OpenCL implementation, a C/C++ based
benchmark program, is implemented. It computes the beam behaviour and the
time to execute, but with traditional object oriented programming methodology
on a single thread. First, the behavior is cross checked with the Matlab model
to ensure functional coherence. By using the C application, the discrepancy for
the benchmark across different systems can be mitigated, as the test is carried
out in different host systems.(with different operating systems housing different
hardware)



AppendixB
Matlab Hardware Emulation Model

This section discusses methodology used to develop the hardware emulation model
using Matlab fixed point toolbox. This model is used for studying error accumu-
lation and for analysing the beam behaviour.

B.1 Matlab Fixed Point Emulation

Hardware like functionality is emulated in Matlab and used to run the beam
simulation. The data is collected and analysed and can be a very powerful tool
to understand the algorithm before the hardware development phase. The initial
frame data and the result generated from the functional model, is reused in this
script for studying the effects such as quantization of the initial beam, and the
transfer matrix coefficients, and at the output stage where the output frame is
truncated to the frame word-length.

B.2 Quantization at The Input Frame and Transfer Matrices

For analysing, the effect of quantization error at the input and the transfer matrix
coefficients, the data is first scaled up by scaling factor to spread the data across
the dynamic range(defined by the word-length). This maximises the precision as
it is converted into fixed point domain as shown in equation B.1, where fi is the
function that maps the data into finite fixed point space.

beamfixed = fi(beami × scalingfactor) (B.1)

The fixed point toolbox is configured with truncation of data and, the overflow
is managed by swing around the max range. The result, i.e. the beam frame in
fixed point is stored as double precision and then scaled down scaling factor.

The quantization error for the initial beam state is show in fig B.1 for the word
length of 32 bits. The mean square error is found to study the induced error due
to the conversion as in eqn B.2 for the range of word lengths under consideration.

M.S.E =

√∑
(beamfixed − beamdouble)2

N
(B.2)

The results of comparison are shown in the table B.1.
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Figure B.1: The quantization error at the input frame for 32 bit
signed fixed point space.

Word length Scaling factor M.S.E
32 21 1.1e-07
24 13 6.1e-05
16 5 7.5e-03

Table B.1: Mean Square Error for the initial beam state.

similarly, the coefficients of the transport matrices are converted to fixed point
space. Since the coefficients has values ranging between 1 and -1, the mean square
error are minimal for the conversion, when compared to the frame data conversion.
For the word lengths 8, 16, 24 and 32 the error due to quantization is shown in
the table B.2.

B.3 Matrix Multiplication in Fixed Point

For computing the matrix multiplication, the word length of the frame data and
the transport matrix are set as parameters. Let the beam initial state be Wi

word length long and the transfer matrices be of length Wtm. The beam frame
out data is also quantized back into the word length Wi. The transfer matrices
is a square matrix with dimension 6, translates each matrix multiplication to
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Transfer Matrix Word length Scaling factor M.S.E
Rfocus 8 6 1.9e-03
Rdefocus 8 6 2e-03
Rfocus 16 14 7.15e-06
Rdefocus 16 14 1.004e-05
Rfocus 24 22 2.7157e-08
Rdefocus 24 22 1.8738e-08
Rfocus 32 30 1.2347e-10
Rdefocus 32 30 1.3780e-10

Table B.2: Mean Square Error for transfer matrices.

36 multiplications 30 addition operations. A matrix operation is performed per
particle in a frame.

For the matrix operation, equation B.3, C can be computed as in equation
B.4.

C = M ×A. (B.3)

Ci =
∑
j=1:6

Mi,j ×Aj (B.4)

But due to streaming behaviour model used, the columns of the transport matrix
is stored into registers and the implementation can be rewritten as in equations
B.5 and B.6.

col(Bi) =
∑
j=1:6

Mj,i ×Ai (B.5)

Ci =
∑
j=1:6

Bi,j (B.6)

The elements of matrix B need to have word length Wi +Wtm − 1 . The -1 is
due to the sign bit fixed point space. For the elements of C matrix, a word length
Wi +Wtm − 1 + 3 is required, to represent a sum of 6 elements.

WA WM WB M.S.E
32 32 63 1.73e-07
32 24 55 6.27e-06
32 16 47 1.5e-03

Table B.3: Mean Square Error for the output frame of the beam.

The elements of C matrices, which are Wi +Wtm − 1 + 3 long is truncated to
a length of Wi bits. This is performed by scaling it down by a downscale factor,
same as the scaling factor used for up-scaling the transfer matrix.

The result after the multiplication operation is compared to the double preci-
sion reference data. The table B.3 shows the quantization error introduced where
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Wx represents the word length of the elements of Matrix x, where x can be either
matrix A, B or M. The scaling factor as in the tables B.1 and B.2 are used for this
comparison.

The mean square error in the table B.3 is amalgamation of all the quantization
errors previously mentioned, i.e the quantization of the input frame, the transfer
matrix and then due to storing a partial result back to the finite storage element.
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HLS Model

C.1 HLS based Simulation Model

Using Vivado HLS, it is possible to perform a rapid design exploration for the
Xilinx FPGA accelerator card (ALPHA DATA ADM-PCIE-KU3). The accelerator
card hosts a Xilinx Kintex Ultrascale XCKU060-FFVA1156 FPGA.

In order to provide with a reasonable execution time for the emulation model,
the test case is simplified with initial frame of beam getting transported by one
iteration with a test configuration of 256 particles. The 256 particle size is a suit-
able sub-frame size, that allows to distribute a single frame to multiple instances
of this computation unit. So this study is consistent with providing the required
information of hardware utilization for different data types. The double precision
data results from Matlab will be used as the golden reference data to verify the
results.

C.2 Matrix Multiplication Architecture

Since the performance of the implementation is affected by how the behavior is
described to the FPGA fabrics, a study about the related work is done. Optimiza-
tions on the hardware implementation can be fine tuned for a FPGA hardware
unlike CPU and GPU, which has a fixed architecture.

The transport matrix being small compared to the frame vector, there is no
considerable storage benefits in compressing the transport matrix. If it had a fixed
coefficients, some of the sparse matrix optimizations on the processing could have
been applied. This would impact the latency incurred per matrix multiplication,
however the transport matrix changes with the region of space it is representing.
Adding the non linear behavior needs to modify the matrix due reflect the particle-
particle interaction(space charge). Hence, the optimizations and work in these
direction are not explored due to the above mentioned constraints.

Matrix multiplication by dividing the large matrix into tiles rely on the data
locality and cache re-use concept. Since one entire frame cannot fit into the cache
memory, the cache re-use concept cannot be utilized fully, however the transport
matrix needs to be stored in the cache to provide the maximum efficiency. The
tiling method reduces the frequency of access to the same data or elements of
the operand matrices while computing the resultant matrix. There are lot of
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work showing better power efficiency with higher throughput such as [13]. For
the algorithm under consideration as mention before, each particle in the frame is
multiplied by the same transport matrix and, each computation unit is explicitly
loaded with the transport matrix into their local cache, hence the concept of tiling
is done inherently within the hardware implementation.

The works [16] and [11] shows the matrix implementation with systolic array
based approach. It mainly rely on the spatial locality of the data, and can provide
considerable acceleration to the throughput if can be utilized with the design. A
better mapping into hardware by utilizing streaming is considered over the systolic
approach as it provides a more simplified solution with the same efficiency.

If we move our focus to the iterative nature of frame to frame computation,
the transfer of frame from the device memory to the host memory can also turn
into a non trivial issue. But this is handled on the later chapter on OpenCL device
implementation.

C.2.1 Hardware Architecture

For the test case, Design under Test (DUT) is processing component of the com-
putation block, where data is streamed from the FIFOs. The transport ma-
trix(transfer matrix) is stored into the register banks. The results are compared
with the Matlab reference frame data and mean square error is reported. Figure
C.1 shows the test bed environment used for the study.

Figure C.1: The HLS test bed and instance of computation unit.

Instead of a memory mapped architecture, by using streaming of data, the
need for address decoding is not required. This produces lesser latency and lower
hardware utilization at the cost of optimizing the DUT for streaming. The HLS
design can be used as a co-processor with a Zynq FPGA or microblaze, by using
Advance eXtensible Interface (AXI) interfaces with Direct Memory Access (DMA):
stream for Frame in and Frame out, while axi lite for DUT configuration and
loading transport matrix.

There are two purposes for this test bench: (1) to study the accuracy offered
by different data types and (2) to compare the hardware utilization for the de-
sign choices. The first verification of the DUT block is by using double precision
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float and as expected it was consistent with the Matlab results, then the design
is switched to fixed point and other data types. The optimizations are applied
to synthesize the target hardware architecture. After the optimal design is im-
plemented, the comparisons study between latency and hardware utilization are
made. The HLS design flow makes the change between fixed point and floating
point seamlessly.

C.2.2 HLS Function Overview

For an HLS based design flow, the default implementation implies rolled hard-
ware, and may not be optimal for high throughput applications. Therefore design
cues needs to be provided for functions, variables and, the for loops to produce
the required throughput in the implementation. The c source code needs to be
assimilated into smaller blocks and sometimes a additional variables needs to be
introduced. The functional behavior doesn’t change, but these additions help
to expose the source code allowing the HLS compiler to synthesize the required
hardware architecture.

Top Function.

Top function is the function that will be synthesized into HDL with the arguments
as interfaces and can be modified as one intend with the help of directives provided
in the Vivado HLS tool. Here the top function includes the FIFO structures for
data moving, and facilitate parallel data access for DUT and the function that
then accesses these Memory structures to produce the result. An overview of the
function is shown in the figure C.2, and represents how the data flow, from input
to the output.

C.2.3 DUT Optimizations

For the HLS based design flow, the optimization are applied onto different solu-
tions, and these solutions can be easily compared against. The optimal design
can be arrived at using different ideologies, one of them is to start from the inner
loops of each stages in the design hierarchy, and to work the way up, noticing the
bottlenecks at each steps, and overcoming them.

Pipeline

To allows for accessing off-chip memory via burst mode, the internal loops of the
memory accesses to/from the FIFO are applied with the directive pipeline. For
matching the throughput to the available bandwidth optimizations are also applied
on the processing elements. The P_cnt_Loop_mul is pipelined, which exposes
all the inner loops to be unrolled. This implies multiple hardware instances of
the inner loop (sub-blocks) will be instantiated providing a highly pipelined and
efficient hardware architecture.
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Figure C.2: The design overview in hls.

Array Partition

To allow for the proper unrolling of the loops mentioned above, the memory band-
width needs to be optimized by increasing the number of access ports to the
memory and by moving the critical data access points to registers. To provide the
required memory bandwidth the internal buffers are partitioned into 6 block rams,
with two ports each. The C source code is re-arranged to expose the critical data
access points and these are mapped into hardware as registers.

Data flow

First the stimuli, the Frame data in and the transfer matrices are read into the
internal buffers, the DUT streams the data in and processes them and streams the
data out to the buffer out structure. The test bench then reads the data out and
compares it with reference results.

The read data in, the DUT process and read data out can be processed as
in the figure C.3 so that, if for a longer iteration or consecutive execution, the



HLS Model 47

latencies incurred by the Data read and Data write can be overlapped by DUT,
or by which has the longest execution time.

Figure C.3: The data flow optimization.

C.2.4 Optimization Results

After the optimization applied for the fixed point data type, the hardware utiliza-
tion are tabulated in the table C.1 and the performance of the design in the table
C.2.. The performance due to the data flow optimization is a variable, which at

Instance LUT FF DSP48E BRAM
Read Buffer 207 253 0 12
Multiply Frame 3724 2912 144 0
Write Buffer 240 382 0 12
Net 4738 4581 144 24

Table C.1: Hardware utilization of the design.

worst will be the sum of the latency of the individual sub-blocks and at it’s best
the latency of the critical block.

Instance Latency Min Latency Max
Read Buffer 1538 1538
Multiply Frame 778 778
Write Buffer 1538 1538
Net 1538 3856

Table C.2: Performance results of the design.

It can be seen that the critical block here, are the Read and Write Buffers and
is due to the access of the Memory to the internal buffers .For the HLS design flow,
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the Top function arguments are by default assumed to be RAM blocks and the
latency is attributed due to the I/O bottleneck inherent to the Memory blocks.

One of the optimization that can be applied here, is to widen the memory
access, i.e doubling the number of memory thread to the DUT, thereby improving
the best case latency to 778 clocks.

C.2.5 Interface and Control

The RTL generated from the HLS flow, has control signals for the FSM and the
input and output signals to the DUT can be altered with directives. The control
signals are designed with AXI slave lite interface. And, the Input and output
signals are interfaced with AXI stream interface. An internal FIFO for the AXI
stream can be also added here if, the design needs to work in a different clock
domain.

Figure C.4: Using the HLS design as an accelerator IP in FPGA.

The FIFO used in the AXI stream can be used as a second stage for memory
hierarchy, from the data flow optimization can be applied to the internal design.
More than one of these units can be placed into the design, depending on the
memory bandwidth provided by the memory.

An RTL co-simulation is carried out and the testbench verified the results.
The testing with FPGA and integration with a Microblaze (soft-core processor)
or ARM processor is proposed as a future work.
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OpenCL Framework and Software stack

This chapter introduces some of the critical structures in the OpenCL host frame-
work. Some of the implementation details of the software stack is also discussed
in this chapter.

D.1 OpenCL Framework

OpenCL is a multi-vendor open standard for general-purpose parallel program-
ming of heterogeneous systems that include CPUs, GPUs, and other processors.
OpenCL provides a uniform programming environment for software developers
to write efficient, portable code for high performance compute servers, desktop
computer systems, and handheld devices[14].

In other words, the OpenCL framework is a collection of library aimed for
parallel processing, targeting heterogeneous computing applications. It is main-
tained by Khronos group, and went over several revisions, and at the time of
writing this document, the latest release is OpenCL 2.2. It is written over C/C++
programming language. [14] shows the list of changes over each iterations till now.

The OpenCL framework has fundamentally two parts:

• Host code: The host binary that runs on host processor and manages the
devices.

• Device Kernel: The binary that maps the behaviour to the device accelera-
tors.

The Framework provides lots of Application Programming Interfaces (APIs), which
can facilitate the communication between the two and also make the application
layer independent of the hardware configuration. By this virtue, OpenCL frame-
work enables functional portability across different hardware platforms and sup-
ports task level parallelism. The list of supported APIs can be found at [15].

The Key functionalities provided by the OpenCL framework are as shown in
the Fig. D.1

D.1.1 Functional Portability

Having functional portability across different operating systems and target devices
allows for having an unified Integrated Development Environment (IDE) and re-
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Figure D.1: OpenCL framework.

usability across OpenCL complaint devices. The source of OpenCL framework is
based on C and is cross-platform compatible.

Figure D.2: OpenCL Task Level parallelism.

D.1.2 Task Level Parallelism

OpenCL provides inherently task level parallelism by providing device specific com-
mand queue and scheduling. This level of central control can help with synchro-
nizing the tasks between multiple devices. The Fig. D.2 illustrates the command
queue structures used for communication between host and OpenCL compatible
devices.
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D.2 OpenCL Host structure

The host code, is an important part in the OpenCL framework, which is run on
the host processor. The key functionalities in the OpenCL application can be
summarized as in the figure D.3.

Figure D.3: The OpenCL host code functionality overview.

The OpenCL host environment needs to fulfil some runtime requirements, as
listed below

• Vendor OpenCL drivers needs to be installed.

• OpenCL dynaimc library needs to be installed.

• QT framework library needs to be installed.

D.2.1 Device Detection

The OpenCL Installable Client Drivers (ICD) Loader Library allows multiple im-
plementations of OpenCL to co-exist on the same system. Applications may choose
a platform from the list of installed platforms and hence dispatch OpenCL API
calls to the correct underlying implementation. Each device is identified by their
platform ID and device ID. The framework allows to query device details using
these IDs. The platform ID is specific to the vendor(manufacture) and the device
id unique to target class. With this it is possible for the application to identify
new target device with plug n’play support.

D.2.2 Command Queues for Device

Once the device IDSs and platform IDSs are listed, the selected devices can be
registered under a context and each context can be assigned with a command
queue structure. The command queue is that, facilitates communication between
the host and the device

• transfer of memory objects

• loading of kernel program

• kernel execution

• performance profiling

This allows synchronizing the events and controlling the devices. There are two
types of command queue structures: the In-Order command queues and Out- Of-
Order command queues.[17] is an example case which showcases the differences in
the scheduling behavior between the two. The figure D.4 is an example presented
in the [17].
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Figure D.4: The In-Order and Out-Of-Order command queue.

The commands in the In-Order command queue, is executed in the order it
was registered. while in certain cases out of order execution provides more efficient
resource management. In these cases, the Out-Of-Order queue can be used to
manually re-order the command events based on the dependencies. This requires
attaching an event object to each command object. The event object provides the
the status of the command, whether it is executing or completed.

D.2.3 Device Kernel Loading

Device kernel are the binary targeting the device behaviour. Their source file
needs to be loaded, compiled and linked with the memory objects before it can be
executed. There are two compilation flows:

• on-line compilation, which compiles the source during the runtime.

• off-line compilation.

This on-line compilation allows functional portability, so the program can be exe-
cuted on newer devices. In certain device classes, such as FPGA where the compi-
lation time is not feasible for on-line compilation, off-line compilation methodology
is used. This allows the binary to be pre-compiled and loaded during the runtime.

D.2.4 OpenCL memory Objects

To transfer the data from the host memory to the device memory, the data array
needs to be attached under a memory object. Then the memory object can be
linked to a read/write OpenCL command API, which is then attached to the
command queue to initiate the transfer of the data. The size of data, usually as
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Figure D.5: The OpenCL context: the environment where, the
kernel objects, memory objects and command queue are well
defined.

counted as the number of bytes needs to provided as the argument for the API.
Fig. D.5 shows how the OpenCL objects are defined in a context.

D.2.5 OpenCL Kernel Execution

The OpenCL kernel can be executed by using the OpenCL APIs, which takes in the
kernel object(OpenCL object compiled version of the kernel binary), the NDRange
structure (the execution space for the command), event structure(synchronization
stamp) and a list of events to wait for in case of Out-Of-Order queue. Once it is
attached to the command queue, the execution is carried out at the target device,
after which the processed data can be read back from the device using the memory
objects.

D.3 Host Application

The host application run-time is explained in this section. The test configuration
can be initialized with the help of the GUI and then the simulation model can
be initiated on the target hardware platform. The state-machine based device
management layer is briefly explained in this section.

D.3.1 Application Startup

The Application startup initiates the search for OpenCL complaint devices. The
figure D.6 is the startup screen which has detected the Intel i5 CPU and Intel
iris 6100 HD graphics processor in a mac book pro 13 system. The devices are
grouped under platform Apple(Intel makes customized processor chip for Apple
ecosystem). After finding the list of devices, the Qt objects(graphic elements) are
dynamically created and the list is populated. A device selection is provided and
the simulation model can be initiated on the targeted device.
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Figure D.6: The QT based Graphic Interface.

D.3.2 StateMachine Execution

The particle count can be specified, and when the start sim button is pressed, the
OpenCL task is initiated onto a new thread. Based on the number of devices se-
lected, each OpenCL device will be allocated a free thread for device management,
and as shown in the Fig. D.7 the thread synchronizes with the host machine.

It is important that all the devices are processing the same frame and there is a
synchronization between them. Since the effect of non-linear behaviours, needs to
modelled per frame based on the statistical information collected. The transport
matrix will be modified to introduce the space charge effect and can infer latency.
By allocating sub-frames based on the performance efficiency of each device, this
model of frame-work can be used to extract the maximum throughput at the
system level.

The figure D.7 shows the flow chart of the state machine. A mutex(mutual
exclusion), that is a binary semaphore is used at the boundary of the threads for
data exchange, this helps to avoid dead blocks, where each of the threads races to
access common resources.

This work acts a prototype(proof of concept) and supports multi-device exe-
cution, however for efficient thread utilization for the device management, a more
efficient thread to thread communication protocol needs to be investigated and
integrated into the design.

D.4 Unified Testing Environment

The software stack can be used for development of similar work, where a hybrid
computing platform can be used for efficient mapping of the algorithm to different
hardware architectures providing a rapid development platform. Since it supports
OpenCL complaint devices, new hardware configurations can be tested with the
same host frame-work.
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Figure D.7: The device state machine for managing OpenCL exe-
cution.
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AppendixE
Xilinx OpenCL Design Methodology

This chapter is dedicated to the OpenCL methodology used for the development
of the OpenCL kernel using SDAccel in Xilinx based FPGA accelerator card.

E.1 OpenCL on Xilinx FPGA

An SDAccel device contains a customization area called the OpenCL region (OCL
Region). Although not defined in the OpenCL standard, the OCL Region is an
important concept in SDAccel. The OpenCL static region along with the OCL
region provides the OpenCL compliance. The static regions allows to place the
computation unit defined by the OpenCL kernel to be placed into the OCL region
by using partial reconfiguration technology.

E.2 FPGA Kernel Development Flow

For the FPGA implementation, the OpenCL computation units can be described
by using either the OpenCL C description, the HLS C description or the RTL HDL
description. For the thesis, only the first method is implemented. The design flow
for OpenCL implementation followed an iterative process of development through
three compilation flows as shown in the figure E.1. Firstly a check on the functional
behavior of the OpenCL kernel is verified with CPU emulation flow. This is fast
and is a quick check for functional coherence.

This is followed by using the hw emulation flow, where the cycle accurate
model of the kernel is generated and used to analyze the performance and func-
tionality. The compilation time is within half an hour to an hour for this step.This
compilation flow can be used to model how fast the implementation is performing
and to pinpoint the bottlenecks of the design. Many iterations needs to compiled
for fine -tuning the kernel for the requirement throughput and performance con-
straints. However, testing this model over large data set is time-consuming and
is not feasible. So a smaller data frame is used for providing the functional check
after the fine-tuning of the implementation.

The OpenCL compilation for FPGA, is very time consuming and can take
up hours depending on the design complexity. This can extend further based
on the compiler flags set. After the hw emulation step, the OpenCL model is
implemented, placed into the real hardware and tested.
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Figure E.1: The SDAccel OpenCL compilation work flow

E.3 OpenCL Implementations for FPGA

Two approaches for kernels were tested on the FPGA based on how the algo-
rithm was mapped to CPU and GPU hardware architecture. They are termed
as FPGA_C kernel(CPU based kernel) and FPGA_G kernel(GPU based kernel)
henceforth. Optimizations were applied to improve the throughput for these ker-
nels and is discussed below.

E.3.1 Kernel_C Optimizations

To the base FPGA_C kernel, vendor specific directives were used to optimize the
throughput. The optimizations used for the implementation is addressed here.

Increasing Kernel Depth

By increasing the depth of the kernel, the overhead due to scheduling the entire
work load to the work group is reduced and allows for lesser frequency of off-chip
memory access. By increasing the depth from 16 to 512, a performance gain to
1.5223x is observed.
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Bulk Memory Access and Memory Partition

The read and write to the global memory to/from local memory (on FPGA mem-
ory) is made pipelined to infer bulk memory transfer. The transport matrix is
stored in register banks, while the sub-frame data is stored into 6 separate Mem-
ory structures with cyclic storage. This allows the high bandwidth required for
the internal parallel processing structures.

Reducing Local Memory Accesses

The inner loop in the execution, it was noted that accumulation of the result, had
a high frequency access to local memory. A separate variable inferred as registers
were used to significantly reduce the frequency of the local memory access from
36 to 6 .

Unrolled and Pipelining.

The Computation loops are unrolled and pipelined, there by exposing the multi-
pliers and adder resources to facilitate parallel execution.

Data Flow

The entire kernel function is applied with data flow optimizations, which inter-
leaved the execution of the sub-blocks such as local memory read, execution sub-
blocks and local memory write. This helps with reducing the overall latency of
the entire kernel execution.

Increasing Computation Units

Increasing the number of computation units allows for more parallel execution of
work groups and thereby expanding parallelism at the kernel level. The kernel
functionalities can be instantiated multiple times. 8 instance of the computation
units were instantiated to produce the gain of 40.8x.

Kernel_C Performance.

For the Kernel_C, the local work group size attribute is not utilized. Here a work
item and a work group are identical, instead the depth of the bulk transfer to
the local memory is the parameter used to fine-tune the kernel. This produces a
similar impact as work group size would otherwise produce. The table E.1 shows
the result of the Hardware emulation test bench for frame with particle count of
4096.

E.3.2 Kernel_G Optimizations

The GPU architecture has a different approach for efficient mapping with OpenCL
kernel than the CPU architecture. Parameters such as work-group and work-items
needs to utilized and an efficient execution depends on the synchronization between
the work-items within a work-group. The following optimizations were applied.
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Target Implementation Kernel
Depth

Computation
units

Execution
Time

Gain

Cpu Kernel on FPGA w/o opt 16 1 3.06ms -
Cpu Kernel on FPGA w/o opt 512 1 2.010ms 1.52x
Cpu Kernel on FPGA w opt 512 1 .259ms 11.815x
Cpu Kernel on FPGA w opt 512 4 .085ms 36x
Cpu Kernel on FPGA w opt 256 8 0.075ms 40.8x

Table E.1: Kernel_C performance overview

Memory Access Optimizations and Unrolling.

The memory needs to be partitioned to provide more data bandwidth to the
execution units(work-items) within a computation unit(work group). The local
memory is partitioned by 6 to provide the required bandwidth. Each work item
is mapped to a matrix multiplication operation. By assigning private memory
tag to the accumulator used in the matrix multiplication stage(which implies it
as registers), the access frequency to the local memory can be reduced. The
computation for loops are pipelined and unrolled. A performance gain of 6.67x is
observed after the above optimizations.

Computation Units

The number of computation units can be increased so that more work groups
can be scheduled for execution, thereby increasing parallelism. Increasing the
work group size to 1024 and changing the computation unit count to 4, showed
a performance improvement of 15.625x. A similar trend in performance gain is
observed with increasing the computation units to the maximum limit of 16. But
this approach has a penalty of higher hardware utilization.

Kernel_G kernel Performance

The overview about the performance improvements by different optimizations are
listed in the table E.2

Target Implementation workgroup
size

Computation
units

Execution
Time

Gain

Gpu Kernel on FPGA no opt 128 1 16ms -
Gpu Kernel on FPGA w opt 128 1 2.4ms 6.67
Gpu Kernel on FPGA w opt 1024 4 1.024ms 15.625
Gpu Kernel on FPGA w opt 256 16 0.619ms 25.84

Table E.2: Performance Overview of kernel_G .
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E.3.3 FPGA Kernel Performance and Utilization

Kernel Kernel
Work-
Group

LUT FF DSP48E BRAM Performance
Gain

Kernel CPU 512 45908 66446 504 28 8.25
utilization % 13 10 18 1
Kernel GPU 1024 8780 11627 14 79 1
utilization % 2 1 0 3

Table E.3: Hardware utilization across OpenCL kernels.

The two of the efficient approaches used for mapping the simulation model
are described and the optimizations applied explained. The OpenCL_C kernel
performs faster than the OpenCL_G kernel, due to several factors. A stream based
approach has reduced complexity compared to a memory mapped approach. The
Hardware utilization for the two Kernels is also compared. The overall performance
in an FPGA is also factored by the off-chip memory bandwidth.
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AppendixF
Git Repository

A Git based revision control was used during the development of the thesis project.
All the source files are uploaded into the Github server and free to access. A clone
of the source files can be produced locally by using the git command in a suitable
terminal
# git clone git@github.com:arunjeevaraj/hybrid_computing_thesis.git

Figure F.1: The git repository for the thesis project

F.1 Folder structure

The source files are stored into their respective folders as shown in the Fig. F.1
and are listed below.

• benchmark: contains the source file for benchmark cpp program.

• hls_design: contains the hls design source and tcl script.

• host_gui_src: contains the source files for the software stack with GUI.
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• host_sm_src : contains the state machine for multi-device management and
execution. Needs to be integrated with the software stack.

• matlab : contains the Matlab source files for the functional model, the
hardware emulation model, generation of plots and reference data etc.

• OpenCL kernel src: contains the OpenCL kernel file for different devices.
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