
Evaluation of flexible SPA based LDPC decoder
using hardware friendly approximation methods

DEEPAK YADAV
AFSHIN SERAJ
MASTER´S THESIS
DEPARTMENT OF ELECTRICAL AND INFORMATION TECHNOLOGY
FACULTY OF ENGINEERING | LTH | LUND UNIVERSITY

Printed by Tryckeriet i E-huset, Lund 2017

D
EEPA

K
 YA

D
A

V
 &

 A
FSH

IN
 SER

A
J

Evaluation of flexible SPA
 based LD

P
C

 decoder using hardw
are friendly approxim

ation m
ethods

LU
N

D
 2017

Series of Master’s theses
Department of Electrical and Information Technology

LU/LTH-EIT 2017-600

http://www.eit.lth.se

Evaluation of flexible SPA based LDPC decoder
using hardware friendly approximation methods

Deepak Yadav
deepak.yadav.943@student.lu.se

Afshin Seraj
afshin.seraj.877@student.lu.se

Department of Electrical and Information Technology
Lund University

Supervisor: Erik Ledfelt (Ericsson)
Alberth Arvidsson (Ericsson)
Magnus Malmberg (Ericsson)

Liang Liu (LTH)

Examiner: Erik Larsson

September 22, 2017

c© 2017
Printed in Sweden
Tryckeriet i E-huset, Lund

Abstract

Low Density Parity Check (LDPC) coding has recently become a hot topic for its
near-shannon performance, and will be used in the next generation of telecommu-
nication systems (5G). the original algorithm for decoding LDPC codes is Sum-
Product Algorithm (SPA). As the frequently-used Min-Sum Algorithm (MSA) is
an overestimation of SPA, more accurate approximations of SPA are demanded
in high-accuracy applications. This thesis studies the different ways of approxi-
mating the SPA and evaluates the cost and accuracy of an SPA decoder based on
an optimum approximation. In a general comparison between main approxima-
tion methods, Simple Piecewise Linear (SPWL) approximation showed the most
area-efficiency. After studying the different mathematical formats of SPA, the
Soft-XOR based format with forward-backward scheme was found to be the most
hardware-efficient one. Its core function (Soft-XOR) was implemented with Cen-
tered Recursive Interpolation (CRI) approximation, which achieved the highest
efficiency, compare to other approximations. A Check Node Unit (CNU), which is
the main computational part of LDPC decoders, was implemented based on the
CRI-based Soft-XOR. The CNU uses a pipe-lined forward-backward architecture,
and its speed and area are flexible and can be changed in instantiation. A SPA
decoder with flooding schedule based on the developed CNU is estimated to have
an area of 1.6M as equivalent gate count, with a clocking frequency of 1.25GHz.
The accuracy loss, compare to floating point SPA, is 0.3dB for 10 iterations and a
throughput of 10Gb/s. The accuracy loss becomes less than 0.1dB for 20 iterations
with a throughput of 5Gb/s and the same area. Comparing MSA and SPA, the
developed SPA CNU is 2.1 times larger than the developed MSA CNU, but gains
0.3dB more accuracy for 10 iterations. The accuracy gain increases with higher
number of iterations. A comparison with other works is also provided. The IEEE
802.11n Wi-Fi standard is used for the decoder and the 18nm CMOS technology
is used for synthesis.

i

ii

Acknowledgment

We would like to express our gratitude towards our thesis supervisors Erik Ledfelt,
Albert Arvidsson and Magnus Malmberg at Ericsson for their continuous guidance
and support. We are also thankful to Charlotte Sköld for providing us with this
opportunity to learn. Special thanks to all the Ericsson ASIC IP1 team members
with whom we have had great time.
We would also like to thank our academic supervisior Liang Liu at LTH.

iii

iv

Popular Science Summary

You have to get lost before you can be found, a quote by Jeff Rasley goes very well
for Low Density Parity Check (LDPC) codes. First invented by Gallager in 1962
but kind of lost during the journey of evolution of telecommunication networks
because of their high complexity and demanding computations, which technology
was not so advanced to handle, at that time. However, during late 1990s, suc-
cess of turbo codes invoked the re-discovery of codes. Recently it has attracted
tremendous research interest among the scientific community, as today’s technol-
ogy is advanced enough and to make LDPC decoders completely commercial. In
a wireless network, the information is not just simply sent, but first encoded. In a
sense, all the transmitted bits are tied together, according to some mathematical
rules. Therefore, if noise destructs parts of the information while traveling, the
LDPC decoder at the receiver side, can automatically detect and retrieve those
parts, based on the other parts of the code. Here, our main focus is on the decoder.
For actual hardware implementation of the decoder, some level of approximation
of the ideal algorithm is always necessary, which reduces the accuracy depending
on the approximation.
Ericsson is developing the next-generation wireless network for 5G, and already
possesses a form of "Min-Sum" approximation of the LDPC decoder. As the cur-
rent requirements demand more accurate decoders, the goal of this thesis is to
find and evaluate a more accurate but more costly version of LDPC decoder, with
more flexibility. Thus, several promising approximation methods were selected
and evaluated based on their complexity, cost, and their accuracy towards error
correction. After performing several trade-offs, an approximation method is cho-
sen and the cost of a LDPC decoder using that approximation, is derived. With
this acquired data, a trade-off between accuracy and cost can be made, depending
on the application.

v

vi

Table of Contents

1 Introduction 1
1.1 Background . 1
1.2 Goals . 1
1.3 Structure . 2

2 Approximation Methods 3
2.1 Candidate Approximation Methods 3
2.2 Behavioral Model . 7
2.3 Result . 8
2.4 Conclusion . 12

3 Low Density Parity Check (LDPC) 15
3.1 Introduction . 15
3.2 Modulation and LLRs . 15
3.3 Sum-Product Algorithm (SPA) . 17
3.4 CN update Methods . 19
3.5 IEEE 802.11n H Matrix . 22
3.6 Conclusion . 23

4 Approximation of � function 25
4.1 Min-Sum Approximation . 26
4.2 Double-PWL Approximation . 26
4.3 Single-PWL Approximation . 27
4.4 CRI-based Approximation . 27
4.5 Result and Conclusion . 28

5 Simulation Results 31
5.1 Effect of iterations on BER . 31
5.2 Effect of total bits on BER for SPA 31
5.3 Number Representation . 33

6 Hardware Architecture 35
6.1 CNU Implementation . 35
6.2 Permutation Network . 40

vii

6.3 Memory . 41
6.4 Data flow . 42

7 Synthesis 45
7.1 Conclusion . 48

8 Conclusion 51
8.1 Future Work . 51

References 53

viii

List of Figures

2.1 Hyperbolic Tangent Function . 3
2.2 PWL concept [9] . 5
2.3 Algorithm description of CRI . 7
2.4 Block diagram for behavioral model 8
2.5 Comparator and Decoder circuits 9
2.6 Area vs Precision for different sub regions 10
2.7 Area vs precision for different combinations in 6-curve PWNL 11
2.8 Area vs Precision for best combinations (6-curve PWNL) 11
2.9 Area vs Precision . 12
2.10 Comparison of area vs precision with different regions for SPWL . . . 13
2.11 Area vs Precision for CRI . 13
2.12 Comparison of different approximation method 14
2.13 SPWL vs SPWL+CRI . 14

3.1 Overall view of a simple communication system 16
3.2 H matrix(4,8) and its corresponding graph 17
3.3 H matrix (block length = 1944bits, code rate = 5

6) 22
3.4 Right Rotation . 22

4.1 soft XOR function . 25
4.2 Soft XOR Approximation . 26
4.3 CRI-based approximation of Soft-XOR (b=3) 28
4.4 SNR vs BER for different soft-xors 29
4.5 Soft-xor approximations for large LLR ranges (b=3). Single-PWL,

Double-PWL and low-LLR CRI all work identically. 29
4.6 Soft-xor approximations for small LLR ranges (b=0.8). Double PWL

works almost identical to low-LLR CRI. 30

5.1 SNR vs BER for different iterations 32
5.2 SNR vs BER, for different number of bits 32
5.3 Comparison of SNR vs BER for different bits and iterations 33

6.1 Top level architecture . 36
6.2 Forward-Backward Architecture . 37

ix

6.3 CNU timing diagram . 37
6.4 CNU hardware architecture for SPA 38
6.5 Implemented Min-Sum CNU architecture 39
6.6 Barrel shifter . 41
6.7 Memory access timing diagram . 43
6.8 Data Flow . 44

x

List of Tables

2.1 Estimation of area based on simple logic blocks (the unit is a FA or
28 transistors) . 8

7.1 Area comparison for different implementations of Soft-Xor 46
7.2 Synthesis Area results of implemented flooding SPA-based decoder

architecture . 46
7.3 Area distribution for SPA CNU . 47
7.4 Area comparison of implemented SPA and estimated Min-Sum CNU 47
7.5 LDPC Decoder Comparison . 48
7.6 Decoder with proposed CNU and different speeds 49

xi

xii

Acronyms

BER Bit Error Rate.

BP Belief Propagation.

BPSK Binary Phase-Shift Keying.

CN Check Node.

CNU Check Node Unit.

CRI Centered Recursive Interpolation.

LDPC Low Density Parity Check.

LLR Log-likelihood Ratio.

MSA Min-Sum Algorithm.

NOF_BITS Number of bits.

RAM Random Access Memory.

ROM Read Only Memory.

SNR Signal-to-Noise Ratio.

SPA Sum-Product Algorithm.

SPWL Simple Piecewise Linear.

VN Variable Node.

xiii

xiv

Chapter1
Introduction

1.1 Background

Low Density Parity Check (LDPC) coding technique has regained a lot of at-
tention, due to its capability to reach Shannon’s limits, i.e. transmitting maxi-
mum possible amount of data with minimum power, and therefore, it will be used
for the next generation of telecommunication systems (5G). The theoretical algo-
rithm that runs very successfully on LDPC decoders, is Sum-Product Algorithm
(SPA). However, the hardware implementation of a pure-SPA algorithm requires
implementing trigonometrical functions, such as tanh, which make the hardware
unfeasibly expensive. Therefore, lots of research has been done to estimate the be-
havior of pure-SPA, in both algorithmic level, and hardware level. On algorithmic
level, the Min-Sum Algorithm (MSA) approximation, has reduced the hardware
size considerably, by introducing a SNR degradation of 0.8dB, compare to SPA
[1],[2]. To compensate for the over-estimation of MSA, two successful branches
of MSA, known as "Offset Min-Sum(OMS)" and "Normalized Min-Sum (NMS)",
have reduced the SNR degradation to the range of 0.2dB for NMS and 0.5dB for
OMS, by introducing slightly more cost and complexity [3],[4]. The complexity
comes from the fact that OMS/NMS require a channel estimation to tune their
scaling/offset factors, based on the channel’s noise. Also, the channel mismatch
effect induces a higher error floor for NMS [1]. However, these two algorithms
have found extensive commercial use. On the hardware level, also, there exists a
variety of hardware-friendly approximations of SPA, and the mathematical func-
tions involved in its CNU (Check-Node Unit), that is the main computational part
[5],[6],[7]. These approximations put LDPC decoders on a spectrum, ranging from
the most accurate one, to the least costly one, that is "Min-Sum". This thesis
investigates high-precision LDPC decoders from a hardware perspective, and its
goals are as follows:

1.2 Goals

1. Exploring different hardware-based approximation methods.

2. Finding the best approximation of SPA, from a hardware perspective.

3. Developing a flexible CNU in RTL, based on the chosen approximation.

1

2 Introduction

4. Evaluating the cost and precision of a total high-precision LDPC decoder,
based on the developed CNU, and assesses if the increase in precision justifies
the cost.

1.3 Structure

Chapter 2 is dedicated to the investigation of different approximation methods and
their comparison in terms of precision and hardware-cost. In chapter 3, we will
cover the theoretical part of LDPC decoder, compare its different mathematical
formulations, and select a hardware-efficient one for implementation. chapter 4 is
specified to the core function of the LDPC decoder. In this chapter, a number of
its different implementations with different approximations will be described and
assessed in RTL level, and the best one will be selected. In chapter 5, there is
an investigation of the BER/SNR behavior of the simulated SPA with different
quantizations (number of bits) and number of iterations. The BER/SNR perfor-
mance of MSA is also provided to compare. The chapter concludes with a brief
explanation for choosing the fixed-point number representation for the system.
Chapter 6 describes the RTL (system-verilog) implementation of a flexible pipe-
lined forward-backward Check Node Unit (CNU) with the selected core function.
The number of inputs that the developed CNU accepts each cycle, can be adjusted
by changing a variable in the code, which can provide the opportunity to easily
tune the speed, cost and latency (critical path), before fabrication. Also, in this
chapter a flooding LDPC decoder architecture, based on the developed CNU is
suggested and its cost is estimated. Synthesis results and conclusion are provided
in chapters 7 and 8, respectively.

Chapter2
Approximation Methods

In this chapter, several popular approximation methods will be focused on, and
will be compared to each other in terms of precision and estimated hardware
cost. As case study, the Hyperbolic tangent (tanh) function has been chosen.
Hyperbolic tangent function is among the most frequently used functions, and has
applications in LDPC decoders, as will be discussed in section 3.4. Moreover, its
common, yet challenging, shape provides a suitable framework to investigate and
fairly compare the approximation methods. In this chapter, after an introduction
to the function, 7 candidate approximation methods are briefly introduced, among
which 5 are simulated in C++ to assess their precision versus area consumption.
Methods used for rough estimation of area at algorithm level (C++), will be
explained later.

Figure 2.1: Hyperbolic Tangent Function

2.1 Candidate Approximation Methods

The Tanh() function is shown in Figure 2.1. Two properties of this function can
be exploited to make the approximating hardware more efficient. One is that

3

4 Approximation Methods

tanh(x) is almost constant for x < −4 and x > 4, and another one is that tanh()
is an odd function tanh(−x) = −tanh(x). Thus, the range to be considered for
approximation can be limited to 0 < x < 4.

2.1.1 Isosceles Triangular Approximation

The derivative of the tanh() function resembles an isosceles Triangle that can be
estimated as Equation 2.1 . Integrating this equation, an estimation of tanh()
function is achieved in Equation 2.2 [8]. Computation of this equation needs one
multiplier, an adder and a shifter. This method is proven to have worse area-
precision characteristic than LUT in [9] and is therefore not implemented in this
work.

tanh =

{
1− |x|2 0 ≤ x ≤ 2

0 otherwise
(2.1)

tanh
′

=

{
x− 0.25 ∗ sign(x) ∗ x2 0 ≤ |x| ≤ 2

0 otherwise
(2.2)

2.1.2 Look-up Table (LUT)

One of the most used method of approximation is selecting a few points in the
curve and storing them in a LUT. A LUT is simply a mapping of each subrange
of inputs to a certain output. Therefore, the maximum error occurs in the middle
of each subrange, and, of course, more points result in better accuracy. A typical
improvement is storing the mean amount of output in each subrange, and reducing
the error by half [10] (which is also used in this work). LUTs are constructed in
two different ways. The straight forward one is storing the selected outputs in a
ROM. 2i outputs must be stored, where "i" is the number of bits in the input.
A decoder maps the inputs to their corresponding outputs in ROM. The other
method is called "bit-level mapping" and is simply mapping the inputs to outputs
with purely combinational logic. This enables the synthesizer to optimize away
some logic, after the input/output pattern is known [9].
Since in this comparison C++ is used to estimate area, ROM-based method is
considered for comparison, because its area can easily be estimated with mathe-
matical expressions. In both methods, LUT area can be much smaller, if selected
inputs are equally distributed over the total range, which makes the decoder much
smaller. Such equally spaced inputs also provide excellent framework for LUT
to be combined with other methods. Here, two combinational methods, named
SPWL and LUT+CRI, enormously benefit from such a setting, as will be shown
later. However, if inputs are not equally spaced, we can concentrate more inputs
where more change in the function occurs, and reduce the number of required
stored points. Such method is called RALUT (Range Addressable Look-Up Ta-
ble) and is discussed in [9]. Other methods in between these two extremes of LUT
and RALUT also can be used to reduce the area of decoder and yet benefit from
higher accuracy per number of stored points. For instance, In [11], the curve is

Approximation Methods 5

divided into 3 subregions in a RALUT fashion and then, each of this subregions
is divided into 8 equal subregions in a LUT fashion.

2.1.3 Piece-wise Non-linear Approximation (PWNL)

The total range 0 < x < 4 can be divided into N sub-regions, and each sub-region
is approximated with a second order polynomial (ax2 + bx+ c) and the coefficients
(a,b and c) are stored in LUTs (Look-Up Table). This method is accurate but needs
three multiplication, and consequently, a relatively higher area/delay compare to
other methods.

2.1.4 Coefficient-based Piece-wise Linear Approximation (CPWL)

As shown in Figure 2.2, PWL is Similar to the previous method, but each sub-
region is approximated with a line (first-order equation).

Figure 2.2: PWL concept [9]

There are two methods for PWL hardware implementation. The first is CPWL
which includes storing coefficients "a" and "b" in equation: (ax+ b) in LUT, and
the computation will be based on these two values. The disadvantage is having
to use a multiplier, which can be expensive, and is therefore not implemented
here. The second method [12] is here called SPWL (Simple Piece-wise Linear
Approximation) and can be considerably more area efficient. It is described in
2.1.5.

2.1.5 Simple Piecewise Linear (SPWL)

Instead of storing the coefficients, a number of points in the curve can be chosen
to be stored in a LUT, and computation of Equation 2.3 can be based on them.

6 Approximation Methods

y =
yh − yl
xh − xl

(x− xl) + yl (2.3)

To improve precision, instead of approximating the function with a straight
line between the two end points (yh, xh) and (yl, xl), one can use another straight
line that minimizes the error, possibly by half, without loosing any area [12][13].
In other words, instead of saving yh and yl as tanh(xh) and tanh(xl) respectively,
slightly modified values can be saved in ROM. This approach is not taken in our
C++ implementation.

At first sight, a divider and a multiplier are needed to compute Equation 2.3.
However, if the points are equally distributed on X axis, as discussed in 2.1.2,
xh − xl is a known number which makes the devision trivial. Also, if xh − xl is a
power of 2, the devision is a simple shifter and the multiplication can be simplified.
In this case, x− xl can actually be a few LSB bits of the input. If the number of
the input bits is I and the number of subregions is N, then the last M bits (LSB
bits) of the input are chosen as the multiplicand (x−xl), where M is derived from
Equation 2.4.

M = I − log2(N) (2.4)

Following this pattern in our C++ implementation, we sweep I, N and O(number
of output bits) and by obtaining their corresponding precision and area consump-
tion, we are able to choose an optimum value for these three variables.

2.1.6 Centered Recursive Interpolation (CRI)

CRI (Centered Recursive Interpolation) is a recursive algorithm that estimates the
function after a known number of clock cycles. The theory is specified in [14] and
used to approximate the sigmoid function in [15]. First the curve under interest
is initially estimated with a few lines, all tangent to the curve (here, 2-line case is
studied, g=x and g=1, which do not need any computation to be calculated). An
optimum choosing of delta gives best precision. The code and the figures showing
the approximation in each step, are shown in Figure 2.3. The primary advantage
of CRI is absent of any multiplier and memory. It is verified that accuracy of CRI
does not improve much for "q" more than 4. In the example of Figure 2.3, q=2 is
chosen. As shown, the precision improves with clock cycle.

From the hardware perspective, the iterations could be performed all in one
clock cycle, or each in one cycle. The disadvantage of the latter is more latency
and complexity due to added registers to the design, while the former suffers from
higher area consumption. Here, we consider the former alternative for our later
analysis.

2.1.7 SPWL+CRI

To get better precision than SPWL, we presented a combined method of SPWL and
CRI. In this method, other than fetching y(x1) = yl and y(x2) = yh from ROM, as
in SPWL, y(x0) and y(x3) are also fetched. Therefore, similar to SPWL, enough
data is available to derive the two initial lines for CRI, according to Equation 2.5.

Approximation Methods 7

Figure 2.3: Algorithm description of CRI

y(1) =
y(x3)− y(x2)

x2 − x1
(x− x2) + y2 y(2) =

y(x1)− y(x0)

x2 − x1
(x− x1) + y1 (2.5)

Therefore, two simple multipliers and a CRI computation is added to gain
more precision.

2.2 Behavioral Model

A behavioral model is realized in C++ in order to implement the above algorithms
in fixed point number representation. Figure 2.4 describes how the model works.
A parametrized fixed point class is written in C++ in order to convert input data
into fixed point. In Figure 2.4, Fixedpoint block takes input data and it requires
number of integer bits and fraction bits as an input from user. The output from
this block will be fixed point data based on given integer and fraction bits. In
Algorithm block, a particular algorithm is selected to produce an approximation
of tanh function.

A reference model of tanh function is generated inside reference block by using
same input data. Output from reference and algorithm block are compared to get
precision. Area calculation are done based on area equation described in below
section. Area versus precision curves was plotted in order to compare accuracy of
different method.

8 Approximation Methods

Fixed point Algorithm Area

CompareReference

input

precision

Area

Figure 2.4: Block diagram for behavioral model

2.3 Result

The results of the 5 implemented algorithms are presented below. The unit for
area is the number of full adders(FA), which when multiplied by 28 (the number
of transistors in a FA), gives the number of transistors used in the design. The
Area estimation is based on the Table 2.1.

Table 2.1: Estimation of area based on simple logic blocks (the unit
is a FA or 28 transistors)

Logic Area description
Adder N N= no. of bits for inputs
Multiplier N ∗M N= no. of bits for input 1;M=no. of bits for input 2
Comparator 0.64N N= no. of bits for inputs
And/OR gate (N − 1) ∗ 0.21 N= no. of inputs
Decoder 2N ∗ (N − 1) ∗ 0.21 N= no. of inputs
ROM (M ∗N)/(28 ∗ 2) M= Length; N=Width

The area of the comparator(Figure 2.5) and AND gate in Table 2.1 are cal-
culated in Equation 2.7 and Equation 2.6, respectively. The area of the de-
coder(Figure 2.5), which will be used in 2.3.2, is calculated in Equation 2.8. In th
table, Inverters in decoder are omitted and ROM is without decoder.

area(AND) =
6 ∗N

28
= 0.21N

(2.6)

area(Comparator) =
NOT (2 ∗N) +AND(6 ∗ (2N − 1)) +XOR(4N) + or(6 ∗ (N − 1))

28
= 0.64N

(2.7)

area(Decoder) =
6 ∗ (2i ∗ (i− 1))

28
(2.8)

Approximation Methods 9

(a) Comparator

A1
B1

A2
B2

B3

A3

F

(b) Decoder

Figure 2.5: Comparator and Decoder circuits

2.3.1 Piecewise non-linear approximation

The approximated area for 3 multiplications and 2 additions is calculated by Equa-
tion 2.9. The area for the LUT for storing the coefficients is omitted, as it is much
smaller compare to the rest of the design.

area = i2 + 3ij + 4i+ 2j (2.9)

where, i= number of input bits and j=number of coefficient bits.

As mentioned in the above section, we will get different precision and area
with different number of sub regions. So in order to find out good number of sub
regions, the whole range is divided into different number of sub regions and for
each case, area and precision was calculated. Figure 2.6 shows the area versus
precision plot for different number of sub regions or curves. Area was calculated
by sweeping number of fraction bits for input as well as coefficients while keeping
output bits the same. It can be seen from the plot that precision is improved with
increase in number of subregions. After analyzing the result, six number of curves
was selected for further optimization, i.e. when (i 6= j) .

In order to find out best combination of input, coefficient and output bits,
a framework was made that will select different combination of these three and
produce error and area for each case. Figure 2.7 shows results from above frame-
work, for 6 curves. In the plot each data point represents different combination
of bits for each of three. From Figure 2.7 minimum precision and minimum area
combination needs to be selected as final result. Figure 2.8 shows best data points

10 Approximation Methods

0 500 1,000 1,500 2,000 2,500

0.001

0.01

0.1

1

Area

P
re
ci
si
on

1 sub region
2 sub region
4 sub region
6 sub region
8 sub region
10 sub region

Figure 2.6: Area vs Precision for different sub regions

selected from Figure 2.7.

2.3.2 LUT

Equation 2.10 is used to calculate the area for this method. The first term com-
putes the area of decoder, and the second term is the area of the ROM (see Table
2.1).

area =
6 ∗ r ∗ (log2 r − 1) + (r − 1) ∗ o

28
(2.10)

where o=number of output bits and r=number of regions
Figure 2.9 shows a curve for area and precision. The figure was plotted by sweeping
output bits and number of regions, and selecting the best combinations. From
figure, it can be seen that as we increase number of regions which means more
number of LUTs, we get better precision but also bigger area.

2.3.3 Simple piecewise linear approximation

Implementation of SPWL approximation requires a multiplier and a look-up table.
According to theory (2.1.5), a part of the input bits goes to LUT and the rest (a
few LSB bits) is the multiplicand, according to Equation 2.4. Area of SPWL is
calculated as Equation 2.11, that is the area of the LUT added to the area of the
multiplier (the last term).

area =
6 ∗ r ∗ (log2 r − 1) + (r − 1) ∗ o

28
+ o ∗ (i− log2 r) (2.11)

Approximation Methods 11

Figure 2.7: Area vs precision for
different combinations in 6-
curve PWNL

Figure 2.8: Area vs Precision for
best combinations (6-curve
PWNL)

where i=number of input bits, o=number of output bits and r=number of regions
By sweeping the above three variables in the model and choosing the optimum
combinations, we calculated the corresponding area. Figure 2.10 shows the vari-
ation in precision with respect to area. The minimum of all these curves will be
derived and considered for our total comparison.

2.3.4 CRI

CRI algorithm requires only adders, comparators and shifters. To calculate the
approximation area, Table 2.1 is used.

area = n∗(2∗adders+1∗comparator)+1∗comparator = n∗(2.7∗i)+0.6 (2.12)

where i=number of input bits, n=number of interpolation
By sweeping input bits as well as number of interpolation, Figure 2.11 was plotted.

2.3.5 SPWL+CRI

From section 2.3.3, we observed that SPWL is giving best precision. To improve it
even further, some computation was added to SPWL. Equation 2.13 was used to
calculate its area. Compare to Equation 2.11, the area of ROM is twice (two values
are stored for each entry, which are tanh() and delta), as well as that of multiplier
(two multipliers are used). The last term denotes the CRI area. We swept the
same variables as in the SPWL case, and by selecting the optimum combinations,
plotted the area-precision curve in Figure 2.12 and Figure 2.13.

area =
6 ∗ r ∗ (log2 r − 1) + r ∗ o

28
+ 2 ∗ o ∗ (i− log2 r) + 9 ∗ o (2.13)

where i=number of input bits, o=number of output bits and r=number of regions

12 Approximation Methods

0 20 40 60 80

0.0316

0.1

0.316

Area

P
re
ci
si
on

LUT with different regions

Figure 2.9: Area vs Precision

2.4 Conclusion

Figure 2.12 shows the behavior of the five implemented methods. It is apparent
that, for less number of regions (and consequently less area and error) SPWL
is outperforming others but as we go for more regions for instance 256 or 512,
SPWL+CRI showed better performance. Figure 2.13 shows this trend. CRI sat-
urates very soon and LUT’s size increases dramatically as better precisions are
required. For PWNL, the area consumption is the highest and it shows the worst
performance, when small area is concerned.

One conclusion that can be taken from this figure, is that LUT alone is not
the best solution, especially if precisions better than 0.01 are required. This is be-
cause the area of the decoder increases exponentially (Equation 2.10) . Therefore,
LUT can work well as a primary course approximator, and adding a computa-
tional method to its results is highly beneficial. Heavier computations pay off for
better precisions. This pattern is seen in Figure 2.13, noting that SPWL+CRI
has more computational power compare to SPWL. With this pattern in mind, it
is possible that for even better precisions than 0.000001, the PWNL becomes the
best alternative among these 5 methods, as it has the most computational power.

Approximation Methods 13

0 50 100 150 200

0.001

0.01

0.1

Area

P
re
ci
si
on

4 regions
8 regions
16 regions
32 regions
64 regions

Figure 2.10: Comparison of area vs precision with different regions
for SPWL

0 50 100 150 200 250

0.1

1

Area

P
re
ci
si
on

One Interpolation
Two Interpolation
Three Interpolation
Four Interpolation

Figure 2.11: Area vs Precision for CRI

14 Approximation Methods

0 100 200 300 400 500 600 700 800
0.00001

0.0001

0.001

0.01

0.1

1

Area

P
re
ci
si
on

CRI
SPWL
PWNL
LUT

SPWL+CRI

Figure 2.12: Comparison of different approximation method

0 500 1,000 1,500 2,000 2,500 3,000 3,500

0.000001

0.00001

0.0001

0.001

0.01

0.1

Area

P
re
ci
si
on

SPWL
SPWL+CRI

Figure 2.13: SPWL vs SPWL+CRI

Chapter3
Low Density Parity Check (LDPC)

3.1 Introduction

As the signal is transmitted from the transmitter to the receiver, a lot of noise
is added to it. A very basic approach for the receiver to convert the transmitted
analog information is to its corresponding bital value is equalizing the signal with
the demodulator (rounding the analog signal to the closest defined value, that is
mapped to a defined set of bits). Such an approach is called "hard decision". A
better approach that is more immune to noise, is adding some extra bits to the
signal before transmitting it. Therefore the bital message is coded to a larger
message (called codeword) and then, will be transmitted through the channel. As
later will be shown, coding highly increases the system’s efficiency, meaning that
we can achieve a certain Bit Error Rate (BER) with consuming lower power or
Signal-to-Noise Ratio (SNR).

Low Density Parity Check (LDPC) is one of the most capable coding schemes
that was first introduced by Gallager[16] and has widely been used in telecommu-
nication systems. Among the algorithms to decode LDPC codes, Sum-Product
Algorithm (SPA) and Min-Sum Algorithm (MSA) are the most common ones.
SPA is focused in this work, where all the bits in the received codeword (which
is 5-bit long in Figure 3.1) communicate with each other and detect the mistakes
caused by noise and recover the original message (2-bit long in Figure 3.1). This
is why SPA is also called Belief Propagation (BP) algorithm. MSA is an efficient
approximation of the SPA, normally resulting in inferior accuracy (BER) but more
chip area efficiency.

Figure 3.1 shows the overview of a basic wireless system, that is considered
in this thesis. Since the focus of the thesis is on the decoder, Binary Phase-
Shift Keying (BPSK) modulation/demodulation has been used, which is relatively
simple.

3.2 Modulation and LLRs

In Figure 3.1, BPSK modulation is used, which, for example, performs the map-
ping: [0, 1]→ [+1,−1]. This modulation is called "Living-Zero" modulation, and
will be assumed as default in the remaining. The output of the demodulator
could be either bits or Log-likelihood Ratio (LLR) values of bits. In the first

15

16 Low Density Parity Check (LDPC)

Figure 3.1: Overall view of a simple communication system

case, the demodulator equalizes its inputs, by finding the closest bital codeword
that the analog signal is most likely representing. This is called "hard decision".
The decoder is very easy in this case, as it only maps the found codeword to its
corresponding message.

In the second case, which is the case for LDPC codes, the demodulator outputs
a LLR value (also called soft-value), corresponding to each bit. The LDPC decoder
will use these LLRs to make "soft decisions" on its inputs. In LLR case, the
demodulator (Figure 3.1), first detects the phase of the analog input, digitalizes
it, and finally converts it into an LLR value. We here show the digitalized input, as
variable ”u”. Equation 3.1 shows how the LLR value of each input (corresponding
to one bit) is calculated [17].

LLR(u) = log
P (bit 0 was sent)

P (bit 1 was sent)
(3.1)

In Equation 3.1, the numerator is the probability that bit ’0’ was sent, and
the denominator is the probability that bit ’1’ is sent. if the numerator is bigger
than the denominator, the LLR becomes positive. therefore, a positive LLR is
more likely to represent a ’0’ rather than ’1’. Obviously, unsure transmitted bits
have their LLR values closer to 0, as both numerator and denominator are close
to each other, in these cases.

The LLR value of a bit is very descriptive, because its sign determines whether
the bit is probably ’1’ or ’0’, and its magnitude shows how much this probability
can be counted on, or how sure that prediction is. For example, an LLR value of
"+0.1" means that the actual bit is more likely to be ’0’, but we are not very sure
about that.

The probabilities in Equation 3.1 can easily be calculated, in case of BPSK. If

Low Density Parity Check (LDPC) 17

the channel has white-Gaussian Noise, which is a usual case, Equation 3.2 holds:

P (modulated bit = x) =
1

2πσ2
∗ exp[− (u− x)2

2σ2
] (3.2)

Where the modulated bit (x) can be ’+1’ (in case of bit ’0’) or ’-1’ (in case of
bit ’1’). Equation 3.1 can then be rewritten as Equation 3.3. Therefore, in BPSK
case, LLR value production is reduced to a mere multiplication. This is also shown
in Figure 3.1.

LLR(u) = log
1

2πσ2 ∗ exp[− (u−1)2
2σ2]

1
2πσ2 ∗ exp[− (u+1)2

2σ2]
=

2

σ2
∗ u (3.3)

3.3 Sum-Product Algorithm (SPA)

LDPC decoder receives a codeword, except that the elements of the codeword are
not bits, but Log-likelihood Ratio (LLR) values (please refer to section 3.2). How
SPA maps this codeword of LLRs to the correct bital codeword, and later the
original message, is discussed in this section.

At the transmitter side, the LDPC coder converts the message to the bital
codeword by the binary matrix G, as shown in Equation 3.4, where ”c” is the
codeword.

message ∗G = c (3.4)

The binary parity-check matrix (H) is used at the decoder, and is a matrix of
sizeM ∗N , which is related to G by equation G∗HT = 0. The number of columns
(N) in H equals the size of the codeword, that should be decoded and the number
of rows (M) equals the size of the uncoded message. H is a low density matrix
in which most elements are ’0’. In SPA, each row of H represents a "Check Node
(CN)" and each column represents a "Variable Node (VN)", and a ’1’ in H dictates
that the corresponding VN (representing that column) should be connected to the
corresponding CN (representing that row). An example of a H matrix with (N=8)
VNs and (M=4) CNs, and its corresponding graph is shown in Figure 3.2.

1 0 0 1 1 0 1 0

0 0 1 0 0 1 1 1

1 1 1 0 0 1 0 0

0 1 0 1 1 0 0 1 C1 C2 C3 C4

V1 V2 V3 V4 V5 V6 V7 V8

Figure 3.2: H matrix(4,8) and its corresponding graph

SPA works as connected CNs and VNs constantly communicate with each
other, by sending messages through the connections. Each VN represents a bit in
the codeword. First, each VN gets its corresponding LLR in the received code-
word, that here we call the VN’s intrinsic LLR. In the beginning, VNs send their
LLRs to their connected CNs. Each CN processes all the messages sent from its

18 Low Density Parity Check (LDPC)

connected VNs, and finally predicts a value for each VN. Each VN then gets all
these suggested values from its connected CNs, adds them all together and also to
its intrinsic LLR, and obtains a more precise LLR. This concludes one iteration.
If the stop criteria is not met, each VN computes and sends its so-far computed
LLR (with little change) to each CN and iterations continue, until the stop criteria
is met. As the algorithm proceeds, the computed LLR for each VN gets closer to
either ’+1’ or ’-1’.
For notations, if the mth CN is connected to the nth VN, the message from that
CN to that VN is shown as Λm→n, and the message in the opposite direction is
λn→m . At the beginning of the algorithm, the messages are initialized as follows:

Λm→n = 0, λn→m = ui (3.5)

where U is the codeword, and un is the nth variable of the codeword (in LLR).
Each iteration of the algorithm executes the following three steps [18]:

step (i) (CN update)

All the CNs produce their messages to all their connected VNs. If the number of
VNs is N, the message from mth CN to the nth VN can be computed with different
formulas, among which, Equation 3.6 is a good example. Section 3.4 is devoted
to elaboration of these different formulas, and covers the general mathematics of
Check-Node computation.

Λm→n = 2tanh−1
N∏

n=1,n6=n′
tanh[

λn′→m
2

] (3.6)

The notation (n′ 6= n) in Equation 3.6 denotes that, to compute the message to
a certain VN, the message from all the other connected VNs is taken into account,
unless the message that has come from that VN.

step (ii) (VN update)

All the VNs produce their messages to all their connected CNs. If the number of
CNs is M, The message from nth VN to the mth CN is computed according to
Equation 3.7.

λn→m = un +

M∑
m=1,m 6=m′

Λm→n (3.7)

step (iii) (stop criterion)

At each iteration, a more precise codeword is expected to be acheived. The ob-
tained codeword(c) at the end of each iteration is determined as:

∀n, cn = un +
∑

Λm→n (3.8)

Low Density Parity Check (LDPC) 19

There are many different stop criteria for SPA. One is based on the fact that
for each valid codeword ’c’, H ∗ (ĉ)T = 0, where ĉ is the transformation of ’c’ to
a digital codeword, using hard-decision. This condition can be checked at the end
of each iteration. Another way is performing parity check at CNs, depending on
whether "Even" or "Odd" parity check is used. In case of Even parity check, there
should be an "Even" number of ’1’s (negative LLRs) in the set of variables (VNs)
connected to each CN. In this case, each CN can check this condition by first
mapping positive entries to ’0’ and negative entries to ’1’ and digitally XOR them.
If the result is ’0’, it means there has been an "Even" number of positive entries,
and the condition is satisfied. When all the CNs are satisfied, the algorithm stops.
Based on the same rule, each CN can multiply all of its incoming LLR messages
together. A positive result implies that there has been an even number of negative
LLRs among them, and the CN is satisfied. A simpler way of stoping the algorithm
is when the algorithm reaches a certain number of iterations, but this could lead
to inefficiency in time.

Once the set criteria is met, the already-obtained codeword (’c’ which is in
LLR) is a defined coodeword and corresponds to a defined message. The code-
word ’c’ is then transformed to digital codeword (ĉ) using hard-decision. Then,
according to Equation 3.4, the corresponding actual message can be calculated as:

ĉ ∗G−1 = message (3.9)

3.4 CN update Methods

3.4.1 � -based

In this section, the operation of a CN will be covered (please refer to [17] for
more elaborate explanations). CN operation is based on the parity-check rule,
that is, in case of "Even" parity check, the number of 1’s (negative LLRs) in the
messages from VNs, must be even. To calculate the message to a given VN, the
CN processes the LLRs that it receives from other VNs. Let’s assume there is an
even number of 1’s from other VNs. Thus, it is likely that this VN represents a ’0’
bit (or a negative LLR). Therefore, CN predicts and sends a negative LLR to this
VN. This message will have its share in reducing the so-far predicted LLR of that
VN (Equation 3.8), that will be used in next iteration (Equation 3.7). In this way,
as algorithm proceeds, wrong LLRs gradually change their signs. If there are N
number of VNs connected to a CN, in order for the CN to compute a proper LLR
for the N th variable (Vn), Equation 3.10 must be calculated (refer to Equation 3.1
for definition of LLR).

ΛThe CN→n = log
P (correct bit for Vn = 0)

P (correct bit for Vn = 1)
= log

P (”Even” no. of 1′s in other V Ns)

P (”Odd” no. of 1′s in other V Ns)
(3.10)

As briefly discussed in 3.3, if a set of digital bits (0,1) get XORed with each
other, and the result is ’0’, it means there has been an "Even" number of ’1’s in
that set. As a result,

20 Low Density Parity Check (LDPC)

Λm→N = ln
P (û1 ⊕ û2 ⊕ û3 ...⊕ ûN−1 = 0)

P (û1 ⊕ û2 ⊕ û3 ...⊕ ûN−1 = 1)
(3.11)

For notations, ûn is the correct nth digital bit of the codeword, and ⊕ is the
digital XOR. un is the message received from Vn, which is λn→m. LLR(un) is the
LLR form of that message. To calculate the probabilities in Equation 3.11, we
need the functionality of digital XOR:

P (û1 ⊕ û2 = 0) = P (û1 = 1).P (û2 = 1) + P (û1 = 0).P (û2 = 0) (3.12)

Also, from Equation 3.2:

LLR(u) =
P (û = 1)

P (û = 0)
=

P (û = 1)

1 − P (û = 1)
→ P (û = 1) =

eLLR(u)

1 + eLLR(u)
(3.13)

and,

P (û = 0) = 1− P (û = 1) =
1

1 + eLLR(u)
(3.14)

Replacing Equation 3.13 and Equation 3.14 in Equation 3.12 results in:

P (û1⊕û2 = 0) =
eLLR(u1)

1 + eLLR(u1)
.
eLLR(u2)

1 + eLLR(u2)
+

1

1 + eLLR(u1)
.

1

1 + eLLR(u2)
(3.15)

With the help of the above equation, and computing P (û1 ⊕ û2 = 1) with the
same procedure, we can define and calculate an important double-input function,
called Soft-XOR and denoted as �:

LLR(u1) � LLR(u2) = ln
P (û1 ⊕ û2 = 0)

P (û1 ⊕ û2 = 1)
= ln

1 + eLLR(u1)eLLR(u2)

eLLR(u1)eLLR(u2)
(3.16)

Soft-XOR (�) is associative and commutative, and it can be proved that Equa-
tion 3.11 can be computed as:

Λm→N = LLR(u1) � LLR(u2) � ...LLR(uN−1) =

j=N−1∑
j=1

�uj (3.17)

Thus, the operation of CN can be simply summarized; i.e. to generate the
massage to any VN, all the messages coming from "other" VNs have to be Soft-
XORed, and the result will be the desired message.

Low Density Parity Check (LDPC) 21

3.4.2 tanh− based

By using advanced mathematics, it can be proven that Equation 3.17 can be
rewritten as Equation 3.18 [17].

j=N∑
j=1

�uj = 2tanh−1
N∏

n′=1

tanh[
λn′→m

2
] (3.18)

Λm→n is then calculated by eliminating λn→m from the above equation, which
leads to Equation 3.6, which is mentioned in 3.4.

3.4.3 Φ− based

CN-update step is the hardware-consuming part of the algorithm. Equation 3.6
in its current form requires some multiplications and also some approximators for
the tanh and one for tanh−1 function. [7] suggests an efficient way to implement
this. Since in most fixed-point hardware implementations, the use of summation is
preferred over multiplication [7], and Equation 3.6 can be rewritten to replace the
multiplication with summation (by taking advantage of the fact that multiplication
is converted to summation in Log-domain). As elaborated in [19], If we define
variable λi as Equation 3.19 :

λi =
∏
n′ 6=n

tanh[
λn′→m

2
] (3.19)

Thus:

ln(λi) =
∑
n′ 6=n

ln(tanh[
λn′→m

2
]) (3.20)

Therefore, the CN-update equation (Equation 3.6) can be rewritten as:

Λm→n = 2tanh−1(exp(
∑
n′ 6=n

ln(tanh[
λn′→m

2
]))) (3.21)

If function Φ is defined as:

Φ = −tanh−1(exp(x)) = −ln(tanh(x)) (3.22)

The ultimate Φ− based CN-update equation becomes:

Λm→n = Φ(
∑
n′ 6=n

Φ[
λn′→m

2
]) (3.23)

As seen, this equation benefits from multiple summations, instead of multipli-
cations. However, the disadvantage is that Φ function is highly non-linear; As it
has one infinity on X-axis and another on Y-axis, and the latter one must be prop-
erly taken care of. [6] has approximated this function using PWL approximation
with 9 lines, and explained the Φ-based schematic of the CNU.

22 Low Density Parity Check (LDPC)

3.5 IEEE 802.11n H Matrix

Section 3.3 has described the parity check matrix (H). IEEE 802.11n standard
was chosen in order to implement a LDPC decoder, in this work. This section
will discuss the H matrix for this standard. There are 12 different H matrixes
depending on 3 different codeword block lengths (1944, 1296,648 bits). And each
codeword block length can be implemented using 4 different code rates i.e. 1

2 ,
2
3 ,

3
4 ,

5
6 , each is suitable for a specific noise level in the communication channel. Figure
3.3 shows a parity check matrix for block length of 1944 bits and code rate of 5

6 .
As can be seen, the elements of this matrix are numbers, instead of bits (0 or 1).
Each number, represents a square matrix of bits (0’s or 1’s) with size (sub block
size) ∗ (sub block size). For each block length, there is a specific sub-block size.
For example, for the block length of 1944, the sub-block size is 81. An element
with number "n" specifies that a unity matrix of size 81*81 (in this case) must
be rotated "n" times, and then be put at that location. Right-Rotation means
all the elements of each column will be tranferred to their right column, and the
right-most column comes to the location of the first column (Figure 3.4). Hence,
there are 324 check nodes and 1944 variable nodes for Figure 3.3.

H =

13 48 80 66 4 74 7 30 76 52 37 60 − 49 73 31 74 73 23 − 1 0 − −
69 63 74 56 64 77 57 65 6 16 51 − 64 − 68 9 48 62 54 27 − 0 0 −
51 15 0 80 24 25 42 54 44 71 71 9 67 35 − 58 − 29 − 53 0 − 0 0
16 29 36 41 44 56 59 37 50 24 − 65 4 65 52 − 4 − 73 52 1 − − 0

Figure 3.3: H matrix (block length = 1944bits, code rate = 5
6)

Figure 3.4: Right Rotation

Let’s assume H is cyclic entry in a H matrix and sub block size is 81 bits.
So, in case of 0 for the first element, we have path from variable node to check
node like [V N1 → CN1, V N2 → CN2, ... , V N81 → CN81]. But in case of a
rotation according to values in H matrix, from Figure 3.3, first element is 13.
After cyclic shifts we get new path from variable node to check node like [V N1 →
CN14, V N2 → CN15, ... , V N81 → CN13]. An entry of "-" in H matrix means
those variable nodes are not connected to any check nodes. For instance, in Figure
3.3 first row and 24th column is "-", means last 81 variables are not connected
anywhere. To handle this routing, we need a permutation network that will route
incoming information to correct variable nodes and check nodes.

Low Density Parity Check (LDPC) 23

3.6 Conclusion

Evaluating these three popular CN computation methods from hardware perspec-
tive, one can argue that φ function has two infinities, which make the PWL ap-
proximation quite costly. Also, the the tanh−based method requires a lot of
multipliers, that are expensive in fixed-point hardwares. Therefore, the �-based
method was selected as the most hardware-friendly one among these three meth-
ods, as it requires the approximation of the � function, which does not have any
infinities, and its approximation can be simplified, as will be illustrated in the next
chapter.

24 Low Density Parity Check (LDPC)

Chapter4
Approximation of � function

As discussed in section 3.4.1, � can be a core function for CN calculation, and for
its hardware simplicity, it was chosen over the other computation schemes, in this
work. The equation of this double-input function is described in Equation 4.1,
and is plotted in Figure 4.1.

a� b = ln
1 + eaeb

eaeb
(4.1)

Figure 4.1: soft XOR function

In Figure 4.1, the figure on the left shows the � when the inputs are swept
from 0 to +8. The figure on the right is basically an intersection of the left figure,
where ”b” is set at the constant value of ”2”.

Equation 4.1 can be made simpler to approximate by some mathematical ma-
nipulations, and can be rewritten as Equation 4.2 [20]

a� b = sign(a)sign(b)Min∗(|a|, |b|) (4.2)

where,

Min∗(a, b) = min(a, b)− ln(1 + e−|a−b|) + ln(1 + e−|a+b|) (4.3)

25

26 Approximation of � function

In this way, the sign calculation (which requires a simple digital XOR) can
be departed from the absolute (magnitude) calculation, which is done by Min∗

function. Min∗ takes the absolutes of both inputs and generates the absolute of
the result. It is worth noting that for positive inputs: � = Min∗. For simplicity,
from now on we only consider positive inputs, where this condition holds. The
remaining of this section is dedicated to different approximations of Equation 4.3.

4.1 Min-Sum Approximation

Equation 4.3 has three terms. The first term (min(a, b)) contains the largest
portion of the total function of Min∗. In Figure 4.2, the right figure shows this
term and its closeness to the complete function. Therefore, this term can be an
approximation of the Min∗ function, and the LDPC decoding algorithm that is
based on such approximation is called Min-Sum Algorithm (MSA). This algorithm
is very popular, especially for its small cost.

4.2 Double-PWL Approximation

In applications where more precision is required, the approximation of the second
and third term of Equation 4.3 is also considered. For both these terms, the
approximation of the function ln(1 + e−|x|) is required. The left figure in Figure
4.2 is approximating this function, using PWL with one single line (Equation 4.4)
[5].

ln(1 + e−|x|) ∼ max(0.625− |x|
4
, 0) (4.4)

Figure 4.2: Soft XOR Approximation

Approximation of � function 27

4.3 Single-PWL Approximation

In order to reduce hardware cost but maintain precision, this approximation is
based on considering only the first and second term of Equation 4.3 and the last
term can be ignored, and the error will not be considerable [22][20]. The reason
for ignoring the third term is that for (a + b) > 2.5, log(1 + e−(a+b)) ∼ 0, and
therefore this equation only has value for small values of ”a” and ”b”. Also,
in our C++ simulations that deals a normal range of −8 < a, b < 8, it was
observed that small values barely have an effect on the overall result. However,
in some applications that deal with small LLRs (probably where Noise variance
(σ2) is considerably high as shown in Equation 3.3), ignoring this equation might
deteriorate the performance. Therefore, Equation 4.3 can be approximated as:

Min∗(a, b) = min(a, b)−max(0.625− |a− b|
4

, 0) (4.5)

where |a− b| is in fact max(a, b)−min(a, b) in hardware implementation.

4.4 CRI-based Approximation

In this method, we utilized the CRI technique (discussed in 2.3.4) to estimate the
Min∗ function. Here, we have used a single-step CRI (q = 1). For this, two lines
that are tangent to the original curve are needed as initial approximation, plus
a suitable delta(∆). As the initial tangent lines, we can use y = a and y = b.
Figure 4.6 shows the original curve, and these two lines. The approximated curve
is shown in Equation 4.6.

Min∗(a, b) = min(a, b,
a+ b

2
−∆) (4.6)

The calculation of ∆ is explained as follows. As seen in Figure 4.6, ∆ is the
difference between the intersection of the two lines and the original curve, where
a = b. According to Equation 4.3, this difference is:

∆ = ln(1 + e0)− ln(1 + e−(a+b)) (4.7)

for (a + b) > 2.5, log(1 + e−(a+b)) ∼ 0. As discussed in the above section,
this term can be ignored, without considerable loss of accuracy. Therefore, ∆ is
estimated as:

∆ ∼ 0.625 (4.8)

As Figure 4.6 shows, ∆ = 0.625 makes the a+b
2 − ∆ line to be tangent to

the original curve, at a = b point. As illustrated in section 2.3.4, ∆ can be
quite flexible, and can be lowered by some small amount, so that the a+b

2 − ∆
line passes through the original curve, instead of being tangent to it. Through
MATLAB simulations, it was observed that instead of ∆ = 0.625, using 0.8 or 0.9
results in better accuracy. Therefore, the Min∗ is estimated as Equation 4.9. It is
worth to note that in this equation, the absolute function will not be implemented

28 Approximation of � function

Figure 4.3: CRI-based approximation of Soft-XOR (b=3)

in hardware, as negative values become naturally large, as the MSB bit becomes
’1’.

Min∗(a, b) = min(a, b, |a+ b

2
− 0.8|) (4.9)

In [23], theMin∗ equation is estimated as Equation 4.10 which, if rewritten in
a more hardware-friendly form, resembles Equation 4.9, with some modifications.

Min∗(a, b) = max(min(a, b)−max(0.9− |a− b|
2

, 0), 0) (4.10)

Finally, For those applications in which LLR values are considerably small
(probably because of high Noise Variance), ignoring the log(1+e−(a+b)) ∼ 0 might
deteriorate the performance. In those applications, this term can be approximated
with a single line (Equation 4.4) and ∆ ∼ min(0.8, a+b4) ∼ min(0.8, max(a,b)2) can
be achieved (denoted as Low-LLR CRI). Its hardware implementation consumes
slightly more area than Equation 4.9, but approximates the small LLRs more
accurately. In this work, we will regard Equation 4.9 as the CRI approximation.

4.5 Result and Conclusion

Five common methods to approximate the � function have been explored. Figure
4.5 and Figure 4.6 depict these approximations for large LLRs and small LLRs,
respectively. The simulation result of BER/SNR of the LDPC decoder is shown
in Figure 4.4, for each of these approximations. In this picture, SPA denotes the
exact SPA algorithm. Figure 4.4 shows the approximations for different ranges. in

Approximation of � function 29

2.5 3 3.5 4

0.01

0.1

1

SNR

B
E
R

Min-Sum
low-LLR CRI
Single PWL
Double PWL

CRI
Perfect SPA

Figure 4.4: SNR vs BER for different soft-xors

Figure 4.5: Soft-xor approximations for large LLR ranges (b=3).
Single-PWL, Double-PWL and low-LLR CRI all work identically.

low LLRs, CRI version performs only slightly better than "Min-Sum", but in large
LLRs, behaves almost similar to Double-PWL. The RTL results of the approxi-
mations are also provided in chapter 7. "min-sum" has the worst performance but
smallest area, as it uses only one comparator. However, simulations show that
as soon as some computations are added to Min-Sum, its performance starts to

30 Approximation of � function

Figure 4.6: Soft-xor approximations for small LLR ranges (b=0.8).
Double PWL works almost identical to low-LLR CRI.

rapidly improve and become very close to SPA, which suggest that SPA algorithm
is highly robust to inaccuracies, and rough estimations perform very well. It can
be seen that all the mentioned approximation methods demonstrate an excellent
performance in regard of accuracy, except for "Min-Sum". Thus, when it comes to
adding computations to �, the cost must be the main concern. CRI-based method
manages to add the smallest computation, and there is a decrease of 62% in BER
of the "CRI-based" with offset 0.8, compare to "Min-Sum". We have tried two
different version of CRI-based approximation with different offsets, and offset of
"0.8" is more optimal. Overall, it can be seen that the CRI-based � approxima-
tion, with relatively small area consumption, is a suitable choice for applications
in which a near-SPA BER/SNR is required. "Min-Sum" based � is the best candi-
date where hardware cost is the primary concern. As the final note, it was shown
that although PWL was determined as the most efficient approximation method
in chapter 2, but in soft-xor case, CRI outperformed PWL, which illustrates that
the efficient approximation depends on the type of the function, as well. Soft-xor
is a double-input function and does not require high accuracies. Also, its special
mathematics made it possible to be approximated in more area-efficient ways than
using LUT or PWL.

Chapter5
Simulation Results

In this chapter we will discuss and analyze the SPA behavior (BER/SNR) and its
dependency on the number of iterations and number of bits (quantization). The
analysis is based on a C++ simulator that is formerly developed to simulate a
complete SPA decoder with flooding schedule. It takes its inputs from a BPSK
demodulator, and computes the decoded bital message and then calculates its
corresponding BER versus SNR (BER/SNR).

5.1 Effect of iterations on BER

This section is about how number of iterations are effecting decoding performance.
Figure 5.1 shows that we can get same BER performance by increasing iterations at
low SNR and there is reduction in BER as iterations increases. This was expected
because with every iteration received input route between variable node and check
node, which decrease the error. However, using high number of iterations for
simulation might not very efficient because simulation time would increase very
much. But in hardware this would done very fast. Therefore, to reduce simulation
time, number of iterations are kept to 10 for other simulations. In RTL design
number of iterations is used as stopping criteria.

5.2 Effect of total bits on BER for SPA

This section describes the effect of total bits of variables on bit error rate. Figure
5.2 shows our simulated results. It is obvious that as we decrease number of bits
error would increase because much information can lost in those bits. From simu-
lation we found that only two number of integer bits are enough to represent LLR
integer parts. Therefore, in all curves integer bits were kept same while fractional
bits were varying. As SPA is memory hungry, so even an increase of single bit is
very expensive. Finding a good number of bits that can give reasonable decod-
ing performance is required. In Figure 5.2 first curve is giving worst performance
because of very less number of information bits. But as we increase information
bits, the BER would improve. However, after 4 information bits there is not much
improvement. And ”Full” curve is without any fixed point limitation. Through
this figure it can be seen that BER for 8 information bits are almost equivalent to

31

32 Simulation Results

2 2.5 3 3.5 4

0.01

0.1

1

SNR

B
E
R

10 iterations
20 iterations
30 iterations

Figure 5.1: SNR vs BER for different iterations

full precision.

2 2.5 3 3.5 4

0.01

0.1

1

SNR

B
E
R

3 bits
4 bits
5 bits
6 bits
7 bits
8 bits
Full

Figure 5.2: SNR vs BER, for different number of bits

In Section 5.1, we discussed about impact of iterations on BER. As we know
by increasing iterations, BER will decrease but on the other hand the total time
of decoding would also increase. Hence there is a trade-off between iterations and
decoding time. Figure 5.3 compares different number of iterations with different
number of bits. In this figure, for an instance at 3.4 SNR first case which is 7
bits and 10 iterations has a BER of 0.246. But an increase of iterations by 2
and decrease of bits by 2 gave better result. By doing so, BER was decreased
from 0.246 to 0.196, which means a decrement of 0.05. However, decoding time
is increased but we save 2 bits and this has major effect on memory requirement.

Simulation Results 33

Total memory required is (7776 ∗ NOF_BITS)bits. If we would have chosen 7
bits and 10 iterations, then our memory size would be of 54432 bits. But for 5 bits
and 12 iterations, memory size required is 38880 bits. Our net memory saving is
around 15.5K bits. As this save is only for one RAM and we have 4 RAMs, so
net save would be 68K bits which is quite high. If even low BER is a requirement
then 6bits with 12 iterations would also be a reasonable selection. This has a quite
close performance to the ideal case. Therefore, from this we can conclude that an
increase of 20% in iteration and decrease of 28% in bits would reduce the memory
size by 28% for one RAM. Now if we compare 6 bits, 12 iterations and 5 bits, 12
iterations, memory size is decrease by 20% while BER is increase by 25%.

2 2.5 3 3.5 4

0.01

0.1

1

(3.4, 0.135)

(3.4, 0.196)

(3.4, 0.145)

(3.4, 0.246)

SNR

B
E
R

7 bits,10iterations
6 bits,12iterations
5 bits,12iterations
Full,12iterations

Figure 5.3: Comparison of SNR vs BER for different bits and itera-
tions

5.3 Number Representation

Among the three popular numeric systems, that are fixed-point, floating point
(FP) and logarithmic (LNS), the fixed-point has been selected in this work, and all
the simulations, approximations and hardware implementations are based on that.
There are two reasons that FP and LNS were not selected for SPA application:

5.3.1 SPA’s Incompatibility with FP and LNS

LNS and FP provide higher accuracy for representing low values, but lower accu-
racy for larger values. However, as shown in Figure 4.4 and Figure 4.6 in chapter
4, the Soft-XOR approximations that exhibit low accuracy for estimating small
values perform as adequately as others, but those that estimate large values with
low accuracy, perform poorly in BER/SNR performance. This illustrates that

34 Simulation Results

large values are more important for CN computation of SPA (at least for our case
study with normal noise level). Therefore, LNS and also FP behave in the opposite
direction of the accuracy of SPA. However, a number representation that is inverse
of LNS could work in favor of the mentioned property of SPA. For example, in
such a numeric system, 3 is represented by 8 if the base is 2. Exploration of this
system remains for future work.

5.3.2 Difficult Addition in FP and LNS

Another limitation on FP, LNS and it’s inverse is the VNU. VNU’s main task is
addition, which is relatively difficult for any numeric system other than fixed-point.
For LNS and its inverse, one way is that some hardware is added to the I/Os of
all CNUs to act as converters to/from fixed-point. Therefore, VNU handles fixed-
point additions and will be small. For LNS, the added hardware has to perform
logarithm to all inputs and inverse-logarithm to all outputs of CNUs. Another
way is performing addition without such converters, which is much larger than
fixed-point addition.

Chapter6
Hardware Architecture

This chapter describes the SPA ASIC architecture of flooding LDPC decoder. The
overall architectures were designed to be compatible with any IEEE 802.11n code
rates. IEEE 802.11n has three different codeword block length of 1944, 1296, 648
bits and each block length has four different code rate i.e 1

2 ,
2
3 ,

3
4 ,

5
6 . The differ-

ence between these block lengths is number of variables and number of entries in
their respectively H matrix. In case of large codeword block length, the memory
bandwidth increases and vice-versa. For 648 bits block length, sub block size is 27
bits, for 1296 bits sub block size is 54 bits and for 1944 bits sub block size is 81
bits. However, the increase in sub block size is a multiple of 3, this symmetry can
be utilized in design of a configurable hardware for all block lengths. However, the
memory overhead leads to a trade-off situitation, while designing a configurable
LDPC decoder, because of large sub-block sizes. For instance in case of 1944 bits
block length, if we process one entry from H matrix at a time, then the incoming
data will be 81 ∗NOF_BITS bits, where NOF_BITS = number of bits of a
variable. So, for NOF_BITS = 7 (which is a usual case), it requires a memory
with a width of of 567-bits, which is quite large and inefficient. Also, the speed of
decoding is dependent on how many entries in H matrix we process at a time. If
we process more than one entry at a time, then memory bandwidth would increase
accordingly. These problems needs to be tackled properly, in order to design an
efficient LDPC decoder.
Therefore, we decided to divide a RAM into three parts, each one with a width of
27 ∗NOF_BITS bits. More detail explanation can be found in memory section
below. Figure 6.1 shows the top level architecture of a LDPC decoder based on
SPA. RAMs and ROM are used to store all the necessary information. Permu-
tation network will perform cyclic shift of incoming variables based on entries in
a particular H matrix. CNU is the Check Node Unit, which updates all the in-
coming information coming from variable nodes. Similarly VNU is Variable Node
Unit which update all the incoming variables. Detailed explanation of every block
in Figure 6.1 is described below.

6.1 CNU Implementation

Check Node Update unit is the major processing unit as described in section
3.4. To implement the SPA CNU in hardware, a forward-backward [18] ap-

35

36 Hardware Architecture

Memory permutation Network CNU

permutation NetworkVNU

Figure 6.1: Top level architecture

proach was chosen. There is also the parallel architecture, but it needs the
inverse function of soft-xor which is much more cumbersome to approximate
[18]. In the forward-backward architecture, consider a check node m that has
tx connections to variable nodes, N(m) = n1,n2,n3,....,ntx . The incoming vari-
ables are λn1→m(un1

) , λn2→m(un2
), λn3→m(un3

), λn4→m(un4
),λntx→m(untx

).
CNU unit will calculate new messages for variable nodes as follows Λm1→n(un1) ,
Λm2→n(un2), Λm3→n(un3), Λm4→n(un4),....., Λmtx→n(untx

).
From [18] CNU is divided into three parts forward update, backward update and
merge. Forward update is defined as: f1 = un1

, f2 = f1 � un2
, f3 = f2 �

un3
,.....,ftx = ftx−1

� untx
. Similarly backward update is defines as btx = untx

,
btx−1

= btx � untx
, btx−2

= btx−1
� untx−2

,....., b1 = b2 � un1
. The result of forward

and backward can be expressed as follows, to generate the outgoing messages:

Λm→n1
(un1

) = L(b2),

Λm→ni
(uni

) = L(fi − 1 � bi + 1), i = 2, 3, 4, ..., tx − 1,

Λm→ntx
(untx

) = L(ftx−1
).

(6.1)

Where � is a soft-XOR. The architecture of CNU was designed so that it can
process more than one entry in the H matrix. Therefore, the more entries CNU
can process at a time, the faster the decoder is. The number of processed entries
at a cycle is a parameter in the code (cnu rate) and can be set before fabrication.
Figure 6.2 shows the hardware representation of Equation 6.1. In this example,
CNU can process four entries in the H matrix. But this leads to a higher memory
overhead, which is a bottleneck in this algorithm, as discussed in section 6.3. As
described in section 3.5, one entry in the corresponding H matrix encompasses a
number of variables that is equal to its sub block size, which is 81 in this case. So,
it requires 81 CNU instances in order to process one element of H matrix and the
number of instances increases as we increase the number of sub-blocks processed
at a cycle.

Hardware Architecture 37

Figure 6.4 and Figure 6.3 show the data flow and timing of CNU respectively.
CNU proceeds in a row-wise fashion in H matrix. An enable signal is used to
trigger CNU. The main challenge in the forward-backward architecture is that the
merge&backward stage can not be started before the forward stage is completed for
the complete line of H matrix. Therefore, to pipe-line the architecture, a number
of registers are needed to store the results of forward stage and also the coming
entries, so that after finishing the forward stage, the stored tokens in the registers
can be consumed by the second stage. As values in registers are being consumed
by the second stage, their locations in the pipe-lining registers are given to the new
values coming from forward stage and CNU inputs. Therefore, the data flow can
be continuous. first and last are the signals that are used in order to locate first
and last elements of the row. These signals are needed by backward and merge
stage. The CNU requires 24 clock cycles to process one row, if CNU is processing
one entry at a time. The output of CNU will then pass through a permutation
network for cyclic shift and will be stored in corresponding RAMs.

Forward

Merge

Backward

V 5

V 5

V ′2

V 4

V 4

V ′3

V 3

V 3

V ′4

V 2

V 2

V ′5

V 6

V ′6

V ′1

V 1

Pipeline

Figure 6.2: Forward-Backward Architecture

CLK
en

input 1 2 3 4 5 6 24 25 26 48 49 50 72 73 96

forward-output 24 23 1 48 25 72 49 96 73

last
first

cnu-output 24 23 1 48 25 72 49 96 73

Figure 6.3: CNU timing diagram

38 Hardware Architecture

Backward and Merge

Forward

V1

V2

V3

V4

V5

V6

V7

V8

V1

V 1−2

V 1−3

V 1−4

V 1−5

V 1−6

V 1−7

V2

V3

V4

V5

V6

V7

V8

Reg

V ′8V ′7

Figure 6.4: CNU hardware architecture for SPA

6.1.1 Min-Sum CNU Implementation

In a similar fashion to SPA CNU, a simple flexible Min-Sum based CNU was im-
plemented with the same I/O pattern. The below equation describes the behavior
of this CNU.

Λm→n =

N∏
n 6=n′

sign(λn′→m) ∗ min
n6=n′

|λn′→m| (6.2)

According to the equation, the signs can be easily computed by digital XORs.
To compute the absolute values of the messages, two minimums are needed to
be derived. The first minimum is sent to the all the variable nodes, except the
one which has sent this minimum to the CNU. To this variable node, the second
minimum will be sent. Figure 6.5 shows the hardware, for absolute value com-
putation. Each CF (Core Function) takes an absolute input, compares it with
the two minimums achieved so far, and obtains the first and second minimums

Hardware Architecture 39

out of these three numbers. Then, it sends the two obtained minimums to the
next CF. Therefore, each CF does two comparisons. "Index" stores the number
of the message that has given the first minimum, and is therefore updated by CFs
whenever the first minimum is updated. The minimums and the index are saved
at the end of each cycle, in the registers. When inputting one line of the H matrix
is complete, the final minimums and index are handed to the output stage, and
are stored there. The output stage starts giving output, based on the stored min-
imums. For Sign computation, the signs of all the coming inputs are stored in a
24-bit register, in order. Also, a single bit register stores the XOR of all the signs
stored in this register. At the end of one line, this single bit register contains the
XOR of the complete line, and will be handed to the output stage, along with the
minimums and index. As the inverse of XOR is XOR, the signs of the nth output
is this single bit XORed with the nth bit of the 24-bit register.

Figure 6.5: Implemented Min-Sum CNU architecture

6.1.2 CNU Trade-offs

When it comes to CNU hardware design, there are some trade-offs present. As
mentioned earlier, CNU could process many number of elements from H matrix
at the same time, which determines the speed of the design. This parameter is
denoted as "cnu rate", which is the number of elements from H matrix that enter
the CNU in each cycle. Therefore, an evaluation needs to be done in order to find

40 Hardware Architecture

an efficient "cnu rate". After performing some simulation based on decoding speed
as well as area consumption, we could choose a cost-efficient "cnu rate". However,
by increasing the speed, memory bandwidth exponentially increases. For instance,
memory bandwidth required for cnu rate = 1 is 81 ∗ NOF_BITS but for CNU
rate = 2 this would increase to 2 ∗ 81 ∗ NOF_BITS, which is quite high and
probably impractical. One solution could be to use temporary registers but using
registers are very costly. Another one is to use more number of RAMs as RAM
memories, while the total RAM area remains the same. However, dividing the
memory to small portions results in area increase. Therefore, an efficient selection
of cnu rate is very effective.

6.2 Permutation Network

As described in section 3.5, to perform cyclic shifts, a permutation network is re-
quired. A permutation network behaves like a switch, whose job is to route data
to a specific output node. For example, before doing cyclic shift , input node 1
was connected to output node 1 but after doing a certain number of cyclic shifts
input node 1 is now connected to output node 4. Here we need to route data from
a variable node to a check node and vice-versa. Therefore, Barrel shifter is used
to perform this routing. A Barrel shifter performs shifting in stages. For instance,
first stage of it will do 8 bits shifting, second will do 4 bits shifting and so on.
Number of stages can be calculated as log2N , where N is the number of bits in a
data. As it requires data to be in a form of 2x, so the number of stages will be
calculated based on 128 bits instead of 81 bits.
Therefore, it requires 7 stages to perform 81 bit cyclic shifts. As mentioned above,
it has 7 different stages doing 2N shifts. As it is just shifting, multiplexers can
be used to design the whole network. Being completely combinational in design is
also an advantage because the area cost will be less. Figure 6.6 shows an example
of how a 6 bit barrel shifter shifts data by using three shifting stages 4 bit, 2 bit
and 1 bit. Each multiplexer is 2:1 and in each stage, multiplexers has same control
signal. So, for 81 bits shift, it requires seven stages, every stage will perform a
number of shifts that are a power of 2. In total, 567 number of 2:1 multiplexers
are required and the whole rotation is controlled via a 7 bit control signal which
is obtained through stored coefficients in a ROM. As mentioned in section 3.5,
some entries in H matrix are ” − ”. For those, there is no need to do any shifts.
Therefore, in order to detect ” − ”, 2 extra bits in concatenation with the 7 bits
are stored in the ROM. Therefore, the controller can detect how many entries it
has to skip in the next cycle.

6.2.1 VNU

Variable Node Unit (VNU) is simply an adder and a subtracter. It fetches data
from RAMs and updates the variables and send it back to check node for next
iteration.

Hardware Architecture 41

Figure 6.6: Barrel shifter

6.3 Memory

6.3.1 RAM

One of the main challenges in SPA is handling of data. This is because after
expansion of H matrix to bits, we will have 1944 variable nodes and 324 check nodes
for the highest block length and code rate (more detailed can be found in section
3.5). Each variable node will route a certain amount of bits, which is denoted as
NOF_BITS. As we are using flooding schedule, all the messages of the previous
iteration are needed in order to generate a new message. In other words, to update
messages of first row in H matrix, we requires previous iteration’s messages of all
rows of H matrix except the first one. Therefore, storing all the results of each
iteration in some form is necessary, which necessitates the use of multiple RAMs.
Another bottleneck is the bandwidth of a RAM. For instance, a sub block size
of 81 bits, requires a bandwidth of 81 ∗NOF_BITS, where NOF_BITS is the
number variable bits. So, if NOF_BITS are 7 then bandwidth of an individual
would be 576 bits which is somehow large. One way to overcome this problem is to
reduce data bandwidth but this will reduce decoding speed. Hence, we partitioned
a RAM into three sub-RAMs with 1

3 of previous bandwidth but same depth. This
was decided because of the fact that IEEE802.11n has three different sub block
sizes which are multiples of 3 e.g. 27,54 and 81, so for lower sub block sizes, rest of
the sub-rams can be easily switched off, which would contribute to the flexibility
of the architecture.
Therefore, one RAM is sub-divided into three parts in order to design a flexible
architecture for all sub block sizes. Therefore, each of them has a bandwidth
of ”27 ∗ NOF_BITS”. In total, there are four RAMs, each sub-divided into
three. One RAM is used to store received data. Other three RAMs are used to
decode received data. Total memory requirement is ”96 ∗ 81 ∗ NOF_BITS =
7776 ∗NOF_BITS” bits, which in case of 7, becomes around 50K-bit. In Figure

42 Hardware Architecture

6.8, R0, R2, R3 are of size ”24 ∗ 81 ∗NOF_BITS = 1944 ∗NOF_BITS”, where
24 is the depth and ”81 ∗ NOF_BITS” is the width, while R1 has the size of
”6 ∗ 81 ∗NOF_BITS = 7776 ∗NOF_BITS”, with the same width.

6.3.2 ROM

As elements of H matrix for different block length and code rate don’t change, a
ROM is used to store H matrix elements. The width of ROM is decided by the
maximum sub block size which is 81, so 7 bits are enough to store all elements. The
depth is dependent on the number of entries. For 1944 block length and 5

6 code
rate, number of elements are 79. Therefore, in case of configurable architecture,
all elements of H matrix for every code rate and block length are stored in a big
ROM. As mentioned in section 3.5, there is no need to store "-" elements. Instead,
some extra bits are concatenated with 7 bits to "leap" over the "-" elements, which
will considerably increase the speed in low code rates.

6.4 Data flow

This section describes the data flow of the complete LDPC decoder architecture.
Figure 6.8 and Figure 6.7 show data flow architecture and memory accesses re-
spectively. In Figure 6.8, M0, M1, M2, M3, M4 are data routing multiplexers and
R0,R1,R2,R3 are RAMs, among them R0 is single port while R1,R2,R3 are dual
ports. The received input that needs to be decoded is in R0, as initial variables,
and remains unchanged throughout the decoding. According to the decoding al-
gorithm, there is no need to perform variable node update in the beginning of the
first iteration. Thus, in the very beginning of computation, data from R0 will be
sent to CNU for check node update via permutation network by selecting respec-
tive signal for M3, as shown in Figure 6.7. Also each element of H matrix has a
location in R1 matrix, which the respective variable will be written on, or read
from, when they are processed. In the first iteration, the results get accumulated
and written on R2. Thus, at the end of this iteration, the addition of all the results
of each column are in one location of R2. In second iteration, these values are only
read, then the previous value of the variable under process (which is in R1) is
subtracted from them and the result will go to CNU. This emulates the function
of VN update rule. The results are accumulated in R3, in the second iteration.
Therefore, R2 and R3 change position in every iteration, alternatively. M5, M2
and M1 are responsible for this alternation. M0 excludes the first iteration from
receiving any data from RAMS, as there is no previous data at that time.
The whole CNU is divided into three sub-parts in a bunch of 27 each, to make it
work with any sub block size for IEEE802.11n standard (so that some parts could
be switched off for flexibility).

Hardware Architecture 43

CLK
start

iteration # 1 2 3 4

M0
M1
M2
M3
M4

ROM Read Read Read Read

R0 Read Read Read Read

R1 Write Read+Write Read+Write Read+Write

R2 Read+Write Read Read+Write Read

R3 Idle Read+Write Read Read+Write

Figure 6.7: Memory access timing diagram

44 Hardware Architecture

RAM: R0 R1 R2 R3

ROM

permutation Network

27 CNUs 27 CNUs 27 CNUs

permutation Network

M5

+ M0

M1

M2

-+

M3

0

R0

Figure 6.8: Data Flow

Chapter7
Synthesis

In this chapter, we will present our synthesis results. An ASIC library was used
to synthesize RTL code. Due to confidentiality issues, we will not present actual
synthesis numbers; Instead, their normalized values or percentage values will be
presented. Here, the synthesis result of the developed CNU and that of the es-
timated SPA LDPC decoder will be discussed. Also a area/delay comparison of
different approximations of soft-xor according to section 3.16 is given.

For the Soft-XOR(�) function, we have synthesized its 5 different hardware
implementations, described in chapter 4. Table 7.1 shows the synthesis area re-
sults after normalization, as well as number of basic components used in each.
As discussed in section 3.16, they only require adders, comparators and shifters.
Among different implementations, the "Min-Sum" soft-xor is taking the least area,
followed by the simple "CRI-based" implementation. However, the CRI version
demonstrates a much superior BER/SNR performance, as illustrated. The Maxi-
mum area is consumed by "double PWL", which uses the complete Equation 4.3 to
approximate. On the other hand, "single PWL" version consumes almost half the
area of "double PWL", as in this case only two terms of Equation 4.3 were approx-
imated, resulting in Equation 4.5. As a result of this evaluation, we have decided
to choose the "CRI" Soft-XOR for CNU implementation. It is also important to
note that the "min-sum (1-min)" core function that is reported in this table, is the
core function that, if used in a forward-backward architecture, performs the "min-
sum" algorithm. However, typical architectures that perform this algorithm, use a
core function similar to "Min-Sum (2-mins)" as the core function, because it has to
perform two comparisons [4]. It takes 3 inputs and must determine the two mini-
mums. It is also used in the implemented Min-Sum CNU discussed in section 6.1.1.

Table 7.2 shows the synthesis area of the total decoder, with different parts of
the implemented CNU. For this table, CN.rate=1, i.e. each CNU has one soft-xor
in forward stage and two soft-xors in backward & merge stage; And 81 CNUs are
present for this decoder, which consume 88% of the total area, among which most
of the area is consumed by Registers and forward stage. It should be noted that
the multiplexers and wires necessary for routings of the registers are counted in
the forward stage. The implemented permutation network is consuming 7 percent
of area, but there are much more advanced methods to design this combinational
component. VNU which only consists of two adders and five multiplexers con-

45

46 Synthesis

Table 7.1: Area comparison for different implementations of Soft-
Xor

Soft-Xor Comparator Adder Area (unit) Delay (unit)
Min-Sum (1-min) 1 0 13 0.5
Min-Sum (2-min) 2 1 70 0.8
Double PWL[5] 1 6 100 1.15
Single PWL [19] 1 3 72 1.3
low-LLR CRI 2 2 72 1.5
CRI 2 2 55 1

sumes the least hardware area.
As mentioned before, area of every unit is dependent on NOF_BITS. Two syn-
thesis were performed with two different NOF_BITS, which are 7 bits and 5 bits.
Obviously this will also have an effect on the decoding performance, which is dis-
cussed in section 5. However, by changing NOF_BITS to 5 bits, our hardware
cost would reduce considerably. Column 3 in Table 7.2 shows the percentage of
decrease in area for 5 bits as compared to 7 bits. The CNU has maximum re-
duction in area (32%) because of the area of the registers. While for permutation
network and VNU, the decrease is 22% and 28% respectively, as none of them
have registers, but only adders and multiplexers. The memory area will be saved
as well. Although reducing bits increases the error, but 5-bit demonstrates an
acceptable error rate, as discuss in section 5.

Table 7.2: Synthesis Area results of implemented flooding SPA-
based decoder architecture

Block Total Area, 7bits (%) Decrement in Area, 5bits (%)
CNU 88 32

Forward 47 25
Backward & Merge 18 52
Registers 35 30

Permutation Network 4.8 22
VNU 0.2 28
Memory 7 32

In Table 7.3 we present the area distribution in a SPA-based CNU. The com-
plete area is divided into combinational and sequential part. Sequential area is
occupied by registers while combinational area consists of soft-xors and remaining
logic (Multiplexers and wires). We have swept the CNU.rate, which is a factor of
speed of decoder, for values of 1,4 and 8. In case of 1, number of soft-xors used
are only 3 i.e. 1 in forward stage and 2 in backward & merge stage. In this case,
most of area is consumed by registers and remaining logic, which route the data
to the right registers. However, as we increase CNU rate, the soft-xors start to
dominate the area. Therefore, for rate 8, soft-xor area overshadows the sequential

Synthesis 47

area as well as remaining logic area. This implies that at high speeds, the soft-xor
approximations in chapter 4 become important. For all the synthesis results, the
CRI-based Soft-XOR is used.

Table 7.3: Area distribution for SPA CNU

CNU Rate Combinational (%) Sequential (%)
Soft-Xor(%) Remaining Logic(%)

1 16 44 40
4 40 30 30
8 58 19 23

Apart from the synthesis of SPA-based CNU, we have also synthesized a sim-
ple but flexible Min-Sum based CNU in 6.1.1. Table 7.4 shows the comparison
between these two, while sweeping the CNU.rate (with 7 number of bits). In the
Min-Sum CNU, the core function includes 2 comparisons, because two smallest val-
ues of the incoming LLRs have to be determined. This CNU is noticeably smaller
than SPA CNU, in which a high percentage of area is consumed by a large number
of registers (around 49 in this case) and their corresponding wires and multiplexers.

Table 7.4: Area comparison of implemented SPA and estimated
Min-Sum CNU

CNU Combinational (unit) Sequential (unit) Total
SPA

CNU Rate
1 342 235 577
4 505 235 740
8 765 235 1000

Min-Sum
CNU Rate

1 84 41 125
4 234 46 280
8 424 46 470

Finally, the decoder based on the implemented SPA CNU is compared to some
other works in Table 7.5. Area is represented as Gate Count and throughput is
computed as [24]:

Throughput =
codeword

decodingtime
=

codeword ∗ frequency
Iteration.no ∗ cycles per iteration

(7.1)

The parameter throughput/area is defined as area efficiency and can be used
for comparison. In this table, the SPA decoder is measured for cnu rate of 4. The

48 Synthesis

properties of SPA decoder for 3 different cnu rates are listed in Table 7.6. As
observed, low cnu rates are showing superior performance due to smaller critical
path and consequently higher frequency, as cnu rate is the number of Soft-XORs
tied in serial. However, this is on the condition that such high frequencies are
available. Therefore, for efficient design, cnu rate should be chosen based on the
available frequencies.

Table 7.5: LDPC Decoder Comparison

SPA [25],2014 [26],2015 [3],2015
Standard 802.11n 802.11ad 802.11ad 802.11n/802.16e

Code Length 648 - 1944 672 672 576-2304
Code-Rate All All 1/2 All but 5/6

Sub-block size 27,54,81 42 42 27,54,81
Algorithm SPA Min-Sum Min-Sum NMS
Schedule Flooding Flooding Layered Layered

Quantization bits 7 - - 7
Memory bits 55k - - 68k
process(nm) 18 28 28 40

Iteration number 10 ∼3.75 3 10
cycles/iter.no 24 - 15-25 30-60

Frequency (MHz) 1250 32-260 400 290
Throughput (Gbps) 10 1.5-12 7 0.47-1.88
Area (Gate count) 1.6M 1.5M 0.28M 2.56M
Throughput/Area 6.3k 1-8k 25k 0.18-0.72k

* For the SPA decoder, the values are estimated based on the implemented
CNU with cnu.rate=4 (Memories are estimated as register banks).
** Area is shown as Gate Count, i.e. the synthesis area divided by the area of
a NAND2.
*** In [3], both 802.11n and 802.16e are supported, but only the data for
802.11n is mentioned in this table.

7.1 Conclusion

Overall, CNU is taking most of the area of SPA decoder, as it is obvious because of
the existence of 49 registers in each CNU. The used memory capacity is very high
in comparison to that of registers, but due to the fact that the area cost for RAM
is almost 1

10 of register, area consumption of the memory is only 7% in this design,
for cnu rate=1. In CNU, a large amount of area was paid as remaining logic (wires
and multiplexers), which are necessary for routing correct data to registers, and
also to achieve flexibility for different CNU.rates. Also, area cost for Min-Sum
CNU is smaller than SPA CNU for mentioned reasons. When it comes to Soft-
Xor implementation, CRI based approximation method is considered as the best

Synthesis 49

Table 7.6: Decoder with proposed CNU and different speeds

cnu.rate 1 4 8
cycles/iter 96 24 16

Clock Frequency (GHz) 5 1.25 0.625
Throughput (Gbps) 10 10 7.5
Area (Gate count) 1M 1.6M 1.9M
Throughput/Area 10k 6.3k 4k

* Due to difficult RAM handling for cnu rate
higher than 1, the memories for cnu rates larger
than 1, are measured as register banks.
** Due to clocking constraints, some of the above
frequencies may not be allowed.

choice from synthesis point of view, as well as error correction simulations. It is
also worth to mention that cnu rate directly affects the critical path and therefore
the frequency. Hence, the right choice of cnu rate based on the working frequency
leads to optimum design.

50 Synthesis

Chapter8
Conclusion

A SPA-based LDPC decoder was evaluated from a hardware perspective. To
be able to approximate the algorithm better, an initial study was performed on
comparison of different approximation methods (PWL,LUT,CRI), in which PWL
proved to be the most hardware-efficient. Also, different mathematical schemes
for CNU computation were assessed and �-based forward-backward architecture
was selected. For the � (the core function of CNU), an approximation based on
CRI was made that demonstrated the highest efficiency, comparing to other ap-
proximations. A flexible and pipe-lined version of forward-backward CNU, based
on � was implemented in 18nm CMOS technology. The number of input tokens
per cycle (cnu rate) for the CNU can be easily changed before fabrication. The
implemented SPA CNU is 2.1 times larger than an implemented Min-Sum-based
CNU, for cnu rate of 8. The discrepancy decreases for higher cnu rates (cnu rate
is the number of input tokens in each cycle). Based on the developed CNU, the
properties of a total SPA decoder was measured. The SPA decoder demonstrates
an area of 1.6M equivalent gate count for a throughput of 10Gbps, with 7-bit
quantization, 10 iterations and flooding schedule. A comparison with state-of-the-
art shows that SPA decoder is generally larger than its Min-Sum counterparts. In
return, the SPA gain in accuracy (BER/SNR) compare to Min-Sum, is ∼0.3dB
for 10 iterations. The gain can reach ∼0.6dB (which is merely 0.1dB less accurate
than floating-point SPA) with 20 iterations and a throughput of 5Gbps and the
same area. For this study, the IEEE 802.11n WiFi standard was used with a code-
length of 1944. This results form a trade-off situation between Min-Sum and SPA
decoder and mark the SPA decoder as a legitimate option for applications in which
very high accuracies, low BER floor and low dependence on channel properties are
required.

8.1 Future Work

The future work suggestions can be listed as the following:

1. Future work could include the RTL implementation of a total SPA-based
decoder.

2. In this study, the algorithm stops after a constant number of iterations.
However, more advanced stop criteria that can detect when the algorithm

51

52 Conclusion

has converged, can increase the throughput by 60% without imposing any
increase on cost or delay [28].

3. As the numeric system for SPA, the inverse-LNS, discussed in section 5.3.1,
can be explored to see if it can be an efficient alternative to fixed-point
system.

4. For high CNU rates, RAM handling becomes difficult, which might justify
using Registers instead. One solution could be dividing each element of
H matrix into several horizontal sub-elements and dealing with them sepa-
rately.

5. Most of the SPA CNU area is consumed by pipe-lining registers, to avoid
long critical path. incorporating the "λ −min" algorithm could be benefi-
cial as SPA is performed on only λ number of minimums in a set of data.
Therefore SPA can be executed in 1 clock cycle which eliminates the need
for pipe-lining registers. Even in case of λ = 2, the λ − min hardware is
almost identical to Min-Sum hardware, but λ−min is more accurate [29].

References

[1] S. Myung, S. I. Park, K. Kim, J. Li, S. Kwon, J. Kim, "Offset and Normalized
Min-Sum Algorithms for ATSC 3.0 LDPC Decoder", 2017, IEEE transactions
on Broadcasting.

[2] Y. Xu, L. Szczecinski, B. Rong, F. Labeau, D. He, Y, Wu, W. Zhang, "Variable
LLR scaling in Min-Sum Decoding for Irregular LDPC codes", 2014, vol. 60,
No. 4, IEEE transactions on Broadcasting.

[3] W. Zhang, S. Chen, X. Bai and D. Zhou, "A full layer parallel QC-LDPC
decoder for WiMAX and Wi-Fi," 2015, IEEE 11th International Conference
on ASIC (ASICON) in Chengdu.

[4] W. Zhang, S. Chen, X. Bai and D. Zhou, "Approximate Algorithms for Iden-
tifying Minima on Min-Sum LDPC Decoders and Their Hardware Implemen-
tation," 2015, vol. 62, no. 8, pp. 766-770, IEEE transactions on circuits and
systems.

[5] D. Bao, B. Xiang, R. Shen, A. Pan, Y. Chen, X. Y. Zeng, “Programmable Ar-
chitecture for Flexi-Mode QC-LDPC Decoder Supporting Wireless LAN/MAN
Applications and Beyond”, vol. 57, No. 1, 2010, IEEE Transactions on Circuits
and Systems.

[6] G. Masera, F. Quaglio, F. Vacca, “Finite Precision Implementation of LDPC
Decoders”, 2005, Vol. 152, Issue. 6, IEEE proceedings - communications.

[7] S. Papaharalabos, P. Sweeney, B.G. Evans, P.T. Mathiopoulos, G. Albertazzi,
A. Vanelli-Coralli, G. Corazza, “Modified Sum-product Algorithm for Decoding
Low-density Parity Check Codes”, 2007, Vol. 1, Issue. 3, IET Communications.

[8] C. Lin, J. Wang, “A bital Circuit Design of Hyperbolic Tangent Sigmoid Func-
tion for Neural Networks”, 2008, IEEE International Symposium on Circuits
and Systems (ISCAS).

[9] K. Leboeuf, A. Hosseinzadeh Namin, R. Muscedere, H. Wu, M. Ahmadi, “High
Speed VLSI Implementation of the Hyperbolic Tangent Sigmoid Function”,
2009, Third International Conference on Convergence and Hybrid Information
Technology (ICCIT’08).

53

54 References

[10] P. Meher, “An Optimized Lookup-Table for the Evaluation of Sigmoid Func-
tion for Artificial Neural Networks”, 2010, 18th IEEE conference on VLSI Sys-
tem on Chip.

[11] B. Zamanlooy, M. Mirhassani, “Efficient VLSI Implementation of Neural Net-
works with Hyperbolic Tangent Activation Function”, 2014, IEEE Transaction
on Very Large Scale Integration (VLSI) Systems.

[12] B. Parhami, "Computer Arithmetic Algorithms and Hardware Designs",
2000, Oxford University press.

[13] A. Armato, L. Fanucci, G. Pioggia, D. Rossi, “Low-error Approximation of
Artificial Sigmoid Function and Its Derivative”, 2009, Electronics Letters.

[14] J. M. Tarela, K. Basterretxea, I. Campo, M. V. Martinez, E. Alonso, “Op-
timised PWL Recursive Approximation and its Application to Neuro-Fuzzy
Systems”, 2002, Elsevier.

[15] K. Basterretxea, J. M. Tarela, I. Campo, “bital Design of Sigmoid Approxi-
mator for Artificial Neural Networks”, 2002, Electronics Letters.

[16] R. G. Gallager, “Low density Parity Check Codes”, Cambridge, MIT press,
1963.

[17] J. Hagenauer, E. Offer, L. Papke, “Iterative Decoding of Binary Block and
Convolutional Codes”, 1996, Vol. 2, No. 2, IEEE Transactions on Information
Theory.

[18] J. Hagenauer, E. Offer, L. Papke, “Efficient Implementation of the Sum Prod-
uct Algorithm for Decoding LDPC codes”, 2001, Vol. 2, IEEE Global Telecom-
munication Conference (GLOCOM).

[19] A. Blanksby, C. Howland, “A 690-mW 1-Gb/s 1024-b, Rate-1/2 Low-Density
Parity-Check Code Decoder”, 2003, Vol. 37, No. 3, IEEE Journal of Solid-State
Circuits.

[20] C. Jones, S. Dolinar, K. Andrews, D. Divsalar, Y. Zhang, W. Ryan, “Func-
tions and Architectures of LDPC Decoding”, 2007, IEEE Information Theory
Workshop.

[21] Mohammad. M. Mansour, “A Turbo-decoding message Passing Algorithm for
Sparse Parity Check ”, 2006, vol. 54, No. 11, IEEE Transactions on Signal
Processing.

[22] F. Zarkeshvari and A. H. Banihashemi, "On implementation of min-sum al-
gorithm for decoding low-density parity-check (LDPC) codes", 2002, vol. 2,
No. 1, Global Telecommunications Conference.

[23] L. Sakai, W. Matsumoto, and H. Yoshida, “Reduced complex- ity decoding
based on approximation of update function for low-density parity-check codes”,
2007, Vol. J90-A, no. 2, IEICE Transaction.

[24] B. Xiang, D. Bao, S. Huang and X. Zeng, "An 847-955 Mb/s 342-397 mW
Dual-path Fully-Overlapped QC-LDPC Decoder for WiMAX system in 0.13
um CMOS", 2011, vol. 46, no. 6, IEEE Journal of Solid-State Circuits.

References 55

[25] M. Weiner, M. Blagojevic, S. Skotnikov, A. Burg, P. Flatresse, B. Nikolic,
"A Scalable 1.5-to-6Gb/s 62-to-38.1 mW LDPC Decoder for 60GHz Wireless
Networks in 28nm UTBB FDSOI", 2014, ISSCC, Session 27, Energy Efficient
Digital Circuits.

[26] M. Li, Y. Lee, Y. Huang and L. Perre, "Area and Energy Efficient 802.11ad
LDPC Decoding processor", 2015, Vol. 51, No. 4, pp. 339-341, Electronics
Letters.

[27] M. Li, J. Weijers, V. Derudder, I. Vos, M. Rykunov, S. Dupont, P. Debacker,
A. Dewilde, Y. Huang, L. Perre, W. Thillo, "An Energy Efficient 18Gbps
LDPC Decoding Processor for 802.11ad in 28nm CMOS", 2015, IEEE Asian
Solid-state Circuits Conference.

[28] T. Chen, "An Adaptive Algorithm and Stopping Criterion for LDPC decod-
ing", Journal of China University of Science, 2011.

[29] E. Boutillon, F. Guillou, J. Danger, "lambda-Min Decoding Algorithm of
Regular and Irregular LDPC Codes", 3nd International Symposium on Turbo
Codes and Related Topics, 2003, Brest, France.

Evaluation of flexible SPA based LDPC decoder
using hardware friendly approximation methods

DEEPAK YADAV
AFSHIN SERAJ
MASTER´S THESIS
DEPARTMENT OF ELECTRICAL AND INFORMATION TECHNOLOGY
FACULTY OF ENGINEERING | LTH | LUND UNIVERSITY

Printed by Tryckeriet i E-huset, Lund 2017

D
EEPA

K
 YA

D
A

V
 &

 A
FSH

IN
 SER

A
J

Evaluation of flexible SPA
 based LD

P
C

 decoder using hardw
are friendly approxim

ation m
ethods

LU
N

D
 2017

Series of Master’s theses
Department of Electrical and Information Technology

LU/LTH-EIT 2017-600

http://www.eit.lth.se

