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Abstract

There is a non-negligible risk that a quantum computer capable of breaking most
modern public key encryption will be invented within the next couple of decades.
All data that have to stay secret for more than 10-20 years should therefore be en-
crypted using quantum-resistant algorithms. There are different ways of approach-
ing the problem of quantum security and the currently existing quantum-resistant
algorithms for encryption and key exchange can be divided into four categories;
Lattice-based, Supersingular elliptic curves, Code-based and Multivariate. The
performance of the algorithms in the different categories varies and to evaluate
the strengths and weaknesses of each, further study is needed. This thesis provides
an overview of algorithms in each category, a comparison of existing implementa-
tions of algorithms from the first three categories, and an evaluation of the results.
The comparison includes metrics concerning the performance, implementation and
security of each algorithm.

All of the considered categories have both advantages and disadvantages and,
to be able to choose the right one, the requirements of the application must be
considered. Overall, however, the lattice-based algorithms seem to provide the best
trade-off between speed, key size and memory consumption, and are relatively easy
to implement.
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Chapter 1
Introduction

The security of most public key cryptography used today depends on the hardness
of two mathematical problems; integer factorization and discrete logarithms.

These two problems can be solved in a reasonable amount of time on a quan-
tum computer using an algorithm developed by Peter Shor in 1994 [79]. This
causes quantum computers to pose a serious threat to many of the currently used
cryptographic solutions.

A considerable amount of research still needs to be done before we have fully
functioning large scale quantum computers that can break modern cryptogra-
phy. In [27], seven stages of development were defined, of which three have been
completed, and in [59] it was predicted that a quantum computer able to break
RSA-2048 would be invented by 2026 with a probability of 1/7 and by 2031 with
a probability of 1/2.

This, however, does not mean that the application of quantum-resistant algo-
rithms can be postponed until quantum computers are invented. Changing stan-
dards and official recommendations takes time, performing enough cryptanalysis
for an algorithm to be trusted takes even more time and most importantly, data
that is saved today can in the future be decrypted by an adversary with a quantum
computer. All these factors make post quantum cryptography a highly relevant
area of research and all data that has to stay secret for the next decade or two
ought to be encrypted with quantum-resistant algorithms. There is even interest
on a government level with ETSI (European Telecommunications Standards Insti-
tute) releasing a whitepaper about the algorithms and their benefits and challenges
(see [18]), NIST (National Institute of Standards and Technology) announcing a
competition to find new effective algorithms in [62] and NSA (National Security
Agency) announcing plans to transition to quantum-resistant algorithms ”in the
not too distant future” in [64].

1.1 Goals and problem formulation

The cybersecurity company Advenica is developing a file encryption product that
must be secure many years into the future. They are therefore interested in quantum-
resistant cryptography. The software will run on an embedded system with high
performance demands and will therefore have to perform well with limited re-
sources. The public and private keys will be distributed both through file sharing

5



and using smart cards. Since most smart cards have a limited storage capacity it is
important that the size of the keys is reasonable in that context. They are also in-
terested in quantum-resistant cryptography for incorporation into other products
in the future.

The primary goal of this thesis is be to study the existing quantum-resistant
algorithms, to compare them, and to decide which of them, if any, are ready for
industry adoption in general and usage in Advenica’s file encryption product in
particular. This is done by answering the following questions:

• Which quantum-resistant algorithms are most suited for industry adoption?

– Which configurations are most suitable and what consequences do
these have for security?

– How well do they perform in constrained environments?

• How well implemented are quantum-resistant algorithms today?

– What metrics are suitable to use in a comparison?

– How do the algorithms compare on these metrics?

• What improvements are needed for industry adoption?

– Is it enough to optimize implementations?

– Are theoretical improvements needed?

– Do entirely new algorithms need to be developed?

1.2 Method

To gain a deeper understanding of the threats that quantum computers cause and
why they are so important, the work began by a prestudy of quantum computers
and the quantum algorithms that are pose a threat to cryptography. This was
mostly conducted by reading books on the topic.

The prestudy was followed by a survey of which quantum-resistant algorithms
exist today and how they work. This was done to make the step of selecting imple-
mentations easier and to gain a better understanding of how the implementations
actually work. The relevant algorithms and information about these were mostly
found in research papers.

Once this theoretic part was done, meetings were held with Advenica to discuss
what metrics would be suitable and how these were to be measured. The chosen
metrics can be split up into three different categories; performance, implementation
and assurance. What metrics that belong to each category, a short motivation for
why they were considered important and how they were measured can be found
in Sections 4.3.1-4.4.

In these meetings, it was also discussed how the implementations, that were
to be compared, should be selected and what parameters would be suitable to use.
It was concluded that it would be more fair if all implementations were written
in the same programming language and C was chosen as a suitable candidate. It
was also decided that the aim should be to select two parameter sets for each



algorithm; one suitable for short term security (5-10 years) and one for long term
security (10+ years). The implementations were found by searching on GitHub
and by mentions in research papers. The chosen implementations and parameter
sets are discussed further in Section 4.1.

1.3 Scope

While it is important that algorithms for encryption and key exchange are secure
for some time before the invention of quantum computers, the same urgency does
not apply to algorithms for digital signatures. Although a gradual transition and
proper cryptanalysis is preferable, it would theoretically be possible to consider
all non-quantum-resistant signatures invalid from one day to another, thereby
removing the danger that quantum computers pose. For this reason, and due to
time constraints, only encryption and key exchange algorithms are considered in
this thesis.

Implementing cryptographic algorithms efficiently and securely is a hard and
time consuming process. To be able to focus as much as possible on the compar-
isons, only existing implementations are considered.

1.4 Related work

The Open Quantum Safe project is a project with the goal of supporting develop-
ment of quantum-resistant cryptography. To aid in this another goal is to provide
prototypes of quantum-resistant cryptographic algorithms and integration of these
into existing protocols and applications, such as OpenSSL. A GitHub repository
containing a collection of prototypes, as well as test- and benchmarking suites
to test the correctness and performance of these, called liboqs is maintained as
well [65]. In addition to this, a whitepaper on the topic has been written (see [84]),
focusing on the LWE-based algorithms in their repository and their implementa-
tion of these.

Microsoft research has improved upon two quantum-resistant cryptography
schemes and released the code in the LatticeCrypto library [56] and the SIDH
library [57]. The code from LatticeCrypto and the first version of SIDH is also
included in liboqs.

In [35], Gautam et al. presented security proofs for lattice-based schemes for
both encryption and signatures. They then compared the performance of these
methods for different key sizes and input data in both constrained and non-
constrained environments.

In [45], Johansson and Strahl tested and evaluated a ring learning with errors
scheme on a raspberry pi.

1.5 Organization of this thesis

The rest of the thesis is organized as follows. Chapter 2 contains a short theoret-
ical background on cryptography, the algorithms that are at risk, and the results



from the prestudy on quantum computers and algorithms. Chapter 3 continues
with theory, but contains the results from the survey of the quantum-resistant
algorithms that might replace the currently used ones. Chapter 4 describes the se-
lected implementations, the metrics used to compare the these, and how they were
tested. The results are presented in Chapter 5. These are discussed in Chapter 6,
whereafter conclusions and suggestions for future work are presented in Chapter 7.



Chapter 2

Theoretic background

2.1 Encryption

2.1.1 Symmetric encryption

In symmetric encryption, the keys used to encrypt and decrypt are the same. The
main advantage of symmetric encryption is that it is fast, and due to this it is
often used when large amounts of data need to be transferred. A problem with
symmetric encryption is that both the sender and the receiver have to secretly
agree on the same key.

2.1.2 Asymmetric encryption

In asymmetric encryption, the keys to encrypt and decrypt are different. This re-
moves the problem of key distribution since the encryption key, also known as the
public key, can be published publicly without compromising the security. A dis-
advantage is that the encryption and decryption are slow compared to symmetric
encryption. For this reason, asymmetric encryption is often used to establish a
shared key for a symmetric algorithm that is then used to encrypt the data.

There are principally two ways to use asymmetric encryption to establish a
shared key. Either you use an encryption algorithm like RSA (described below)
or a key exchange algorithm like Diffie-Hellman (also described below). When an
encryption algorithm is used, one party encrypts a randomly selected key with the
public key of the other party and sends the ciphertext to them. The other party
can then decrypt the ciphertext and the communication can be initiated. If instead
a key exchange algorithm is used, the parties agree on a shared secret that both
selects a part of. The key can then either be this shared secret or be extracted
from it by using, for example, a hash algorithm.
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2.2 Classic algorithms

2.2.1 RSA

RSA was first presented in [74] and uses modular exponentiation to encrypt mes-
sages. It encrypts data by calculating

y = xe mod n,

where x is the message to be encrypted, n is the product of two large prime
numbers (p and q) and e is a number between 1 and (p− 1)(q − 1). The message
can then be recovered by calculating

x = yd mod n,

where d is chosen such that ed = 1 mod (p− 1)(q − 1).
The, by far, most time consuming part of RSA is the generation of large primes

for the key. To reduce this cost it is possible to instead use several smaller primes,
at the cost of reduced security. This approach was taken by Bernstein et al. who,
in [10], presented a quantum-resistant version of RSA that uses a one terabyte key
consisting of 4096-bit prime numbers.

The security of RSA depends on the fact that, given n and e, it is difficult to
compute the factors p and q, and thereby the private key d.

2.2.2 Diffie-Hellman (D-H)

The Diffie-Hellman key exchange was first presented in [28] and uses modular
exponentiation to let two parties secretly agree on a common key. It begins with
the two parties (Alice and Bob) agreeing on a public modulus p and a base g. Alice
then chooses a secret number a and calculates

A = ga mod p,

which she sends to Bob. Bob similarly sends

B = gb mod p

to Alice. They can then both compute the key as

Ba = gab = Ab mod p.

The security of the D-H key exchange is based on the assumption that it is difficult
to calculate the discrete logarithm and thereby extracting x from gx mod p.

2.2.3 Elliptic curve Diffie-Hellman (ECDH)

The way Elliptic curve Diffie-Hellman key exchange works is similar to the classic
version, but when using elliptic curves the key-sizes can be decreased. The scheme
begins with both parties agreeing on the public parameters which are

• the field Fp to work in,



• an elliptic curve (e.g. y2 = x3 + ax+ b),

• a cyclic set of points on the curve (cyclic subgroup) represented by one
element in the set (G).

Alice then chooses a secret number dA and calculates dAG which she sends to
Bob, who similarly sends dBG to Alice. They can then both extract the key from
coordinates of dAdBG.

Similarly to Diffie-Hellman, the discrete logarithm on elliptic curves has to be
calculated in order to break the scheme.

2.3 Quantum computing

Below is a brief introduction to quantum computing, a more in depth description
can be found in [61].

The idea of taking advantage of properties of quantum particles for computa-
tion was first proposed in the 1980’s, but the interest was mostly theoretical. It
stayed that way until 1994, when Shor published [79], where he devised a quan-
tum algorithm that could factor integers in polynomial time instead of exponen-
tial time. Two years later, Grover devised another important quantum algorithm
in [37] that leads to a quadratic speed-up when searching through an unordered
set. These two algorithms are the primary reason that quantum computers pose a
threat to classical cryptography.

2.3.1 Qubits

Quantum computers use qubits instead of regular bits to do their calculations.
A qubit can be represented by any two-state quantum mechanical system, like

the polarization of a photon or the spin of an electron. It can, like a classical bit,
be in two different base states. These states are often denoted |0〉 and |1〉 and
represented mathematically by two orthogonal unit vectors. A key difference is,
however, that the qubits can be in a linear combination of both states called a
superposition. The superposition state is often denoted as

|ψ〉 = α |0〉+ β |1〉

where α and β are called the amplitudes of the state and are complex numbers
where

|α|2 + |β|2 = 1.

While this might make it seem like it is possible to store an infinite amount
of data in a single qubit, this is not the case. When measured, the superposition
collapses into one of the two base states with probability |α|2 for |0〉 and |β|2 for
|1〉, leaving the qubit in that state. Although this makes the qubit more similar
to classical bits, the power of the superposition state can be used to perform
parallel calculations in a way that is not possible in a classical computer. This
can be achieved by using clever mathematics and a phenomenon called quantum
entanglement.



Quantum entanglement is when two quantum particles are linked together so
that they affect each other, no matter how far apart they are. For example, a

two qubit system can be in a superposition denoted |00〉+|11〉√
2

. In this state the

probability of either qubit being in either state is 1/2, but when one of them
is measured the probability that the other one is in the same state increases to
1. Einstein, who was one of the authors of the paper [30] that first showed this
effect, considered the phenomenon impossible and argued that the theory must be
incomplete. Quantum entanglement has, however, been demonstrated in several
experiments on different kinds of quantum particles. One example is [40], where it
was shown for electrons separated by 1.3 kilometers at the time of measurement.

2.3.2 Quantum gates

Just like digital circuits are built using logic gates, quantum circuits are built using
quantum gates. Three important gates are the NOT gate, the controlled NOT gate
and the Hadamard gate.

The NOT gate is applied to single qubits and works just like a regular NOT
gate in that it turns the state |0〉 into |1〉 and vice versa. When applied to a
quantum bit in superposition it works by interchanging the two probabilities.

The controlled NOT gate works in a similar way, but acts on two qubits and
only changes the value of the second qubit when the first qubit is in the state |1〉.

While the previous two gates could be implemented on a classical computer
as well, the Hadamard gate is unique for quantum computers. It acts on a single
qubit and places it in a superposition between the two states. Qubits in the state

|0〉 are mapped to |0〉+|1〉√
2

, qubits in the state |1〉 are mapped to |0〉−|1〉√
2

and qubits

in a superposition are mapped to a linear combination of these two new bases.
When applied to a system of n entangled qubits in succession it can place them
in the superposition

1√
N

N−1∑
x=0

|x〉

where N = 2n. This means that the amount of information the qubits are able to
work with increases exponentially with the number of qubits.

2.3.3 Grover’s algorithm

Grover’s algorithm is a quantum algorithm for searching that was first proposed
by Grover in [37]. It can find an element in an unsorted set of data with a high
probability in only O(

√
n) steps instead of the O(n) steps required by a classical

computer. It works by first placing the qubits in a superposition of all possible
states using Hadamard gates, and then enhancing the probability of the sought
element. This is done by applying two operators multiple times.

The first operator is called a phase inversion and it works by changing the sign

of the amplitude of the sought element. For instance, the state |00〉+|01〉+|10〉+|11〉
2

gets mapped to |00〉+|01〉+|10〉−|11〉
2 if we are looking for the last element in the set.

The second operator is called inversion about the mean and works similarly,
but instead of flipping the sought element around 0 it flips all elements around



the mean of the amplitudes. This will lower the probability for all states except
for the sought one, which is amplified.

By applying these two operators multiple times, the probability of finding the
correct element can be made arbitrarily high before a measurement is made.

Grover’s algorithm increases the speed at which it is possible to do a brute-
force search for cryptographic keys. This affects all cryptographic algorithms, but
a sufficient counter-measure is to double the key-size.

2.3.4 Shor’s algorithm

Shor’s algorithm is a quantum algorithm for factoring integers and calculating
discrete logarithms in polynomial time, proposed by Shor in [79]. It has since
been modified and generalized by, among others, Eker̊a and H̊astad in [31]. The
algorithm works by using classical computations to translate the problem to the
problem of finding the period of a function. The period is then found using quan-
tum computation before it is classically translated back to the original problem.

The period-finding part of Shor’s algorithm begins, just as Grover’s algorithm,
by placing the qubits in a superposition of all possible states. The function is
then applied to all states, whereafter the result is transformed using a quantum
version of the Fourier transformation. Finally the qubits are measured with a
high probability of getting the correct answer. In the generalized version of the
algorithm the quantum part can be repeated a couple of times in succession to
reduce the number of qubits needed at the cost of more runs.

Shor’s algorithm poses a devastating threat to cryptographic algorithms such
as RSA and Diffie-Hellman key exchange that cannot be solved by a reasonable
increase in key size. This means that, to protect against quantum computers,
entirely new algorithms are needed.

2.4 Problems

Quantum computers seem to excel at number-theoretic problems, such as integer
factorization and discrete logarithms, as a result of algorithms like the quantum
Fourier transform. Other problems, like the ones stated below, are harder for both
quantum and classical computers and there are currently no algorithms that can
solve large instances of these problems in a reasonable amount of time. This quality
means that they are good bases to build cryptographic schemes upon.

2.4.1 Terminology

Complexity classes Computational complexity theory divides computational
problems into different classes based on how hard they are to solve. The most ba-
sic class is called P and contains all decision problems (problems with yes or no
answer) that can be solved in polynomial time. The class P is contained within the
class NP, which contains all problems for which the solution is verifiable in poly-
nomial time. If P=NP is one of the most famous unsolved problems in computer
science and it is widely believed that this is not the case. Another important class
is called NP-hard, and a problem belongs to this category if every problem in NP



can be reduced to it in polynomial time and they are therefore at least as hard as
the problems in NP.

Lattice A lattice is a discrete subgroup of Rn that can be represented as a linear
combination of n basis vectors with integer coefficients. A visual representation of
a two-dimensional lattice can be found in Figure 2.1.

Figure 2.1: A visual representation of a two-dimensional lattice

2.4.2 Lattice problems

Lattice problems are well suited for cryptographic uses since many of them are
proved to be average case hard.

Shortest Vector Problem (SVP) Given a lattice L and a norm N , the
shortest vector problem is the problem of finding the shortest nonzero vector in
L as measured by N . The problem was conjectured to be NP-hard in 1981 and
was later proved to be so under certain conditions using randomized reduction
in [1] and [54]. The equivalent decision version of this problem is to, when given
a number d, decide if the shortest vector of the lattice is longer or shorter than d.
A related problem is the GapSVP where an additional parameter γ is given and
the goal is to decide if the shortest vector of the lattice is shorter than d or longer
than γd.

Closest vector problem (CVP) A generalization of SVP is called the
closest vector problem. Here the goal is to, when given a vector space V , a metric
M , a lattice L and a vector v in V , find the vector in L that is closest to v as
measured by M .

2.4.3 Learning With Errors (LWE)

The goal of the LWE problem is to solve a system of equations containing errors
sampled from some statistical distribution. The errors make this problem harder
since some classic methods for solving systems of equations, like Gaussian elimi-
nation, will make the errors propagate and thereby make the system even harder
to solve. The decision version of this problem is to, when given pairs of integers
(ai, bi), decide if there exist variables s and ei such that ai = bis+ ei. It is usually
written as the matrix equation Ax = b where A is a matrix and b is a vector. This



problem has been shown by Regev in [73], to be at least as hard as the hardest
lattice-problems.

To reduce the size of the parameters, it is common to add structure to the
problem using a polynomial ring. This turns all variables into polynomials instead
of vectors and matrices. Most importantly A becomes a polynomial of order n
instead of an n× n matrix, thereby reducing the number of calculations that has
to be made and the data that has to be stored. The Ring-LWE problem has been
proven in [49] be at least as hard as the SVP on ideal lattices, which are lattices
with a certain structure. Although this structure might make it easier to solve the
problem, there is no known method for exploiting it today.

2.4.4 Supersingular elliptic curve isogenies

An isogeny is a mapping between elliptic curves that preserves the algebraic struc-
ture of the curves. More formally it is a non-trivial, rational mapping φ : E1 → E2

such that φ(P +Q) = φ(P ) + φ(Q) where P and Q are any points in E1.

General version The problem of finding isogenies between supersingular el-
liptic curves has proven to be hard even for a quantum computer. The best known
quantum algorithm for solving the general version of this problem is described
in [26] and does this in exponential time.

Claw problem The version of the problem used in the SIDH key exchange
described in Section 3.3 uses a sightly easier version of the general problem called
the claw problem. The claw problem is to, when given two functions f : A → C
and g : B → C, find a pair (a, b) such that f(a) = g(b). While this problem is
easier, the best known quantum algorithm still requires exponential time.

2.4.5 Decoding a linear code

A linear code is a way to encode data to be able to correct errors that show up
during e.g. transmission of this data. In a linear code any linear combination of
codewords is also a codeword. The code-based cryptosystems presented in Sec-
tion 3.4 are all based on the problem of decoding a linear code. One of the best
algorithms for solving this problem is presented in [12], it is not, however, good
enough to pose a significant threat to the schemes presented in Section 3.4.

2.4.6 Multivariate quadratic equations

The problem of solving a system of m quadratic equations in n variables is proven
to be NP-complete in [34]. There are, however, some special cases where there
exist polynomial time algorithms. Two of these are when the number of variables
are a lot more or a lot fewer than number of equations. Examples of these two
cases can be found in [89] and [23] respectively.





Chapter 3
Algorithms

Describing each quantum-resistant algorithm in detail would be enough to fill a
book (like [7]). This chapter aims to provide an overview of most of the cur-
rently existing quantum-resistant algorithms for encryption and key exchange with
slightly more detail regarding the ones considered in the tests later.

3.1 Notation

Let Zq be the rational integers modulo q and let Rq = Zq[X]/(Xn +1) be the ring
of polynomials modulo (Xn + 1) with coefficients in Zq.

If χ is a probability distribution over Zq, then x
$←− χ denotes sampling a value

from Zq according to χ and if χ is a set it denotes sampling uniformly from this
set.

As is common in in the field of cryptography, the two parties involved in the
encryption or key exchange will be called Alice and Bob.

3.2 Lattice-based algorithms

Lattice-based cryptography is a promising area for post quantum cryptography.
Lattice problems often have good security proofs and provide an overall good
performance. This section consists of three parts, all containing a scheme based on
the LWE problem described in Section 2.4.3 or the lattice problems in Section 2.4.2.
The first part describes different versions of an algorithm for key exchange and
the second and the third describe algorithms for encrypting data.

3.2.1 LWE key exchange

The key exchange algorithms presented in this section are all based on the LWE
problem and work in about the same way. The main idea is to agree on an ap-
proximately equal secret and then use special functions to extract bits from that
secret.

Four special functions that are important for this type of scheme are; the
modular rounding function, the cross rounding function, the randomized doubling
function and the reconciliation function.
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The modular rounding function extracts the B most significant bits of a num-
ber and is defined as

b·e2B : Zq → Z2B , x 7→ bxe2B = b2−B̄xe mod 2B

where b·e rounds a real number to the closest integer and B̄ = log2 q −B.
The cross rounding function extracts the (B+1)th most significant bit and is

defined as
〈·〉2B : Zq → Z2, x 7→ 〈x〉2B = b2−B̄+1xc mod 2.

The randomized doubling function doubles the input value and introduces a
small random noise. It is defined as

dbl(·) : Zq → Z2q, x 7→ dbl(x) = 2x+ e

where e is sampled uniformly from {−1, 0, 0, 1}.
The reconciliation function, denoted rec(w, b), takes w ∈ Zq and b ∈ {0, 1}

as input and outputs bve2B where v is the closest integer to w where 〈v〉2B = b.
It can be implemented in different ways, but the original suggestion by Peikert
in [68] works by partitioning the integers modulo q into two intervals depending
on b and then returning 1 or 0 depending on which interval w is in.

When applied to polynomials, the aforementioned functions are applied to each
coefficient. For matrices and vectors they are applied element-wise.

BCNS15 In [14] Bos et al. presented an implementation of the ring-LWE cryp-
tosystem from [49]. It has four public parameters

• n, the size of the polynomials used.

• q, the modulus used for the coefficients.

• a, a polynomial corresponding to the A matrix in the regular LWE problem.

• χ, the distribution the random variables are sampled from, in this case it is
a discrete Gaussian distribution.

The scheme begins by having Alice sample her secret polynomial s and an
error polynomial e from χ. She then computes

b = as + e,

which she sends to Bob. He then samples a secret polynomial s′ and two error
polynomials e′ and e′′, whereafter he computes

b′ = as′ + e′

and
v = bs′ + e′′.

Then he uses the randomized doubling function to get

v = dbl(v)



since the rounding and the reconciliation functions require the input modulus to
be a multiple of two. After this he can calculate the key as

kb = bve2.

Finally, he sends b′ to Alice together with the cross rounding of v, whereafter she
calculates the key as

kA = rec(b′s, c).

The keys will be equal with high probability since

v = bs′ + e′′ = ass′ + es′ + e′′ ≈ as′s + e′s = b′s.

The approximation equality is close enough for the reconciliation function to cor-
rectly recreate the bit.

VS In [81], and later in [82] together with Chopra, Singh presented a version
of BCNS15 where they, somewhat counterintuitively, managed to decrease the
key size and increase the security by decreasing the modulus q. This increases
the security since it will increase the noise-to-modulus ratio, making it harder
to break, but also increases the risk of errors during key exchange. They also
proposed that the noise should be sampled from a uniform distribution instead
of a Gaussian to increase the speed. Together with the paper they presented a
repository (see [80]) with implementations of their improved algorithm using both
uniform and Gaussian distributions for different security levels. This repository
has later been expanded to include noise sampled from a binomial distribution as
well.

New Hope This is an improved version of BCNS15 presented by Alkim et al.
in [4]. There are five major improvements:

• A binomial distribution ψ is used instead of a discrete Gaussian. This makes
the implementation faster since the binomial distribution is easier to sample
from.

• The public polynomial a is calculated from a seed generated by one of the
parties. This increases the amount of data sent slightly and each party has
to do some extra calculations, but it defends against backdoors and all-for-
the-price-of-one attacks since the parameter changes between sessions.

• The modulus q is lowered significantly to increase both speed and security.

• A more effective implementation of the number theoretic transform is used.
This helps speed up the multiplication of large numbers.

• A new reconciliation function and a function called HelpRec are introduced
to replace the modular rounding and the cross rounding functions.

The new reconciliation function uses the coefficients of the polynomial as coordi-
nates in a four dimensional space. The space is then divided into cells and it gives
the same output for coordinates in the same cell. The HelpRec function works by



calculating in which part of the cell the coordinate is so that the distance from
the center can be subtracted in the reconciliation function, thereby increasing its
accuracy. The scheme is described in Figure 3.1.

Public parameters: n, q, ψ

Alice Bob

seed← {0, 1}256
a← parse(seed)

s, e
$←− ψ

b← as + e
b,seed−−−−→ s′, e′, e′′

$←− ψ
a← parse(seed)
b′ ← as′ + e′

v← bs′ + e′′

r← HelpRec(v)

kA ← rec(b′s, r)
b′,r←−− kB ← rec(v, r)

Figure 3.1: New hope key exchange

MSRLN16 In [48] Longa and Naehrig presented improvements to the number
theoretic transform used in New Hope. They also implemented their own version
of New Hope with this improvement. These changes were later implemented in
New Hope as well, making the two implementations very similar.

Frodo Although there currently is no way of taking advantage of the structure
of ring-LWE in any significant way when trying to break the previously presented
schemes, further cryptanalysis might find one. This motivated Bos et al. in [13] to
present a scheme where they removed the ring structure.

Removing the ring structure leads to larger keys and slower performance,
mostly since a now has to be an n × n matrix instead of a polynomial of size
n.

3.2.2 LWE encryption

LP In [47], Lindner and Peikert presented a public encryption algorithm based
on the LWE problem that is an instance of an abstract cryptosystem by Micciancio
in [55]. The system has four public parameters q, χk, χe, and A. The parameter q is
the modulus used for all calculations, χk and χe are discrete Gaussian distributions
where the keys and the noise are sampled from, and A is a uniformly sampled
random matrix of size n× n. The message, m, is of length l. The key generation
begins by having Alice sample two random matrices, E and S, of size n× l from
χk. She can then compute the public key as

P = E−A · S

and use S as the private key.



To encrypt a message Bob samples three error vectors, e1, e2 and e3 of length
n, n and l respectively. He can then compute the ciphertext as

c1 = e1 ·A + e2

and
c2 = e1 ·P + e3 + m.

To decrypt this message, Alice computes

m = c1 · S + c2 = e1 ·A · S + e2 · S + e1 ·P + e3 + m,

which she then runs through a decoding algorithm to remove the errors and extract
the message. The algorithm works if

|e1 ·A · S + e2 · S + e1P + e3|

= |e1 ·A · S + e2 · S+e1·(E−A · S)+e3|

= |e2 · S + e1E + e3|

is smaller than the error correcting threshold for the decoding algorithm.

U-LP In [16], Cabarcas et al. proposed that the secret keys and the noise are
sampled uniformly instead of according to a discrete Gaussian distribution, since
it is faster and easier. This, however, leads to larger matrices having to be used
for equal security. This scheme is described in Figure 3.2.

Public parameters: q, A
$←− Zn×nq

Alice Bob

E
$←− Zn×lsk

S
$←− Zn×lsk

P← E−A · S
Alice’s public key: P
Alice’s private key: S

e1, e2
$←− Z1×n

se

e3
$←− Z1×l

se
c1 ← e1 ·A + e2

m← c1 · S + c2
c1,c2←−−− c2 ← e1 ·P + e3 + m

m← decode(m)

Figure 3.2: U-LP encryption scheme

3.2.3 NTRU

NTRU was first presented by Hoffstein, Pipher and Silverman in [43]. The system is
characterized by the public parameters N , that specifies the size of the polynomials



used, a large modulus q and a smaller modulus p. The process begins by having
Alice create a public and a private key by generating two polynomials f and g,
where f is invertible modulo both p and q. She can then calculate the public key
as

h = pfqg mod q

where
fq = f−1 mod q.

The private key consists of the polynomials f and

fp = f−1 mod p.

When Bob wants to send a message m to Alice he encodes it as a polyno-
mial with coefficients modulo p and generates a random polynomial r with small
coefficients to cloak the message. He can then calculate the encrypted message as

e = rh + m mod q.

To decrypt this message Alice begins by computing

a = fe = frh + fm = prg + fm mod q.

After this she removes the cloaking by computing

b = a mod p,

after which she can extract the message as

m = fpb mod p.

The scheme is also described in Figure 3.3.

Public parameters: N , p, q

Alice Bob

f
$←− Rp

g
$←− Rp

fp ← f−1 mod p
fq ← f−1 mod q

h← pfqg

Alice’s public key: h
Alice’s private key: f , fp

m ∈ Rp

r
$←− Rp

a← fe mod q
e←− e← rh + m

b← a mod p
m← fpb mod p

Figure 3.3: NTRU public key encryption scheme.



3.3 Supersingular isogenic Diffie-Hellman (SIDH)

The idea to use supersingular elliptic curves for key exchange is a relatively new
one. It has therefore not received the same amount of cryptanalysis as most of
the other algorithms presented in this thesis, but like Diffie-Hellman over regular
elliptic curves it uses small keys which makes it an interesting alternative to con-
sider. The main idea behind SIDH is for both parties to each construct a private
supersingular elliptic curve and then exchange information so they can construct
a second pair of supersingular elliptic curves. The curves in this second pair are so
similar to each other that an equal key can be extracted from them. The algorithm
in its current form was first presented by De Feo, Jao and Plût in [26] and later
improved upon by Costello, Longa and Naehrig in [22]. A technique for compress-
ing the public keys to further reduce their size has been proposed by Costello et
al. in [21]. The scheme is described in more detail below and in Figure 3.4.

The public parameters of the scheme are

• a prime p = weA
A weB

B f ± 1, where wA and wB are primes, and eA and eB
are integers,

• a supersingular elliptic curve E over Fp2 ,

• four points on E called PA, QA, PB and QB , where the order of PA and QA

is weA
A and the order of PB and QB is weB

B .

Alice begins by generating two random integers, mA and nA, and calculates a
point

RA = mAPA + nAQA,

which she uses to create a private isogeny mapping

φA : E → EA.

She then sends the new elliptic curve EA to Bob together with the two points
φA(PB) and φA(QB). Bob performs similar calculations and sends EB , φB(PA)
and φB(QA) to Alice. Alice can now generate the point

SBA = mAφB(PA) + nAφB(QA),

which she uses to create another isogeny mapping

ψBA : E → EBA.

Similarly, Bob creates

ψAB : E → EAB .

They can then calculate the a property called the j-invariant of EAB and EBA,
respectively. The j-invariant of isomorphic curves are equal, meaning the two keys
will be equal.



Public parameters: p, E/Fp2 , PA, QA, PB, QB
Alice Bob

mA, nA
$←− Fp2

RA ← mAPA + nAQA

Create φA : E → EA
EA,φA(PB),φA(QB)−−−−−−−−−−−−→ mB, nB

$←− Fp2
RB ← mBPB + nBQB
Create φB : E → EB

SAB ← mAφA(PB) + nAφA(QB)
Create ψAB : E → EAB
K ← j-invariant(EAB)

EB ,φB(PA),φB(QA)←−−−−−−−−−−−−−
SBA ← mBφB(PA) + nBφB(QA)

Create ψBA : E → EBA
K ← j-invariant(EBA)

Figure 3.4: SIDH-based key exchange.

3.4 Code-based cryptography

The code-based methods are the oldest of the quantum-resistant algorithms. They
have an overall good performance, but the keys are usually very large. Attempts
to decrease the key-size by using different kinds of codes have been made, but
these often result in insecure schemes. The original scheme by McEliece uses a
binary linear code by Goppa called Goppa code, this was first presented in [36] (in
Russian) and a summary in English can be found in [6].

3.4.1 McEliece

McEliece was the first public key cryptosystem to use randomness while encrypt-
ing. It was presented by McEliece in [52] and has since been improved upon for
increased performance. The basic idea behind the scheme has remained the same
though.

The process begins by having Alice construct the public and private keys. To
do this she first chooses a binary linear (n, k)-code C, this code must have an
efficient decoding algorithm and be able to correct t errors. She then generates a
k × n generator matrix G for C, a k × k binary non-singular scrambling matrix
S and a random n× n permutation matrix P. She can then compute the k × n
matrix

Ĝ = S ·G ·P,

which together with t makes up the public key. The private key consists of the
matrices S, G and P and the decoding algorithm DG.



When Bob wants to send a message to Alice he has to encode it as binary
vectors m of length k. He can then encrypt the message by calculating

c = m · Ĝ⊕ e

for every m, where e is a binary vector containing t 1’s placed randomly.

When Alice wants to decrypt the ciphertext she begins by multiplying it with
the inverse of the permutation matrix to get

c ·P−1 = m · S ·G⊕ e ·P−1.

She then uses the decoding algorithm to remove the errors whereafter she chooses
k columns from Ĝ that form an invertible matrix GJ and selects the corresponding
columns from the decoded vector to form ĉJ . Finally, she multiplies ĉJ with the
inverses of GJ and S to extract the message. There is a small chance that the
decryption fails, in which case Alice has to notify Bob so that he can resend the
message with a new e vector.

Quasi cyclic McEliece In [33] Gaborit proposed that the key size could
be reduced by using quasi cyclic (QC) low density parity check (LDPC) codes.
Quasi cyclic means that each row in the matrix is a cyclic shift of the first leading
to the possibility of representing a full matrix using only a single row, and LDPC
codes have sparse parity check matrices leading to further reduced key sizes. Later,
in [58], Misoczki et al. proposed to use quasi cyclic medium density parity check
(MDPC) codes instead. Using MDPC provides a couple of benefits such as reduced
private key size since the MDPC codes have a random component meaning that
there is no need for the permutation and substitution matrices. The quasi cyclic
schemes are, however, harder to keep secure due to the reduced amount of possible
matrices and that part of the structure is revealed. In [39] Guo et al. presented
a way for Bob to calculate Alice’s private key based on decryption failures when
using QC MDPC codes, and in [50] Löndahl et al. presented an attack on QC
MDPC of even dimension. An attack similar to the one by Guo et al. is presented
by Fabsic et. al in [32], this attack does, however, pose a threat to QC LDPC codes
instead.

These attacks are not devastating enough to render the quasi cyclic schemes
useless, more research and slight modifications will be needed before they can be
used securely.

3.4.2 Niederreiter scheme

One of the more significant changes to the McEliece cryptosystem is by Niederreiter
who, in [60], presented changes to decrease the key size of the scheme. He did this
by using the parity check matrix instead of the generator matrix and by encoding
the message into the e vector. These changes reduce the size of the public key to
a (n− k) × n matrix. The Niederreiter scheme is shown in Figure 3.5.



Public parameters: t, n, k

Alice Bob

G← linear (n, k)-code
DG ← Decoding algorithm for G
H← parity check matrix for G

S
$←− {0, 1}(n−k)×(n−k)

P← n× n permutation matrix

Ĥ← S ·H ·P
Alice’s public key: Ĥ
Alice’s private key: H, S, P, DG

m← Z2 (only t ones)
c←− c← Ĥ ·mT

ĉ← S−1 · c
m̂← DG(ĉ)

m← (P−1 · m̂)T

Figure 3.5: Niederreiter public key encryption scheme.

McBits In [9] Bernstein, Chou and Schwabe present a version of the Niederre-
iter scheme where their main goal was to improve the decryption time. While their
scheme is based on the Niederreiter scheme, they have introduced some quite large
changes. The private key is created from a random sequence (α1...αn) of distinct
elements from F2m and an irreducible polynomial g of degree t with coefficients
from F2m by creating the matrix


1/g(α1) 1/g(α2) · · · 1/g(αn)
α1/g(α1) α2/g(α2) · · · αn/g(αn)

...
...

. . .
...

αt−1
1 /g(α1) αt−1

2 /g(α2) · · · αt−1
n /g(αn)


and replacing each entry by its m-bit representation. The public key can then be
calculated by Gaussian elimination on the private key.

When Bob wants to send a message to Alice he generates a random binary
error vector of length n with exactly t ones which he multiplies with the public key
to obtain w, which will be part of the ciphertext. The error vector is then hashed
and the hash is split up into two parts. One part is used as a key to encrypt the
message using a symmetric encryption algorithm and the other is used as a key for
a MAC to verify the encrypted message. The ciphertext consists of the encrypted
error vector, the encrypted message and the MAC.

When Alice receives the ciphertext she uses her knowledge of the secret key to
decode the error vector. She can then hash it herself to obtain the keys, whereafter
she verifies the MAC and lastly decrypts the message.



3.5 Multivariate cryptography

The main idea behind the cryptosystems based on multivariate equations is to cre-
ate a system of equations having hidden properties that makes it easy to solve. The
public key is then created by hiding these properties using affine transformations.

To encrypt a message Bob encodes it as a vector x and inserts it into the
public system to get the ciphertext y. To decrypt the message Alice uses her secret
information about the system to solve for x. If the system is of higher degree it will
have multiple solutions, in that case Bob has to add redundancy to his message
to help Alice find the right one.

This idea was first proposed by Matsumoto and Imai in [51]. Their scheme was
broken by Patarin who later, in [67], presented a new scheme called Hidden Field
Equations (HFE) that is a generalized version of Matsumoto and Imai’s scheme
and solves the problems he found. This generalized version has since been broken
for encryption, but remains secure for signatures.

The main problem with the two previously mentioned schemes is that some
quadratic forms associated with the central map has low rank. A newer scheme
that intends to solve this problem was presented by Tao et al. in [88]. The scheme is
called Simple Matrix Scheme or ABC for short and uses a central map of relatively
high rank and solves all problems related to it. The ABC scheme has since been
broken as well. It was broken in [38] by Gu who proved that the secret key can be
recovered by taking advantage of a certain algebraic structure of the scheme.

Another scheme that aimed to solve the low rank problem was presented by
Porras et al. in [71, 72]. Their approach has been more successful than the ABC
scheme and there is currently no known attack that breaks the scheme. Unfortu-
nately, no implementation of this algorithm has been found during the research
for this thesis.





Chapter 4
Implementations and metrics

This chapter described the implementations that were selected and the metrics on
which they were compared.

4.1 Implementations

4.1.1 Code

To make the comparisons easier and more fair all implementations are written
in C and all implementations except for the ones from VS crypto with Gaussian
distribution run in constant time. During the tests the following repositories have
been used.

liboqs [65] As mentioned in Chapter 1, the Open Quantum Safe Project is
a project aiming to support development of quantum-resistant cryptography and
to provide prototypes of quantum-resistant algorithms. The provided repository,
liboqs, is a collection of algorithms made both by the creators of the project and
others. Apart from the tested algorithms mentioned below it contains an older
version of the SIDH algorithm by Microsoft research as well as a test suite and a
benchmarking routine. The algorithms from liboqs tested in this thesis are;

• the ring-LWE algorithms BCNS15, New Hope, and MSRLN16,

• the LWE algorithm Frodo,

• the Code-based algorithm McBits,

NTRUosp [76] The company behind NTRU released a sample implementa-
tion to motivate a more widespread adoption of their algorithm. From this reposi-
tory two parameter sets have been tested. The sets are called NTRU EES439EP1
and NTRU EES743EP1, and are referred to as NTRU 439 and NTRU 743 in this
thesis.

Microsoft SIDH v2.0 [57] Microsoft research has released a library with
an implementation of SIDH proposed by Costello et al. in [22]. This library also
contains the compression technique proposed in [21]. The two versions, with and
without compression, will be referred to as CLN16 and CLN16 (comp).
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VS crypto [80] In addition to proposing changes of the distribution from
which the noise is sampled, Singh also provided a repository of sample implemen-
tations using a lot of different parameter sets in a repository that will be referred
to as VScrypto in this thesis. The implementations from VScrypto that are tested
in this thesis are:

• VS-512-uniform and VS-1024-uniform, that use a uniform distribution and
the same reconciliation method as BCNS15,

• VS-512-gauss and VS-1024-gauss that, use a Gaussian distribution and the
same reconciliation method as BCNS15,

• VS-512-gauss-ct and VS-1024-gauss-ct, that is a constant time implementa-
tion using a Gaussian distribution and the same reconciliation method as
BCNS15.,

• VS-512-bin and VS-1024-bin, that use a binomial distribution and the same
reconciliation method as New Hope.

OpenSSL [66] To test RSA and ECDH, libcrypto from OpenSSL 1.1.0 has
been used. Since the focus of this thesis was to compare the quantum-resistant al-
gorithms, the classical algorithms were only measured when they would be helpful
as a reference.

4.1.2 Security and parameters

In [5], NIST recommends that all data that has to stay secure for more than a
decade should use at least 128-bit security. The aim of the parameter selection
has been to provide one recommended parameter set with about 128 bits of secu-
rity and one high security parameter set with about 256 bits. The high security
parameter sets are included for two reasons.

• Since the quantum-resistant algorithms lack the same cryptanalysis as RSA
and ECDH, further cryptanalysis might weaken the security. 256-bit security
provides a good margin for the security.

• If Grover’s algorithm can be applied directly to the algorithm (which is not
always the case), this would halve the security. The high security parameter
sets will thus provide at least 128 bits of quantum security.

In some cases it has not been practical to provide both parameter sets, either due
to them being highly correlated with the implementation, or because no suitable
parameter sets has been found. The claimed security levels are all taken from
the papers mentioned below and there might therefore be attacks that have been
presented recently that would decrease the claimed security levels. All current
security claims are summarized in Table 4.1.



Name From Claimed classical security

New Hope Liboqs 281
MSRLN16 Liboqs 281

VS-1024 bin vscrypto 281
NTRU 743 NTRUosp 256

VS 1024 gauss vscrypto 247

VS 1024 gauss ct vscrypto 247
VS 1024 uni vscrypto 247

CLN16 Microsoft SIDH 192
CLN16 comp Microsoft SIDH 192
VS 512 bin vscrypto 131

NTRU 439 NTRUosp 131
McBits Liboqs 129
RSA OpenSSL 128

ECDH OpenSSL 128
Frodo Liboqs 114

VS 512 gauss vscrypto 114
VS 512 gauss ct vscrypto 114

VS 512 uni vscrypto 114
BCNS15 Liboqs 86

Table 4.1: Security claims for the compared algorithms

Classical algorithms

In [5], NIST recommends to use 3072-bit prime numbers with RSA, and 256-bit
curves with ECDH to achieve 128-bit security. In the tested code the ANSI X9.62
Prime 256v1 curve has been used.

LWE-based

BCNS15 In the paper [14], the authors suggest that polynomials of length
n = 1024, the modulus q = 232 − 1 and a Gaussian distribution with standard
deviation σ = 8/

√
2π should be used to obtain at least 128 bit classical security.

Considering the distinguishing attack described in [46], and using a script from [2],
they claim that these parameters provide a security level of 163.8 bits. Later, in [4],
Alkim et al. performed a more pessimistic analysis of the scheme and considered
the attacks in [19] and [75], and concluded that these parameters only provide
86-bit security.

New Hope In their paper, Alkim et al. also proposed two sets of parameters
for their own version of the algorithm. One set use n = 512, q = 12, 289 and
a binomial distribution with standard deviation σ =

√
12 and provide 131-bit

security according to their analysis. The other set is more secure and uses the
parameters n = 1024, q = 12, 289 and a binomial distribution with standard



deviation σ =
√

8 to provide about 281 bits of security. They recommend using
the latter set to be guaranteed to achieve more than 128-bit security even after
more cryptanalysis has been performed, this is also the version used in the tests.
They also provided a script in [3] to estimate the security of any similar scheme.

VScrypto In [81] and [82] Singh and Chopra present parameter sets for dif-
ferent levels of security for the implementations using uniform and Gaussian dis-
tributions. From these sets the ones which they claim provide 128 and 256 bits
of classical security have been chosen. For 128-bit security they suggest the pa-
rameters n = 512 and q = 25601, and to achieve 256 bits of security they suggest
n = 1024 and q = 40961, all using a distribution with standard deviation σ =

√
10.

Their security claims refers to analyses from [19] and [46]. According to the script
by Alkim et al., however, their parameter choices only achieve 114 and 247 bits of
security respectively. Their implementations using a binomial distribution use the
same parameters as the ones proposed by Alkim et al. and therefore achieve the
same levels of security.

NTRU In [42], Hoffstein et al. suggest parameter sets for NTRU for different
levels of security. They suggest to use n = 439 for 133-bit security and n = 743
for 256-bit security. Almost all their suggestions (including the two used here)
use q = 2048 and p = 3. In their analysis they considered the attacks from [41]
and [19].

Frodo When presenting the scheme Frodo in [13] the authors also suggested four
of parameter sets and presented security estimates for these. The one considered
in this thesis is called ”recommended” and use a matrix of size n = 752, a modulus
q = 212 and a rounded Gaussian distribution with standard deviation σ =

√
7/4.

This set of parameters is claimed to provide 144 bits of security and in their
analysis they consider the same attacks as Alkim et al. did in their analysis of
New Hope.

SIDH

CLN16 Both De Feo et al. in [26] and Costello et al. in [22] proposed that a
prime with a length close to 768 bits should be used to construct the field which
the curves are defined over to achieve a classical security of 192 bits and a quantum
security of 128 bits. Their analysis looked at the attacks from [87] and [92]. The
implementation used in this thesis use a 751 bit prime, giving approximately the
same security.

Code-based

McBits The implementation of McBits tested in this thesis use the parameters
n = 4096, k = 3352 and t = 62. According to a script in [69] by Peters that is
based on the paper [70], these give approximately 157 bits of classical security.



4.2 System description

All speed tests have been performed on a computer with a 3.2 GHz Intel Core
i5-4460 processor and 8 GB RAM running Ubuntu 16.04.

4.3 Metrics

4.3.1 Efficiency

Speed

Cryptography needs to be fast to become widely adopted. A survey by Google
in [78] shows that more than 50% of visits to mobile web-pages are abandoned if
the page loads in more than three seconds. If the cryptography is one of the main
reasons for slow loading times, there is a risk that it will be disabled in favor of
performance.

In the case of Advenica’s file encryption product it is meant to have high
performance, meaning speed will be an important metric.

To benchmark the speed of the algorithms, a benchmarking suite from [83] by
Douglas Stebila was used. The calculations of each party was run repeatedly for
10 seconds each and then the average runtime was calculated.

Data sent

The data sent between the parties to negotiate the key consists of public keys
for key exchange algorithms, and public keys and ciphertexts for encryption algo-
rithms. Having large public keys can cause problems for devices with constrained
resources and limited bandwidth, and in the case of Advenica’s file encryption
product, where the keys are to be transferred via smart cards, the size is critical
for the product to work.

The amount of data sent between the parties to negotiate a key have been
calculated theoretically.

Memory usage

As many devices, e.g. IoT devices, have limited amounts of RAM. In order to be
widely applicable, cryptographic algorithms cannot use too much memory since
this would make them unusable in these constrained environments. This is also
relevant for Advenica since their file encryption product is supposed to run in a
constrained environment.

To measure the memory usage, the Valgrind [90] tool Massif was used. Each
scheme was run once with the option –stacks=yes, to include memory allocated
on the stack, and the peak was recorded for both heap, stack and total memory
usage.



4.3.2 Implementation and deployment

Lines of code

While the numbers of lines of code needed to implement an algorithm can vary
a lot between implementations, it might still give some information about the
amount of code needed for a working implementation and the complexity of the
algorithm. Fewer lines of code give less room for errors and is easier to check for
correctness. This will thus make the code cheaper to write.

To measure the number of lines of code, the tool cloc [25] has been used.

Optimization potential

One way to optimize an algorithm is to create dedicated processor instructions.
This has, for example, been done by Intel for the symmetric encryption algorithm
AES (see [91]). If a specific part of an algorithm is found to consume a lot of time
it might be possible to speed it up by using or building dedicated hardware.

To evaluate optimization potential, the profiling tool Oprofile [20] has been
run to see what parts of the schemes are run the most.

Size of secret

Keeping data secret can be hard and might require special protected memory
depending on how important the data is. Keeping this memory protected is often
expensive and it is therefore preferable to minimize the amount of data that needs
to stay secret.

The size of the secret data has been calculated theoretically.

Randomness

Randomness is an important part of secure cryptographic algorithms. Good (pseudo)
random number generators can be slow and sometimes block the execution of an
algorithm, and true randomness can be hard to find. If an algorithm can be secure
with fewer random bits, this might make it easier to implement efficiently and to
keep secure. Using too much randomness might cause problems, since some gen-
erators, like /dev/random in Unix-like operating systems, will block the execution
if it cannot produce randomness with high enough quality.

The number of random bits used by the schemes was calculated by placing a
counter in the function that was called to get randomness.

Mathematical theory

The complexity of the mathematical theory behind the algorithm might limit the
rate of adoption. It might also make errors easier to introduce and harder to find.

This will be discussed in Chapters 5 and 6.



Hybrid solutions

To secure data before quantum-resistant cryptography can be completely trusted,
a hybrid solution, using both classical and quantum-resistant algorithms, might
be of interest. This would, however, require that the cost of using both algorithms
together is acceptable.

The existence of effective hybrid solutions will be detailed in Chapter 5 and
discussed further in Chapter 6.

Licenses and Patents

As NSA writes in [63], one thing that is limiting wider adoption of elliptic curve
cryptography is that some implementations and techniques to increase perfor-
mance are patented. Patents might make companies prefer other algorithms to
avoid having to pay licence fees or to avoid legal problems.

4.4 Assurance

Special constants

In elliptic curve cryptography, randomly chosen curves cannot be used. Some
curves have special properties that might make them easier to attack, and some
have properties that makes encryption and decryption more efficient without com-
promising security. Choosing a good curve can be challenging, and for this reason
NIST, among others, have released a set of standardized curves that they claim are
both secure and efficient. This has the consequence that they have to be trusted,
something that might not be preferable considering, in the case of NIST, the
Snowden documents (see e.g. [53]). If some of these curves contain backdoors that
a third party (e.g. NSA) can access, a lot of cryptography would be insecure. For
this reason it is preferable if all parameters could be chosen at random without
security or performance issues.

One possible solution to this problem is to use nothing-up-my-sleeve numbers.
These are numbers for which it can be arugmented that they are chosen without
ulterior motive. One example of this would be to choose digits from the decimal
expansion of a known constant such as π or

√
2. While this concept might help to

mitigate the risk of backdoors, it is argued in [8] that there are enough nothing-
up-my-sleeve numbers to still enable an adversary to add a backdoor.

This will be discussed in Chapter 5.

Performed cryptanalysis

The more cryptanalysis that has been conducted, the smaller the risk is that
new devastating attacks will be discovered. A large amount of cryptanalysis is
essential for widespread adoption of a cryptographic algorithm, since it can have
catastrophic consequences if it were to be broken.

This will be discussed in Chapter 6.





Chapter 5
Results

This chapter contains the results from the measurements and comparisons ex-
plained in the previous chapter. To make the tables slightly smaller and easier to
get a good overview of, the results in some of the tables have been merged into
one entry if they were the same. It should, however, still be easy to extract the
result of each algorithm. Each table also contains a column that acts as a reminder
about which type the algorithm is. To ease the reading the types are abbreviated,
the abbreviations and their full names are shown in Table 5.1.

Abbreviation Full name

M Modular exponentiation
E Elliptic curve
L Lattice-based

L/L Lattice/Learning with errors
L/R Lattice/Ring learning with errors

S Supersingular isogenic Diffie Hellman
C Code-based

Table 5.1: abbreviations used in later tables.
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5.1 Efficiency

5.1.1 Speed

The measurements of speed are shown in Table 5.2. The table is split into four
columns, the first three are corresponding to the work done by the parties in each
step and the fourth is the total time, which the table is sorted by. The encryption
algorithms appear twice, once with key generation and once without, to emphasize
that the key does not necessarily have to be regenerated when a new symmetric
key should be established.

Scheme Time consumed (ms)
Name Cat. Alice 0 Bob Alice 1 Total

VS 512 uni L/R 0.03 0.05 0.02 0.1
MSRLN16 L/R 0.06 0.10 0.02 0.18

McBits (no keygen) C 0.00 0.05 0.14 0.19
ECDH E 0.03 0.10 0.07 0.2

New Hope L/R 0.07 0.11 0.02 0.2

NTRU 439 (no keygen) L 0.00 0.15 0.05 0.2
VS 1024 uni L/R 0.06 0.11 0.04 0.21
VS 512 bin L/R 0.07 0.12 0.03 0.22

NTRU 743 (no keygen) L 0.00 0.19 0.11 0.3
VS 1024 bin L/R 0.11 0.20 0.05 0.36

VS 512 gauss L/R 0.16 0.26 0.02 0.44
NTRU 439 L 0.64 0.15 0.05 0.84

VS 1024 gauss L/R 0.33 0.52 0.04 0.89
VS 512 gauss ct L/R 0.35 0.54 0.02 0.91

NTRU 743 L 1.53 0.19 0.11 1.83

VS 1024 gauss ct L/R 0.71 1.09 0.04 1.84
BCNS15 L/R 1.05 1.65 0.17 2.87

RSA (no keygen) M 0.00 0.07 2.93 3.00
Frodo L/L 3.61 4.14 0.11 7.86

McBits C 126.24 0.05 0.14 126.43

RSA M 329.97 0.07 2.93 332.97
CLN16 S 82.97 185.38 78.12 346.47

CLN16 (comp) S 279.42 429.59 134.06 843.07

Table 5.2: The speed of the key exchanges.



5.1.2 Data sent

Table 5.3 shows how much data, in bytes, each party has to send to the other to
establish a correct key. It is sorted according to the total amount of data sent. As
for the table showing speed, the encryption algorithms appear twice to emphasize
that the public key might not have to be send each time a new key should be
negotiated.

Scheme Data sent (bytes)
Name Cat. Alice → Bob Bob → Alice Total

ECDH E 32 32 64
McBits (no keygen) C 0 141 141
RSA (no keygen) M 0 384 384

NTRU 439 (no keygen) L 0 604 604
CLN16 (comp) S 328 330 658

RSA M 387 384 771
NTRU 743 (no keygen) L 0 1022 1022

CLN16 S 564 564 1128
NTRU 439 L 609 604 1213
VS 512 bin L/R 896 960 1856

VS 512 L/R 960 1024 1984
NTRU 743 L 1027 1022 2049

VS 1024 bin L/R 1792 1920 3712
MSRLN16 L/R 1824 2048 3872
New Hope L/R 1824 2048 3872

VS 1024 L/R 2048 2176 4224
BCNS15 L/R 4096 4224 8320

Frodo L/L 11280 11288 22568
McBits C 311736 141 311877

Table 5.3: The amount of data sent between the parties.



5.1.3 Memory usage

Table 5.4 shows how much memory that was allocated by each implementation,
both on the heap and on the stack. It is sorted according to the maximum total
amount of space allocated at any time during the key exchange.

Scheme Peak memory consumption (byte)
Name Cat. Heap Stack Total

ECDH E 6113 2296 8409
NTRU 439 L 7635 4560 12195

CLN16 S 3952 11592 15544
NTRU 734 L 11614 4448 16062

CLN16 (comp) S 5200 15088 20288

RSA M 25080 3744 27696
New Hope L/R 7499 23832 31299

VS 512 gauss L/R 1024 34648 35672
VS 512 gauss ct L/R 1024 34648 35672

VS 512 bin L/R 1024 34680 35704

MSRLN16 L/R 9517 30832 40349
VS 512 uni L/R 1024 42024 43048
VS 1024 bin L/R 1024 67576 68600

VS 1024 gauss L/R 1024 67608 68632
VS 1024 gauss ct L/R 1024 67608 68632

VS 1024 uni L/R 1024 67608 68632
BCNS15 L/R 116969 11544 128513

Frodo L/L 36845 99288 136341
McBits C 319233 409544 728777

Table 5.4: The amount of memory allocated by each implementa-
tion.



5.2 Implementation and deployment

5.2.1 Lines of code

The lines of code of each implementation is shown in Table 5.5. The data is split
into two columns, one named Code, containing the logic of the implementation,
and one named Header, containing definitions of constants like parameter sets.
The table is sorted in ascending order according to the total number of lines.

Scheme Lines of code
Name Cat. Code Header Total

New Hope L/R 379 20 399
VS 512 uni L/R 343 83 426

VS 512 gauss L/R 386 83 469
VS 512 bin L/R 392 83 475

VS 512 gauss ct L/R 392 83 475

VS 1024 uni L/R 343 147 490
Frodo L/L 478 25 503

VS 1024 gauss L/R 386 147 533
VS 1024 bin L/R 392 147 539

VS 1024 gauss ct L/R 392 147 539

MSRLN16 L/R 574 50 624
BCNS15 L/R 398 336 734
McBits C 1297 13 1310
NTRU L 1317 599 1916
CLN16 S 4001 286 4287

Table 5.5: The lines of code of each implementation.



5.2.2 Optimization potential

The two or three most time consuming operations from the profiling tests are
shown in Table5.6.



Name Cat. Most Second Third

BCNS15 L/R Sampling
(64%)

FFT multipli-
cation (23%)

Random
number gen-
eration (12%)

New Hope L/R NTT (29%) Random
number gen-
eration (23%)

Sampling
(15%)

MSRLN16 L/R Forward NTT
(27%)

Random
number gen-
eration (19%)

Inverse NTT
(12%)

Frodo L/L Matrix mul-
tiplication
(82%)

AES (used
during key
generation)
(10%)

NTRU 439 L Polynomial
multiplication
(70%)

Polynomial
inversion
(18%)

NTRU 734 L Polynomial
multiplication
(74%)

Polynomial
inversion
(18%)

CLN16 S Multiplication
(60%)

Montgomery
reduction
(33%)

CLN16
(comp)

S Multiplication
(59%)

Montgomery
reduction
(34%)

McBits Cat Gaussian
elimination
(84%)

Matrix mul-
tiplication
(11%)

VS 521 bin L/R Sampling
(38%)

Forward FFT
(11%)

Backward
FFT (11%)

VS 521 uni L/R Forward FFT
(24%)

Backward
FFT (20%)

Sampling
(19%)

VS 521 gauss L/R Sampling
(66%)

Forward FFT
(9%)

Backward
FFT (8%)

VS 521 gauss
ct

L/R Sampling
(89%)

Forward FFT
(4%)

Backward
FFT (2%)

VS 1024 bin L/R Sampling
(34%)

Forward FFT
(23%)

Backward
FFT (11%)

VS 1024 uni L/R Forward FFT
(31%)

Backward
FFT (18%)

Sampling
(14%)

VS 1024 gauss L/R Sampling
(63%)

Forward FFT
(14%)

Backward
FFT (8%)

VS 1024 gauss
ct

L/R Sampling
(89%)

Forward FFT
(5%)

Backward
FFT (2%)

Table 5.6: The most time consuming operations for each implemen-
tation.



5.2.3 Size of secret

The sizes of the secrets are shown in Table 5.7. It is split up into how much
each party has to keep secret and the total amount of secret data. It is sorted in
ascending order according to the total amount of secret data.

Scheme Size of secret (bytes)
Name Cat. Alice Bob Total

ECDH E 32 32 64
RSA M 384 0 384

CLN16 S 235 236 471
NTRU 439 L 714 604 1,318
VS 512 bin L/R 768 1,152 1,920

NTRU 743 L 1,202 1,022 2,224
VS 512 gauss L/R 896 1,344 2,240

VS 512 gauss ct L/R 896 1,344 2,240
VS 512 uni L/R 896 1,344 2,240
New Hope L/R 1,280 1,920 3,200

MSRLN16 L/R 1,280 1,920 3,200
VS 1024 bin L/R 1,280 1,920 3,200

VS 1024 gauss L/R 1,792 2,688 4,480
VS 1024 gauss ct L/R 1,792 2,688 4,480

VS 1024 uni L/R 1,792 2,688 4,480

BCNS15 L/R 1,792 2,688 4,480
McBits C 5,984 0 5,984
Frodo L/L 6,016 6,272 12,288

Table 5.7: The size of the secrets for each implementation.



5.2.4 Randomness

The amount of randomness needed by each algorithm (in bytes) is shown in Ta-
ble 5.8. It is sorted in ascending order based on the amount of randomness needed.

Name Cat. Randomness used (byte)

CLN16 S 95
NTRU 439 L 292
NTRU 743 L 576
VS 512 uni L/R 1896
VS 1024 uni L/R 3760

VS 512 bin L/R 15400
MSLNR15 L/R 15424

VS 1024 bin L/R 20520
New Hope L/R 20544

Frodo L/L 36192

McBits C 36352
VS 512 gauss L/R 61768

VS 512 gauss-ct L/R 61768
VS 1024 gauss L/R 123528

VS 1024 gauss-ct L/R 123528

BCNS15 L/R 247552

Table 5.8: The amount of randomness used by each implementation.

5.2.5 Mathematical theory

Lattice-based The lattice problems that these algorithms are based on are
fairly easy to understand, and LWE is just a system of equations with small errors
introduced. The operations used are only basic ones like addition, multiplication
and inversion of polynomials and matrices. While the schemes are slightly more
complicated than RSA and Diffie-Hellman, they are not as complex as elliptic
curves, and basic version should be fairly easy to implement.

Code-based The coding theory behind the code-based cryptosystems is more
complicated than the theory behind the lattice-based methods. It is still quite easy
to grasp and most of the operations used are basic ones on matrices.

SIDH The abstract algebra and algebraic geometry behind SIDH is a lot more
complicated than that of the other algorithms. The calculation of points on the
curve and of the j-invariant are fairly straightforward steps, but generation of new
supersingular elliptic curves and the theory behind the j-invariant are a lot more
complicated.



5.2.6 Hybrid solutions

In [22], in addition to their SIDH scheme, the authors presented a hybrid solution
combining SIDH with ECDH. They also claim that this hybrid solution would give
a total of 384 bits of classical security with only about 17% increased key size and
13% increased runtime. The other algorithms does not seem to have any particu-
lar advantages that would make a hybrid solution easier. In an experiment with
quantum-resistant cryptography in the alpha version of Google Chrome mentioned
in [15], Google uses New Hope in combination with elliptic curves.

5.2.7 Licenses and Patents

None of the compared algorithms are patented. NTRU was patented, but these
patents were released into the public domain under the creative commons licence
in march 2017 (see [77]). There exist other patents on LWE schemes, like [29], but
these are different enough for Bos et al. to claim that ”There are no known patents
covering R-LWE” in [14].

5.3 Assurance

5.3.1 Special constants

The only algorithms containing predetermined constants that might be special in
the same way as the curves in ECDH are the ring-LWE scheme BCNS15, the SIDH
based schemes and the code based schemes.

BCNS15 The parameter that has a risk of being a special constant in this
implementation is the polynomial a. That it is replaced by a randomly chosen
polynomial in New Hope provides proof that this is not the case, and the only risk
is that it is not regenerated often enough or chosen to make all-for-one attacks
easier.

SIDH The supersingular elliptic curve used might be such a special constant,
but in [26] De Feo et al. presents a relatively simple algorithm for finding supersin-
gular elliptic curves with sufficient cardinality. While future cryptanalysis might
reveal attacks exploiting a certain structure, this is currently not the case.

Code-based The McEliece and Niederreiter cryptosystems work with any type
of code, and different types have been tried. Most of these, like the quasi cyclic
codes mentioned earlier, have properties that can be exploited by an attacker
though. However, as long as a binary Goppa code are used the system seems to
be secure.



Chapter 6
Discussion

In this chapter the results will be discussed. The algorithms will be referred to
by both name and category. As a quick reminder, the tested algorithms and their
categories are:

• Lattice-based; BCNS15, New Hope, MSRLN16, Frodo, NTRU, and all
algorithms from VS crypto.

• LWE-based; All lattice-based except NTRU.

• Ring LWE-based; All LWE-based expect Frodo.

• SIDH; CLN16 and CLN16 comp.

• Code-based; McBits.

6.1 Efficiency

6.1.1 Speed

Most of the tested implementations performed well on the speed test, especially
the lattice-based methods. There are, however, some noticeable results.

• The encryption algorithms perform overall worse than the key exchange al-
gorithms when the key generation was included in the calculations. This
might not be a problem since the keys can be reused for multiple key ex-
changes, and considering that RSA has slower key generation than all other
algorithms this problem is obviously surmountable. A slight problem with
slow key generation is that the keys would probably be used for longer,
thereby increasing the amount of communication affected if the key were to
be stolen.

• CLN16 is by far the slowest key exchange algorithm, especially with com-
pression, and is more than a thousand times slower than the fastest one.
This could partly be compensated for by the small key size, but most sys-
tems would probably have easier to compensate for a slightly larger key than
for this kind of decline in performance and it is therefore only applicable to
certain systems where the size of the key is very important and the speed
is not. Microsoft also provides an architecture specific implementation that
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ran about five times faster when tested. This version was not considered in
the tests since it is architecture specific and not as portable as the other
implementations.

• Both schemes based on ring-LWE and NTRU perform really well and even
though they provide more security, they are just as fast as ECDH.

• The effect of the ring structure on the lattice-based schemes is significant and
if it is removed the scheme gets about 40 times slower. While this is better
than CLN16, it would still be hard to cope with for many applications.

6.1.2 Data sent

The key size and amount of data that need to be communicated to negotiate a
key is the most problematic area for almost all quantum-resistant algorithms, and
no algorithm can really compare to ECDH and only a few to RSA. McBits comes
close when the key can be reused, but the size of the key is large enough to cause
problem when it has to be distributed, even if it does not happen that often. Other
noticeable results are

• The encryption algorithms perform overall better than the key exchange
algorithms when the public key has already been distributed.

• CLN16, especially with compressed keys, performs well here, and is the
only key exchange algorithm that is comparable to the ciphertexts of the
encryption algorithms.

• NTRU is in the top here as well, even when the key distribution is included,
and is almost as good as RSA.

• This is the area where the LWE-based methods perform the worst. The ring
structure helps to bring down the key size significantly, but it is still not
enough to be comparable to RSA or ECDH.

6.1.3 Memory usage

The increase in memory usage is at an overall more acceptable level and most re-
quire at most twice of what RSA requires, and NTRU is almost at the same level
as ECDH. Most noticeable here is that McBits needed about 700 MB of memory,
and while certainly not preferable, it might be acceptable in a computer with 8 or
16 GB RAM. In a more constrained environment like a Raspberry pi, which only
has 1 GB of RAM, this might cause serious problem though.

6.1.4 Summary

Overall the lattice-based algorithms performed best on these three metrics, with
a slight advantage for NTRU due to the lower size of key/ciphertext and lower
memory usage. The increased key size of the ring LWE-based schemes is a problem,
but is partly compensated for by the fast speeds. Frodo performed in the bottom
part on all metrics, and its performance is probably not good enough for many



applications. If the ring structure of ring LWE turn out to be insecure it does
however provide the best trade-off between speed and key size among the compared
quantum-resistant algorithms. McBits and CLN16 are strong contenders in some
areas, but have weaknesses that, at least right now, makes them useless in others.
The fast encryption and decryption, and small ciphertexts makes McBits great for
fast communications, but the large keys and memory usage limits the applicability
in constrained environments. The small keys of CLN16 and the availability of good
compression makes it a great option for constrained environments, but the slow
speeds will cause problem if performance is a requirement.

Since Advenica needs an algorithm that can perform well in constrained en-
vironments NTRU is probably the best candidate from a performance point of
view.

6.2 Implementation and deployment

6.2.1 Lines of code and mathematical theory

The measurement of the number of lines of code might be a bit unfair since the
quality of the implementations and the included features vary. Table 5.5 contains
an attempt at filtering out equally relevant code. While this still might not give a
completely fair picture of the amount of code needed for a working implementation,
it might provide some clue as to how complex the algorithms are. Most notable
is probably that the implementation of CLN16 contain a lot more code than the
others and that the implementations of the LWE-based key exchange methods
contain the least. This also matches the fact that SIDH is built on a more complex
mathematical theory and uses more advanced operations than the basic operations
on polynomials used in the LWE-based algorithms. The increase in both complex-
ity of theory and lines of code would likely make an implementation of SIDH more
expensive to write since it would probably be easier to introduce bugs and harder
to find them among the large amount of code. It could also affect the adoption
since it might feel more secure to use an algorithm that you understand how it
works and that you are able to implement for yourself, something that might not
be possible with SIDH if you do not have a degree in mathematics.

6.2.2 Randomness

The amount of randomness needed depends largely on the distribution that is used,
and all implementations in the bottom of the table use a Gaussian distribution.
The more notable results can be found in the other end of the table where CLN16,
that only needs a small amount of randomness for to produce the secret points
used to construct the curves, and NTRU, that only randomizes polynomials with
small coefficients, are found.

6.2.3 Optimization potenial

The sampling method is an important part, at least for the LWE-based implemen-
tations, which can be seen from the profiling tests where sampling and random



number generation takes up a significant part of the total runtime, especially when
a Gaussian distribution is used. Other than that, most time is spent on multipli-
cation, or trying to speed up multiplication by transformations. Techniques for
speeding up the multiplications are used in all of the tested implementations,
but further improvements in this area would probably have the largest impact on
most of the algorithms. An important detail related to optimization that cannot be
seen in the profiling test is that Microsoft provided architecture specific versions of
CLN16 that run faster than the portable C versions that were tested. This signifies
that there are ways to improve the algorithm and reach more reasonable speeds.
An optimized version of New Hope has also been released by the authors of [86].
This version is optimized to take advantage of the parallelism of the ARMv8-A
architecture and according to their measurements it runs about 8 times faster than
the implementation that was tested here.

6.2.4 Size of secret

The size of the secret data is often linked to the size of the public key since the two
must share certain properties for everything to work as expected, and are often
derived from one another. A notable difference, though, is that McBits, while still
larger than most, does not have the largest secrets and is not as far behind the
other as when considering the public key. Instead, Frodo comes in at the last place
due to having to keep multiple matrices secret. This could make security critical
implementations more expensive since the protected memory needed to store the
secrets securely is more expensive. Deleting secrets securely is not as easy as just
deleting either, instead you have to explicitly reset that part of the memory, eg.
by using a function like memset in C.

6.2.5 Summary

As when considering efficiency, the lattice-based algorithms, and especially NTRU
perform well when considering factors important for implementation. The biggest
problems for them are probably that Frodo requires a lot of data to stay secret.
SIDH also stand out with its low resource requirements and the possibility of
efficient hybrid implementations, but has the drawback of being more complicated
and requiring more code than the others.

For Advenica NTRU is probably the best choice from an implementation point
of view as well due to its relatively low resource requirements and simplicity.

6.3 Assurance

Being secure and that this fact can be trusted is probably the most important
quality a cryptographic algorithm can have. This could cause some problem for
quantum-resistant cryptography since it is a relatively new field. An exception
to this is the original code-based systems that have been around for 30-40 years
and should therefore be able to be considered secure. The newer improvements
of the systems such as quasi cyclic MDPC codes does not have this property and
according to Bernstein and Lange in [11] the original systems by McEliece and



Niederreiter are the only ones that have received enough study to be recommended
for adoption.

The reduction by Regev from LWE to lattice problems mentioned in Sec-
tion 2.4.3 provides a strong security proof for LWE. The ring structure and the
reduction to ideal lattices weakens this proof slightly. Similar proofs does not exist
for NTRU, but the fact that is has survived for 20 years is promising. A version
of NTRU that does have security proofs was presented in [85]. This version was
however shown in [17] to be about 100 times slower and provide 100 times larges
keys than the regular NTRU, a large drawback that is hard to motivate. Quantum
attacks like the ones mentioned in [24] that target principal ideal lattices and some
problems on ideal lattices might raise some concern about the ring structure, but
they are not applicable to any of the tested schemes.

No attacks or special constants exist for SIDH-based systems. This could be
due the fact that they were first proposed in their current form only 6 years ago
and that more research is devoted to code- and lattice-based methods due to their
superior performance.

From an assurance point of view the code-based algorithms look like the best
option for Advenica’s file encryption product due to the considerable amount of
scrutiny it has received. The algorithms based on LWE are good candidates as
well due to their superior security proofs.

6.4 Summary

6.4.1 NTRU

NTRU provides the best trade-offs between speed and key size and is in the top
on almost every metric. It is a bit slower than the fastest ring-LWE algorithms
due to the key generation, but the smaller keys and lower resource requirements
compensates for this. The mathematics behind it is at the same level as for the
algorithms based on ring LWE, so the increased code size could depend on the
fact that the implementation is closer to production quality than the others. The
weaker security proofs could be considered a flaw, but the fact that it has survived
about 20 years without any significant attack is promising.

6.4.2 Ring LWE-based

The algorithms based on ring LWE are the best when only considering speed. They
do however have larger keys and overall higher resource requirements, which makes
them slightly less suitable for adoption, especially into constrained environments.
The relatively short and simple implementations are, however, an advantage, as
well as the security proofs.

6.4.3 LWE-based

The performance of Frodo is significantly lower than that of the others and op-
timizations like the ring structure are definitely needed for widespread adoption.
That the security proofs are even stronger than for ring LWE is a clear advantage,



and if a severe attack on the ideal lattices that ring-LWE and NTRU is based
upon is found, Frodo gives the best trade-off between speed and key size. It would
however still not be good enough for widespread adoption and other algorithms
would most certainly be needed.

6.4.4 SIDH

When considering key size and resource requirements SIDH is the clear winner. It
is however very slow and improvements in this area will be needed for implemen-
tations in applications with any kind of speed requirements. That it is far more
complex and requires a lot more code to implement is also a disadvantage, but
something that might be easier to overcome. The largest issue for adoption at the
moment is probably the lacking amount of security. This is mostly because it is a
relatively new scheme and a lot of research has been devoted to the lattice based
schemes due to their superior performance.

6.4.5 Code-based

The code-based algorithms are fast and provide small ciphertexts, which is promis-
ing for fast communication. They do, however suffer from incredibly large keys
which affects both key generation and memory usage. This makes them hard to
implement in constrained environments, but when the key size can be handled they
are a viable option. The most significant advantage is that the original schemes
by McEliece and Niederreiter have survived for 30-40 years and could therefore be
considered secure.

6.5 Industry adoption

Replacing all of the currently used cryptography with quantum-resistant algo-
rithms today will be a tough challenge. Code-based systems might be a good
replacement in some areas thanks to the small ciphertexts, fast encryption and
decryption, and well studied security. The large key size could in part be accept-
able for web-pages since they have an average size of 2600 kB according to [44].
The public keys will thus only increase the total traffic by 10-15% when they have
to be sent. The problems would however still exist in constrained environments,
where they would probably be insurmountable, especially the high memory usage.
The use of for example quasi cyclic codes could be part of a solution, but from a
security perspective they do not seem to be a viable option at the moment.

The key and resource problems could be solved by SIDH, but the slow speeds
would probably become a problem if the system also has high performance de-
mands. The lack of rigorous study is also a significant disadvantage of the algo-
rithm. The risk of attacks from classical computers can be solved by a hybrid
solution with ECDH, but the risk of quantum attacks being developed will still
exist.

The best solution would probably be one of the lattice-based systems since
they performed good overall on all metrics. When selecting which lattice-based
system one would have to consider the advantages and disadvantages of each one,



and compare with the requirements of the application. The ones based on ring-
LWE are faster than the others and have strong security proofs, but require more
resources and have larger keys. NTRU is the most resource efficient and the oldest,
but does not have the same level of security proofs. If the application allows it, an
option could be to remove the ring structure to remove that attack surface, but
the cost in reduced performance is probably too great for most applications.

When considering the parameters needed to achieve long term quantum se-
curity all parameter sets that provide at least 128 bit quantum security should
be sufficient. This is true for the high security options tested for the lattice-based
algorithms and for the SIDH implementation. The quantum security of the pa-
rameters used by McBits was, however, not discussed in the paper and further
increases in security would probably be necessary. This would increase the size of
the public key even more, thereby making it even harder to handle.

In the case of Advenica’s file encryption system the currently available best
solution would probably be a lattice-based method. Due to the lower key size
NTRU would probably be preferable, but a ring LWE based key exchange could
be a viable option to increase the speed slightly at the cost of a higher resource
consumption.

6.6 Improvements

All of the compared algorithms have some advantages, but theoretical improve-
ments would make industry adoption easier. The code-based systems would benefit
greatly from smaller keys, and quasi cyclic codes could be a good way to go if the
security issues could be solved. This would probably still not make it applicable
enough for constrained environments and other algorithms will be needed in that
area.

The low resource requirement of SIDH makes it a good contender for con-
strained environments, but it is a lot slower than the other algorithms and proba-
bly too slow for application with high performance requirements. The architecture
specific implementations are a promising way of speeding it up, but in its current
form it is still not enough to be able to match the other algorithms.

The lattice-based systems with the ring structure are adoptable without any
significant improvements and would probably be able to perform well in most
applications. The increase in key size compared to ECDH is significant and might
require some changes in existing applications, it is probably manageable in most
cases though. Frodo proves that needs more improvements to be able to compete
with the other algorithms, both in speed and key size. The ring structure is one such
improvement (that was purposely removed from Frodo), but other improvements
that does not rely on ideal lattices could be useful, at least as a backup if algorithms
like the ones mentioned in [24] are found for more problems.

Due to NTRU and ring LWE no new algorithms are needed and improvements
to existing ones will most certainly be enough. If they prove to be insecure, how-
ever, no algorithms are close to them in performance and completely new ones
with reasonable trade-off between speed and key size will probably be needed.





Chapter 7
Conclusions

The biggest obstacle for a transition to quantum-resistant algorithms is probably
the increase in key size, since none of the algorithms can match ECDH on this
metric. To cope with this change, some applications would presumably need in-
frastructural changes, but in most cases, including Advenica’s, the increase would
be within a reasonable level.

When considering specific algorithms, they all have advantages and disadvan-
tages.

• The code-based systems have small ciphertexts, fast performance and have
survived rigorous study, but they also have large keys and high resource
requirements.

• SIDH uses small keys and have low resource requirements, but is a consid-
erably slower than the other algorithms and is a very new invention.

• The lattice-based schemes have fast performance but larger keys than the
currently used algorithms, and the ring structure of the faster versions might
raise some security concerns.

The algorithm most suitable for widespread adoption would probably be NTRU
due to it performing in the top on all metrics, and comparable to the currently
used algorithms in most. These qualities would also make it a great option for
Advenica’s file encryption software. The ring LWE-based key exchange algorithm
could also be a possible contender for the same reasons, but the larger keys makes
NTRU preferable. The attacks on similar schemes is a bit concerning, but as of now
they do not seem to cause any problem. If they nevertheless would, the transition
to quantum algorithms would become more troublesome. The other algorithms
have some advantages, but their disadvantages are too large for them to be ap-
plied widely and new algorithms would probably be needed.
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7.1 Future work

The field of post quantum cryptography is currently in a phase where a lot is
happening. This thesis provides a review of the advantages and disadvantages of
the currently relevant algorithms, but as new improvements and algorithms are
developed they need to be evaluated as well. A study of quantum secure algorithms
for signing could also be relevant as the development of quantum computers pro-
gresses.
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