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Abstract

Development towards a connected world where anything can talk to anything is
ongoing. Calvin is a research project at Ericsson that simplifies the development
of peer-to-peer applications for the Internet of Things. Calvin is created in order
to let the developer of an application for the Internet of Things focus on the
implementation instead of having to worry about underlying protocols, hardware
access, security, application deployment, and application management. A Calvin
application is defined by a dataflow graph where every node is a small reusable
computational component called an Actor. The actors can move and be migrated
to any connected unit during runtime which allows for complex applications to be
created.

Mobile devices are computationally powerful devices with many sensors and
have a lot of functionality through mobile device applications. The devices have
traditionally only been used for configuration and control of Internet connected
devices. This thesis successfully shows how mobile devices can be part of the
distributed platform Calvin as any other device in the Internet of Things.

The thesis proposes a general solution of how Calvin can make advantage of
a mobile device at any time it is connected to the Internet. The thesis shows how
mobile devices and third party applications on the device can share their capabil-
ities in the Calvin platform with other connected devices. The thesis analyses the
effect of the long term running Calvin runtime on a mobile device and shows that
it is possible and feasible to use Calvin in Android without draining the device’s
resources.

Keywords: Calvin, Mobile Devices, Android, Internet of Things, Distributed
Platforms, Dataflow.
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Popular Science Summary

The Internet might be the greatest innovation in modern time. It is used by
billions of people every day to do all sorts of tasks. The number of Internet
connected device is growing rapidly and Ericsson is expecting 26 billion devices to
be connected in 2020 [1]. To meet these demands, development of new network
types is ongoing. Ericsson is currently developing the next generation networks
for mobile phones called 5G and more people get their houses connected to the
Internet through fast fiber optic cables.

Project Motivation

The Internet of Things (IoT) is a term referring to historically non Internet con-
nected devices that are connected today. IoT therefore includes a broad spectrum
of device types such as temperature sensors, thermostats, light bulbs, cars, speaker
systems and even refrigerators. It is a complex task to enable all of these devices to
connect and communicate. The devices must be able to recognize each other and
they must have a common method of how they should share data. For example, a
temperature sensor must have a method of how temperature data should be sent
to other devices such as a mobile phone. The mobile phone must furthermore be
able to parse the data from the temperature sensor to be able to display the data
to a user. The devices must also be able to decide if the communication should be
done over for example Wifi, 3G, 4G or even Bluetooth.

At Ericsson research in Lund, a group of scientists are trying to solve the
problem of connecting these devices through a project called Calvin. The project
enables any device capable of running Calvin to communicate with other Calvin
devices. Calvin also allows users to easily specify how the devices should be con-
nected. It is a simple task to connect a light bulb with a Internet connected button
to allow the lights to be controlled in Calvin.

This master’s thesis focuses on bringing mobile devices into the IoT platform
Calvin as any other Internet connected device. Mobile devices has historically
only been used to control and read data from other devices. Mobile devices are for
example common as remote controls in home automation systems where they can
be used to control the house lighting or to fetch the current outdoor temperature.
By letting mobile devices become a part of Calvin, more complex and powerful
applications can be created.
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Mobile Devices in Calvin

Mobile devices are in some aspects very different from other Internet connected
devices. While they are very powerful in terms of processing power, they are very
limited in some aspects such as battery and data usage. A mobile phone user
normally expects the device to be able to run for at least a full day of normal
usage while the data consumption often is limited by the mobile network carrier.
All programs running on a mobile device must therefore be very careful in their
use of these resources and must be adapted to fit in to the mobile device system.

The available mobile operating systems in the world is dominated by Android
which has a market share of 86.6% [2]. This thesis therefore focuses on bringing
the Android system into the Calvin platform. This is done by proposing adoptions
and needed functionality in order to let Calvin take advantage of a mobile device
and to let the mobile device share its capabilities with other Calvin connected
devices. The main problem formulation for the thesis therefore comes naturally to
be “how can the distributed platform Calvin make the best use of a mobile device?.”

The thesis takes on and proposes a solution of many different aspects of mobile
devices. One aspect is how to solve the problems with the mobility of mobile
devices. Since mobile devices can move, they connect to many different networks
all the time. For example, in a home automation system, the mobile is only
connected to the home LAN while it has Wifi coverage. If the mobile device leaves
the home it loses its connection to other devices since it connects to a mobile
network instead. This thesis proposes a solution where the the mobile device
can be anywhere in the world while still being able to communicate with Calvin
connected devices.

Mobile devices has a large amount of sensors and other hardware capabili-
ties. But a lot of the functionality of a mobile device is implemented in various
applications that are downloaded. This thesis shows how both the hardware ca-
pabilities, but also how third party applications can share their functionality with
other Calvin connected devices in a standardized and simple way.

Evaluation

This thesis shows how Calvin must be adapted in order to meet the high demands
on mobile device applications in terms of resource usage. The RAM memory is a
limited resource that has to be used with great care in a mobile device. The RAM
memory usage of Calvin was examined through a set of experiments in and the
results are used to show that Calvin behaves good on the mobile device. The RAM
usage is dominated by Android itself and the Android Framework when running
the application but the actual Calvin implementation.

The data usage of the proposed solution for connectivity was also examined.
The solution enables flexibility in terms of mobility, but it comes with a price since
much more data has to be sent. The solution was evaluated and it is shown how
much more data the proposed solution consumes.

Overall the thesis shows that it is feasible to run Calvin on a mobile device,
and with modifications and added functionally great applications can be created
in an easy way.
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Chapter 1
Introduction

1.1 Motivation

Devices connected to the Internet surround our every day life. Devices such as
mobile phones, tablets, TV:s, cars, and even dishwashers can today connect to the
Internet and cloud infrastructures. Ericsson is expecting 26 billion [1] devices to
be connected in 2020 and that there is no stopping beyond that.

To meet the demands of the growing data flow on the Internet, Ericsson is
currently developing the next generation mobile network 5G. Development is fo-
cused on enabling connectivity with higher bandwidth and lower latency while
still trying to communicate using less energy in the signals. There is focus from
the Internet giants, such as Facebook, to bring Internet connectivity to extremely
remote locations using state of the art technology [3]. More and more devices
around the globe gets connected, and there is more and more pressure from the
market on the companies developing the techniques to enable this.

At Ericsson Research in Lund a research group is currently developing an IoT
platform called Calvin to take on the challenge of connecting devices. Calvin [4] is
a platform for the Internet of things (IoT) that lets any device communicate with
other devices. Calvin standardizes a way for the connected devices to communicate
and make use of each others capabilities in a scalable and flexible way. Calvin
is also used as an application platform to make it easy to develop, deploy and
maintain IoT applications.

A device that almost everyone carries around and uses frequently in their every
day life is the mobile phone. Modern smart phones are capable and powerful small
personal computers with access to a lot of sensors and capabilities. Furthermore
they are almost always connected to the Internet trough a wireless connectivity
method such as WIFI and LTE. The mobile phone has traditionally been used
for configuring, controlling and receiving data from other devices, however this
must not be the case. This MSc thesis focuses on letting mobile devices be part
of distributed networks as any other device. These networks can then be used
for example in distributed computing, home automation systems or car to car
communication systems.
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2 Introduction

1.2 Project Aims and Main Challenges

This MSc thesis will focus on how to bring mobile devices into the distributed
platform Calvin. The mobile device must be able to communicate and share its
capabilities with other devices and the platform must be able to distribute the
tasks of an application to the best fitted device. While the mobile device is a great
device with great possibilities, it is very limited in some matters. This thesis will
take on the problems concerned with the limited resources of a mobile phone and
how to make the best use out of it. For mobile phones, aspects regarding power
consumption, data consumptions, CPU usage, and RAM usage could be potential
pitfalls for long term running applications. There are problems regarding mobile
phones connectivity methods and how they can change rapidly during the runtime
of an application that must be handled. To summarize, this MSc thesis will focus
on solving the problems concerning:

• Bringing mobile devices into the distributed system Calvin.

• The effect on a mobile device’s resources from long running applications.

• The effect on an application when ported to fit into a mobile operating
system’s system.

• How third party applications on the mobile device can take advantage of
Calvin.

• How applications handle connectivity and can assure availability.

which in turn forms the main problem formulation How can the distributed platform
Calvin make the best use of a mobile device?.

1.3 Previous Work

Calvin is an IoT platform created for research purposes, there exists two refer-
ence implementations written in the Python and C languages that will act as a
foundation for this masters thesis. The main coordinator at Ericsson, Ola Angels-
mark has been working with Calvin for a long time and has been one of the main
contributors to the project. He, together with the rest of the Calvin team, holds
great knowledge about the platform and the area of research. The members of
the Calvin team writes blog posts on the Ericsson Research blog [5] and they have
released a number of papers [1] [6] [7] that have been presented at conferences
around the world.

There have been several MSc theses done within the area of Calvin. Tomas
Nilsson described how Calvin can handle actors and how they can be migrated
depending on security rules [8] in his thesis in 2016. Other MSc thesis works done
within the area of dataflow programming, distributed systems and Calvin include
[9], [10], [11], and [12].
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1.4 Resources

The work of this MSc thesis was carried out in cooperation with Ericsson Research
in the Cloud Execution Environment and DC Operations team. Ericsson provided
Raspberry Pi computers, LEGO, network equipment and servos for my work.

The software development was done using the VIM text editor for C and
Python development. For Android development, the Android SDK and NDK was
used together with the Android Studio IDE. The Google GCC compiler and LD
software for Android which is bundled with the Android SDK was used for the
X86 and Arm 64 architectures to build C code.

1.5 Overview of the Thesis

This thesis report consists of eight chapters disposed in the following way:

Chapter 2 gives an understanding about the ideas and techniques used for this
MSc theisis. The chapter explains the concepts of dataflow programming
and distributed systems. An overview of the XMPP protocol used in
chapter 5 is given together with a section about data encoding.

Chapter 3 gives theory about mobile operating systems with a focus on An-
droid. This chapter gives an introduction to how messaging systems,
connectivity and capabilities are handled in Android.

Chapter 4 gives an introduction to Calvin and how the platform operates us-
ing techniques and concepts described in chapter 2. The chapter also
describes the role of the Calvin implementation for constrained devices.

Chapter 5 proposes a solution to the given problem description, how it was de-
signed, and implemented. The chapter explains how the evaluation of
the proposed solution was done and how the results were obtained.

Chapter 6 shows and discusses the result from the evaluation of the proposed
solution.

Chapter 7 concludes the thesis and proposes areas of future work.

Apendix Shows examples discussed in the thesis.





Chapter 2
Background

This chapter explores areas of interest for this master thesis. It gives theory about
how distributed systems work and explains the actor model which is the foundation
of how Calvin is created. It finishes up by giving the background of the XMPP
protocol and two data encoding techniques which are used in chapter 5.

2.1 Distributed Systems

Almost all programs and applications on our mobile devices uses some kind of in-
formation sharing and communicates with other entities. To make a phone call, one
makes use of the cellular network to share our voice. When browsing the web, one
downloads content from a remote server using the Internet. And when navigating
through a city one uses the global positioning system. The term distributed com-
puting refers to systems where the application is divided into components that are
executed on different physical or virtual units. The units in a distributed system
uses a transportation mechanism, such as LTE or WIFI, to pass messages between
the application components which they act on. Distributed systems are crucial in
our every day life and includes a large number of platforms and applications.

One group of distributed systems are systems where every component in the
system communicates directly with the other components without having any cen-
tralized unit. These peer to peer (P2P) [13] systems aim to spread information
and capabilities on a network among all connected entities. As opposed to classical
server-client systems, the availability of a unit in a P2P system cannot be guaran-
teed. The system’s availability and capabilities can change during runtime which
both puts requirements on the platform but also allows for flexible and scalable
applications.

In an ideal platform, the application’s components should always be executed
on the units where it is most feasible for the application. Distributed P2P systems
play a big role in IoT. Normally non-connected devices get connected to each
other and allow them to take advantage of each others capabilities. This has led
to a great expansion in the areas of home automation, smart cities and Internet
connected cars to name a few. For example, in a P2P system of connected cars,
the cars could potentially communicate directly to each other to send messages
about their geographical location. This could be used in software that can avoid
collisions. However, some of the earliest distributed systems where not meant for
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6 Background

vehicle communications, but for file sharing. One of the first P2P systems for file
sharing was proposed by the creators of Napster [13] which developed to be one
of the most used file sharing software on the planet.

A common issue with general distributed systems is to implement a common
area that all units in the network can reach to share data. Distributed systems
can make use of a distributed map of key/value pairs that is accessible from all
nodes in the network by implementing and using a distributed hash table (DHT)
[13].

2.1.1 Distributed Hash Table

A DHT is a distributed storage entity used in distributed networks as a registry
where data can be stored. There are multiple ways of implementing a DHT where
one of the most common is called Kademlia [14]. From the DHT user’s point of
view, the DHT works like a normal hash table that can store key/value pairs.
However the nodes of the hash table are stored across different entities in the
distributed application, and finding a value for a given key is done in an efficient
way.

Every node in the distributed platform needs to have a unique ID for identifica-
tion. Kademelia uses a distance function to calculate the relative distance between
the nodes’ IDs. The distance between two nodes is defined as the exclusive or be-
tween the node’s IDs. When a value of a certain key is to be found, Kademelia
uses an algorithm to iteratively find nodes that are closer to the node that holds
the searched value. The algorithm has a time complexity of O(log n) [14] during
the search of a value, which makes it a popular choice when implementing a DHT.

2.2 Dataflow Oriented Programming

Typical computer programs are made up of lines that are executed sequentially in
the order they are written. This classic and linear model was first described by
John Von Neumann [15] who divided the computer system into three parts, the
input/output (I/O) units, the processing unit, and the memory unit. The input
data in such a program typically comes from the input unit and is stored in the
memory from which the CPU can read and perform computations.

The dataflow programming (DFP) model focuses on the data in a program
and how it is sent between different units, called nodes. An application written
using the DFP model can be represented as a directed graph with nodes rather
than a set of code lines. Each node is a simple unit that can perform a task based
on the input data and then forward its result to the next node in the graph. Since
it is easy to represent a program written using the DFP model graphically, it is a
natural choice of model when doing visual programming. It is also a good model
that allows for efficient concurrent execution of programs without using traditional
threads [16]. Since every node in the graph is independent they can all process
data at the same time without interrupting each other, one can think of the graph
as a multi core processor. By letting the input and output ports of the nodes
being FIFO queues, nodes do not have to wait for other connected nodes before
performing a task. Every node simply performs its task independently based on
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the data in the input queue and then forwards the result to the connected node
in the graph.

The nodes are divided into sources, sinks and computational units. A
computational unit is a unit that has input and output ports and that executes a
task based on the input data. Sources are special nodes that do not have any input
ports, but only output ports. They are used to initiate the program and feed data
into the graph. Examples of source nodes are keyboards or simple buttons. A sink
is the opposite, it is the terminal node for data flowing in the graph and only has
input ports. A typically sink receives a result and then presents it to the entity
that executed the program, such as a monitor displaying a result to the user.

The model of dataflow programming allows for very complex graphs which does
not necessarily have to be a straight line of nodes. A node’s output port could
be connected to multiple node’s input ports, a property called fan out. Similarly,
a node’s input port can receive data from multiple node’s output ports. This is
called fan in.

An example of a dataflow oriented system that uses the fan in property is a
printer system as shown in figure 2.1. In this simplified printer system, the printer
is a sink node and the clients are sources. The graph specifies that the printer is
connected to a printer server (usually built into network printers). There can be
an arbitrary number of devices connected to the printer server which listens for
data on a fan in port. The printer server is a computational node that has an
interface for communicating over a network and knows how to schedule and queue
printer jobs. As soon as any device sends data to the printer server it forwards it
to the printer which starts printing. If a device sends data to a busy printer, the
job is queued until the printer is free.

Printer 
server

Figure 2.1: Simple dataflow graph of a system with a printer, a
network connected printer server and clients that can print doc-
uments.

2.3 Actor Model

Every node in a dataflow program graph can be thought of as an entity called
an actor. An actor is simple in its design and implements a small and reusable
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actions such as a monitor displaying media content or an accelerometer reading
the acceleration of a mobile phone. By combining actors and specifying the ap-
plication graph of how they are connected, an application can be created. The
implementation of an actor is platform specific, on one platform the actor might
be implemented using the C language while it may be implemented in Python on
another platform.

Input 
Queues

Output 
Queues

Action In ports Out ports

Input 
Queues

Output 
Queues

ActionIn ports Out ports

Input 
Queues

Output 
Queues

ActionIn ports Out ports

...
State Requirements

Actor

Figure 2.2: The architecture for an actor with multiple actions.

Every action of an actor is bound to a set of in ports and out ports as can
be seen in figure 2.2. An important aspect of an actor is how it behaves in the
application graph. An actor’s action is only triggered either by an external event
or when there is data on the actor’s input port. When an action has finished its
task with resulting output data, it sends its result to the output port which is
forwarded in the application graph. An actor may however store data which is
consistent between action triggers. The actor may for example store a counter that
counts the number of action triggers or configuration parameters. All data that
an actor store form the actor’s state. If an actor is to be migrated as described
in section 2.3.4 to another runtime, the internal actor’s state must also follow the
actor to not lose any information in the migration process. Therefore all data that
the actor stores in its state must be serializable to a JSON format.

In figure 2.1, three different actor types are used on four nodes. On the mobile
phones and laptop an actor that produces a document is running, assume this is a
word processor. The word processor is however implemented in two different ways
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on the phone and the laptop. The UI, architecture and even the language may be
different. The common factor is the out port, and the actors role in the graph. On
the printer server platform, a printer server actor is running. And on the printer,
an actor that can perform the actual print job is executing.

When an application is deployed using the application graph the dataflow
graph is created. The dataflow graph is not static in its design and is subject to
change during runtime. The application graph may allow for dynamic creation and
deletion of actors during application runtime. This can be used for performance
up and downscaling if a program needs to perform many heavy computations. If
the physical computing power needed is more than available more actors that can
handle the computations can be spawned and connected in the graph. By making
use of the fan in and fan out properties of the dataflow graph, this can be done in
a seamless and efficient way. The scalability can also be used for program graphs
where the number of actors are unknown at the initiation of an application. For
example, in the printer system in figure 2.1 the number of clients is unknown
when the printer is first started and clients may come and go without affecting the
systems availability or having to restart the application.

2.3.1 Implementing Actors

There are many benefits from building distributed applications using the dataflow
and actor models. The actor model allows the developer of the platform to add a
layer of abstraction between the application and platform development. An actor
developer does not have to care about all aspects of the underlying platform, these
aspects are discussed in the following sections.

Internet

BT

LTE WIFI

Gateway

WIFI

Home LAN

Load 
balancer ... ...

Scalable web servers

...

Database 
server

Server farm

Figure 2.3: Example of a distributed platform for a cloud connected
home automation system.

2.3.2 Executing Unit

The application and actor developer does not know on what unit the codes will end
up being executed. Nor will he need to know the physical location of the unit or
how it should be deployed there. The developer only has to implement the needed
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actors and specify the application graph for a program to work. Deployment and
execution is handled by the underlying platform. For example, the developer of an
email system should not have to care if emails are sent from a personal computer,
mobile phone or from a server.

2.3.3 Transport Mechanism

It is up to the distributed platform to handle and implement a way for the units
of the network to communicate. The transport mechanism should be completely
transparent for the application developer and should only provide a simple ap-
plication programming interface (API). The transport mechanism can vary much
within the network. A laptop often has a WIFI connection, but a phone might
use LTE and a smart watch might use Bluetooth. In all cases, the devices must be
able to communicate with each other on the same level and be able to understand
the same actors.

2.3.4 Replication and Migration

If specified by the application graph, actors might replicate for different purposes.
A common reason for replication is for upscaling of the performance of an ap-
plication. A web application running in a server farm might replicate its web or
database servers to handle more traffic at some times during the day. The devel-
oper of an application only has to specify how the graph should handle replication.
Then the distributed platform handles the deployment, setup and rewriting of the
application graph.

During runtime, an actor might have to change physical unit it is executing on.
The reasons could be if a resource becomes unavailable, something fails, or there
is a requirement from the application developer that triggers it. The procedure
for moving an actor is called actor migration. The migration and all the involved
steps are handled by the distributed platform and the developer of an application
does not have to care about and does not even know when a migration occurs.

2.4 XMPP

The Extensible Messaging and Presence Protocol is an open and free lightweight
XML streaming protocol used for instant messaging, multi-party voice and video
calls, and for IoT communication [17]. It was primarily developed for the use in
the Jabber instant messaging client, but it has grown to be used in many different
types of applications that need streaming of XML. The protocol is for example
used by Google in their Firebase service which is used in this thesis and explained
in section 5.2.

XMPP allows for bidirectional messages being sent and has an asynchronus
way of sending data packets. XMPP offers an open, flexible, and secure way of
communicating and can provide a strong authentication mechanism through the
Simple Authentication and Security Layer (SASL) [17].

The authentication process consists of a handshake between the server and
client. The client that would like to connect to the server opens a connection
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using the user datagram protocol (UDP), usually encrypted with a transport layer
security (TLS), to the servers specified port. An example of the messages sent
in the handshake is shown in appendix B. The handshake begins with the client
sending a request for authentication, the server answers with information about
the method for authentication and continues to authenticate the client.

2.5 Data Encoding

2.5.1 Messagepack

JavaScript Object Notation (JSON) is a lightweight and easy to understand data-
interchange format [18]. JSON can format lists and collections of key/value pairs
for integers, strings and boolean values. It is a very popular choice for formating
data to be transmitted and there exist many libraries for multiple languages for
parsing the format.

Messagepack is a binary format built for object serialization like JSON [19].
MessagePack is opposed to the JSON format, a binary format that compared to
JSON is compressed in its syntax. Syntactics in JSON such as brackets, colons
and hyphens do not exist. These and combination of these syntactic symbols are
binary coded. MessagePack also compresses the data by removing unnecessary
padding around data values, short integers can for example be coded as a single
byte. The JSON payload {"compact": true, "schema": 0} is a 27 bytes long
string. In MessagePack this is only coded using 18 bytes [19]. The full specification
of MessagePack is open [20] and free which makes it a popular format and allows
for many parsers in different languages.

2.5.2 Base64 Encoding

Base64 encodes binary data to human readable characters that can be transmitted
and bundled in non binary formats such as JSON for transmission. Base64 encodes
the binary data by transforming it into a number system with the base 64 instead
of the binary 2.

To encode binary data in Base64, the data is first formed into groups of 3
bytes (24 bits). These groups are then divided into four 6 bit groups which each
represents a number in the base 64 since 26 = 64. To decode Base64 encoded
data the reverse is done. Base64 is standardized in RFC3548 [21] and uses the
characters A-Z, a-z, 0-9 together with the two characters + and / to represent the
values 0-63 [21]. A 65th character = is used for padding.





Chapter 3
Mobile Operating Systems

There are many mobile operating systems on the market, Android, iOS, Windows
Phone 7, Symbian, Sailfish OS, and Ubuntu Touch to name a few of them. The
market is however dominated by Android which in 2016 was running on 86.8%
[2] of all smartphones worldwide. In second place comes Apples iOS with 12.5%
[2] of the market followed by Windows Phone 7 at 0.3% [2]. When developing
applications and services for mobile devices it is crucial to implement systems in
a way that large parts are platform independent for the biggest platforms. Both
iOS and Android supports native development in C, while Android requires a
layer of Java on top of it. By using the Java Native Interface (JNI), Java code
can execute native code written in C. C, Objective C and Swift are the supported
language by the iOS software development kit (SDK). Developing services and
applications in C can therefore be favorable, especially when the service is a long
running background service that does not need access many API methods on the
platforms.

Since the Android operating system is dominating the market, this chapter
will focus on giving the reader an introduction to how the platform works and
how necessary concepts used in this thesis work.

3.1 Android Application Format

Every Android application that is installed on a mobile device is packaged as a
zip file with the file ending .apk. The zip file contains compiled Java byte code
and static binary files that are needed by the application to run. It also contains
compiled native shared library files and compiled Java libraries that are used by
applications.

In the root of the APK archive there must be a meta data file called the An-
droid manifest file. The file specifies the name, version, app icon, requirements
on the hardware, required permissions, all application components, and other ap-
plication specific attributes. The file is used to tell the operating system how the
application should be installed and executed. An application may for example
specify UI components called activities and background services called services in
the manifest file.

Every Android application that is to be installed on a commercial Android
device must be signed with a public-key certificate. Any unsigned application will
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be denied installation on the device if it is not signed correctly. The certificate
is normally self generated by the application developer before uploading the ap-
plication to Google’s market place Google Play. During the development process
of an application developers may sign the application using a developer certificate
that comes with the SDK. This allows for easier development and installment of
Android applications during development.

3.2 Android SDK and NDK

The Android SDK [22] consists of a large amount of tools to make it easier to
develop applications for the Android operating system. The tools include cross-
compilers, debuggers, editors, API documentation and a suit of tools for profiling
applications.

The Android Native Development Kit (NDK) [23] allows developers to use
native code languages such as C or C++ to develop applications and components
of applications for Android [23]. The NDK consists of a limited set of APIs for
accessing the platform’s components such as sensors, the screen and event tracking
mechanisms. The NDK provides a port of the compilers GCC and Clang for
Android and the ARM, x86, and MIPS architectures. The NDK also provides
tools to debug and profile binaries on the Android platform.

3.3 Services in Android

Android allows for application components called services to be created and started
by applications. Services are long lived application components [24] that run in the
background of an application and does not provide a user interface. An Android
Service has its own life cycle and can run indefinitely after it has been started. A
service can be instantiated and started in three ways.

• Another component of the application that the service belongs to starts the
service.

• The service is started by another application on the phone.

• The service is started by an event from the Android operating system.

Examples of events in the third case are that the phone boots, the phone receives
a text message or the connectivity of the phone changes from WIFI to LTE.

A Service’s lifecycle depends on how it was started. If it was started by a
component binding to the service or if it was started by a startService call.
This section will only handle services that are started from a call to the system’s
startService function since the runtime only will be started manually and not
from other bounding application components.

When starting a Service, the service goes through a set of stages as shown in
figure 3.1. The call to onCreate allows the service to initiate itself and handle ev-
erything that needs to be done before the actual task starts. The onStartCommand
is the trigger to the service to actually start performing its task. This stage can
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Call to startService
call to

onCreate()
call to

onStartCommand()
call to

onDestroy()
Service is destroyedService running

Active lifetime

Figure 3.1: The lifecycle of an Android Service as described in [24].

live indefinitely, and will not stop until its task is performed or if it receives a
message about stopping.

When an Android Service receives a call to be destroyed, it is up to the Service
to stop executing its task, clean up its resources and exit. The reasons for a Service
to stop is usually a call from the Service to itself about having finished its task.
However other components of the app, and even other apps can also trigger the
destroy command of a Service if they are allowed.

The Android operating system (OS) can also trigger a Service to be destroyed
if the platform is running low on resources such as RAM [25]. Android can do
this by keeping track of a prioritized list of all running processes based on their
importance to the system. When the device is running low on RAM, it will destroy
applications and processes with a low priority. Components that are bound to a
graphical UI component and are visible to the user has a low risk of being destroyed
while a long running Service in the background gets moved down in the list over
time and risks being destroyed [25]. When the system has retained resources after
having killed a service at a later point in time, it will start killed services again.

The operating system may perform actions to cache or even kill services that
has ran over 30 minutes to save battery and RAM even if it is not critical for the
system at that point in time. The operating system keeps track of a last recently
used (LRU) list of active services which it can demote services that are running to
long. This helps the system to avoid situations where long running services leak
memory or interrupts the system in the background.[26]. When cached services in
the LRU list needs to perform an important action, they are started again by the
OS automatically.

3.4 Android Messaging System

Android implements a very competent messaging system for inter and intra ap-
plication communications. Application components can register themselves in the
OS to receive certain types of messages [27]. When messages are received they
can be used to start application components that can perform an actions base on
received messages.

Messages sent in the messaging system are called Intents and are instances of a
data structure that can hold a set of key-value pairs for payload data. Intents are
categorized in a namespace that depends on the sender of the intent which is used
for identification purposes. It is the namespace that an application component
uses to register for a certain type of messages. The namespace usually starts
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with the sender applications package name in reverse order separated by a dot
and concatenated with a string representing the intent’s purpose. Intents that
are meant to be distributed in the entire operating system to all applications
that listen, are called broadcast intents. The OS uses broadcast intents to notify
applications about events in the platform such as when the connectivity changes
from WIFI to LTE. To receive connectivity changes, the application component
has to register to listen for the android.net.conn.CONNECTIVITY_CHANGE [28]
intent.

Applications and application components can also use the messaging system
to send messages to the operating systems, mainly to request a startup of an
application component. If an application component needs to start another com-
ponent such as a service, an explicit intent is sent to the OS with information
about the service. The OS receives the message, starts the Service, and handles
its lifecycle. Application components may also ask the OS to be bound to already
running Services. This lets application components, not necessarily from the same
application, to communicate with an already running service.

3.5 Security

Android is designed to be an open platform that lets developers build advanced
tools while still being easy to use for users. Android is built on top of the Linux
kernel which means that it can take advantage of the robust Linux security system
such as its user and permissions services [29]. Figure 3.2 shows the building blocks
of the Android operating system where each of the building blocks in the figure
assumes that the underlying block is secure and is implementing its own security
measurements.

Linux Kernel

Hardware abstraction layer

Android Runtime Android Native Libraries

Android Framework

Applications and services

Figure 3.2: The Android operating system architecture [29].
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The Linux kernel provides file permissions, isolation of processes, and RAM
access control. All Android applications that use native code are compiled into
position independent code, which means that the code can be executed from any-
where in the RAM. This allows the OS to use address space layout randomization
for security.

3.5.1 Sandboxing

All code running on top of the Linux kernel is sandboxed which for applications
means that they only have to provide security for themselves while relying on the
underlying layers being secure. An application can for example use the file system
in Android to write sensitive data in the application directory without having to
worry about other applications reading that data. Secure access to sensors and
other hardware components are done through the Android framework and the
implemented API methods.

3.5.2 Application Permissions

If an application needs to access anything outside the sandboxed area, it must
ask the operating system for permission. If the permission involves sensitive data
such as access to the camera, the user of the device must explicitly give the ap-
plication permissions [30]. For non-sensitive features such as Internet access, the
platform can grant permissions upon application installation without asking the
device user. Permissions are specified in an XML format in the Android Manifest
file by using the <uses-permission name=’[PERMISSION NAME]’> tag. Examples
of permissions relevant to this thesis are

• android.permission.INTERNET Request permission to access the in-
ternet via an unspecified interface.

• android.permission.READ_EXTERNAL_STORAGE Request per-
missions to read data from a persistent storage such as an SD card or flash
drive

• android.permission.WRITE_EXTERNAL_STORAGE Request per-
missions to write data to a persistent storage such as an SD card or flash
drive.

• android.hardware.sensor.[SENSOR NAME] Request access to a hard-
ware sensor. The sensor name specifies what sensor to request access to.
Examples of sensors are gyroscope, accelerometer, and proximity sensors.

3.6 Capabilities in Android

Mobile devices are normally equipped with a large amount of sensors and IO
units. Android provides a hardware abstraction layer (HAL) through a framework
for accessing these sensors. The framework divides the sensors into three cate-
gories, motion sensors, environment sensors, and position sensors [31] and lets
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applications get access to raw sensor data together with calibrated and filtered
data.

Via the specification of an application’s permissions, an application developer
can also specify requirements for an application to be installed on a device. A
compass application could for example not be installed on an Android TV without
a magnetometer. The framework also provides an interface for applications to poll
the platform for information on available sensors. Based on this information,
applications can adapt by disabling features that use unavailable sensors.



Chapter 4
Calvin - The distributed IoT platform

As more and more devices get connected, the number of different platforms that
need to be able to communicate with each other increases. Today cars, mobile
phones, smart homes, smart cities, surveillance systems, and many more tradi-
tionally non connected devices are all connected to the Internet. There is a need
for a scalable and dynamic platform that connects these devices to each other
and lets them share their capabilities with the rest of the Internet. Calvin is a
distributed IoT platform built to make it easier to develop, deploy and run ap-
plications for things that would like to talk to things [4]. It sets a standard for
a communications protocol and defines how a distributed dataflow application
runs. It does not matter if a Calvin connected device is a car, mobile phone, or
a large data center. The Calvin platform handles all types of devices and lets the
application take advantage of the platforms’s capabilities.

4.1 Calvin Lifecycle

The life of a Calvin application is strictly defined by the Calvin architecture. All
Calvin applications have to behave in a defined way and follow certain steps when
being deployed, migrated, executed, and destroyed. The lifecycle of an application
can be divided into four distinct steps - describe, connect, deploy, and manage [6].
This chapter describes these steps and explains what they do.

4.2 Actors

When developing a Calvin application one first has to define the smallest compu-
tational units, the Actors, of the distributed dataflow platform. An actor store
is packaged together with the Calvin code base (see actorstore in [4] for available
actors). This growing actor store contains the implementation of a number of ac-
tors that can make up an application. Examples of available Actors include actors
for arithmetic computations, graph structure elements, sensor readers and I/O pin
handlers.

Actors are very easy to implement in Calvin and are described using either the
Python or C language. The developer has to describe the input ports, output ports
and how the actor should be triggered to execute its task. An example is an actor
that reads the temperature using a temperature sensor. The actor would typically
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have two ports, one input port for triggering the reading of the temperature, and
one output port for transmitting the result of the read. Since a temperature actor
relies on the availability of a temperature sensor, the developer of the actor also
has to specify that as a requirement for the actor. How requirements are specified
and matched with capabilities is described in section 4.4.1.

4.3 Applications

4.3.1 Calvin Script

The connect stage of the Calvin lifecycle is when the dataflow graph for the appli-
cation is described. The application graph is described using a small and simple
to use script language called CalvinScript. There also exists a visual tool for
generating CalvinScripts from a graph if one prefers visual programming.

In the first part of a CalvinScript all actors are specified. Then the connections
and rules for the graph are described. A simple application graph is shown in figure
4.1 with its corresponding Calvin script in listing 4.1. There is one source node in
the graph which is a timer that triggers at a given interval (of two seconds in the
example). A camera receives the trigger from the timer and takes a picture. The
bitmap is forwarder to the sink node that displays the image on a screen.

Timer Camera Display

Figure 4.1: Simple Calvin application graph for a camera system.

1 s r c : s td . Tr igger ( t i c k =2, data=1)
2 cam : media . Camera ( )
3 s c r e en : media . ImageRenderer ( )
4 s r c . data > cam . t r i g g e r
5 cam . image > sc r een . image

Listing 4.1: Simple Calvin application for a camera system

As can be seen in listing 4.1, the actors are named in different namespaces
in the actor store for organizational purposes. The simplicity of the Calvin script
language makes application development very fast provided that the actors needed
are already implemented. It lets the developer focus on the application itself while
not having to worry about the underlying communication between the actors or
platform specifics [32].

The CalvinScript language allows for grouping of actors into components.
Components behave exactly like actors to the application and allows for easy
reuse of larger graph sections [33].
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4.3.2 Deployment

The actors of an application such as the one described in listing 4.1 do not neces-
sarily all have to run on the same runtime. When deploying the Calvin application
actors are deployed to runtimes that can handle that type of actor. If there is no
runtime that can handle a specific actor, it becomes what is called a shadow actor.
A shadow actor is an actor which is instantiated but not running and waiting
to be migrated to a runtime that it can execute on. The Camera actor must for
example run on a runtime that has access to a camera such as a laptop, and the
ImageRenderer must run on a device that has a screen.

The deployment of an actor is not static and can change during runtime. The
migration of an actor can either be triggered automatically through the control
or automatically by the platform. In [8] Tomas Nilsson described how an actor
can be migrated to and from a runtime based on factors such as the time of the
day. The Camera actor could be moved around over the day to different security
surveillance cameras based on their location.

An important aspect and consequence of the actor model is that an actor
instance during runtime can be fully expressed by its internal state [6]. An actor
can be fully serialized only by storing the data on the port queues together with
the actor’s internal variables. This allows for simple migration of actors during
runtime without interrupting the running application.

4.4 Runtime

The entity that handles the execution of Calvin actors is called a Calvin runtime.
Runtimes can exist on many different types of platforms and handle multiple
number of actors at once. The runtimes can be controlled via the RESTful control
API.

4.4.1 Requirement Matching

To decide on which runtimes the actors of an application should run, an applica-
tion is deployed with certain requirements. The requirements of an application can
be used to connect an actor to a certain runtime by name or geographical location.
Calvin handles and matches actor and runtime attributes when deploying an appli-
cation. If multiple runtimes fulfill an actors requirements the actor is instantiated
at an arbitrary node decided by the runtime that handles the deployment.

Before an actor gets migrated to a runtime, the actor’s system requirements
must also be fulfilled. For a Camera actor to run on a certain runtime, that runtime
must have access to and know how to use a physical camera. When implementing
an actor, the developer must describe what resources from the platform that the
actor needs to use. Calvin implements a HAL called Calvinsys to handle this.
An actor may use Calvin API calls to request Calvinsys object references that can
be used to access hardware components. The objects have the same structure on
all platforms but the underlying implementation may vary.

Requirements are specified and organized in namespaces. If an actor has the re-
quirement to use a camera, it must specify so by informing the Calvin runtime that
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it needs to use the Calvinsys object named calvinsys.media.camerahandler.

4.5 Communication

Calvin defines a protocol in the application layer of the OSI model to be used
for all communication beween runtimes. The protocol is a text-format protocol
and uses JSON for data formatting. The protocol does however allow runtimes to
negotiate about data encoders to be used to encode the JSON data.

4.5.1 Runtime Addresses

The communication between nodes is completely transparent to Calvin applica-
tions, the application developer does not have to get involved in the actual mech-
anism that the runtimes uses to send data in between them. To identify a runtime
and the method of communication, a certain address namespace is used internally
in Calvin. All addresses are divided into an address part and a transport mech-
anism part as [transport mechanism]://[address]:[address option]. For
example, for communication over sockets using the Internet Protocol (IP), the ad-
dress could be calvinip://192.168.0.5:5000. The address is the IP address to
the unit and the address option is used to specify the TCP port to connect to.

4.5.2 The Calvin Protocol

Calvin implements a pluggable infrastructure for the transportation and coding
of messages between runtimes. The first thing that happens when two runtimes
connect is that a join request message is passed from the entity initiating the
connection. The message holds information about how the connection should be
formed and how messages should be coded. The join request message is always
uncoded and formated using JSON.

Calvin currently implements data coders for ASCII coded JSON and the binary
JSON like standard MsgPack [19]. The runtimes may however negotiate about
using other data encoders if they are implemented. The protocol the runtimes
uses is however well defined. Messages are sent as dictionary data structures that
can hold key/value pairs of data and are called tokens.

4.6 Calvin Constrained

The vision of Calvin is to have a platform that allows any device to talk to any other
device. There is a large set of common IoT devices with very constrained resources
in terms of computing power, battery assets and radio connectivity [34]. A simple
temperature sensor might not, and should not, need a full computer capable of
running Python and Calvin base in order to work. Calvin Constrained (CC) is a
Calvin implementation aiming at those constrained devices. By offloading some
of the heavier tasks of a Calvin runtime, CC can run on very limited devices and
execute actors and handle a HAL. CC is currently a project in fast development.
The implementation can run on any platform that has a GCC compiler and is



Calvin - The distributed IoT platform 23

capable of using sockets. CC has also been implemented and ported for Nordic
Semiconductor nRF51 chips running an ARM CPU that uses IPV6 over Bluetooth
for communications. With this thesis CC is also available for the Android operating
system running on devices with an x86, ARM or MIPS architecture.

4.6.1 Architecture

Although Calvin Constrained is a full member of the Calvin platform, it relies on
being connected to a Calvin base runtime as shown in figure 4.2. All communica-
tions to and from CC is proxied over the Calvin base host runtime, and tasks such
as writing to the DHT can only be performed by the Calvin base runtime. There
is therefore currently no way for a Calvin application to only run using instances
of CC.

Calvin Constrained 
runtime

Calvin Base 
runtime 1

(CC host runtime)

Calvin Base 
runtime 2

Calvin Base 
runtime 3

Figure 4.2: A setup of a Calvin system with a device running Calvin
Constrained.

A CC runtime behaves just like any other Calvin runtime for an application
or actor developer. It is possible to migrate actors to and from a CC runtime,
and via Micropython [35], a CC runtime can even run actors written in Python.
There is however, to the application developer, a hidden layer when a CC runtime
connects to a Calvin base host runtime. Calvin constrained extends the Calvin
protocol with the PROXY_CONFIG.

4.6.2 Setup

When a CC runtime has discovered and connected to a Calvin base runtime it
issues the PROXY_CONFIG command. This is done in order to configure and set
up the CC environment and register itself with the Calvin base host runtime.
Configuration parameters are sent together with the PROXY_CONFIG command.
The configuration parameters are stored in the DHT by the Calvin base runtime to
make the CC runtime visible from other Calvin connected nodes. The capabilities
of the CC runtime are specified using the normal namespacing structure as for
any other Calvin device and is sent with the PROXY_COMMAND. An example of the
PROXY_CONFIG command is shown in appendix A.





Chapter 5
Mobile devices in Calvin

This chapter explains and discusses the proposed solution to the main problem
forumulation of how Calvin can make the best use of a mobile device. The chap-
ter discusses different methods to solve problems concerning application structure,
mobile device communication, battery consumption, and Calvin application capa-
bilities access (Calvinsys). A demo application that shows how a mobile device as
part of the Calvin platform is presented in the end of the chapter.

The solutions described in the chapter have been implemented as part of the
Calvin Base [4] and Calvin Constrained [36] repositories and are available on
GitHub for download. As part of the implementation, documentation on how
to use the code and continue development has been created. The documentation
is also available in the two Github repositories.

5.1 Architecture

Every application that is to be executed in Android is ran under the Android
framework and must therefore be adapted to fit in the system. The proposed
Calvin runtime application for Android has been divided into a native runtime
part and a Java layer as seen in figure 5.1. The Java layer is responsible of main-
taining the contact with the Android framework and make the Calvin Constrained
implementation fit into the application framework. The native part of the appli-
cation is responsible of running the actual Calvin runtime which originates in the
Calvin constrained implementation.

The Java layer is furthermore divided into four components as can be seen in
figure 5.1. The layer exposes an API to let third party applications on the mobile
device communicate with the Calvin runtime. The API is presented and discussed
in section 5.10. The Java layer uses the Android API methods to implement a
transportation method for Calvin using FCM which is explained in section 5.2.
The Java part of the Calvin Android application also controls and maintains the
lifecycle of the native runtime code. It controls when the runtime is to be started,
stopped, and how it is configured. There is a channel of communication between
the Java part of the application and the native part. The Java layer implements a
protocol to be able to communicate with the native part of the application which
is described in section 5.5.1.
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io.Button
Camera trigger Actor

media.Camera 
Phone Camera Actor

media.ImageRenderer 
Monitor Actor

door.Door
Servo control Actor

io.Button
Open Door Actor

io.Button
Close Door Actor

Calvin on Android device

Calvin on laptop

Calvin on Raspberry Pi

Figure 5.1: Calvin Constrained for mobile devices architecture

5.2 Connectivity

A mobile phone can communicate over the Internet using many different methods
depending on the supported hardware. Most modern phones can send data over
3G, 4G, WIFI, USB, Bluetooth and the soon to be 5G. The big difference between
a mobile device and a more static device such as a PC or Raspberry Pi is that
mobile devices move around and change connectivity method very often. If a user
of a mobile phone enters a building, the mobile phone may connect automatically
to the WIFI if it has been connected before. And in the same way, when a user
exits the building he may connect to the Internet using a cellular network. Even
when connected to cellular networks, the mobile device’s connectivity method may
change between 3G, 4G, and 5G depending on cellular coverage. With a change of
connectivity the IP address usually changes. Since the mobile device is changing
network the number of accessible devices through a local IP address changes. The
need of a universal connectivity method that works on any network where it can
access the Internet is a must for mobile devices. The mobile device must be able
to communicate even if the proxy runtime does not have a static IP address or a
DNS hostname pointing at it. The communication channel must also be able to
bypass any firewall, such as built in firewalls in home routers.

5.2.1 Transport Mechanism

Calvin constrained has support to communicate using either a socket implemen-
tation or IPv6 over Bluetooth on the Nordic Semiconductor NRF52 platform. In
the case of Bluetooth, the communication is very limited. Bluetooth requires the
devices to be within a distance of 100 meters [37], has relatively low bandwidth
and is not ideal for mobile devices that move around a lot. The CC runtime may
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also connect to the proxy runtime using a socket. The socket connection however
requires the CC runtime to know the IP address or hostname to connect to, this is
not the case for most common Calvin base runtimes. The Calvin base runtime is
often running on an isolated LAN behind a firewall with no open ports and there
is often no DNS record for that IP address.

The proposed and implemented solution to solve the connectivity issues are to
use a third party server as shown in figure 5.2. The third party server is accessible
from the whole Internet via a record in a domain name system (DNS) server and
acts as a proxy server. It is the responsibility of the mobile device and the Calvin
proxy runtime to act as clients and always keep an open connection to the proxy
server. If a mobile device looses its connection to the proxy for example from a
change in connectivity method, it is the mobile device’s responsibility to open a
new connection to the proxy server. By keeping the connections open at all time,
data can be routed from mobile devices to the Calvin proxy runtime and vice
versa.

Proxy server

Calvin base
proxy runtime

CC on Android runtimes

Figure 5.2: Communication between CC and Calvin proxy runtime
using a proxy server.

The use of a proxy server adds a layer to the protocol used for all datapack-
ets sent. The proxy server uses this layer to implement an address namespace
for the Calvin base proxy runtimes and the CC runtimes running on the mobile
phones. Together with the destination and source addresses, information about
authentication is sent to keep the communications channels secure.

Both Google and Apple, the vendors of Android and iOS, distribute services,
servers and API:s that are of help when implementing the proposed solution above.
Google distributes a service called Firebase Cloud Messaging (FCM) [38] and is
built into the core of the Android operating system. Apples version of a simliar
service is called Apple Push Notification Service [39] (APNS).

There are many advantages of using a widely spread and maintained service
such as FCM and APNS. The services are built into the operating systems which
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maintains the long lived connection to the proxy server in a battery and data
efficient way. In the case of Android and FCM, the service only keeps one shared
connection to the FCM service for all apps running on the phone. FCM may
bundle data from different apps and send them at the same time to make the
connection more efficient. In the same way, upstream messages from the server
may be buffered in the proxy server if the mobile device is in hibernation mode or
if it is not efficient for some other reason to send it right away. All these algorithms
for battery and data efficiency are built into the FCM system and should therefore
be used opposed to building a separate proxy server solution.

5.2.2 Firebase Cloud Messaging Layer

The connection between the mobile phone and the proxy server in FCM is for An-
droid developers a big black box. The communication is handled by Android, and
Google has created API:s to receive and send messages over the tunnel. However,
the tunnel between the proxy server and the Calvin base proxy runtime is well
defined. The communication is done over a UDP connection and encrypted using
TLS. The application layer protocol used is XMPP. FCM uses XMPP for authen-
tication as described in section 2.4. The communication for payload packages is
then done using JSON wrapped in a XML structure as seen in listing 5.2.

It is important to have a defined way in a distributed platform to identify and
be able to connect to the nodes. For IP connections the address schema calvinip
is used inside Calvin to route traffic to the correct host. For connections established
over FCM, a new schema calvinfcm was proposed and implemented. The schema
has the form

calvinfcm://[sender id]:[device token]

For each setup of Calvin that needs to use FCM as a transport mechanism, an
API key must be retrieved from Google. A part of the API key is the sender id.
The sender id is a numeric string, unique for each setup of FCM and is connected
to the Android applications package name. The device token is a unique token
for each mobile device and works as an identifier. The token is retrieved by the
Android device from the proxy server the first time the application is started. For
servers (Calvin base proxy runtimes) listening for messages from any device in the
given sender id namespace, a * is allowed as a wildcard address.

To start a Calvin base runtime proxy that listens for FCM messages, one must
use the --uri flag. An example is that one can start a runtime that listens for
FCM messages and initiates a socket server by using the csruntime tool with the
flags

csruntime --host 127.0.0.1 --port 5000 --controlport 5001 --uri
calvinfcm://773482069446:*

When starting a Calvin base proxy runtime with a URI in the calvinfcm
namespace, the runtime starts by authenticating itself with the proxy server. An
example of the authentication handshake with a Google FCM server as a proxy
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server is shown in appendix A. When the Calvin proxy runtime is authenticated,
it can receive and send data packets over the open link.

As shown in figure 5.3 there is a structure in the layers of protocols when
communicating over FCM in Calvin. The application layer in the OSCI model
[40] is divided into three new layers, the protocol used by FCM, the protocol to
handle FCM Calvin messages and the actual Calvin protocol. Comparing to the
normal Calvin communication over sockets, the two extra layers for FCM and
Calvin FCM have been added.

FCM Protocol

Calvin FCM Protocol

Calvin Protocol

Application layer in OSI

Figure 5.3: The three layers of the protocol used for FCM in Calvin.

The FCM layer is handled by the definition of the FCM service. All data sent
over FCM is in a JSON structure wrapped in an XML tag. The Calvin FCM layer
is used by Calvin to bundle information about the messages and is used for setting
up and destroying Calvin links.

The Calvin FCM layer specifies two different types of messages. The message
type is specified with the msg_type key in the data structure. The purposes of
the three different message types are

• set_connect is used to initiate and destroy an FCM connection. The key
is used together with the connect tag that can hold a boolean value of
true if the connection is to be initiated or false if it is being destroyed.
An example of a connect message is shown in listing 5.1. If this message
is sent to initiate a connection from the mobile device, this call can be
compared to a system call to connect() on a socket when using sockets
for transportation. When the Calvin proxy runtime receives this message
it sets up an FCM connection and returns an ACK message to the mobile
device.

• payload is used with the payload key to send raw Calvin messages as can
be seen in listing 5.2.
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1 <message id ="[message id ]">
2 <gcm xmlns="goog le : mobile : data">
3 {
4 "data " :{
5 "msg_type " :" set_connect " ,
6 " connect " :"1"
7 } ,
8 " time_to_live " : 0 ,
9 " from " : " [ unique dev i c e token ] " ,

10 "message_id " : " [ unique message id ] " ,
11 " category " :" e r i c s s o n . com . c a l v i n . ca lv in_cons t ra ined "
12 }
13 </gcm>
14 </message>

Listing 5.1: Example of a FCM connection message.

Listing 5.2 shows an example of an FCM message with Calvin payload data
and the necessary key/value pairs needed by the FCM protocol. Payload data in
FCM is wraped in the JSON structure and identified with the data key as seen
in the example in listing 5.2. The data tag is used by the Calvin FCM protocol
to send messages about connection, disconnection and payload data messages.The
msg_type tag is used to identify the type of Calvin FCM message being sent. The
actual Calvin payload data is identified by the payload string. Tags in the first
level of the structure are parts of the FCM protocol and are used by the proxy
server. The time_to_live (TTL) tag is used to specify the time that the server
should buffer the message if the device or Calvin proxy runtime is unavailable. A
value of 0 informs the proxy server to deliver messages immediately or never at
all. The message_id tag is a uniquely specified value for each sent message over
the proxy server. This value is used to identify the messages and is sent with ACK
messages from the Calvin proxy runtime to the FCM proxy server. The protocol
also requires the from tag to be specified. This is for mobile devices, the device
token and for Calvin proxy runtimes the sender id. The category tag links the
message to a certain Android application.

1 <message id ="[message id ]">
2 <gcm xmlns="goog le : mobile : data">
3 {
4 "data " :{
5 "payload " : " [ base64 encoded data ] " ,
6 "msg_type " :" payload"
7 } ,
8 " time_to_live " : 0 ,
9 " from " : " [ unique dev i c e token ] " ,

10 "message_id " : " [ unique message id ] " ,
11 " category " :" e r i c s s o n . com . c a l v i n . ca lv in_cons t ra ined "
12 }
13 </gcm>
14 </message>

Listing 5.2: Sample FCM packet with payload data.
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Calvin constrained uses Message Pack instead of JSON to code payload data.
Message Pack is a binary data structure and cannot be directly wrapped in JSON.
The solution is to code all payload data to be sent over FCM using the Base64
algorithm described in section 2.5.2 since that base is represented by allowed char-
acters in JSON. The Base64 encoded data can then be wrapped in the JSON
message structure used by FCM. The encoding however increases the size of the
actual payload data. This effect of the encoding is discussed and shown in chapter
6.

5.3 Discovery

When starting a CC runtime, a list of URIs to proxy runtimes has to be specified.
One can trigger a search over the simple service discovery protocol (SSDP) by
specifying the string ssdp in this list. When a runtime has been found using
SSDP, the CC runtime can connect to the found runtime and use it as its Calvin
proxy ruuntime.

When using the FCM transport mechanism however this is not needed. The
mobile device can connect to the Calvin Base proxy runtime regardless of the
network the mobile device is connected to as long as the mobile device knows the
sender id of the Calvin base runtime. This allows for very useful applications to
be written. For example, if the runtime is started when the device only has LTE
connectivity, it can still find the Calvin proxy runtime to connect to and start
sending and receiving data.

5.4 Choosing Transport Mechanism

When the runtime on the mobile device is started, a list of Calvin interfaces
which it can use for communication is specified. The list is prioritized in the
order of which Calvin should try to find and connect to a Calvin proxy runtime.
To make the best use of this feature on Android, the list should start with a
calvinip address followed by a calvinfcm address. If a connected interface loses
its connection, the runtime tries to connect to the other interfaces in the list. For
example, if a runtime is connected over Wifi using a socket and the mobile device
loses its connection, the runtime will switch the connectivity method and start
using FCM for communication with the proxy runtime.

The FCM transportation method is almost always connected to the proxy
runtime via the FCM server. In some cases FCM may be slow, and may not
be the best choice of transportation method. For example if the device connects
to a network that can be used for direct communication over a socket to the
proxy runtime, it may still use FCM as long as the mobile device has internet
connectivity. The Calvin service on Android devices therefore uses the broadcast
intent messaging system, provided by the Android OS to listen for connectiv-
ity changes. When the Calvin runtime is started, the service registers for the
android.net.conn.CONNECTIVITY_CHANGE intent. The Android OS sends this to
indicate a change of connectivity, and by filtering these messages, newly connected
networks may be discovered. When a newly connected network is discovered by
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the Calvin service, the runtime is indicated to try to connect to the highest pri-
oritized interface. This way, the mobile device will always try to use the best
interface possible at all times, but can always rely on falling back to FCM.

5.5 Calvin and the Mobile Platform

5.5.1 Platform communications

The native Calvin runtime part of the application must run in its own thread
in an Android Service at all times, since it is a completely blocking task. The
native CC runtime is completely asynchronous and only acts on data written to
file descriptors. To make the Calvin runtime be able to communicate with the
Java layer of the application a UNIX pipeline is set up at the initialization of the
application. The pipeline allows the Java part to write data that can be read by
the native part and vice versa by letting the native part listen for the pipe’s file
descriptor.

5.5.2 Pipe Protocol

The pipe protocol is a simple binary protocol with three parts as seen in figure
5.4. The first four bytes (32 bits) in each message sent over the PIPE are set as
the total size of the data. The following two bytes (16 bits) are set as two human
readable characters to represent a command as described below. The bytes after
the command bytes are used for payload data. The size of the payload message is
only limited by the largest number that is possible to write in the size part (minus
two bytes needed for the command). Since the size part consists of 32 bits, the
maximum number of bytes in the payload is limited to 232− 2 bytes. The size of
the payload data plus the size of the two byte long command must however match
the size set in the first four bytes. The contents of the payload data is specified
by the different commands but is expected to be Message Pack encoded.

2 bytes4 bytes Variable size

Size Command Payload

Figure 5.4: Figure explaining the sections of the data sent over the
pipe.

The different commands are used to trigger different tasks and can be sent
either way on the pipe. The implemented commands are as follows with the two
command bytes within parentheses.

Runtime started (RR) is sent from the native end of the pipe to indicate that
the native runtime is started, connected to the proxy runtime and ready to receive
incoming tokens. There is no payload data sent with this command.



Mobile devices in Calvin 33

Runtime stop (RS) is sent from the Java end of the pipe and indicates that
the runtime should terminate itself. There is not payload data sent with this
command.

Runtime stop and serialize (RA) is sent from the Java end of the pipe and
indicates that the native part should serialize itself and write the contents to the
disk. When it has been serialized it should terminate itself. There is no payload
data sent with this command.

Calvin data (CM) is sent from the Java end of the pipe to pass payload data
directly to the CC runtime code. The payload data of this command is handled in
exactly the same way as data received on a socket connection when using sockets
for transportation would be. This command is used by the FCM transportation
mechanism to pass Calvin messages between the native part and the Java part.

FCM Connect (FC) is sent from the native part of the application, more pre-
cisely from the FCM transportation implementation, to indicate that the Java
part should send a FCM connect message to the proxy runtime. This command
is part of the FCM transportation mechanism and is more explained in section
5.2.2. There is no payload data sent with this command.

FCM Connect reply (FR) is sent from the Java end of the application. The
message indicates that the Java part of the application received a connect reply
message over FCM from the proxy runtime. This command is part of the FCM
transportation mechanism and is more explained in section 5.2.2. There is no
payload data sent with this command.

Trigger reconnect (RC) is sent from the Java end of the application to indicate
a change in connectivity. This is for example sent when the mobile device looses
WIFI connectivity and is connected over LTE instead. This command is more
explained in section 5.4. There is no payload data sent with this command.

Register Calvinsys (CS) is part of the Calvinsys API described in section 5.10.
The CS command is sent from the Java end of the application to indicate that a
third party application is registering itself to be a Calvinsys. The payload data
of the command is MessagePack encoded data and contains information about
the Calvinsys object to be created and the third party application.

Destroy Calvinsys (CD) is part of the Calvinsys API described in section 5.10.
The command is sent from the native part of the application to tell an exter-
nal Calvinsys application that the Calvinsys was destroyed by the application.
The payload data is MessagePack encoded and contains information about the
Calvinsys object to be destroyed.

Init Calvinsys (CI) is part of the Calvinsys API described in section 5.10.
The command indicates that an actor would like to use a Calvinsys object. The
payload data contains information about the Calvinsys object to be initiated.

Calvinsys payload (CP) is part of the Calvinsys API described in section 5.10.
The command can be sent both from the Java and native end of the pipe to
indicate data being sent to and from a Calvinsys implemented in a third party
application. The payload of the command is MessagePack encoded and holds the
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data to be sent between an actor and a Calvinsys object. One can think of this
command as a mechanism to simply forward data sent when using the read and
write functions of a Calvinsys as described in 5.10.

5.6 Power Management

Power management is an important topic that every mobile application must be
aware of and make the best of. A mobile device is very limited when it comes
to power and users expect the mobile device’s battery to last for a long period of
time and not to be drained quickly. Applications that drain to much battery from
the device are likely to be uninstalled and are not appreciated by the users.

Techniques to reduce the power consumption of the Calvin runtime have been
implemented in especially one mayor way. The Calvin runtime can go into a
deep sleep mode where its Service is completely killed. The decision to kill the
Calvin runtime can come from two different sources, the operating system or by
runtime inactivity. As described in chapter 3.3 the operating system may destroy
the service for different reasons, mainly to let other applications execute when the
Calvin runtime is in the background and not bound to any UI component.

The trigger to destroy the Calvin service may also come from inactivity. When
the runtime has not received or sent any token on the active transportation method
for a specified time, the service is destroyed. The default time for destroying the
service because of inactivity is ten minutes. This time may however be modified
during compile time by defining the SLEEP_AT_UNACTIVITY variable in the C pre-
compiler. When the service is destroyed it does not let the other nodes in the
Calvin platform know about it being destroyed. From the other nodes, the Calvin
runtime on the mobile device always seems to be running to keep the availability
of the node high. This means that other nodes that would like to communicate
with the sleeping runtime must have a method to wake it up.

A sleeping runtime on a mobile device can only be woken in two ways. Either
by a manual trigger to wake the Service or by a trigger from a token sent over
FCM. Since the Android operating system always keeps a link to the FCM proxy
server, the Java layer of the Calvin runtime is always listening for tokens sent over
FCM. If the runtime is sleeping when an FCM token is received, it simply wakes
the runtime up and passes the FCM message to the runtime when it is ready.

5.7 Serialization

When a runtime goes to sleep it is expected to be able to wake up at any time and
continue executing without interrupting the Calvin application. Since the Calvin
runtime is completely destroyed when it goes into deep sleep it must have methods
to be able to save it’s state to a persistent storage area.

It is easy to serialize the complete state of a runtime since it is fully defined by
the running actors together with meta information about the runtime’s configura-
tion. An actor is further serializable since it is fully defined by its internal state
and the port queues. This property is used when running any Calvin application.
When an actor is to be migrated or deployed, it is serialized to JSON and sent
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to the receiving runtime. The actor can then be instantiated using the serialized
data. Since Calvin Constrained uses MessagePack to encode all data sent to and
from the runtime, it is a natural choice to serialize the runtime into MessagePack
encoded data.

When a runtime is destroyed, it serializes itself and stores the data on the
mobile device’s SD card or internal storage area. At a later point in time when
it is supposed to wake up, this file can be read and used to restore the runtime
to exactly the same state as it was when it was destroyed. The serialized runtime
is stored in the isolated Android application storage area. This ensures that no
other application on the phone can access the serialized runtime and its data.

5.8 Configuration and Key Handling

5.8.1 Proxy Runtime

The Calvin proxy runtime can be started using the standard csruntime tool with
the --uri flag to specify that it should use FCM as a transporation method. The
proxy runtime must however also know the FCM API key which is specified in a
Calvin configuration file. An example of a configuration file to specify the FCM
API key is available in appendix C.

5.8.2 Android

The Android runtime is started in a completely different way than the proxy
runtime. The user who is starting CC on Android does not in general have access
to a command line interface and can therefore not specify runtime flags. The
configuration of the Android runtime has been divided into two parts, configuration
via an UI and build configurations. The build configurations are set by defining
pre compiler variables using the gcc compiler flag -D. The variables that have been
added to extend the original CC build systems as part of this MSc thesis are as
follows.

PLATFORM_ANDROID is specified to build CC for Android.

SLEEP_AT_INACTIVITY is specified to build the runtime to let it go into
a sleep mode when no tokens h e sent or received by a specified time.

PLATFORM_PIPE is specified to build the runtime so that it sets up a UNIX
pipe that can be used for communications with the platform. This is used to
activate the functionality so the native part of the application may communicate
with the Java part.

TRANSPORT_FCM is specified to build the files needed to communicate
using the FCM transport mechanism.

To control the actual runtime a simple UI was created which can be seen in
figure 5.5. The UI allows the Android user to start and stop the runtime and to
configure parameters. The name of the runtime may be set together with a list
of URI:s that the CC runtime should use when connecting to the proxy runtime.
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The application also allows the runtime to be started as soon as the application
is launched through the autostart feature. The user may also specify that the CC
runtime should be started in a clean way and not use any serialized state that
potentially could exist on the disk.

5.9 Capabilities

A modern mobile device is a small and portable computer running an advanced
operating system and equipped with copious sensors. Many devices have sensors
and capabilities including a touch screen, dual speakers, an accelerometer, a gy-
roscope, a humidity sensors, a pressure sensor, and a proximity sensor. All of
which can be used cleverly by mobile phone applications. However mobile devices
have very different hardware, some models may introduce new sensors that are not
available on older phones, and some models may simply be simpler models with
less number of sensors. Calvin introduces a capability matching system to match
capabilities with actors that can execute on a runtime based on its capabilities.

5.10 Hardware Abstraction Layer

The hardware abstraction layer (HAL) Calvinsys has not been subject to much
research within Calvin. As described in section 4.4.1 Calvinsys is used by actors
to access hardware that is available to the runtime through an API. A Calvinsys
object is returned by the platform to an actor when it needs to use a hardware
feature such as a thermometer sensor. It is up to the actor developer to know how
the structure of the returned Calvinsys object looks like and what the available
functions are. Different Calvinsys objects have a different set of functions that take
different parameters. There is no version handling of the Calvinsys implementa-
tions, and making a change to a Calvinsys implementation may result in errors in
many actors. Calvin is in need of a generalized way of accessing hardware that is
future safe and allows for expansion.

The proposed solution for the new hardware abstraction layer in Calvin was
inspired by how the Linux kernel handles device drivers. Linux device drivers are
categorized into three types, character (char) drivers, block drivers, and network
interfaces [41]. The proposed solution for the new Calvinsys is somewhat similar
to char drivers in the sense that almost all communication with the driver, Calvin-
sys object in Calvin, is a character based stream of data. A convenient way of
implementing a char driver is therefore to let the driver expose a file descriptor
(FD) that applications on the device can use. Applications that would like to
communicate with the driver can write and read from the FD to access functions
in the driver.

To make the HAL in Calvin look and behave the same among different plat-
forms and implementations of Calvin, a generalization and standard was set. The
standard states that every Calvinsys implementation must expose four functions
that are well defined and visualized in figure 5.6. On all platforms where the
Calvinsys is implemented, these functions must behave the same and perform the
same actions. The functions are meant to be exposed for every Actor that needs to
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Figure 5.5: The Android UI for controlling and configuring the
Calvin runtime.
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Figure 5.6: The architecture of the new Calvinsys implementation.

access a Calvinsys implementation. The Actors can do this by requesting a Calvin-
sys object by using an API exposed by the Calvin system. The Calvinsys API
handles all instantiation and distribution of Calvinsys objects on the platform.

The Calvinsys implementation is plugin based depending on the platform type
the Calvin runtime runs on, since it may vary a lot. For example may there be
thermometer sensors of different models on different platforms, but they should all
be accessed in the same way through the Calvinsys. The actual implementation
of the Calvinsys should be a black box to the actor developer who only should see
the four exposed functions, which are:

• Init

• Release

• Read

• Write

When an actor needs to use a hardware device it can request a reference to
a Calvinsys object that exposes the functions above. This is done through the
Calvinsys API which is defined in the Calvin runtime. When an actor actually
wants to use the requested Calvinsys it must call the init function of the object.
This lets the Calvinsys object get a chance to initialize variables and allocate
memory for future use. If the Calvinsys object is for measuring the acceleration
using an accelerometer, the init function can for example tell the hardware to
initiate the sensor and start measuring.

When an actor has finished using the Calvinsys object calls the Calvinsys to
clean up its resources and stop its task by calling the release function. The actor
may also get a call from the Calvinsys object telling the actor that the hardware
has become unavailable through a release call. The actor must be able to receive
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these calls and handle the unavailability of the hardware. In cases where the actor
requires the Calvinsys in question, it must be migrated to another runtime. If no
other runtime exists that can handle the actor, it becomes a shadow actor. A call
to the release function is only valid if the Calvinsys object has received a previous
call to init. But a release call can be followed by calls to init again if the actor
would like to use the hardware at a future point in time.

The two functions read and write are used by the actor to communicate with
the Calvinsys when it is active. The actor my call the write function to send
messages to the Calvinsys object. To make it easier for actor developers, messages
are divided into a command part and a payload part. The command is issued to
the actor as a statement to do something. For an LCD monitor, this could be
a trigger to show an image. Every command sent can be bundled with payload
data. This data must be a dictionary structure that can hold key/value pairs that
can be serialized to a JSON format. There may therefore not be any binary data
in the payload part of a message to a Calvinsys object. If the actor needs to
send binary data it must first encode it using Base64 or similar. An example of
payload data is when triggering a monitor to display an image. The image may
be Base64 encoded and sent as a key/value pair to the Calvinsys object. The
dictionary structure used to hold the data may be implemented in different ways
depending on the language that the runtime is written in. The structure in the
Python language would be a Python dictionary while the dictionary is encoded
using MessagePack in Calvin Constrained.

The actor may read data from the Calvinsys object by a call to the read
function. If there is data available from the Calvinsys object it will be sent in the
same structure as when writing data to a Calvinsys object with a command and
payload part.

The structure of the proposed new Calvinsys implementation comes with many
benefits. It makes it easier for both actor and Calvinsys developers to create new
components. The protocol to be used for the payload data and the command part
must however be well defined and the same for all implementations. The proposed
Calvinsys object is however easy to upgrade and change without affecting older
systems. It is just the internal code of the Calvinsys implementation that has to be
changed, and there can be no change of the exposed functions. One may also create
commands to let actors poll the Calvinsys object for available functionality. This
could be useful since similar sensors may work in different way. On one runtime a
temperature sensor may be polled for data while it may write the temperature on
the read port when it has data on another runtime. By letting these two methods
of collecting temperature data be exposed in different way, the application develop
has more control over the system.

For future implementations the propsed HAL structure could allow the de-
ployment mechanism in Calvin to not only filter on requirements but also on the
available set of commands for a Calvinsys implementation. This allows the run-
times to filter on a finer level than before. An actor may for example require that
an accelerometer can deliver data with an accuracy of 64 bits by looking at the
available set of commands.
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5.10.1 Dynamic Calvinsys Loading

The structure of the generalized Calvinsys object allows for development of dy-
namically loaded Calvinsys objects. The Calvin runtime may expose an API and
let other entities register themselves to expand the capabilities of a runtime. Since
all data that is sent between the Calvinsys object and the actor is characters, this
API could for example be exposed using the control API over a normal socket port
or USB interface. This could allow for example a USB camera that is connected to
a device, to register itself with the Calvin runtime and allow actors that require a
camera to be migrated. The API can also be exposed over the internal messaging
system used in Android to allow third party applications to register themselves
with Calvin to increase the number of capabilities in the platform. This is further
investigated in section 5.11.

When a CC runtime starts it issues the PROXY_CONFIG command to a proxy
runtime to set itself up as described in section 4.6.2. This command holds in-
formation about the runtimes capabilities which is stored in the DHT. When a
Calvinsys object is loaded dynamically during runtime, it must tell the platform
about its new capabilities. By resending the PROXY_CONFIG command with a new
set of capabilities specified, this can be overwritten in the DHT to allow actors to
be migrated.

5.11 Third Party Applications

One of the great functionalities of a mobile Android device is implemented in
different downloadable applications. Appliactions may implement features such
as the ability to post on Facebook via the Facebook application or authenticate
users via the Bank-ID application. The nature of an Android device lets mobile
applications depend on other mobile applications. If one receives a URL to a web
page in a text message, the messaging application may tell the browser on the
phone to display the contents of the web page since the messaging application is
unable to render web content. Similarly other applications on the phone needs
to be able to communicate with the Calvin runtime. As part of this MSc thesis
an API has been exposed to let applications register themselves to implement a
Calvinsys. For example could the Twitter Android application register itself to
be let Calvin applications post on Twitter. When an Actor then would like to
use the web.twitter Calvinsys, the implementation of the Calvinsys would be in
the Twitter application. The Calvinsys would still behave and act like any other
web.twitter Calvinsys for the Actor.

5.11.1 API

The Calvinsys API for third party applications is exposed over the bind Service
functionality in Android and fits into the Calvin Android architecture as seen in
figure 5.1. If an application on the phone would like to register it’s ability to
implement a Calvinsys it first has to bind to the
ericsson.com.calvin.calvin_constrained.CalvinService Service. The com-
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munication between the third party application and the Calvin application is han-
dled using the Android Messenger functionality.

When the third party application is bound to the Service it can start using
the Calvinsys API. The propsed structure of the Calvinsys as described in section
5.10 is used as a base to implement the API. The API exposes six methods needed
for the external Calvinsys implementations. It exposes the four functions needed
by an Actor to communicate with a Calvinsys as described in 5.10. The API also
implements one method that third party applications can use to register themselves
as a Calvinsys implementation and one method to unregister themselves.

Every message sent over the API is divided into a what variable and a set of
key/value data pairs. The what variable is used to tell the receiver what method
should be called and the key/value paris can be used for payload data.

When a third party application is bound to the Calvin Service it issues the
REGISTER_CALVINSYS call over the retrieved Messenger. The call to register a
Calvinsys is bundled with the name of the Calvinsys, as a key/value data pair,
that the third party application implements. When the Calvin Service receives
a REGISTER_CALVINSYS message it dynamically loads the Calvinsys object as de-
scribed in section 5.10.1 which allows actors that use the loaded Calvinsys to be
migrated to the mobile device.

If a Calvinsys that an Actor would like to use is implemented in a third party
application, all calls to the four Calvinsys methods are forwarded to the third
party application by the platform. It is no difference for Actor in how they use
Calvinsys objects depending on how they are implemented. It is simply up to the
third party applications to handle forwarded calls over the Messenger API from
Actors.

5.12 Proof of Concept

To show the strengths and flexibility of the proposed and implemented solution
for how Calvin should handle mobile devices, an example application was created.
The example application, which is show in figure 5.7 runs on three devices. It
needs an Android device, a computer and a Raspberry Pi with a connected servo
motor.

The example demos an access control system for a door. Commonly access
systems include a surveillance camera next to a door, and a person monitoring the
camera to open the door for authorized persons. The idea of the example is to
replace the camera with the camera in people’s mobile phones. When a user would
like to get authorized to access a door, two actors are migrated to the person’s
phone. The person uses the camera in the mobile device to take picture of his face.
The picture is sent to the person monitoring the door who can decide whether or
not to let the person enter. When the person has entered the door, the actors can
be migrated to the next person in line to enter for authentication.

The application graph for the setup is shown in figure 5.7. On the users
mobile phone there is a camera actor and a button actor to trigger the cam-
era to take a picture. The application clearly needs a UI on the mobile device
to be able to display the trigger button together with a view showing the cam-
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era image. The button and camera actors need the calvinsys.io.button and
calvinsys.media.camerahandler Calvinsys to run. These Calvinsys are implem-
nted in a third party application which also handles the UI. When the third party
application is launched, it register itself to handle the two Calvinsys implementa-
tions. This allows the button and camera actor to be migrated to the phone.

io.Button
Camera trigger Actor

media.Camera 
Phone Camera Actor

media.ImageRenderer 
Monitor Actor

door.Door
Servo control Actor

io.Button
Open Door Actor

media.Camera 
Close Door Actor

Calvin on Android device

Calvin on laptop

Calvin on Raspberry Pi

Figure 5.7: The application graph of the example application.

When the mobile phone user takes an image, the image is JPEG compressed
and encoded using Base64 since no binary data is allowed in the communication
between an actor and a Calvinsys. The image is forwarded to the computer which
runs a media renderer actor. The computer also runs two button actors that are
connected to the Raspberry Pi to allow control of the door. The Raspberry Pi
runtime runs the Door actor that knows how to control the door.

The demo application and instructions on how to run it are available in the
Calvin repository [4] on Github.



Chapter 6
Evaluation and Result

A mobile phone is a very powerful device with a lot of computing power and has
access to many different sensors. The device is however very limited when it comes
to RAM and battery usage. Mobile device users expect the device’s battery not to
drain quickly and the availability of running many applications at the same time.
All applications on a mobile device must therefore be very careful in the use of
RAM memory and must run in a power efficient way. This is especially important
for long term running applications such as Calvin since small errors in the code
may result in large memory leaks or unnecessary battery consumption.

The Calvin runtime application was analyzed and profiled in different aspects
regarding the consumption of RAM. One of the most power consuming component
of a mobile device is the radio. It is therefore crucial to keep the data transmis-
sions small and only send data when necessary. The proposed FCM protocol was
analyzed and compared to the socket implementation.

This chapter will explain the procedure of how these evaluations were done
and present the results of how the application behaves.

6.1 Evaluation Method

6.1.1 RAM Heap Analysis

Android handles RAM memory for Android applications in a very complex way
that is conceptually different from normal programs in Linux. Since every An-
droid application is executed on top of the Android runtime (ART) Java virtual
machine(JVM) it is up to the ART JVM to manage the heap.

In every Android system there is a background process called Zygote which is
started when the device boots. When an Android application is to be started by
the OS, this process is forked. The new process is used to load the application’s
code and start executing it. This allows every application on the system to have
an area of shared memory with other applications and the OS. This area is used
to store Android framework code and is used when memory needs to be shared
across applications [42].

The heap of an Android application is divided into two different groups, pri-
vate and shared heap memory. The two groups are then further divided into
clean and dirty heap memory. The clean memory are pages in the RAM mem-

43



44 Evaluation and Result

ory that is mapped to a disk while the dirty memory only exists in RAM. The
dirty heap memory is of little interest in Android since Android does not swap
and hence never maps RAM pages in the heap to the disk. There exists many
profilers for investigating the RAM such as the massif tool in Valgrind. The tool
can however not differentiate between the different heaps used by an Android ap-
plication. Google provides profilers for different aspects of the RAM where the
most capable is called dumpsys meminfo. The dumpsys tool allows for analysis
of both private and shared memory using a simple to use command line inter-
face. There also exists API methods in the Android framework for collecting data
from dumpsys which were used for the analysis in this thesis. To get an idea of
the available data in the tool an example of the output from the command line
interface tool is provided in listing 6.1. The tool was executed using dumpsys
meminfo ericsson.com.calvin.calvin_constrained in an Android shell as the
shell user.

1 App l i ca t i ons Memory Usage ( in Ki lobytes ) :
2 Uptime : 162481918 Realtime : 422168600
3
4 ∗MEMINFO in pid 2368 [ e r i c s s o n . com . c a l v i n . ca lv in_const ra ined ]∗
5
6 Pss Pr ivate Pr ivate SwapPss Heap
7 Total Dirty Clean Dirty Free
8 −−−−−− −−−−−− −−−−−− −−−−−− −−−−−
9 Native Heap 4245 4200 0 0 1536

10 Dalvik Heap 2257 2188 0 0 3415
11 Dalvik Other 468 384 0 2
12 Stack 158 156 0 0
13 Ashmem 2 0 0 0
14 Gfx dev 1678 1144 0 0
15 Other dev 4 0 4 0
16 . so mmap 3342 152 2196 77
17 . apk mmap 473 0 96 0
18 . t t f mmap 107 0 36 0
19 . dex mmap 1372 4 1368 0
20 . oat mmap 5018 0 3228 0
21 . a r t mmap 1847 736 312 30
22 Other mmap 119 4 76 1
23 EGL mtrack 25920 25920 0 0
24 GL mtrack 4532 4532 0 0
25 Unknown 469 464 0 6
26 TOTAL 52127 39884 7316 116 4951

Listing 6.1: Example output from the meminfo tool when executed
on the Calvin Constrained process.

In the output from the meminfo tool there are two columns for the private
memory and one column for the PSS, the proportional set size (PSS) memory,
which is the memory shared with other processes. For application analysis it
is however only the private dirty memory which is important since this is the
memory that is being used only by the application process and is returned to the
operating system when the application terminates.
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The private dirty memory is divided into the native memory and the Dalvik
memory (the tool presents it as the Dalvik memory but the actual JVM is ART).
The native memory are heap allocations made by native code such as from calls
to malloc in the Calvin Constrained code. The Dalvik memory allocations are
memory allocated on the heap in Java. Therefore this analysis focuses on the
private dirty native heap and the private dirty Dalvik heap.

To analyze the heap data a small monitor program was created. The program
samples the memory for the application on a given time interval. Crucial points in
the code where the memory would like to be analyzed was also used for sampling
the RAM. The data was stored on the phone and used for plotting the heap usage
in different scenarios. The result is presented in chapter 6.3.

The Android API methods used to access the dumpsys meminfo tool allocated
a small amount of memory on the Java heap to do the actual measurements. Even
though this is a fairly small amount of data it affects the measurements of the
Java heap usage. The tool does not allow the different objects on the heap be
analyzed. The dumpsys meminfo tool can for example not distinguish between
memory allocated for the Calvin runtime and the memory allocated for the UI.

The Android platform allows for Java heap dumps to be performed by using
the heap dump tool. The tool dumps the heap to a binary format called hprof.
The tool was used to analyze the Java heap at interesting moments in time and is
presented in chapter 6.3.

6.1.2 Network Usage

The three sample applications described in section 6.2 were analyzed. The new
transport method FCM was compared to the socket implementation. All tokens
sent between the Calvin runtime on the Android device and the proxy runtime
were logged. The tokens sizes were calculated and are presented for the three
different applications in table 6.5.

6.2 Setup

All expermients used two runtimes, one running on a mobile device and one run-
ning on a laptop. The mobile device was a LG Nexus 5x with the specifications as
described in table 6.1. For all experiments, all applications other than the Calvin
runtime were terminated to minimize the effect of external sources.

Table 6.1: Table showing the mobile device’s specification.

Model LG Nexus 5x
Android 7.1.2
CPU Qualcom MSM8992
RAM 2 Gb
Battery 2700 mAh

Three different Calvin applications were created in order to perform bench-
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marks. The connect application has no application graph but is rather a test
conducted to benchmark the transportation setup and the connect handshake be-
tween the CC runtime on the Android device and the Calvin base proxy runtime
on the laptop.

The identity application consisted of three actors where the Identity actor
was running on the mobile device. The application was deployed on the laptop
runtime and the Identity actor was migrated to the mobile device manually. The
Calvin script is shown in listing 6.2. The application was stopped after five triggers
from the CountTimer actor.

1 /∗ Actors ∗/
2 s r c : s td . CountTimer ( s l e e p =5)
3 echo : std . I d en t i t y ( )
4 snk : i o . Pr int ( )
5
6 /∗ Connections ∗/
7 s r c . i n t e g e r > echo . token
8 echo . token > snk . token

Listing 6.2: Calvin script for the identity application

The button application consisted of two actors and is quite similar to the identity
application. The application was deployed on the laptop runtime and the Button
actor was migrated to the mobile device manually. The Calvinsys implementing
the button was implemented in a separate standalone application that was started
and bound to the Calvin runtime before the button actor was migrated. All tests
with the button application consisted of setting the system up and pressing the
virtual button three times. The Calvin script for the button application is shown
in listing 6.3.

1 /∗ Actors ∗/
2 button : i o . Button ( )
3 snk : i o . Pr int ( )
4
5 /∗ Connections ∗/
6 button . t r i g g e r > snk . token

Listing 6.3: Calvin script for the button application

6.3 Result

6.3.1 Heap Analysis

The native private dirty heap were sampled and plotted for the identity application
in figure 6.3.

The allocations made on the Java heap were sample at the same events as spec-
ified in figure 6.3. The heap allocations were filtered and only the allocations made
in the application Java package ericsson.com.calvin.calvin_constrained were
considered. The result is show in table 6.2 together with the native private heap
allocations at the same events in time.
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Figure 6.1: Native heap allocations over time when running the
connect test.

Table 6.2: Table showing native allocations and Java allocations
made within the Calvin Java package when running the con-
nect application. The measured Native heap is the private dirty
allocations and the CC Java heap are allocations made in the
Calvin Java package.

Event CC Java (bytes) Native heap (bytes)
Runtime started 4149 4944k
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Figure 6.2: Native heap allocations over time when running the
connect test.

Table 6.3: Table showing native allocations and Java allocations
made within the Calvin Java package The measured Native
heap are the private dirty allocations and the CC Java heap
are allocations made in the Calvin Java package.

Event CC Java (bytes) Native heap (bytes)
Runtime started 4713 4992k
Actor initiated 4149 4588k
Actor fire 1 4149 4588k
Actor fire 2 4149 4588k
Actor fire 3 4149 4588k
Actor fire 4 4149 4588k
Actor fire 5 4149 4588k
Service being destroyed 5583 4672k
Serialized to disk 6451 4584k
Average 4627 4642k
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Figure 6.3: Native heap allocations over time when running the
connect test.

Table 6.4: Table showing native allocations and Java allocations
made within the Calvin Java package The meassured Native
heap are the private dirty allocations and the CC Java heap are
allocations made in the Calvin Java package.

Event CC Java (bytes) Native heap (bytes)
Runtime started 4149 5068k
External app bind 4089 4736k
Actor initiated 4547 4744k
Init Calvinsys 4013 4744k
Actor fire 1 3675 4752k
Actor fire 2 3675 4752k
Actor fire 3 4547 4756k
Average 3526 4793k

6.3.2 Network Usage

The network usage was captured on the proxy runtime end of the the network.
All tokens sent when running the test applications were logged and their size were
captured. All applications were executed using both the socket and the FCM
implementation as transportation methods. The total number of bytes sent to
the proxy runtime and from the proxy runtime are presented in table 6.5 together
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with the size of the FCM SET_CONNECT handshake procedure. Note that the FCM
handshake token is not needed when using the socket transportation method since
it is the underlying socket that establishes the connection.

Figure 6.4 and 6.4 show the connect stage of the CC runtime with the proxy
runtime when using socket and FCM for transportation. The figures show the
data packets sent over time and their size.

Table 6.5: Table showing the average total memory usage of com-
mon applications over a time period of one hour. 174 tokens
were sent in total when running the seven tests.

Test Method To CC (b) From CC (b) Total (b)
FCM Set Connect FCM 382 320 702
Connect Socket 635 716 1351
Connect FCM 2300 2222 4522
Identity Socket 9121 7642 16763
Identity FCM 28092 24266 52358
Button Socket 4739 4031 8770
Button FCM 10978 9537 20551
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Figure 6.4: Bar chart showing the connect stage when the CC run-
time connects to the proxy runtime over socket.
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Figure 6.5: Bar chart showing the connect stage when the CC run-
time connects to the proxy runtime over FCM.

6.4 Evaluation

6.4.1 Comments on Heap Analysis

It is hard to measure the complex heap structure of an Android application and
even harder to interpret what the resulting data from the different tools mean. The
focus of the tests for the heap analysis was to investigate the effect of the added
layer of Java needed in order to run Calvin under an Android application. In table
6.2 6.3 6.4 the allocations made within the actual Calvin Java layer is compared
to the total number of native allocations for the complete Android application.

As can be seen in all the tables the allocations made in the Java layer is a factor
1000 less than the total number of bytes allocated in total natively. This means
that the allocations made for Calvin in Java do not affect the total heap usage
much at all. If one were to optimize the heap usage, the Java layer is not where
to start. The large native heap allocations mainly comes from Android framework
code. That is code that is needed to actually run the Android application and
maintains its lifecycle. Native allocations are also made for the UI components in
the simple configuration UI.

In [43] the native heap allocations in Calvin Constrained running on a x86
system were analyzed and presented. The analysis shows that the native heap
allocations made when migrating the Identity actor to a CC runtime is 8.9kb.
This compared to 4588kb seen in table 6.3 is very small. It is clear that the
total allocations made for the Calvin application on Android is dominated by the
allocations made for Android itself. The experiments presents the heap usage
of very small applications with very simple actors. It should be noted that the
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total heap usage of course is affected by the application running. If an actor for
example generates graphical components using OpenGL, the heap usage would be
much larger. The experiments however show that the bare minimum heap usage
of the Calvin application is very small.

It is clear from the heap analysis that it is not the Calvin runtime implementa-
tion in the Android app that uses the most memory, but everything around it such
as the simple UI. Android requires much more heap memory to initiate and run a
bare Calvin Service and the heap usage of the actual Calvin runtime is negligible.

6.4.2 Comments on FCM Protocol Analysis

It is clear that the FCM protocol adds a large cost in terms of the size of the data
sent compared to when using sockets for transportation when looking at the results
in table 6.5. The overhead however comes with added functionality in the protocol
such as the ability to wake up a device and use the mobile device anywhere as long
as it is connected to the Internet.

There are two layers of overhead when using the FCM transportation compared
to the socket implementation as can be seen in figure 5.3. The Calvin FCM
protocol requires the payload data that sent over FCM to be Base64 encoded.
This is needed since the CC runtime uses MessagePack instead of JSON to code
all incoming and outgoing data packets. The overhead from only the Base64
encoding can easily be calculated. As described in section 2.5.2 Base64 encodes
every three bits into four bits. There may also in the worst case be an additional
three bits for padding. That means that the Base64 at least increases the size of
the payload with a factor of 4

3 .
The Calvin FCM protocol needs to know what type of message is being sent

over. Messages may either be Calvin payload messages or messages to set up
the FCM connection which adds a static size of overhead to all messages sent.
Furthermore the FCM protocol requires a JSON structure around every message
sent which is wrapped in an XML tag. This is also data that needs to be added to
every message sent over FCM. Since many messages sent are small compared to
the size of the overhead, the ratio between the Calvin payload size and the FCM
over head becomes large in many cases.

The FCM protocol has a different way of setting up the connection compared
to when using sockets for communications. Figure 6.4 and 6.5 show the connect
procedure when using sockets and FCM. As can bee seen the socket implementa-
tion requires the extra two datapackets SET_CONNECT to be sent. As can be seen in
table 6.5 the two packets have a total data size of 702 bytes which also is a static
overhead for the FCM protocol.

Tests were conducted in order to show the average overhead size of all messages.
In total 174 data packets were sent in the seven tests. The total number of bytes
sent in both directions over the socket connection were 1351 + 16763 + 8770 =
26884b while the total size of the data sent over FCM was 4522+52358+20551 =
77431b. If one deducts the effect of the FCM SET_CONNECT messages to only
compare the sizes of the same data packets sent, the total number is 77431−702∗
3 = 75325b. This means that the the total cost in incremented data size of using
the FCM is a factor 75325

26884 = 2.80.
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The cost of using FCM as a transportation method is quite large when it
comes to data consumption. For very long term running applications this may be
a problem since mobile devices often has a restriction on the data consumption
per month from the carrier. The methods that change connectivity method as
described in 5.4 is therefore very beneficial. FCM should only be used as a fall
back solution and should be the last URI in the prioritized URI list. It should
only be used when the mobile device is unable to connect using sockets, which it
can if it is on the same LAN as the proxy runtime.





Chapter 7
Conclusions

7.1 Mobile Devices in Calvin

Mobile devices come with a large set of sensors and capabilities and are very
powerful small devices. Letting the mobile devices become a part of the distributed
IoT platform Calvin enables for many different use cases. The proposed solution
furthermore lets third party applications register themselves and lets Calvin take
advantage of not only a mobile phone’s sensors and hardware components, but
also it’s software capabilities.

The limitations of Calvin having a constant link to the proxy runtime has been
removed by taking advantage of Google Firebase Cloud Messaging. Calvin can be
used anywhere in the world with FCM as long as the mobile device has Internet
access witch is needed in order to build usable IoT applications for mobile devices.

Long running applications on mobile devices must be implemented with a lot of
care, and must not drain the battery or any other available resources. It has been
shown that the RAM usage of the Calvin applications does not stick out among
other common applications while the total heap usage is much higher than when
running a stand alone implementation of Calvin Constrained. Mechanisms to let
the application go into a sleep mode have been proposed to decrease battery and
RAM. By using FCM the connected proxy runtime may wake the Calvin runtime
on the mobile device to let it act on messages.

This thesis has had a very successful result and has shown that mobile devices
can be part of the distributed platform Calvin and increase its usability. The
thesis has shown how Calvin can make the best use of mobile devices and all of
their capabilities in the world of IoT.

7.2 Future Work

With this thesis it is possible to build Calvin applications that make use of mobile
devices. But there are areas that could be more investigated and desirable features
to be implemented for mobile devices.
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7.2.1 Dynamic Actors

To be able to run a Calvin application, all actors must have been implemented
on the desired platforms. Actors in CC must be implemented and built when
building the application. It is desirable to be able to dynamically load Actor
implementations without the need of rebuilding the whole application.

This could be done either by letting third party applications implement Actors
or by creating a service where Actors could be downloadable. This of course raises
a lot of concerns regarding security.

7.2.2 Calvinsys for Calvin Base

The proposed Calvinsys implementation has been implemented for Calvin Con-
strained and Android but is yet not implemented for Calvin Base in Python. It
is desirable that all Calvin implementations use the same structure of Calvinsys
implementations. This would allow the Calvin Base Control API to be extended
to allow dynamic loading of external Calvinsys implementations. For example this
could allow a USB device register itself as a Calvinsys to allow actors to use the
device.

7.2.3 Automated Testing

Calvin Constrained is currently tested frequently using an automated test suit.
It would be desirable to also include tests for mobile device’s functionality. This
would require the tests to be run either on emulated Android devices or on physical
hardware connected to the test server.
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Appendix A
Example of the Calvin Constrained

PROXY_CONFIG command

An example of the PROXY_CONFIG command and the data sent with it is shown
below.

1 {
2 " a t t r i b u t e s " : {
3 " indexed_publ ic " : {
4 "node_name " : {
5 "name" : "Calvin Android"
6 }
7 }
8 } ,
9 " c a p a b i l i t i e s " : [

10 " c a l v i n s y s . i o . button " ,
11 " c a l v i n s y s . media . camerahandler "
12 ] ,
13 "cmd" : "PROXY_CONFIG" ,
14 "from_rt_uuid " : " c8 f f08a3−b648−a23a−3afd−156e59222112 " ,
15 "msg_uuid " : "MSGID_83765d60−99cd−4453−c9a5−49b467aea25f " ,
16 "name" : "Calvin Android " ,
17 " port_property_capabi l i ty " : " runtime . cons t ra ined . 1" ,
18 "to_rt_uuid " : "05225 cc0−15a9−4f4e−9e9e−50b03d7a8d07"
19 }
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Appendix B
Example of an XMPP authentication

handshake

The following listings are an example of the authentication process in XMPP to a
Googlew server [38].

1 <stream : stream to="gcm . goog l e ap i s . com"
2 ve r s i on ="1.0" xmlns="jabber : c l i e n t "
3 xmlns : stream="http :// etherx . jabber . org / streams">

Listing B.1: The first step of the handshake. The client tries to
initiate a connection [38].

1 <stream : f ea tu r e s >
2 <mechanisms xmlns="urn : i e t f : params : xml : ns : xmpp−s a s l ">
3 <mechanism>X−OAUTH2</mechanism>
4 <mechanism>X−GOOGLE−TOKEN</mechanism>
5 <mechanism>PLAIN</mechanism>
6 </mechanisms>
7 </stream : f e a tu r e s >

Listing B.2: The second step of the handshake. The server answers
that the client needs to authenticate forst and how this should
be done [38].

1 <auth mechanism="PLAIN"
2 xmlns="urn : i e t f : params : xml : ns : xmpp−s a s l ">

MTI2MjAwMzQ3OTMzQHByb2plY3RzLmdjbS5hb
3 mFTeUIzcmNaTmtmbnFLZEZiOW1oekNCaVlwT1JEQTJKV1d0dw==</auth>

Listing B.3: The third step of the handshake. The client
authenticates [38].

1 <suc c e s s xmlns="urn : i e t f : params : xml : ns : xmpp−s a s l "/>

Listing B.4: The fourth step of the handshake. The server responds
with the result of the authentication [38].
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64 Example of an XMPP authentication handshake

1 <stream : stream to="gcm . goog l e ap i s . com"
2 ve r s i on ="1.0" xmlns="jabber : c l i e n t "
3 xmlns : stream="http :// etherx . jabber . org / streams">

Listing B.5: The fifth step of the handshake. The server answers
with the features of the server [38].

1 <iq type="r e s u l t ">
2 <bind xmlns="urn : i e t f : params : xml : ns : xmpp−bind">
3 <j id >SENDER_ID@gcm. goog l e ap i s . com/RESOURCE</j id >
4 </bind>
5 </iq>

Listing B.6: The sixth and last step of the handshake. The server
answers that the stream is set up [38].



Appendix C
Calvin Configuration for FCM

1 {
2 " g l oba l " : {
3 " t r an spo r t s " : [ " c a l v i n i p " , " ca lv in fcm " ] ,
4 " fcm_server_secret " : " [SERVER KEY]"
5 }
6 }

Listing C.1: Example of how to configure the proxy runtime to use
FCM.

65



Mobile Devices In the Distributed IoT Platform
Calvin

ALEXANDER NAJAFI
MASTER´S THESIS
DEPARTMENT OF ELECTRICAL AND INFORMATION TECHNOLOGY
FACULTY OF ENGINEERING | LTH | LUND UNIVERSITY

Printed by Tryckeriet i E-huset, Lund 2017

A
LEX

A
N

D
ER

 N
A

JA
FI

M
obile D

evices In the D
istributed IoT

 P
latform

 C
alvin

LU
N

D
 2017

Series of Master’s theses
Department of Electrical and Information Technology

LU/LTH-EIT 2017-574

http://www.eit.lth.se


