A Practical Approach: Implementing
Security for limited packet size
- Encryption for a minute packet protocol

ALEXANDER SKOLD

BACHELOR'’S THESIS

DEPARTMENT OF ELECTRICAL AND INFORMATION TECHNOLOGY
FACULTY OF ENGINEERING | LTH | LUND UNIVERSITY

A Practical Approach: Implementing
Security for limited packet size

- Encryption for a minute packet protocol

LUNDS
UNIVERSITET
Lunds Tekniska Hogskola

LTH School of Engineering at Campus Helsingborg
Elektro- och informationsteknik

Bachelor thesis:
Alexander Skold

© Copyright Alexander Skold

LTH School of Engineering
Lund University

Box 882

SE-251 08 Helsingborg
Sweden

LTH Ingenjorshdgskolan vid Campus Helsingborg
Lunds universitet

Box 882

251 08 Helsingborg

Printed in Sweden
E-husets tryckeri
Lunds universitet
Lund 2017

Abstract

This report describes the development of an encrypted tunnel for the Crazyflie drone
made by Bitcraze. This project began with the need for protection while using a
Crazyflie drone in a public space. The Crazyflie drone is using open source software
and has no protection against hijacking. Any phone able to download the app to
control the drone is able to hijack and control the drone.

To remedy this problem the communication between the Crazyradio and Crazyflie
was encrypted. The encryption was implemented in such a way as to create a secure
tunnel while only a minimum amount of code needed to be changed. The method of
encryption chosen was AES 128 using GCM. The memory footprint of the encryption
solution on the drone was important and therefore minimised.

The resulting solution does protect against the type of hijacking a person with a
phone is able to do. Furthermore, the strength of the encryption is of good enough

quality to dissuade attacks from opportunistic attacks.

Keywords: Security, Encryption, AES, GCM, Tunnel, Open source.

Sammanfattning

Denna rapport beskriver en krypterad tunnel utvecklad for Crazyflie-dronaren som ar
skapad av foretaget Bitcraze. Projektets mal &r att minimera risken for att Crazyflie
dronaren blir kapad i allmédnna utrymmen. D& dronaren inte kan begrénsa kontrollen
till endast en styrenhet sa kan den bli kapad av att ndgon i nérheten anviander
kontroll-appen.

En 16sning till detta problem ér att kryptera kommunikationen fran en dronare till en
styrenhet. Implementationen av krypteringen dr gjord pa sa sitt att en tunnel upprittas
mellan drénaren och styrenheten. Varken koden pa dronaren eller pa klienten behover
fordndras for att tunneln ska fungera. Krypteringsalgoritmen &r AES 128 med GCM.
Da dronarens minne ar begrénsad var det viktigt att minimera krypteringsbiblioteket
storlek.

Resultatet av projektet blev en kryptering som stoppar att ndgon pé en offentlig plats
frén att ladda ned ett styrprogram for att kapa dronaren. Opportunistiska anfall klarar
dven krypteringen att stoppa.

Nyckelord: Sikerhet, kryptering, AES, GCM, Tunnel, Oppen killkod

List of contents

1 INtrodUCHioN......cceeree e —————————————— 1
1.1 Background...........cccooiiiiiiiiirinnnincesssssssss s s 1
111 BiItCraze.....ooo oo 1
1.1.2 Needed functionality............cccceeeiiiiiiiiiiiii e, 1

I S 1T 4 oY XY - PPN 1
LI T € T T Y 2
1.4 Problem definition.........cccceiiiiiemmiiic s 2
1.5 Motivation...........cccoiiiiiiiii 2
1.6 Scope liMits......ccooiiiiiiiiiirr i ———— 2
2 Technical background.............ciiiiiiiiiiirrrrrrrrress e 4
2.1 The Crazyflie drone...........oooiiiiiiiiiiieeirr e 4
211 NRESIB22... e 5
2.1.2 STMB2F405......eoeeeeeeeee e 5
2.1.3 FreeRTOS. .. e 5
272 I ¢ TS0 - V.4 V] - o 11 o 6
221 NRF2ALUTH. e 6
2.2.2 Crazyradio LIDrary..........ooooiiiiiieeeeeeeeeee e 6

2.3 Communication ProtoCol..........cccccceiiiiiiiiiire e e e 6
2.3.1 Enhanced ShoCKbUISt...........cooviieiiiiiie e, 7
2.3.2 Crazy Real Time ProtocCol............ooooiiiiiiiiiieeiieeeeeee e, 8

2.4 AES-GCM and Secure TunNNeling........cccccccmemmmnriiinnnrrnnnnsnsssssnsssnnnes 8
2.4.1 Advanced Encryption Standard..........cccccceevieeeeeiiiiieeiees 8
2.4.2 AES Galois Counter Mode..........ccooviiiiiiiiiiiciccee e 9
2.4.2.1 CoUNEEI MOGE.........cccoiiiieiiee e 9
2.4.2.2 Galois MAC generation.............ccccceeeueieseeeeeeeeeeaieeeeeeeeeeeinnnnnn, 10

2.4.3 Secure tUNNEIING.......coeeiiiiiiiiiae e 10
2.4.3.1 Encryption management...............cccceueeeeeeeeeeuieeeaeiiiiaeeeean 10
2.4.3.2 Key ManagemeEnt..............cceueeeeeeeeeeeiiiiseeaaaaaeeeeeeiaaaeaenannns 10

2.5 Cryptographic libraries and Python...........cccccccmmmmiiiiiiiiiiiinnns 1
2.5.1 WOISSL....eeiiiieeee e 11
2.5.2 PyYthON. 11
2.5.3 Cryptography.....ccccoooiee e 12

ST 1"/ 114 0 Lo T [Lo T YN 13
3.1 Research and Analysis Phase..........cccoooiiiiimnnneeeeeeees 13
3.2 Prototyping phase........oooccccccccirr e e e 14
3.3 Implementing phase.........cccoimmiimieercsci s 15
3.4 Reference CritiCiSm.......coooviiieeeeeccccrccr e 15
L g T 1 V£ - 17

4.1 ReqUIremMeNnts.........uuecciiiiiiiiiiiiirrnnssssssssssssssssssssssss s s s s s ssssnsssssssssssssssnes 17

0 03 o Vo YT oT=30 1.4 (o 1 12 1 { o] 1 17

4.2.1 WOISSL..oooiiiiiiieieee et e e e e e eaaans 17
4.2.2 Cryptography.....ccoooeeuieiiiieeie e 18
4.2.3 Client side encrypltion............ooiiiiiiiiiiiiiiieee e 18

4.3 Substantial problems and their sollutions.........ccccceeeeeeeciiiiieencinnns 18
4.3.1 Multi packet “packet’............ooeeiiiiiiiii e 18

5 RESUILS......ceeeciiiiiiiiiir s s e s n s s e rnnn s rnnn e enns 20
5.1 Ciphered packet structure..........couummcciiiiiiiiieeeeereeerce e 20
5.1.1 Split packet........cooooiiiee e, 21

E T o o N 21
5.2.1 RECEIVING.....coeeieiiiieteeee e e e e e e e e e eees 21
5.2.2 SeNAING....ciiiiiiiii e e e e aaaae 22

5.3 Radio and client.............ccccoiiiiiiiiiiiiiirriecesssss s e enns 22
5.3.1 RECEIVING.....coieieieiieeeee e e e e e e eens 23
5.3.2 SeNAING....cciiiiiii e e e e e e aaaae 23

0 o 3 [=3 T o S 24
6.1 Summary of the Problem Solution............ccoovvmmmmmmriiiiiciiiseieens 24
6.2 Ethical reflection.......coueeeeeeeciiiiiiiiiiirrr e 25
6.2.1 Secrecy or security through obscurity...........ccccccoiiiiiiiin. 25

6.3 Further development.............ooiiiricc e e e 25
A =T 4 1011 Lo o o N 27
eI =T =Y = Lo =N 28

L2 I o o X=T g Lo [o3 1= 32

1 Introduction

1.1 Background

The Crazyflie drone began as a competence development project in 2009. The
project was started by Arnaud Taffanel, Marcus Eliasson and Tobias
Antonsson. The Crazyflie is an open-source hardware and software drone. As
the first Crazyflie was completed in 2011 the group started a company called
Bitcraze to fund further development. This project is done for Bitcraze as a
first step into encrypting the communication between the Crazyflie and
Crazyradio.

1.1.1 Bitcraze

Bitcraze as a company was founded in early 2011 by the creators of the
Crazyflie. The main purpose of Bitcraze is to fund the further development
and production of the Crazyflie. Additional editions of the Crazyflie and
Crazyradio have been released as well as new projects.!*

The Crazyflie is not the only product Bitcraze produces however. CrazyRadio
is a USB-radio card used to connect to the Crazyflie using Enhanced
Shockburst among other products. Enhanced Shockburst is a radio protocol
and explained in more detail in the Technical background section. One
mentionable product is the android application to controll the Crazyflie 2.0 via
Bluetooth Low Energy (BLE).

1.1.2 Needed functionality

Customers have a special use case for the small drone that is currently not
accounted for. Some customers want to use the Crazyflie drone in publicity
events or air shows. As the drone does not currently have any type of
hijacking protection adding a layer of encryption to the controlling
communication would provide sufficient protection for these events.

1.2 Purpose

To protect the drone against hijacking this project aims to encrypt the
communication between the Crazyradio and the Crazyflie. The level of
protection needed to reduce the risk of accidental or opportunistic hijacking is
not very high.

Accidental hijacking is when two drones are in proximity with one another
and share the radio space. This proximity results in either both radio
controllers controlling both drones or they interfere causing loss of control
over either drone.

Opportunistic hijacking is when someone with malicious intent actively
acquires a controller in order to hijack a drone. This is usually the android
application but could easily be the Crazyradio connected to a laptop.

1.3 Goals

Adding encryption to the communication between the drone and radio is the
main goal of this project. The encryption should be added to existing code in
such a way to maintain modularity. This means that the encryption
functionality should be isolated so that it is easy to disable or remove
encryption with minimal changes to the code. The way modularity was
planned was to make the encryption act as a secure tunnel.

1.4 Problem definition

What is needed to implement protection for the drone is described in this
section.

1. What encryption algorithm is to be used to encrypt the communication?

2. What programming language will be used to implement encryption on
the client?

3. What programming language will be used to implement encryption on
the drone?

4. What cryptographic library will be used on the Crazyflie?

5. What cryptographic library will be used on the client?

6. What does the secure tunnel protect against?

1.5 Motivation

Drones have become a large part of society in recent years and pose
interesting questions when it comes to computer safety. Because drones are
flying machines they almost exclusively are controlled by radio
communication and because the publicly available bandwidth is rather limited
it can become the limiting factor in drone usage. Hijacking a flying drone
implies not only of a risk to personal property but also towards the health of
all those in the surrounding area, although in this case the health risk is
minute.

The most direct solution to these problems is to ensure that the drones are
controllable is to make the communication unique to every drone.

1.6 Scope limits

Controlling the drone with the android application is not covered in this
project, only using the USB-dongle.

The communication is to be encrypted using AES 128-bit Galois Counter
Mode. Sharing of the key is limited to programming it in before flashing the
drone.

There are a few exceptions to the encryption. The received signal strength
indication(RSSI) message and flashing the drone are both exceptions to
encryption.

The RSSI is a message that is sent from the drone when a packet is received
and it has nothing to send back. The message will not be encrypted as it serves
a purpose of checking whether or not the radio signal is strong enough to be
received reliably in the first place.

Flashing is when the client writes new firmware on the drone via the
Crazyradio. Encryption is handled in the firmware of the drone. If the data that
is supposed to write the firmware is encrypted and there is no code for
decrypting, the firmware will be corrupted.

2 Technical background

This chapter goes into detail about all of the important technical aspects of the
project and is divided into five parts. The first part describes the Crazyflie
drone components and what they do. The second part describes the Crazyradio
and the Client and how they interact with one another. The third part describes
what protocols are used. The fourth part describes how AES-GCM and the
secure tunnel works. The fifth part describes the cryptographic libraries and
the client. Figure 1 gives a general overview of where the different pieces of
fit in relation to one another.

Python

FreeRTOS ;

firmware
Crazy :
RealTime Cra_zyradlo Cryptography
library
Protocol

WolfSSL

Crazy

RealTime
Protocol

STM32F
405

nRF24LU1+
2,4GHz 2,4GHz

Figure 1. Complete overview of the technical setup and how they communicate.

2.1 The Crazyflie drone

This section describes the central parts of the hardware of the Crazyflie.

The Crazyflie is divided into two main components, the radio(nRF51822) and
the main processing chip(STM32F405). The nRF51822 handles all of the raw
radio communication. The received packets are then sent to the STM32F405
where the Crazyflie firmware handles them. Figure 2 gives an overview of the
Crazyflie components.!"*

FreeRTOS
Crazyflie

firmware
WolfSSL

STM32F

 NRF51822
405

Figure 2. Overview of interactions between the Crazyflie firmware, cryptographic
library and hardware.

2.1.1 nRF51822

The nRF51822 chip is the communications microcontroller used on the
Crazyflie. The chip was developed by Nordic Semiconductor and is a chip
specialising in 2.4 GHz wireless communication. The chip is based on an
ARM Cortex MO processing core with 128 Kbytes of flash memory and 16
Kbytes of RAM. On the Crazyflie the nRF51 sends and receives all of the
communication whether by Bluetooth Low Energy or by the Nordic
Semiconductor proprietary protocol Enhanced ShockBurst. The data protocol
used within these physical protocols is the Crazy RealTime Protocol (CRTP).
This protocol is quite simple as it is only a header byte and 31 databytes. The
nRF51 comes with a selection of precompiled binaries called soft devices. The
one used in the Crazyflie is Soft device 110.1%

2.1.2 STM32F405

STM32F405RG is the main microcontroller used in the Crazyflie. The chip
handles all of the flight controls and the majority of signal processing. The
chip was developed by ST micro electronics and has a ARM 32bit Cortex M4
processing core. The chip has 1 Mbyte of flash memory, 129 Kbytes of SRAM
and has a clock speed of 168MHz. The libraries used are the STM32F10x and
STM324xx.*)

2.1.3 FreeRTOS

FreeRTOS is essentially the operating system of the Crazyflie handling the
scheduling of processes. FreeRTOS is a real time operating system used on the
Crazyflie drone to control the flight calculations. It is owned, developed and
maintained by Realtime Engineers Ltd. FreeRTOS is used for scheduling and
buffering the incoming and outgoing packets.™!

2.2 The Crazyradio

The CrazyRadio is a USB-radio used by the client. Connected to a computer
the CrazyRadio is controlled through a software called Crazyflie Client. The
Crazyflie Client is a python program that uses the Crazyradio Library to
interact with the CrazyRadio. Figure 3 emphasises the portion of Python code
and minimise the firmware for the nRF24LU1+.

Python

Crazyradio
library

nRF24LU1+ Cryptography

Figure 3. Overview of the client side of the project.

2.2.1 nRF24LU1+

The nRF24LU1+ is the microcontroller used on the CrazyRadio unit. The
chip’s main purpose is to communicate with the Crazyflie drone and thereby
handling the lower level protocol Enhanced Shockburst. The chip has an 8-bit
processing core at 16MHz with 2Kbytes + 256 Kbytes RAM and 16 to 32
Kbytes of flash memory."!

2.2.2 Crazyradio Library

The Crazyradio library is a library developed by BitCraze in Python to handle
the communication with the Crazyflie via the Crazyradio. This library is where
the encryption was implemented for the Crazyradio.!""

2.3 Communication protocol

The protocols used by the Crazyradio and Crazyflie are Crazy RealTime
Protocol and Enhanced Shockburst. Every packet sent from the Crazyradio
from the Crazyflie is first encoded into a Crazy RealTime Protcol packet and
then sent via the radio. The radio encodes the packet into the payload of an

Enhanced Shockburst packet. Figure 4 shows the network stack of the
Crazyradio and Crazyflie.

Crazy
RealTime
Protocol

Enhanced
Shockburst

Figure 4. The network stack of both the Crazyradio and Crazyflie. Enhanced Shockburst is
the physical layer and Crazy Real Time Protocol is a layer above it.

2.3.1 Enhanced Shockburst

Preamble Adress PCF Payload CRC
1 Byte 3-5 Bytes 9 Bits 0-32 Bytes || 1-2 Bytes

Figure 5. The Enhanced Shockburst packet divided into its five segments.

Enhanced Shockburst (ESB) is a proprietary radio protocol developed by
Nordic Semiconductor. The protocol uses the 2,4 GHz portion of the
industrial, scientific and medical (ISM) radio band. The protocol supports
three data rates of 250 Kbps, 1 Mbps, and 2 Mbps. The packet is a maximum
of 40 bytes and 9 bits. The packet has five segments where the payload is a
segment with 32 bytes.!"!

The ESB packet is structured in five segments. The first segment is a preamble
of one byte. The preamble segment is used to synchronise the receivers
demodulator. The second segment is for the address and is between 3 and 5
bytes long. The address bytes are to specify which radio channel the
transmitter is sending to. The third segment is the Packet Control Field(PCF)
and is 9 bits long. The packet control field itself has three segments. The first
segment describes the payload length and is 6 bits long. The second segment
contains a PID that is 2 bits long. The PID indicates if the packet is a new
packet or a resent packet. The last segment is the no-acknowledgement
(NO_ACK) flag. The NO_ACK flag is used when the auto acknowledgement
feature is used. When the flag is high, the receiver does not send an auto
acknowledgement. The fourth segment is the payload, the payload is between

0 and 32 bytes long. There are two ways to handle the payload segment. Static
mode where every packet has a 32 byte long payload segment or dynamic
mode where the length of the payload segment is only as long as the actual
data. The fifth segment is the CRC that is either one or two bytes long. The
CRC is calculated over the PCF and Payload."*"

2.3.2 Crazy Real Time Protocol

Header Data
1 Byte 0-30 Bytes

Figure 6. The Crazy Realtime Protocol packet divided into its two parts.

The Crazy RealTime Protocol (CRTP) is a protocol developed by Bitcraze to
manage the radio communication over the physical layer. The CRTP packet
has a maximum of 30 bytes of data and one byte of header information. The
header information is split into 3 segments. The first segment containing the
most significant bit is the port address. This segment is four bits long and
specifies what subsystem the message is for. The second segment is two bits
long and is reserved for future use. The last segment is also two bits long and
contains the channel number. The channel number specifies what the
subsystem is to do with the packet.!"”

2.4 AES-GCM and Secure Tunneling

This section goes into detail about the AES and its GCM mode. Both AES and
GCM are standards published by NIST. As they are published standards the
reference material for this section are the official publications. These
publications are specified in reference number 1 and 2. Reference 3 is a book
used by the report writer to gain a better understanding of the subject.!'*’!

2.4.1 Advanced Encryption Standard

Advanced Encryption Standard(AES) is an encryption standard published by
the National Institute of Standards and Technology (NIST). It was published in
November of 2001. AES is based on the Rijndael block cipher specifically the
128 bit block size version.

The 128 bit Rijndael cipher, called AES for the rest of the report, is a cipher
based on Galois fields or finite fields specifically. The cipher works by first
dividing the cleartext in to blocks of 16 bytes or 128 bits and then processes
them individually at first and then scrambling them together. The cipher works

in four layers, the byte substitution layer, shift row layer, mix column layer,
and key addition layer.

In the byte substitution layer the block has all of its bytes substituted using a
matrix where its value in hexadecimal decided what byte it will be substituted
with.

The shift row and mix column layers are there to disrupt the original order of
the bytes and to spread them out evenly from every block to every other block.
Key addition is done with a bitwise exclusive-or operation of the block and a
subkey derived from the input key.

The layers are executed in a specific order called rounds. These rounds consist
of in order the byte substitution layer, shift row layer, mix column layer, and
the key addition layer. The number of rounds AES uses to encrypt any data is
determined by the size of the key. The different key sizes AES supports are
128, 192, and 256 bits of length and the number of rounds for the respective
keys are 10, 12, and 14 rounds. The orders are however not used identically in
every round. In the first round there is an additional key addition layer before
the byte substitution layer while the last round contains no mix column layer.

2.4.2 AES Galois Counter Mode

Galois Counter Mode (GCM) is a combination of the AES counter mode and a
method to generate a Message Authentication Code (MAC). These functions
are called GCTR and GHASH. GCTR is simply AES in counter mode and
GHASH is a hashing function using galois fields.

2.4.2.1 Counter mode

CTR or Counter mode is a mode of AES encryption.

Every block of data to be encrypted is combined with an initial value and a
counter, they are added by the use of an or-operation. There are a few
important aspects of the CTR mode. CTR is able to be computed in parallel.
Because none of the blocks are dependant on any other and only on the
counter and the initial value the encryption is able to be scaled up. The initial
value used is an important factor. The value is based on the block size of the
data to be encrypted. Due to AES only supporting 128bit block size the initial
value is a 96 bit string the counter is the remaining 32 bits to ensure the entire
string is the same size as the block. The initial value is special in the sense that
it may only be used once, a so-called nonce.

2.4.2.2 Galois MAC generation

The MAC is generated through a process of hashing and encrypting the
already encrypted data and some additional data. The MAC is generated by
using a function called GHASH and then encrypting the resulting output.
GHASH works by multiplying the blocks of the data with the blocks of a hash
key, then with an exclusive-OR operation add these blocks together. The hash
key is a string of blocks the same size as the data that needs a MAC generated.
After the GHASH function is complete the resulting block is then encrypted
with AES-CTR to generate the message authentication tag. The resulting tag is
128 bits long but may be truncated down to seven different lengths. Five of the
aforementioned lengths are 128, 120, 112, 104 and 96 bits long and do not
require additional security concern. The remaining two are 64 and 32 bits long
and require consideration of the length of input data and the lifetime of the
hash key.

2.4.3 Secure tunnelling

Secure tunnelling is the practice of adding security to already existing
protocols and communication systems by adding a protection layer. Security is
a subjective term more easily defined by what it is not. A connection is not
considered secure if it does not provide enough secrecy or protection as the
user needs. Security in this project is defined as the protection of one drone
with one controller from another controller. The two parts of this secure tunnel
is encryption management and key management.

2.4.3.1 Encryption management

Encryption is what makes the tunnel secure. How encryption is implemented
important. Data sent from either the Crazyflie or the Crazyradio is encrypted
as the data is about to be sent. The encrypted package is given a special header
and is then packed into a CRTP packet, that packet is put into an ESB packet.

The encryption makes the tunnel secure as specified. Due to the memory
restriction, replay attacks are possible. To protect against replay attacks the
packet IV needs to be stored. At four bytes the number of IV permutations are
over 4 billion. The type of data structures that allow insertion and searching
with a time complexity of one simply requires more space than is available on
the drone.

2.4.3.2 Key management

Keeping the key secret is paramount to keeping the tunnel secure. The keys
are not shared through communications. The keys are shared before any
communication is made between the drone and the client. Specifically the key

10

the drone encrypts packages with is flashed to its firmware before use. The
key on the client side however is available in cleartext directly in the library.

2.5 Cryptographic libraries and Python

This section goes into detail about the cryptographic libraries used for both the
drone and the client.

2.5.1 WolfSSL

WOoIfSSL is a cryptographic library for the C programming language. It was
developed by the WolfSSL company and written in ANSI C. ANSI C is a
standard of the C programming language published by the American National
Standards Institute. Due to it being a published standard it is supported by
most of the modern C compilers.

The WolfSSL library is designed to be used in embedded devices. To allow
this WolfSSL is able to have its memory footprint be reduced rather
substantially. The minimal memory size is around 20Kbyte and runtime
memory size is about 1Kbyte.

The cryptographic engine used in WolfSSL is the wolfCrypt library. A
cryptographic engine is the part of the library that houses the code
implementation of encryption algorithms. For example, The WolfSSL library
has support for DTLS, DTLS is a communication protocol that uses the AES
encryption algorithm. WolfCrypt contains the AES encryption algorithm and
the WolfSSL library contains the necessary parts for DTLS to function.

Versions 3.6.0, 3.6.1, 3.6.6 of the wolfCrypt library have a FIPS 140-2
certificate. The FIPS 140-2 certificate is an indication of security level
assessed by the CMVP. FIPS is the Federal Information Processing Standard
and CMVP is the Cryptographic Module Validation Program, both are
operated under NIST."!

2.5.2 Python

Python was created by Guido van Rossum as a successor of a language called
ABC. It began development during december 1989 and its first version was
published 1991. In this project Python 3.4.3 is used to send commands to the
Crazyflie via the CrazyRadio using the CrazyRadio Library. Code example 1
is of Python code in section 4.3.1.

11

2.5.3 Cryptography

Cryptography is a cryptographic library for the Python programming
language. It is an open source project available on github with over 100
contributors. The repository is controlled by the Python Cryptographic
Authority (PyCa). The functionality of Cryptography is more than adequate
for the scope of the project.!'® "

12

3 Methodology

There were three phases in this project. These were the research and analysis
phase, the prototyping phase and the implementation and testing phase.

The research and analysis phase has two parts namely gathering information
and analysing the problem definition. Gathering information was done through
reading the official documentation. Analysis was done as to determine the
number and severity of problems to solve and how to do it.

The Prototyping phase consisted of setting up the development environment,
adding the cryptographic libraries, setting up testable sub-systems on the
drone and learning to use the cryptographic libraries.

The implementation and testing phase has two parts. The implementation
phase was where the tunnel and encryption were implemented. During the
testing of the software a few test programs were run.

3.1 Research and Analysis Phase

Firstly, the problems the project is supposed to solve have to be described. The
main problem is hijacking, i.e., when an attacker takes control of a drone from
the owner of the drone. In this case a USB radio is used to control the drone
and another USB radio is trying to take control of the drone.

Before this project, the attacker could quite easily take control of the drone. To
stop this the owner needs to stop any other radio from communicating with the
drone and to do this an encryption algorithm will be introduced.

The chosen encryption algorithm needs to have a certain set of properties.
Because the size of the packet is limited, the encryption algorithm’s memory
footprint needs to be small. The speed of encrypting and decrypting is
important as the part of the drone that handles ciphering also handles the flight
controls. The cipher needs to be cryptographically strong to ensure that the
key or keys are not easily solved. The underlying radio communication
protocol is asynchronous so this too had to be taken into account. DTLS was
an early contender for cipher algorithm, however due to the software structure
of the drone and USB-radio there was a lack of support systems requiered to
have fully functional DTLS. The choice of cipher was AES-GCM as it had all
of the prerequisite properties needed for this project.

How to best implement the encryption is an important question. Either there
had to be a change to the entirety of the code base that handles incoming and

13

outgoing packets or there could be an added after each packet has been
completed and is about to be sent where encryption can take place. Obviously
a tunnel was chosen as the easiest and most modular way to implement
encryption.

Communication with Bitcraze was done by face-to-face meetings or through
the messaging and VoIP service Skype. As the Bitcraze offices are not in the
same city as the thesis worker, most communication was done through Skype.

The environment in which the programming took place was using the virtual
machine software VirtualBox. VirtualBox ran the official Bitcraze Virtual
Machine version 2016-06-06. This virtual machine had almost everything
needed to develop for the Crazyflie. The one thing it was lacking was the
encryption libraries.

As previously mentioned, the easiest way to implement the encryption is to
make a tunnel between the radio and the rest of the system. For the Crazyflie
this means that an encryption “link” is made which can slot in for the radio
link. Figure 9 gives a visual representation of the “link™.

For the Crazyradio however it is not quite that simple. Changes in the Python
library have to be made in the specific send and receive functions. This has the
drawback of not being as modular in the way of turning off or disabling the
encryption for whatever reason but it does still leave the rest of the code the
same as changes only needs to be done in one file.

3.2 Prototyping phase

Prototyping the possible solutions is the next step to make a complete solution.
In this phase there were a lot of trial and error implementation of the different
parts of the final solution.

The first step in prototyping was making a subsystem where messages could
be sent and have the expected response. The subsystem made would simply
take a packet with a certain header setup and respond with a fixed string at
first. Later this subsystem was used for debugging and error responses as it
was available and separate from any other system.

Due to the memory limitation on the drone the WolfSSL library needed to be
scaled down to as small a memory footprint as it could possibly be. There was
unfortunately no good way to determine the size of the library on the memory.
The way of scaling down the size of WolfSSL is simply following the

14

documentation and realising what parts of the library that are important. The
most important parts of WolfSSL were the AES-GCM functions.

3.3 Implementing phase

During the implementing phase the lessons from the previous two phases are
put into action.

Maintaining the modularity of the code proved to be a significant problem
when it came to the USB-radio code as the code structure was completely
different. The structure of the code on the drone was so that communication
was done through a variable link connected to the radio and then the rest of the
system. The link in this case could consist of different types of
communications channels such as USB or radio.

When the implementation of the tunnel was nearing completion testing began.
Testing was initially done by simply starting the drone and seeing if it crashed.
The drone has four LEDs. The LEDs show the status of the drone. There are a
three types of crashes that are visible via the LEDs. If the Crazyflie does not
boot, one blue LED shines continously. If the Crazyflie boots but boots
incorrectly a red LED blinks 5 times fast. If the Crazyflie crashes during
operation a LED will stop blinking. This test gives no real information on
what went wrong but does tell when something goes wrong.

After the software stopped crashing testing was done by using a Python script
developed by Bitcraze to ramp the drone rotors. The script is called Ramp.py
and does exactly what it says, it ramps the engines up and then down once.
This test was to ensure both sides could encrypt and decrypt the messages
sent. The result of the script is a visual confirmation that the communication is
received and produces a functional result.

Testing the drone in proximity to another drone was difficult as the number of
drones was limited to one. Testing was done by using the android application
to connect to the drone. The result of the android testing was that it was unable
to act on any commands.

The code is available on Github and is linked to in the appendix.

3.4 Reference criticism

All references with the exception of reference [3] are official documentation
and therefore can be considered reliable.

15

Reference [3] is the book Understanding Cryptography. Understanding
Cryptography is written by Christof Paar and Jan Perlzl. The book is published
by the Springer company. Christof Paar and Jan Perlzl are both Professors of
the Ruhr university in Bochum, Germany.

“Prof. Dr.-Ing. Christof Paar has the Chair for Embedded Security at the
University of Bochum...” - Springer**.,

“Prof. Dr.-Ing. January Pelzl started his career at Bosch Telecom GmbH. He
has a Ph.D. in applied cryptography...” - Springer!**,

Due to the expertise of the authors the book can be considered reliable.

16

4 Analysis

4.1 Requirements

The number of requirements for this project was rather small. This gave the
developer a large amount of freedom to choose the best solution for any
problem.

The project began with a need for protection against hijacking. This was
quickly recognised as a need for encryption. The nature of the project dictates
the requirements two and three below. The last two requirements were
specified by Bitcraze to simplify the development for the Crazyradio. Making
changes in the code for the firmware of the Crazyradio requires specialist
equipment that is expensive and not easily available.

Requirements:
1. The communication between the Crazyflie and the Crazyradio must be
encrypted.

2. The developed code must work on the Crazyflie drone.

3. The code developed for the drone must be written in the C
programming language.

4. The developed code must work with the Crazyradio dongle.

5. The code developed for the client must be written in the Python
programming language.

4.2 Choice motivation

The choice of cryptographic library is an important decision to make when
encryption is the main focus of a project. Therefore the decision of
cryptographic library is detailed in this section.

4.2.1 WolfSSL

There are three big contenders for cryptographic C libraries and those are
Mbed TLS, WolfSSL and OpenSSL. As OpenSSL is not designed to be ported
and work on embedded devices. Choosing the cryptographic library to use on
the drone was essentially a choice between Mbed TLS and WolfSSL. Both
were good choices with good forum support, documentation, and both were
according to their documentation easy to port to new embedded hardware.

17

WolfSSL was chosen as a request by Bitcraze when both were given as viable
and suitable options.

4.2.2 Cryptography

The number of choices for cryptographic libraries available for Python were
unfortunately quite limited. The closest comparable to a stable and supported
release was for the Cryptography library originally by the Python
Cryptographic authority (PyCa). This github library has the largest number of
contributers to a single cryptography library that had support for AES-GCM.
The bigest drawback about open source projects where no official group has
claimed responsibility is that there is no certificate of functionality or security
to hold the responsible organisation to if it fails.

4.2.3 Client side encryption

Encryption on the client side could have been implemented differently. It
could have been implemented in the firmware of the Crazyradio. This would
have made the project larger in scope. The needed hardware and development
environment are different from developing for the Crazyflie drone and client.
This would have made the programming language for the client side C as well.

4.3 Substantial problems and their sollutions

4.3.1 Multi packet “packet”

ESB is the main limiting factor. This caused CRTP to have a limit. ESB is
asynchronous so CRTP is aswell. Because encryption adds data to be sent a
packet with 31 databytes has to be split into two packets instead. This forced
the need for package ID. Package ID is used to combine two packets before
decryption to ensure that everything is as it should.

18

try:
self.out_gueue.put(fp, True, 2)
except queue.Full:
if self.link_error_callback:
self.link_error_callback('RadicDriver: Could not send packet'
' to copter')
If a original packet is too large the packet is split,
the second part is sent with the following code.
if multipacket:
fp.data = bytearray([pk.get_header()])
fp.data += bytearray([pidbyte])
fp.data += bytearray(ciphertext[datalength:])
try:
self.out_queue.put(fp, True, 2)
except queue.Full:
if self.link_error_callback:
self.link_error_callback('RadioDriver: Could not send packet'

' to copter')

Code example 1. This code example shows how the Crazyradio library code replaces all of
the content of the packet with the second part of the encrypted packet.

19

5 Results

The results of this project was to implement a secure tunnel between the
Crazyradio and the Crazyflie. This was accomplished by introducing
encryption. The detailed description of how and where encryption was
implemented is described in the following subchapters.

5.1 Ciphered packet structure

Ciphered AAD \Y] TAG Cipher
header text
1 Byte 2 Bytes 4 Bytes 4 Bytes ||0-20 Bytes

Figure 7. The Ciphered packet divided into its 5 segments.

The ciphered packet is separated into five parts. The first part is the header of
one byte. The header byte is always the same and is the hex B3. The second
part is the Additional Authenticated Data (AAD). The AAD contains the
header of the unencrypted packet and a packet identifier(PID).The PID is a
single byte where the first five bits is the length of the cipher text, the next two
bits are a packet number and the last bit tells if the packet is a split packet. The
third part contains the Initialisation Vector(IV). The IV is a specific number
used for encryption and decryption with AES-GCM. The IV is a nonce. The
fourth part contains the authentication tag. The authentication tag is generated
by the AES-GCM algorithm. The fifth part contains the cipher text. The cipher
text is the encrypted data.

20

5.1.1 Split packet

Cipher text
21-30 bytes

20 B'ytes 1-10 Eytes

Cipher text in Cipher text in
first packet second
packet
0-20 Bytes 0-20 Bytes

Figure 8. A cipher text is split into two packets.

When more than 20 bytes of data is in the original packet to be encrypted, the
packet might have to be split into two packets. These two packets contain the
same AAD, IV and tag. There is a change to the PID. As the PID contains one
bit to tell if the packet has been split, that one bit simply flips to a one.

5.2 Drone

The drone side has a specific subsystem that is interchangeable with other
methods of sending and receiving packets. This subsystem is called a link.

Radio D AES-GCM Rest of
- - g Radio link g - : - -
input link System

Figure 9. The flow of packets through the drone.

5.2.1 Receiving

The AES-GCM link receives a raw packet from the radio link, if the packet is
a split packet it stores the IV, TAG, AAD, and data into buffers, waits for the
next packet with the same PID number. If the next packet does not contain the

21

same PID number the new packet overwrites the first packet, if it does have
the same PID number the new packet has its data added to the buffer of the
first packet data. The IV, AAD, and TAG are then used to decrypt the data in a
decrypt function from the WolfSSL library. The packet is then reencoded in to
the unencrypted version with its previous header and unencrypted data and
passed into the system via the CRTP service or a FreeRTOS geue.

5.2.2 Sending

The AES-GCM link receives an unencrypted packet from the rest of the
system. It seperates the header from the rest of the data. The header is added
as additional data to the encryption process together with a PID that contains
the multipacket-bit, the PID number and the length of the unencrypted data.
The Initializing vector is produced. Using the IV, AAD and the data the
encrypted packet is created. A ciphered packet header is added to the packet.
The AAD, IV and TAG are added to the packet. If the length of the data was
more than 20 bytes the first packet only contains the first 20 encrypted bytes.
A second packet then gets created and has the two AD bytes first and then the
remaining encrypted data bytes.

5.3 Radio and client

On the client side there is no specific link or subsystem, instead the encryption
and decryption is in the send and receive functions of the Python radio
interface.

22

Crazyradio
Library

-

g Crazyradio

Cryptography

Figure 10. The flow of packets between the Crazyradio and the
Crazyradio Library. Only the cipher text, IV, AAD and TAG are
dealt with by Cryptography.

5.3.1 Receiving

When the Crazyradio Library receive function receives a packet it stores the
header, the AAD bytes, IV bytes and TAG bytes in buffers. The data is put in a
different buffer, if the received packet has more than 20 bytes of encrypted
data there will be a second packet with the same PID. The second packet will
add its encrypted data to the data buffer. A custom function using the
Cryptography library will decrypt the data. Using the decrypted data a new
packet with the first byte in the AAD is used as the header and the decrypted
data as the payload.

5.3.2 Sending

When the Crazyradio Library send function receives a packet to send the data
is separated from the header and put in a buffer. The header is used together
with a generated PID to produce the additional data for AES-GCM encryption.
A1V is randomised, the IV and the AAD are used to encrypt the data. The new
packet gets a new header and its data buffer gets filled with AAD, IV, TAG
and then the encrypted data. Depending on the size of the unencrypted data the
packet can be split in two if it is more than 20 bytes of data.

23

6 Conclusion

This project was to minimise the possibility of hijacking the Crazyflie drone
when flown in public spaces. This was done by adding encryption to the
communication. The encryption added was AES using GCM mode.

The encryption was added in such a way as to make a secure tunnel. Both
sides are encrypted before the packet is sent via the radio and decrypted before
entering any packet management. This way there needed to be almost no
change to how the rest of the drone functions.

AES was chosen as it is a highly secure cipher and can be made rather small.
There was no AES implementation already on the drone or the client so this
had to be added. They became available by adding cryptographic libraries to
the programs. WolfSSL was chosen as it could configured to reduce its
memory footprint to a small size. WolfSSL is a C library with FIPS 140-2
certificate and was deemed more than sufficiently cryptographically sound.
For the client program the library Cryptography was chosen. Cryptography
was chosen as it was deemed to be sufficiently secure.

6.1 Summary of the Problem Solution

1. What encryption algorithm is to be used to encrypt the communication?
The chosen encryption algorithm is AES using GCM.

2. What programming language will be used to implement encryption on
the client?
As the client and Crazyradio library are both in python it was the logical
choice to use python. The encryption could be implemented on the radio and is
further explained in section 4.2.3.

3. What programming language will be used to implement encryption on
the drone?
The firmware of the drone is written in C, therefore C was the language used
add encryption to the drone. Alternative programming languages are not really
applicable for the drone.

4. What cryptographic library will be used on the Crazyflie?
The cryptographic library used on the Crazyflie is the WolfSSL library.

5. What cryptographic library will be used on the client?
The cryptographic library used on the client is Cryptography library.

24

6. What does the secure tunnel protect against?
The secure tunnel protects against other clients trying to use a already
controlled drone.

6.2 Ethical reflection

6.2.1 Secrecy or security through obscurity

The number of ethical implications of this project are minimal however there
is one big question of Security through obscurity as a type of IT security. This
project is open source and therefore has no wall for people to run into when
doing security analysis.

Security through obscurity is the concept of having obscure or hidden source
code and design of the software. This as a means of security is probably
enough to dissuade any benign “attackers”. Any other type of “attacker” is
more then likely not to either report the issue found or if it has any benefit for
them use it to their advantage. The problem with this that it can give a false
sense of security to both developers and users as the security holes will more
than likely not be published or reported. Another real issue with the security
through obscurity line of thought is that no program is perfect. There are
always problems with every program to ever need any type of security.

6.3 Further development

The way AES GCM was implemented to fit a pre-existing protocol posed
some challenges. The solution to those challenges was to shorten the tag and
the initialisation vector. This is not a problem in and of itself if done
thoroughly. Unfortunately there was one NIST recommendation out of scope
for this project. Namely the changing of the hash-subkey at a frequent interval.
This is controlled by the WolfSSL library and was therefore not in the hands of
the developers of this project. This is a matter to look into however and
therefore is fit to be further development.

As mentioned in the scope limit there are a list of more features that are
desired. Making the client program able to change the encryption key and
write it to the drone via USB is one of the future projects of the Crazyflie.
Another perhaps more necessary than the previous one is to enable and disable
encryption when using the Crazyradio library.

Future development for the Crazyflie hardware is in progress and is being
actively discussed at Bitcraze. One of the changes that could be made is the
size of the packets. The size of the packets could be larger to accommodate
both the encryption and the data required for the secure communication
between the drone and the Crazyradio.

25

Another hardware change on the drone could be adding more memory. This
could allow the secure tunnel to store a history of received packets IV’s and
discriminate what packets are decrypted. A packet with an IV that has already
been received could simply be discarded. However, with longer IV’s there
would need to be even more memory allocated to storing the history of
received packets.

26

7 Terminology

AES — Advanced Encryption Standard. An encryption standard published by
FIPS.

AAD — Additional Authenticated Data.

CRC - Cyclic Redundancy Check.

CRTP — Crazy Realtime Protocol.

DTLS — Datagram Transport Layer Security.

ESB — Enhanced Shockburst.

FIPS — Federal Information Processing Standards.

GCM — Galois Counter Mode, a mode of AES operation

GMAC — Galois Message Authentication Code

Hash — the result of a hash function.

Hash function — A function that maps any data with arbitrary size to data with
a fixed size.

IV — Initialisation vector.

MAC — Message Authentication Code

NIST — National Institute of Standards and Tehcnology. An institute under the
United States Department of Commerce.

RAM — Random Access Memory.

TLS — Transport Layer Security.

27

8 References

1.

28

Announcing the Advanced Encryption Standard (AES).
http:/nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf

Federal Information Processing Standards Publication 197. (2001).
Federal Information Processing Standards.

. Recomendation for Block Cipher Modes of Operation: Galois/Counter

mode (GCM) and GMAC.
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-

38d.pdf
Morris Dworkin. (2007)

National Institute of Standards and Technology.

. Understanding cryptography.

Christof Paar, Jan Pelzl. (2010).
Springer.

. About FreeRTOS.(26-09-2017)

http://www.freertos.org/RTOS.html
Real Time Engineers Itd. (2017).

Real Time Engineers Itd.

. nRF24LU1+ Single Chip 2.4 GHz Transceiver with USB

Microcontroller and Flash Memory.

https://www.nordicsemi.com/eng/Products/2.4GHz-RE/nRF24L. U 1P

https://www.nordicsemi.com/eng/content/download/2724/34051/file/nR
F24LU1P_Product Spec vl 1.pdf

Nordic Semiconductor. (2010).
Nordic Semiconductor.

. nRF51822 Multiprotocol Bluetooth low energy/2.4 GHz RF System on

Chip. Product Specification v3.3
https://www.nordicsemi.com/eng/Products/Bluetooth-low-

energy/nRF51822

http://infocenter.nordicsemi.com/pdf/nRF51822 PS v3.3.pdf
Nordic Semiconductor. (2014).

Nordic Semiconductor.

Intro to ShockBurst/Enhanced ShockBurst. (27-09-2017)

https://devzone.nordicsemi.com/blogs/783/intro-to-
shockburstenhanced-shockburst/

Daniel Veilleux. (2015).
Nordic Semiconductor.

8. ARM Cortex-M4 32b MCU+FPU, 210DMIPS, up yo IMB
Flash/192+4KB RAM, USB OTG HS/FS, Ethernet, 17TIMs, 3 ADCs,
15 comm. Interfaces & camera
http://www.st.com/en/microcontrollers/stm32f405rg.html
http://www.st.com/content/ccc/resource/technical/document/datasheet/e
£/92/76/6d/bb/c2/41/£7/DM00037051.pdf/files/DM00037051.pdf/jer:con
tent/translations/en.DM00037051.pdf
STMicroelectronics. (2016).
STMicroelectornics.

9. Validated FIPS 140-2 Cryptographic modules search engine certificate
number 2425.(27-09-2017)
https://csrc.nist.gov/projects/cryptographic-module-validation-
program/validated-modules/search
Due to the nature of the site searching for the certificate number is
required to find the certificate.

National Institute of Standards and Technology.

10.Cryptographic module validation program.(27-09-2017)
http://csrc.nist.gov/groups/STM/cmvp/
National Institute of Standards and Technology.(2017)
National Institute of Standards and Technology.

11.Python Crazyradio Library.(27-09-2017)
https://wiki.bitcraze.io/projects:crazyradio:python_lib
Arnaud Taffanel. (2015).
Bitcraze.

12.Bitcraze Virtual Machine.(27-09-2017)

https://wiki.bitcraze.io/projects:virtualmachine:index
Arnaud Taffanel, Kristoffer Richardsson, Marcus Eliasson, Bjorn

Mauritz, Tobias Antonsson. (2017).
Bitcraze.

13.Crazyflie 2.0 System Architecture.(27-09-2017)

https://wiki.bitcraze.io/projects:crazyflie2:architecture:index
Arnaud Taffanel. (2015).

Bitcraze.

29

14.Bitcraze.(27-09-2017)
https://www.bitcraze.io/about/
Bitcraze. (2017).
Bitcraze.

15.Crazy RealTime Protocol.(27-09-2017)
https://wiki.bitcraze.io/projects:crazyflie:crtp
Arnaud Taffanel, Marcus Eliasson. (2017).
Bitcraze.

16.Cryptography.(27-09-2017)

https://github.com/pyca/cryptography
Each of the 136 individual contributors. (2017)

Github.com

17.pyca/cryptography.(27-09-2017)
https://cryptography.io/en/latest/
Each of the 136 individual contributors. (2017).

Cryptography.io

18.WolfSSL Porting Guide.(27-09-2017)
https://www.wolfssl.com/wolfSSI./Docs-wolfssl-porting-guide.html
WolfSSL. (2017).
WolfSSL.

19.WolfSSL (formerly CyaSSL) Manual.(27-09-2017)
https://www.wolfssl.com/wolfSSL/Docs-wolfssl-manual-toc.html
WolfSSL. (2017)
WolfSSL.

20.General Python FAQ.(27-09-2017)

https://docs.python.org/3/fag/general. html#why-was-python-created-in-

the-first-place
Python Software Foundation. (2017)

Python Software Foundation.

21.Ultra-low Power Wireless System On Chip Solution.
http://infocenter.nordicsemi.com/pdf/nRF24L. E1 PS v1.6.pdf
Nordic Semiconductor.(2010)
Nordic Semiconductor.

22.Understanding Cryptography — A textbook for students and | Christof
Paar | Springer (01-10-2017)
https://www.springer.com/us/book/9783642041006

30

31

Springer.(2017)
Springer.

9 Appendicies

The code of the project is available on github through two repositories. Both
repositories are linked here.

https://github.com/Lursidon/crazyflie-firmware
https://github.com/Lursidon/crazyflie-lib-python

32

LUND

UNIVERSITY

Series of Bachelor’s theses
Department of Electrical and Information Technology
LU/LTH-EIT 2017-610
http://www.eit.Ith.se

/107 punt ‘18sny-3 1 112411 AQ paiuid

