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Abstract—The minimalistic approach that is essential to
the foundation of a microkernel has attracted a plethora of
significant implementations for it. This simple and modular
kernel with minimum amount of code has translated to the
microkernel offering increased reliability, security and great
adaptability with the potential to implement a wide range of
systems on top of it. Furthermore, its flexibility has made it
possible for microkernels to become a foundation for embed-
ded systems. In addition, the microkernel is now being used
to host applications requiring different platforms. This paper
provides an introduction to microkernels, their advantages
over monolithic kernels, the minimum abstractions to realize
them and the essential part that it plays in technological
developments at present and in the future.

Index Terms—microkernel, Interprocess communications,
security, embedded systems, virtualization, Mach, L4

I. INTRODUCTION

The kernel is a mandatory part of an operating system
and common to all other software. A computer system
is designed as series of abstraction layers and each relies
on the function beneath it. The kernel is the lowest
level of abstraction that is implemented in software.
It manages the system’s resources, i.e. communication
between hardware and software. The kernel acts as a
bridge between applications and actual data processing
done at the hardware level.

When the boot loader starts loading into the RAM,
it starts executing the kernel in supervisor mode. Then
the kernel initializes itself and starts the process, later
the kernel does not typically execute directly, only in
response to external events. In idle mode, the kernel
provides a loop that is executed whenever no processes
are available to run.

Early operating systems induced monolithic design by
kernel mode/user mode architectural approach for pro-
tection purposes. In fact, every module needs protection
which is preferably to be included into the kernel. The
relation between monolithic design and privileged mode
can be reconducted to the key issue of mechanism-policy
separation. Furthermore, the privileged mode architec-
tural approach combines with the mechanism of security
policies leading naturally to a microkernel design.

As to compare, the monolithic kernel is a kernel
architecture where the entire operating system is work-
ing alone as the supervisor mode in the kernel space
while microkernels are the minimized version of the

operating system kernels that is structured to specific
design principles. Microkernels implement the smallest
set of abstractions and operations that require privileges,
such as address spaces, threads with basic scheduling
and message-based interprocess communication (IPC).
Other features such as drivers, filesystems, paging and
networking are implemented in user-level servers.

The microkernel design supports easier management
of code, since the user space services are divided. This
increases security and stability resulting from reduced
amount of code running in kernel mode. The advantage
of building an operating system on top of a microkernel
compared to on top of monolithic kernel is that it offers
better modularity, flexibility, reliability, trustworthiness
and viability for multimedia and real-time applications.
Microkernels mechanisms are paramount to achieving
the goals of security. Insecure mechanism is the main
problem, but there are other problems that arise; inflex-
ible or inefficient mechanisms.

First generation microkernels were derived by scaling
down monolithic kernels. It has drawbacks, such as poor
performance of IPC and excessive footprint that thrashed
CPU caches and Translation Look-aside Buffers (TLBs).
Second generation microkernels, emphasizes more on
the performance with a minimal and clean architecture.
Second generation of microkernels are Exokernels, L4
and Nemesis. [1]

This paper is organized as follows. Section II briefly
explains the characteristics of the first generation micro-
kernels. Their drawbacks are highlighted including the
reasons for them and the necessity for the development
of second generation microkernels. Both first generation
and second generation microkernels are compared, end-
ing with a comparison of different implementations of a
second generation microkernel. Section III introduces the
basic abstractions of a microkernel and explanations of
these concepts. The next section, Section IV, addresses
the critical role that a microkernel can play when it
comes the issue of security. The following section, Sec-
tion V, looks at the future prospects of microkernels;
which seems bright when it comes to using it as a foun-
dation for implementing secured embedded systems and
virtualization environments. The last section provides a
conclusion of this paper.



TABLE I
COMPARISON OF COMPILER BENCHMARK

SunOS Mach 2.5 Mach with Unix Server
49 secs 28.5 secs 28.4 sec

II. EVOLUTION OF µ-KERNELS

In [2] provides an overview of how microkernels
have evolved. One of the first generation microkernels
addressed was Mach which was developed at Carnegie
Mellon University. The most prominent current use of
it is as a foundation for Apple’s Mac OS X operating
system. It hosts some notable features such as a new
virtual memory design and capability-based IPC. It’s
basic abstraction are tasks, threads, ports and messages.
It provided a small number of simple operations and
consistency when used for UNIX, but this weakened as
more and more mechanisms like System V IPC and BSD
sockets were added.

Unix was implemented as a user task on top of the
Mach microkernel. The Unix acts as a server for facilities
like files and sockets while the low level hardware-
dependent part is handled by Mach. Advantages include
portability since Unix server is not a platform-specific
code, network transparency through the use of Mach
IPC and extensibility since implementation and testing
of a new Unix server is possible alongside an old Unix
server. The Unix server consists of two parts; the server
itself and an emulation library. The library transparently
converts Unix system calls of user tasks into requests
to the server. Application programs uses the Mach IPC
facilities to communicate with the Unix server. Since this
solely was the case for communications, optimizations
was carried out and thread scheduling was improved.
In addition, the number of messages to the Unix server
was reduced by handling some of the Unix system calls
directly in the emulation library. Furthermore, previ-
ously each C thread was directly mapped into each
Mach kernel thread. Optimizations had to be made here
as well as high number of kernel threads limited the
performance. The thread library was modified so that
a number of C threads shared one kernel thread. In
[2], certain benchmarks for SunOS, Mach 2.5 and Mach
based Unix server were compared, tabulated in Table I.

Both Mach 2.5 and Mach based Unix server outper-
forms the SunOS in a compiler benchmark; SunOS takes
the longest time followed by Mach 2.5 and Mach with
Unix server respectively.

However, there are a number of performance issues
with first generation microkernels including Mach. One
of the most significant drawbacks include limited perfor-
mance due to the inefficiency of the IPC. Furthermore, a
regular Unix system call (∼20µs) has 10 times less over-
head than a Mach RPC (∼230µs) on a 486-DX50 micro-
processor. In computer science, a remote procedure call
(RPC) is an inter-process communication that allows a

TABLE II
COMPARISON OF DURATION OF AN IPC MESSAGE

Mach L4
8Kbytes 115µsecs 5µsec

512Kbytes 172µsecs 18µsec

computer program to cause a subroutine or procedure to
execute in another address space (commonly on another
computer on a shared network) without the programmer
explicitly coding the details for this remote interaction.
That is, the programmer writes essentially the same code
whether the subroutine is local to the executing program,
or remote. An RPC consists of two IPC messages. Mach
also has a peak performance degradation of 66% for cer-
tain Unix applications when compared to Ultrix which is
a monolithic kernel. Another weakness in performance
is the way the external pager was implemented. The
pager only has limited control of the main memory
and is not suitable for multimedia file servers, real-time
applications and frame buffer management that requires
complete control of the main memory. Lastly, although
early microkernels aimed at reducing functionality, they
were still large and implemented many concepts. For
example, Mach 3 has over 300Kbytes of code and its
API consists of nearly 140 system calls.

The second generation microkernels are built with the
goal to further minimize the concepts to be implemented
with a clean and simple architecture. One of the sig-
nificant successors is the L4 microkernel. Developed by
the German National Research Center for Information
Technology in 1995, the only abstractions it provides are
address spaces, IPC and threads. Its code size is minimal
with 12Kbytes and its API consists of just 7 system calls.
On a 486-DX50, the duration of an IPC message for L4
and Mach was compared in [2]. The values are tabulated
in Table II.

Additionally, the external pager is made flexible since
the L4 uses an interface to virtual address spaces which
allows memory management policies to be implemented
outside of the kernel. Furthermore, the address spaces
are constructed recursively outside of the kernel using
the three basic operations; grant, map and unmap, which
are explained in detail in Section III-C.

Paper [2] also summarizes a paper that evaluates
the performance of L4 by running Linux on different
implementations of it. It compares certain benchmarks
to evaluate the performance of L4Linux with an un-
modified Linux and also two versions of MkLinux; one
runs Linux as a user process, just like in L4Linux and in
the other version, the Linux server is co-located in the
kernel. The idea is to investigate the performance of L4
as a foundation compared to the native Linux, whether
the performance depends on the microkernel that the
Linux is running on and to determine whether co-
locating the Linux server inside the server improves the



TABLE III
COMPARISON OF SYSTEM CALL OVERHEAD AND PEFORMANCE IN

RELATION TO THE NATIVE LINUX

System Call Performance Compared
Overhead to Native Linux

Native Linux 1.68µsecs
L4Linux 3.94µsecs 91.7%

MkLinux in-kernel 15.41µsecs 71%
MkLinux in-user 110.60µsecs 51%

performance. The performance of system call overhead
for the native Linux, L4Linux and MkLinux in-kernel
mode and MkLinux in-user mode were compared in [2].
The values obtained are tabulated in Table III.

The system call overhead for the native Linux was the
least followed by MkLinux in kernel mode and MkLinux
in user mode. Furthermore, the MkLinux in-user mode
provided the worst performance when compared to the
native Linux while L4Linux provided the best. It can
be concluded that the underlying microkernel used has
an effect on the overall system performance and the co-
locating the server inside the kernel can not solve the
problems of an inefficient microkernel.

III. SOME µ-KERNEL CONCEPTS

L4 aims at being highly flexible, maximizing perfor-
mance while being highly secure. In order to be fast, L4
is designed to be small and provides only the least set
of fundamental abstractions and mechanisms to control
them. To fulfill the high-performance implementation
desired, there is a contrast between maximizing the per-
formance of a specific implementation and its portability
to other implementations or across architectures. This
problem can be solved depending on the specification
of the microkernel. The specification is designed to
compromise the apparently conflicting objectives. The
first, is to guarantee full compatibility and portability of
user-level software across a matrix of microkernel imple-
mentations and processor architectures. The second is to
choose architecture-specific optimisations and trade-offs
among performance, predictability, memory footprint,
and power consumption.

The L4 microkernel provides four basic mecha-
nisms, i.e., address spaces, threads, scheduling and syn-
chronous inter-process communication. The basic mech-
anisms are not only used to transfer messages between
user-level threads, but also to deliver interrupts, mem-
ory mappings, asynchronous notifications, thread star-
tups and preemptions, exceptions and page faults. An
L4-based operating system has to provide services as
servers in user space that monolithic kernels like Linux
or older generation microkernels include internally.

A. Interprocess Communication (IPC) and Threads
In µ-kernel based systems, operating system services

such as file systems, device drivers, network protocol
stacks, graphics, etc, are not included in the kernel but

are supported by servers running in user mode. Thus
when an application wants to use any of these services,
it has to communicate with the server first. So, all the
communication between system services and applica-
tions involves IPC to and from servers implementing
those services.

Message passing via IPC can be synchronous or asyn-
chronous. In asynchronous IPC, the sender sends a
message and keeps on executing, the receiver checks for
a message by attempting a receive or by some other
notification mechanism. During asynchronous IPC, the
kernel has to maintain buffers and message queues
and deal with the buffer overflows. It also requires the
message to be copied twice i.e., from the sender to the
kernel and from the kernel to receiver. This kind of mes-
sage passing is analogous to network communications.
During synchronous IPC, the sender is blocked until the
receiver is ready to perform the IPC and vice versa. It
does not require any buffering or multiple copies by the
kernel.

The first generation µ-kernels, Mach, supported both
synchronous and asynchronous IPC and experienced
poor IPC performance. Jochen Liedtke, a German Com-
puter Scientist, found that the design and implementa-
tion of IPC mechanisms were the reason for the poor
performance. He designed a new µ-kernel named L4,
a second generation µ-kernel, while keeping high per-
formance in mind, such can be found in [3][4]. IPC
mechanisms used in L4 will be discussed later.

1) Threads: A process is the representation of a pro-
gram in memory; it consists of smaller, programmer-
defined parts, called threads. Threads, the smallest unit
of an executable code, allows execution of a process in
parallel. A thread running inside an address space has
its own instruction pointer, a stack pointer and state
information containing address space information.

A thread is a basic unit of execution in L4 µ-kernel. L4
threads are light-weight and easy to manage. Fast inter-
process communication, along with the concept of light-
weight thread are the main reasons behind the efficiency
of L4.

A thread is always linked with exactly one address
space and an address space can have many threads
associated with it. Each thread has a complete set of
virtual registers also called Thread Control Registers
(TCRs). These registers are static i.e., they keep their
values unless changed by the thread. They contain a
thread’s private data e.g., scheduling information, IPC
parameters, thread IDs, etc. The part of the address
space where TCRs are stored is called Thread Control
Block (TCB). Each TCB is divided into a user TCB and
a kernel TCB, accessible by user threads and the kernel
respectively.

Each thread is linked with a Page-Fault Handler
thread and an Exception Handler thread. They are used
to handle page-faults and exceptions caused by the



thread. Each thread also has its own stack but a shared
heap with the other threads of the same address space.
Each thread has a local identifier and a global identifier
i.e., a local identifier is used by the threads sharing the
same address space whereas the global identifier can be
used by any thread.

2) Communication between Threads: Certain applica-
tions or servers rely on other applications or servers for
certain tasks. One of the main activities threads engage
in is communication with other threads (e.g., request
services, sharing info etc). Threads communicate with
each others in two ways:

• Using shared memory (Address Space Sharing)
• Using L4’s Interprocess Communications

Shared memory is used to exchange larger amounts of
data, whereas, IPC is used to exchange smaller messages
and synchronization.

Communication using shared memory will be explain
such as followed. When two threads, belonging to the
same address space, want to communicate with each
other, the easiest and most efficient way is to use shared
memory. As threads within the same address space
already share memory, they do not have to use L4s
memory mapping facilities. Provided that both threads
agree on the shared memory location or variables to use,
they are allowed to communicate in this way. When
threads communicate in this way, it is important to
provide mechanisms to avoid race conditions, i.e., both
threads should never write into a shared location. L4
does not provide mutual exclusion primitives and these
should be provided at the user level.

If the threads from different address spaces want to
communicate with each other, then both the threads
should have access to the same memory region. This
is done by having one thread map a region of its own
address space into the address space of the other thread.
Once this is done, the threads communicate just by
reading from or writing to the shared region of the
address space.

Another way of thread’s communication is by using
L4 IPC. L4’s basic inter-process communication mech-
anism is implemented via message passing, allowing
L4 threads from separate address spaces to exchange
messages with each other. IPC messages are always
addressed using the threads unique (local or global)
identifiers. Message passing IPC can transfer data be-
tween two threads in two ways; either by value i.e.,
copying of data between the address spaces, or by refer-
ence, i.e., via mapping or granting of the address space.
L4 IPC is normally synchronous and is also used for
synchronization purposes. L4’s IPC is used for exception
handling i.e., L4 µ-kernel converts an exception fault
to an IPC to a user-level exception handler, memory
management and interrupt handling by converting the

Fig. 1. L4Message Syntax

page-fault or interrupt into an IPC to a user-level pager
or interrupt handler.

An IPC message is shown in Figure 1, which consists
of one mandatory and two optional sections. [3]

The Message Tag contains the control information (like
the size of the message and the kind of data contained
within) and a message label (helps in the identification of
the message and can be used to encode a request key or
to identify the function of the thread to be invoked upon
reception of the message). The untyped-words section
contains the data which is copied directly to the receiver.
The typed-items section contains typed data such as map
and grant items.

L4 transfers these messages using Message Registers
(MRs). These MRs can be implemented as either special
purpose or general purpose hardware registers or gen-
eral memory locations. The sender writes the message
into its own MR and the receiver reads the message
from its own MR, and µ-kernel copies these messages
into the MRs. Each thread can have 32/64 MRs (based
on the architecture). A thread can use some or all of the
MRs to transfer a message but the first MR i.e., MR0

should contain the message tag. Furthermore, MRs are
transient read-once virtual registers, i.e., once read, their
value becomes undefined until written again. The send
phase of an IPC completely reads all the MRs and the
receive phase writes into MRs.

A thread only receives those types of messages which
it has agreed to. The Acceptor Thread Control Register
(TCR) is used to state which typed items will be accepted
when a message is received. If the acceptor says that
the map or grant items are accepted, then it also tells
where the memory should be mapped into the receiver’s
address space.

Sending and reception of messages is done via IPC
system call. IPC is used for inter and intra address
space communication. L4’s IPC communication is syn-
chronous and unbuffered, i.e., a message is transferred
from sender to the receiver only when the receiver has
invoked a corresponding IPC operation and it accepts
the type of items present in the MRs. Due to synchronous
communication without buffering, the amount of data
copied is reduced, leading to a high-performance IPC.

A single IPC call involves an optional send and
optional receive phase, implicitly specified by the pa-
rameters to the IPC call. It is also possible to specify
blocking/non-blocking IPCs. Different kinds of IPCs
are implemented by different combinations of blocking



and send and receive phases; e.g., IPC with parameters
including both a send and a receive phase with no-
blocking implements a synchronous IPC that blocks until
a reply is received, whereas, an IPC with only a receive
phase and no blocking implements a blocking call that
waits for a message to arrive.

3) Performance Optimizations for L4′s IPC: As we have
already mentioned, in L4 µ-kernel, the IPC is not
just used to exchange messages between the user-level
threads, but also to deliver asynchronous notifications,
interrupts, thread startups, thread preemptions, memory
mapping, exceptions and page-faults. So due to the
high frequency of their usage, any kernel change that
increases IPC costs will increase the over-head and thus
degrades the performance.

In the following sections, we will discuss two IPC op-
timization techniques named Direct Process Switching,
that avoids running the scheduler during kernels critical
paths, and Lazy Queuing, that postpones the updating
of its ready queue. Both these optimizations decrease the
IPC costs but affect the real-time scheduling behavior of
the system in major and minor ways. In the following
sections, to demonstrate the two optimizations, we will
consider the case of an IPC when one process calls
another process or server requesting a service, resulting
in caller becoming blocked and the called becoming
runnable; the reverse happens as a result of the response.
Both these schemes were proposed by Jochen Liedtke in
1993 to improve µ-kernel IPC performance and can be
found in [5][6].

4) Direct Process Switch: Generally speaking,
whenever a process in an OS becomes blocked,
OS invokes the scheduler to select the next process
to run based on its scheduling policy. However, if a
process blocks during an IPC path, which happens a lot
in µ-kernel based systems, invoking the scheduler can
be a costly operation impacting IPC performance. So in
order to avoid this, L4 switches directly to the newly
runnable IPC destination, disregarding the relevant
scheduling criteria, such as priority of the threads in
the system. There are three main advantages of this
approach.

• The overhead involved in the calling of the sched-
uler, in performance-critical IPC path is avoided.
The advantage is obvious.

• The delay of the reaction to the events delivered via
IPC is reduced. It allows the service of the interrupt
earlier thus improving I/O utilization.

• The cache working set may be reduced (avoiding
pollution of cache by the scheduler). A client and
server interacting closely can share the cache.

Direct switching makes the real-time scheduling anal-
ysis for a specific scheduling policy difficult as the sched-
uler is not involved in the majority of the scheduling

decisions. Moreover, scheduling decisions due to IPCs
occur a few thousand times per second, whereas, the
scheduling by the scheduler happens a few hundred
times per second.[5]

5) Lazy Queuing: When performing a remote
procedure call (RPC) with a synchronous IPC, the
sender threads becomes blocked after sending the
message, and the waiting receiver thread becomes
unblocked as soon as it receives the message. This
blocking and unblocking of threads result in the
manipulation of the ready queue of the system; i.e., the
blocked thread must be removed from the ready queue
while inserting the unblocked thread into the ready
queue. L4 µ-kernel provides two techniques for ready
queue management.

• A blocking thread is not removed from the ready
queue right away, but its removal is postponed until
the scheduler is called. The scheduler then searches
for the next thread to run and removes any blocked
threads it comes across in the ready queue.

• The µ-kernel preserves the invariant that all the
ready threads not currently running remain in the
ready queue, while the currently running thread
does not need to be in the ready queue. If the
running thread changes the state from running to
ready, it is added to the ready queue.

Now in L4 µ-kernel, both of these techniques ensure
that when IPC results in one thread becoming blocked
and another running, short-lived updates are avoided
and the unavoidable ready queue maintenance is post-
poned as much as possible. Finally the ready queue is
updated when the scheduler runs because of the time-
slice exhaustion or a blocking IPC to a busy thread. The
advantages of Lazy Queueing are the saving of direct
cost of the queue management, avoiding of pollution
of Translation Look-aside Buffer (TLB) entries, and the
indirect cost of cache lines polluted by the queue man-
agement [5].

B. Scheduling
The L4 provides kernel-scheduled threads with spec-

ification of 256-level. The scheduler of L4 kernel resem-
bles monolithic operating systems where all runnable
threads are enqueued into a processor-local ready queue.
Invocation of L4 kernel scheduler is triggered by timer
interrupts, blocking kernel operations and user-initiated
thread switches. However, for efficiency purpose, L4
does not invoke scheduler during IPC calls. Instead,
it employs a time donation model where the blocking
thread passes its time slice to the partner. The thread
is scheduled preemptively using the method of Round-
robin scheduling. Round-robin scheduling assigns fix
and equal portions of time slice in circular order and
handle the process without priority.



The length of time slice could be varied between
shortest possible timeslice, ’e’, and ’infinity’. But the
standard length of timeslice is 10 ms. If the timeslice
is different from ’infinity’, it is rounded to minimum
level granularity that is allowed by the implementation.
The minimum level depends on the precision of the
algorithm used to update it and the verification of
exhaustion. Once a thread exhausts its timeslice, the
thread is enqueued at the end of the list of the running
threads with same priority, in order to give other threads
a chance to run. With this algorithm, Round-robin gives
some advantages, such as fairness, progress guaranteed,
fast average response of time and no starvation occurs
since no priority is given [1].

As a comparison, monolithic systems attain a ser-
vice by a single system call which requires two mode
switches, which are the changes of processor’s privilege
level, whereas in microkernel-based system, the service
is attained by sending IPC message to a server and
results are obtained in another IPC message from the
server. For this, a context switch is required if the drivers
are implemented as processes. If the drivers are imple-
mented as procedures, a function call is needed instead.

L4 provides an interface that the parameters can be
adjusted in user level programs. L4 arranges threads into
a hierarchy by associating a scheduler thread with each
thread. In the current implementation, the thread may
act as its own scheduler where L4 permits the scheduler
to set and adjust the parameters of their subordinate
threads, with the restriction that priorities may not ex-
ceed the own priority of the scheduler.

Since microkernel-based systems are currently widely-
spread, demand for extensible resource management
raises and leads to demand for flexible thread schedul-
ing. In [7], the investigation of exporting the scheduling
task from kernel level to user level is elaborated with a
novel microkernel architecture, which involve the user
level whenever the microkernel encounters a situation
that is ambiguous with respect to scheduling and allows
the kernel to resolve the ambiguity based on user deci-
sion.

A satisfactory and qualified modern microkernel
scheduler should provide several things such as recur-
sive, user-controlled, priority-driven, efficient, generic
and flexible scheduling. In a real-time situation, the
scheduler must fulfill some or all the requirements at
the same time. FIFO (First In First Out) is closely related
to the Round-robin algorithm and in real-time applica-
tions it is the most appropriate scheduling algorithm to
be used since it simply queues processes in the order
that they arrive. FIFO-scheduled threads run until they
release the control by yielding to another thread or by
blocking the kernel. The L4 microkernel could emulate
FIFO with Round-robin by setting the thread’s priorities
to same level and having the time slice of ’infinity’.

C. Low Level Address Space Management

L4 microkernel’s approach to memory management
includes placing all the kernel memory logically within a
kernel’s virtual address space. The address space model
is recursive and allows memory management to be
performed entirely at user level. All physical memory is
mapped within a root address space σ0. At system start
time, all addresses except σ0 are empty. New address
spaces can be created by mapping regions of accessible
virtual memory from one address space to another. The
µ-kernel provides three operations for constructing and
maintaining further address spaces.
• Grant, Upon an acknowledgement from the recipi-

ent, the owner of an address space can grant any
of its pages to another address space. This page
is removed from the granter’s address space and
placed in the grantee’s address space. The granter
can only grant pages that are accessible to itself, not
the physical page frames.

• Map, Like the granting, an address space can map
any of its pages to another address space provided
that the recipient address spaces agrees. Unlike the
granting case, the pages are not removed from the
mapper’s address space and can be accessed in both
address spaces. Here also, the mapper can only map
pages that are accessible to itself.

• Flush, Pages from an address space can be flushed
by the owner of the address space. The flushed
page remains accessible to the flusher’s address
space. However, the page is removed from all other
address spaces that received the page directly or
indirectly from the flusher. Hence, it is important
to note that when address spaces receive pages via
map or grant it includes an agreement to potential
flushing of these pages.

To illustrate the flow of these operations, a granting
example is given below:

In Figure 2, pager F combines two file systems imple-
mented as A and C on top of the root address space σ0
implemented as the standard pager. In the figure, pager
A maps a page to pager F which then grants this page
to user C. Since the page was granted by F to C, it does
not remain in F. The page is available in A and user C
and the effective mapping is denoted by a single line
on the figure above. Now, if the standard pager flushes
the page, it will also be removed from A and user C. If
it is flushed by A, the page will only be removed from
user C. In either case, F is not affected as it used the page
only transiently employing the grant operation avoiding
redundant booking and address space overflow.

The kernel also manages device ports. Device drivers
are outside of the kernel, but the drivers run as normal
applications inside the kernel by allowing ports for
device access to be mapped into the address space of the



Fig. 2. A Granting Example

applications. Hence, memory managers and pagers are
responsible for controlling I/O rights and device drivers
on top of the µ-kernel. [4]

IV. SECURITY ASPECTS OF µ-KERNELS

A system suffers from the lack of the capability to
resolve viruses due to the inability of underlying base
system to apply and enforce the principle of least au-
thority, which undermines the ability of the higher-
level layers to provide security. Some attempts to secure
platforms by using scanners, fire walls and integrity
checkers are not sufficient to assure the security of a
system.

Furthermore, increased dependency on embedded
systems has made reliability and security of it to be
an issue. Strong security is a fundamental requirement
for some existing and emerging embedded application
domains and devices, such as personal digital assistants,
mobile phones and set-top boxes. To build a secure
system, security must be considered in all layers of the
system, from hardware to software applications. And
security has become a critical component of new em-
bedded devices such as mobile phones, personal digital
assistants, etc, since users and providers usually store
sensitive data in it.

In addition, extensive use of wireless communication
makes the embedded system vulnerable. The movement
from low-level communication from hardware to soft-
ware made the infrastructure of wireless communication
potentially vulnerable.

Trustworthiness of a system somewhat depends on its
size. A large system with thousands or more Lines of
Code (LOC) have inherently more bugs than a small
system. It is particularly relevant to the kernel as it man-
ages hardware at the lowest level and it is not subject
to protection or fault isolation mechanisms provided by
hardware. Bugs in the kernel could lead to fatal error of

the system since the kernel is always part of the Trusted
Computing Base (TCB). Hence minimizing the exposure
to faults means minimizing the TCB, i.e., a small kernel.
A trustworthy TCB has to be guaranteed. Microkernel
is the solution to this issue. TCB provides a small,
secure and highly assured microkernel as fundamental
building block. And upon this building block, different
system components of security and assurance can be
started with strong separation guarantees from other
components. A minimal kernel that only contains the
minimal code must be privileged, any functionality that
can be performed by unprivileged code should remain
unprivileged. [8]

The interactions between L4 microkernel applications
via IPC are another aspect to be pointed out. Secure
communication control should enable both integrity, i.e.,
unforgeable identity, and confidentiality, i.e., control of
information flow. As to deal with the complexity of
L4, modularity is implemented to separate the problem
into more tractable segments. In contrast to monolithic
systems, microkernel-based operating systems are usu-
ally realized as a set of cooperating servers where each
server is dedicated to its certain task. The separation
of task is an advantage for security and robustness of
the operating system. Microkernel enforces interfaces
between components, in the form of address spaces
and the mechanism of Inter-Process Communication to
control the communication across address spaces.

Good security properties of microkernels are also
beneficial for multi server operating systems where all
system servers are encapsulated in address space. Each
server is protected physically by the Memory Man-
agement Unit (MMU) hardware. If a process illegally
accesses another process’ memory, it will be detected
by MMU and an exception will be raised. A server can
not corrupt other servers but dependent servers may
be indirectly affected. If server A relies on server B to
perform a task, server A may be affected by a malicious
action or malfunctioning by server B.

Furthermore, the L4 kernel supports the construction
of a small TCB. TCB is actually larger than just the
kernel, e.g. in Linux system, every root daemon is
part of the TCB. A minimal operating system called
Iguana has been developed specially used for embedded
systems. It provides essential services such as memory
management, naming, and support for devices drivers.
The complete TCB can be as small as 20,000 LOC (Lines
of Code) whereas a normal LOC for kernel is 200,000
LOC.

In a system without memory protection, TCB is the
complete system whereas in a dedicated system, TCB
can be very small; a specialized application’s TCB would
only be the microkernel and underlying hardware. An
important security issue is that the components with
hardware control are capable to corrupt the entire sys-
tem. For example, device drivers with Direct Memory



Access (DMA) have the ability to corrupt memory of
arbitrary processes by providing an invalid address to
DMA controller. Some PCI chip sets have an I/O MMU
that protect the drivers by mapping a PCI address space
onto a known area of physical memory. However, more
general solution for this problem is not yet available. [9]

However, TCB and its size are highly dependent on
the functionality that the system provides. Systems with
non-trivial user interfaces tend to have larger TCBs,
where trustworthiness of the user’s input is consumed
by the right program is guaranteed. Besides the large size
of TCB, another reason of poor match for requirements
of embedded system is the model of access control.
In Linux or Windows, different users of system are
protected from each other but there is no restriction on a
particular user’s access to their own data. On the other
hand, embedded systems which are typically single-user
system restrict different programs run by same user to
have different access rights, determined by their function
instead of the identity of the user. This issue is called
least privilege. The operating system runs every program
with full set of access rights to the user which violate
least privilege. It could lead to severe damage of the
system by viruses and worms attack, since full access
permits a virus embedded in the application program to
destroy the user’s files or steal its content.

Microkernel-based systems correct this issue by en-
capsulating software into components with hardware
enforced interfaces where all communication must em-
ploy the IPC mechanism. With this mechanism, the
kernel has full control over all communications between
components and monitors security between components.
The program imported into the system is only allowed
to access files that have been explicitly assigned to it by
the user; hence stealing information could be prevented.

Moreover, a project called secure embedded L4 (seL4)
aims to address the inflexible or inefficient control of
communication and ensure a suitable platform for L4
to provide secure embedded systems development. The
seL4 then provides a secure software base upon which
further secure software layers (system and application
services) can be composed to form a trustworthy em-
bedded system. It provides minimal and efficient lowest
software level and the only part of software that executes
in the privileged mode of hardware.

This project explores the usage of neutral capability-
based communication to provide L4 with a basic, flexi-
ble, efficient mechanism to ensure communication policy.
Policy neutral means that the mechanism is customizable
by the specific system to match the application domain.
Systems could have no communication restriction or be
strictly partitioned, depending on the need. The seL4
project also aims to reduce the size of the kernel by sim-
plifying some kernel abstraction where features of the
kernel are not generally used by embedded applications.
It also has a minimal TCB of 10,000 - 15,000 LOC. [1]

Furthermore, it aims for a single-stack kernel to reduce
the kernel’s dynamic memory footprint. [10]

V. FUTURE OF µ-KERNELS

The L4 microkernel is finding its way to a wide range
of applications, one of the most significant of which are
its prospects in the area of Embedded Systems. Since the
microkernel can be used as a basis for several operating
systems, it is ideal for embedded systems that employs
memory protection. The L4 can provide a reliable, flex-
ible, robust and secured embedded platform due to
its minimalistic approach. Applications running on the
microkernel provide system services to normal applica-
tions interacting via interprocess communications. This
modular implementation makes a system robust as faults
are isolated within applications. It also offers flexibility
and extensibility since applications can be removed,
replaced or added easily. Compared to a microkernel,
a monolithic operating system is difficult to assure as
it contains all the OS functionality at the minimal level
making it larger. Fault isolation is not possible in a
monolithic kernel.

On the other hand, the microkernel provides a basis
for OS development for a wide range of classes of
systems. [11] investigates the possibility to employ the
L4 microkernel to the embedded space. It examines its
applicability to three application domains in embed-
ded systems; dependable systems, secure systems and
digital rights management(DRM). Microkernels has the
potential to be the foundation for such applications
since for example a system can be constructed from
subsystems by partitioning the kernel. This attribute
is required for dependable systems which should be
able to provide fault prevention, fault tolerance, removal
and forecasting. The small core that the microkernel
provides can be used to implement security policies
that offers confidentiality and integrity. Furthermore, a
trusted processor mode can be created which can be
separated by hardware from the kernel mode, thereby
creating a secure, trusted DRM OS. Software requiring
trusted status and authorization can be implemented
and managed here.

While the future may look bright for implementing
embedded systems on top of the L4 microkernel, there
are some limitations that needs to be overcome in order
for such systems to be successful. The investigations in
[11] have highlighted that the L4’s adoption in secure
embedded systems is hindered by the lack of an efficient
communication control mechanism and poor resource
management. The cumbersome co-ordination of name
spaces, the denial of service attacks due to lack of
resources and the presence of covert channels due to too
much resources being available are some of the issues
that needs to be improved.

The L4’s foundation to embedded devices can be taken
one step further and virtualization technology can be



implemented in it as a platform for enhancing security
while hosting different kinds of operating systems. An
application generating a number of benefits such as
load balancing, server consolidation, cross platform in-
teroperability and much more, virtualization is already a
prevalent application in the enterprise and in desktops. It
provides a software environment in which several guest
operating systems can run as if each owned a complete
hardware platform.

System virtualization is implemented by a software
layer called a Virtual Machine Monitor (VMM), also
known as the hypervisor. The technology is now be-
ing implemented in embedded systems since it allows
for co-existence of different platforms and architectural
abstraction and security. By employing virtualization,
developers of embedded applications can use it as a
security tool by isolating application OSs from the Real
Time Operating System (RTOS) which is inherently crit-
ical as well as relatively defenseless. The segregation of
the guest OSs into individual virtual machines caused by
CPU operating modes and memory management units,
turns the communication between VMs into network-
like mechanisms with explicit channels. [12] further
emphasizes that security benefits can only be obtained
if the guest OS and its program execution are placed
entirely in user mode (non-privileged) and not in system
mode (privileged). Hence running the guest OS in sys-
tem mode, also known as ’OS co-location’ increases the
chance of the guest OS from going astray and rendering
the system unsecured.

In this case, the L4 microkernel can provide signifi-
cant advantages as a hypervisor, as it is the only code
executing in system mode, while other services runs as
user-mode servers with unprevileged address spaces. It
provides compartmentalization which is a key aspect
to tight security and also supports selective and secure
sharing of I/O among the guests OSs. Furthermore, a
microkernel based hypervisor platform allows for secu-
rity evaluation and certification by reducing the scope
of the Trusted Computing Base (TCB) to easily testable,
manageable and verifiable code tests. Further security is
achieved due to the parititions and security policies can
be implemeted at user-level when communicating across
the partitions. The security policies can be changed
without changing or re-certifying the kernel. Of all the
benefits that virtualization can offer to embedded sys-
tems, the greatest advantage lies in enhancing security.

VI. CONCLUSION

Microkernels only contains the privileged parts of a
kernel, thereby reducing complexity of the code making
it easier to detect bugs and faults. There are only three
abstractions in the microkernel, the IPC, scheduling and
memory handling, while device drivers, file systems
and such are implemented in user space. Hence the

mechanisms provided by the microkernel are basic pro-
viding higher security for systems implemented on it. It
also allows for modularity of the entire system while
supporting a small TCB. With all the amenities that
microkernels offers till now, significant advancements
have been made with applications in embedded space
including virtualization in embedded systems. However,
with the improvements in communication control and
resource management expected in the near future, micro-
kernels will evidently become the foundation for more
innovative systems and applications.
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