
EVALUATION AND ANALYSIS OF
OKL4-BASED ANDROID

Rafika Ida Mutia

Department of Electrical and Information Technology
Lund University

Sweden
wx08rm7@student.lth.se

Abstract—As smartphones and feature phones are increas-
ingly in high demand nowadays, researches on improving
the kernel capability to better support and provide extension
features on mobile phone becomes interesting. Microkernel
technology which widely used in embedded system devices,
such as mobile phones, is one of the hot topic area on this
research area. Second generation micorkernels like OKL4
provide flexibility, optimization and security while keep
high-performance with a small memory footprint.

On the other hand, the Android mobile phone operating
system runs on Linux as its kernel and it offers Java
runtime environment using Dalvik Virtual Machine (Dalvik
VM) and custom C library called Bionic. Porting the
OKL4 into Android might introduce a new efficient and
improved technology on mobile phone. With their own
characteristic, the OKL4-based Android could provide
performance improvements, such as fast IPC mechanism,
small memory usage and transparent superpage supports
that could improve Java virtual machine performance.

Index Terms—Microkernel, Android, OKL4

I. INTRODUCTION

The increased demand on smart phone and feature
phone have required the mobile phone to be more pow-
erful, have extended features, have better connection to
internet while having optimal battery life. Smartphones
run complete operating system software providing a
platform for application developers. There are several
operating systems for different type mobile phones, such
as Symbian, Android, Blackberry OS, iOS and Windows
Mobile OS. An open source OS, such as Android and
iOS, are equipped with large complex operating systems
derived from solutions that originally targeted desktop
architecture. These operating systems should solve some
issues to embedded systems related, such as low-power
processor, limited system memory, small caches and
battery power.

On the other hand, operating system kernel is the
lowest level of abstraction that is implemented in soft-
ware. It manages the system resources and connects
applications to actual data processing in hardware level.
Microkernel with its small size, implement the smallest
set of abctractions and operations on its privileged mode

and put other features such as drivers, file systems, etc,
in de-privileged mode. Second generation microkernel
that has been developed in Open Kernel Labs, OKL4, is
designed for embedded system to be used for the user
environment on mobile phone while having smaller size,
smaller memory footprint and increase the performance
of mobile phone.

By utilizing the open-sourced Android operating sys-
tem, replacement of Linux kernel with an OKL4-based
system is the aim of OKL4-based Android project in
[1]. OKL4 has also been optimised for processors found
in mobile phones. It runs on mapped modem which is
used to select the correct cache line allowing multiple
mappings of the same virtual page to co-exist. The
address space identifire (ASID) ensures the processes to
access only their own mappings without needing to flush
the TLB.

The approach of OKL4-based Android integrated sys-
tem has been clearly staed and elaborated in [1]. The aim
of this report is then to study the feasibility of porting
Android components to OKL4-based operating system
and analyze the benchmarking done in by comparing the
OKL4-based Android system to Linux-based Android
with further elaboration and analyses. As an evaluation
system introduction, in [1] the Android Developer Phone
1 (ADP1) is used as the basis of the Linux/OKL4 and
utilizes ARMv6 processors with 32 message registers.

The organization of this report is as follows. Section
II briefly explains the characteristics of Android and
OKL4. The components needed for the porting and
the procedure on how it is done are described in
Section III. The next section, Section IV, explains
the implementation of porting Android components
to OKL4. The Section V evaluates the OKL4-based
Android system and compares it with the existing
Linux-based Android. The following section, Section
VII, looks at the one-step further of this system, an
integration of OKL4-based Android with virtualization
by using microvisor, which called OK:Android. The last
section, Section VIII provides conclusion of this report.



II. BACKGROUND

A. Android

Fig. 1. Android Stack

1) Linux: The existing Android system uses Linux
as its kernel, but in OKL4-based Android system, the
Linux kernel is replaced with OKL4 microkernel which
minimize the system to only contain required platform
to operate. The OKL4 is a minimal kernel and hence the
complet user space-support operating system has to be
written. With this bottom-up approach, it could impact
performance and memory usage.

2) Bionic: Bionic is a custom C library for Android de-
veloped by Google which provides a C system interface
to the Linux kernel. It has a minimal pthreads implemen-
tation to support thread creation and synchronization
and also contains some Android-specific additions such
as system properties and logging.

To meet the requirement of embedded hardware,
Google aims to have a small and fast libc
implementation. The stripped shared library of Bionic is
only 238 KB size which is considerably small compared
to 1.11 MB stripped GNU libc implementation. A
small sized Bionic is an advantage for the mobile phone
to have less system memory than desktop machines.
Furthermore, Android Developer Phone 1 (ADP1) has
only 128 MB of RAM and more importantly has no
swap space.

3) Dalvik VM: The core of user environment in An-
droid is the Dalvik VM. The compiled format of Java
code, Java class files, is converted into Dalvik dex files
through the use of a developed tool. As such, Dalvik
VM can execute applications written in Java. However,
Dalvik applications are interpreted in OKL4-based An-
droid system and it cause much slower execution than
native code due to unavailable just-in-time compiler.

Dalvik, with its dex file format, has several time-
saving and space-saving optimization compared to Java
jar format, a collection of compiled Java class files.
An uncompressed dex file is approximately the same
size as a compressed jar file. Hence, memory saving as
Dalvik executables does not need to be decompressed
into system memory, and they can also be executed
from a memory-mapped file. Space-saving optimization
in Dalvik is when portions of the dex file that are
not commonly used can be ejected from memory, and
reloaded again on-demand.

Another important optimization is the Zygote process.
Zygote process is a Dalvik VM process that has loaded
core Java libraries and is ready to begin executing byte-
code. It forks with copy-on-write semantic to create new
Dalvik VM instances whenever a new application is
launched. It improves the process start-up time since
new applications have all core libraries pre-loaded and
initialized as done by the Zygote and can be executed
immediately.

As Dalvik is designed to have each process executed
in its own instance, the Zygote optimization is possible.
It means that if one Java application crashes, it will
not impact other Java applications because of process
isolation provided by the OS. This is important when
all user applications run on Dalvik, as having the user
environment crash due to one faulty application would
not affect other application.

4) Binder IPC: The System Server process provides
access to the system services such as Package manager
and Power manager. It also delivers events to application
for user input notification. The processes are written
in Java and runs in Dalvik VM instances. In order to
have access to the provided services, user application
performs IPC to the System Server. Furthermore, user
applications can also provide services to other user
applications. These are provided by Binder IPC driver,
an additional to the Linux kernel by Google.

Binder on Android allows processes to securely
communicate and perform operations such as Remote
Method Invocation (RMI), whereby remote method calls
on remote objects look identical to local calls on local
objects. To perform remote function call, the function
arguments first need to be delivered to the remote
application. The process of converting data into and back
out of a transmissible format is called marshalling. This
is achieved through the use of the Android Interface
Definition Language (AIDL).

Each registered service runs a thread pool to handle
incoming requests. If no threads are available, the Binder
driver requests the service to spawn a new thread.
Binder can be used to facilitate shared memory between
processes. One of the additions to the Linux kernel is an
ashmem device driver. Ashmem allows kernel to reclaim
the memory region at any time, as long as the region is



marked by users as purgeable. The ashmem allocates a
region of memory and represented by a file descriptor.
The file descriptor can be passed through Binder to other
process. The receiver can pass the ashmem file descriptor
to the mmap system call to gain access to the shared
memory region.

Binder implements security by delivering the caller’s
process ID and user ID to the callee. The callee then
is able to validate the sender’s credentials. In Binder,
remote objects are called as Binder References. By
having access to a remote object, user could perform
RMI on the object. One process can pass a reference
through Binder to give another process access rights to
a remote object. The Binder driver control and blocks
a process from accessing a remote object if it does not
have the permissions.

5) Role of IPC: The IPC is used to access all services
in the System Server. The example is such as to launch a
new application, Binder is used to request the operation
of the Activity Manager. Another examples are accessing
Power Manager to keep the screen on, to flush the
contents of a window to the screen by notifying the
Surface Flinger, etc.

Each of these managers provides a service by
registering with a system component called the Service
Manager. The Service Manager keeps track of different
services in the system and provides dynamic service
to user applications. The Service Manager is identified
by integer zero. Furthermore, the most common user
of Binder is to notify the Surface Flinger of window
updates and to dispatch input events from the System
Server to user application.

B. OKL4 Microkernel

OKL4 provides a minimal, but portable set of
abstractions to the hardware. Its design and API derives
from the L4 family of microkernel. In the following
subsections, several aspects of characteristic of OKL4
that is beneficial for the OKL4-based Android system
will be described.

1) Small Memory Footprint: OKL4 targets embedded
system with power-saving hardware, limited system
memory and operating on battery power. The OKL4
is very small and minimize its presence in the caches
which results in less cache misses on its execution and
has more room for user applications.

2) High Performance IPC: Performances of IPC have
a large impact on performance of overall microkernel-
based system. All primary system services must be
implemented in userspace and IPC is used for processes
to access these services. The bare-bones nature of OKL4

IPC provides a simple mechanism to transfer data which
results in a fast IPC mechanism.

Data is transferred from one thread to another using
message registers. With 32 message registers in the
platform implementation of this system, it allows IPC
operation to transfer at most 32 words data, with 4
bytes per word. The message registers consist of several
CPU general-purpose registers, with the rest located in
the User-level Thread Control Block (UTCB) of thread
in main memory. The pre-determined location of the
message registers by the kernel allows for a faster
transfer as it already knows where the data is. The use
of shared memory is encouraged for larger transfers
that do not fit in the message registers.

3) ARM Support: The particular advantage of OKL4
on ARMv5 chipsets is its superior context-switch han-
dling. In ARMv5, TLB entries do not have an address-
space identifier (ASID), which means TLB entries of dif-
ferent processes cannot be separated from one another.
Hence TLB must be flushed clean to prevent processes
from accessing each other’s memory.

In addition, the Virtually-Indexed Virtually-Tagged
(VIVT) caches in ARMv5 means different address spaces
can have same virtual address mapping to different
physical addresses, which is common in multiple ad-
dress space OS such as Linux. Hence, to avoid cache
aliasing where an incorrect cache entry is present, there
should be only one mapping per virtual page and there-
fore the caches must be flushed on every context-switch.
Another way to avoid flushing of TLB caches on every
context-switch is by fully utilize the ARM domains and
the Fast Context Switch Extension (FCSE).

On the other hand, the ARMv6 features Virtually-
Indexed Physically-Tagged (VIPT) caches and TLB
entries do not contain an ASID. The translation process
outputs the physical address being mapped to, and it is
used to select the correct cache line allowing multiple
mappings of the same virtual page to co-exist. The
use of ASID ensures processes access only their own
mappings without needing to flush the TLB.

4) Transparent Superpages: The userspace OS per-
sonality (OS personality will be explained in III-A) is
responsible for allocating system memory to user pro-
cesses and able to implement transparent superpages
with the mechanism supplied by OKL4, it can implement
transparent superpages. With transparent superpages,
user applications allow the OS to decide the page sizes
used for memory locations. A large page size means
high TLB coverage and therefore less TLB misses, less
processing time and internal fragmentation.

However, there is a trade-off between performance
and memory usage due to internal fragmentation, but
any imaginable policy can be implemented. The policy
designed for Android specifically could be constructed



to provide a balance between performance and memory
usage.

Superpages can be accessed in Linux through the
HugeTLB library. Through examination of the Android
source, superpage support is not compiled into the
kernel and it is not used by any userspace code in
Android.

III. Methodology
In [1], instead of porting complete Android to OKL4,

only subset of Android components is ported to OKL4-
based operating system. As in Figure III,high-level view
of a basic functioning Android system requires the sys-
tem server process communicating to a Dalvik applica-
tion in a separate process. A top-down design approach
can be applied to determine the lower-level system
requirements.

Fig. 2. High-level Requirement of an OKL4-based Android System

Firstly, a form of IPC is needed to facilitate the
communication between application process and system
process. Secondly, Dalvik VM requires Bionic-compatible
C library and operating system support for Linux system
calls. Thirdly, the System Server needs access to the
drivers, such as video and input, to be able to perform
its role. Finally, Dalvik needs to load Java libraries at
runtime which requires a file system.

Therefore, the basic requirements to support Android
runtime on OKL4 microkernel are OS personality, IPC
mechanism, Bionic-compatible C library, Dalvik VM and
System Server which will be explained in the sections
below.

A. OS Personality
A microkernel does not provide a complete OS

and most standard OS services are implemented in
userspace, therefore the collection of userspace servers
for is called as operating system personality. Only a few
things still live in the kernel, the other system policy
is implemented in the OS personality, e.g. threads
scheduling in the system is dictated by OKL4.

1) Component-based Design: An OKL4-based An-
droid system are fundamentally different to a Linux-
based system. Microkernels encourage the design of
a componentised system running in user space. The
communication between component then been done by
using IPC mechanism.

Native code written for Android expects a POSIX
API as provided by their libc implementation (Bionic)
working with the Linux kernel. However, the OKL4
system call API does not provide POSIX semantics.
Therefore, the OKL4-based Android system needs an OS
personality running in user space to be able to provide
the required functionality normally provided by Linux
and Bionic. This OS layer will also need to provide
user applications access to devices. The OS personality
consists of several loop processing Linux system call
requests from user space applications. The thread that
handles this main server loop will be referenced as the
root server.

The design will be monolithic to simplify
programming and to maintain the performance.
Drivers will conceptually be implemented as separate
components with their own thread of control. The
reason is to facilitate the componentization of unrelated
drivers into separate protection domains at a later date
so that driver components can be easily swapped out
with different implementations depending on which
hardware platform targeted. Furthermore, the OKL4
3.0 distributions provide a library layer on top of the
L4 API called libokl4 to assist the construction of OS
personalities.

2) Drivers: Implementing all drivers to be handled in
a single thread of control will destroy code portability
since it is affected by the behaviors of each driver. Hence,
each driver will be implemented as a separate conceptual
component in user space with its own thread of control.

Processing overhead raised on OKL4 since the kernel
delivers interrupts using IPC. To cope with it, context-
switch is required, which is not the case in monolithic
kernel. However, overhead is low and interrupt latency
is not an issue with the devices available on a mobile
phone.

B. IPC Mechanism

Binder in Android is used for dispatching input
events to user applications. Although in [1], Binder is
not fully ported, obtaining a pixel buffer shared with the
video subsystem does require Binder’s shared via file
descriptor feature. As such, Binder can be bypassed by
replacing dynamic allocation of shared memory buffers
with static allocation by the OKL4-based Android at
startup. This becomes possible since the port will launch
pre-determined applications.

C. Bionic-compatible C Library

There are two possible approaches to develop a Bionic-
compatible C library; by porting Bionic to run on OKL4-
based system Android , which redirect system calls to



the OS personality and by porting any missing features
from OKL4’s minimal libc implementation.

The first approach is used in [1] since OKL4’s libc
proved to be lack of necessary features and would have
required large porting effort. Furthermore, using OKL4’s
minimal libc implementation will not guarantee the
same semantics offered by Bionic and it could lead
to compatibility issues. By porting Bionic to run on
OKL4-based system Android, emulation for system
calls is provided as needed by the applications running
on the system.

D. Dalvik VM

The Android runtime is powered by the Dalvik VM. It
is portable to different architectures and different OSes.
As such it links to very few other libraries, with Bionic
libc being the only prominent one.

Dalvik has major porting issue, the core Java libraries
stored in the file system is in an unoptimized format.
When Dalvik first loads these libraries, it optimizes them
and stores a copy into a cache on the file system. When
other Dalvik instances start up, the optimized copy from
the cache can be used so the optimization process need
only be performed once. Dalvik invokes the dexopt tool
using fork/exec to perform this optimization. This is time
consuming and requires a write-capable file system.

However, there is another method could be used, that
is by uploading the libraries to the Android simulator
and invokes the optimization process by launching
Dalvik with specific parameters. The pre-optimized
libraries can then be downloaded back. It avoids time
consumed on implementing and debugging features
that might not be used anywhere else.

E. System Server

Porting the entire System Server involves parts of the
system that are not available on OKL4-based Android
system, such as power management. Instead, only
partial port containing components required is done
such as IPC, video and input.

F. File System

A read-only in-memory file system is necessary to be
able to load Java libraries at runtime. The OKL4 build
system allows placement of files into memory and access
them using libokl4. The OKL4 environments store
build-time information, such as the memory location of
files that were inserted into the boot image. The ADP1
does have an SD card device that could have been used,
but a driver and file system implementation have not
existed yet.

A real device and a real file system implementation
provide more flexibility. Files can be created and written

to at runtime. However, this functionality is not required
for an initial Android port. Hence, an in-memory file
system is implemented in the OKL4-based Android
because of low complexity and less time consuming
reasons.

IV. Implementations
A. OS Layer

Building an OS personality on top of OKL4 to
support Android requires several subsystems to be
implemented. It also have to keep the policy of minimal
implementation and be simple, yet still work to
optimum level.

1) File System: A read-only in-memory file system is
implemented in this project. In order to let user process
access this file system, extra framework is required.
Therefore, a file table is allocated to each process so that
files in the in-memory file system can be accessed. The
entry in the file table contains the state about an open
file, which is the address of the file data in memory, file
size and current seek position within the file.

2) Virtual Memory Subsystem: The responsibility of
VMS is to manage both virtual and physical memory.
It needs to handle the demands of Android applica-
tions, which most commonly is the mmap system call.
The POSIX semantics of mmap system call expect the
allocation of memory regions to be zero-ed out or contain
the specified file.

The required semantics are implemented by making
use of the callback support of libokl4 memsections
which actually in libokl4 is a block memory consist of
a base, a range and a variety of other attributes such as
access permissions and page size.

By using callback, user can choose when to map
a virtual page to a physical frame during creation of
memsections or in response to a page fault. The phys-
ical memory frame can be zero-ed out before allocating
memory regions to user. By using an in-memory file
system, it meets the requirement of backing memory
pages with contents of a file. File contents are already in
memory and can be copied directly without requirement
of accessing disk device.

As a result, this project supports pre-mapped and
lazily mapped memsections that match mmap seman-
tics. Lazy mapping of pages reduces memory usage
which is a benefit since Dalvik allocates several large
buffers which are megabytes in size.

Specifying the page size of memsections is
supported by libokl4 although only explicit super
page support is implemented in this project. A bug in
the platform code means the physical addresses are
only aligned to 4 KiB blocks. The misalignment also
varied between different compiles;hence only large



pages are successfully mapped by manually offsetting
the addresses by the size of the last misalignment.
A simple function malloc 64k was made available to
userspace, and has the same interface and semantics as
the standard malloc.

3) Process Creation: New processes are created by
using fork system call in Linux. It aims to duplicate the
address space of the caller. The fork system call is used
to launch Dalvik optimization tool, dexopt and Zygote
optimization.

The creation of new processes is done by parsing the
executable located in the in-memory file system with
a custom-written ELF loader. File mapped memsections
could be created for the text and data segments and
a zero-mapped memsections for the bss segments. All
system calls in OKL4 microkernel that create new ad-
dress spaces are handled by libokl4 which provides the
protection domain abstraction for address spaces.

To launch multiple Dalvik VM instances in the system
from the same binary, program arguments (argc and
argv) are implemented by copying the arguments data
into the new process’s address space and pointing the
L4_UserDefinedHandle() to this piece of memory.
When the process starts up, it finds arguments and
passes them to the program’s main function.

4) Thread Creation: Android makes use of multiple
threads in its application and in system framework. The
process of starting up new threads is a combination of
OS code and user library code. In OKL4-based Android,
the libokl4 is used to create or start new thread. The
pthreads library in Bionic is responsible for creating new
threads and providing synchronization tools for multi-
threaded environment.

During thread creation, a stack location is chosen by
pthreads library and information of executed function is
placed above the given stack pointer. In Linux thread
creation, it is handled by clone system call which consists
of an assembly routine to do the system call and then
sets up the registers to make a call to the pthreads

thread entry function. Different return value from clone
is used to force the parent and child to take different code
paths out of the system call.

Because of lack implementation of fork in OKL4, the
process is a little bit different. The startup information
is still stored above the stack pointer with the area
below to be used for the stack. However, the instruction
pointer given to the newly-created thread always points
to a specific assembly routine. The routine reads the
function address and arguments from above the stack
pointer, and pass it to the pthreads thread entry function.

5) Futexes: For more sophisticated thread-
synchronization tools, such as semaphores and condition
variables, Linux provides a fast user space mutex (futex).

Semantics
The semantics are such followed:
int __futex_wait(volatile void* ftx, int
val, const struct timespec* timeout);
int __futex_wake(volatile void* ftx, int
count);

The semantics involve synchronization using the value
and physical address of a single word as pointed to by
the variable ftx in the above function declarations. The
syncronization process of semantics is such followed.

Thread A calls futex_wait to sleep until Thread B
calls futex_wake on the same futex variable. If Thread
B do this first, the futex semantics say that Thread A
should awake immediately. To do this, futex_wait
compares the expected value of the futex word pointed
to by ftx to its real value. The expected value is passed
as the integer val. If the values match, Thread A will
go to sleep, but if the Thread B changes the futex value
and then calls futex_wake before Thread A performs
the futex_wait call, then the expected value expected
by Thread A of the futex word is wrong. Then a call to
futex_wait will cause Thread A to wake up immedi-
ately as intended.

In futex_wait, the kernel compares the expected
value of the futex word to the real value. The OKL4-
based Android OS personality is required to maintain
page tables to translate word’s virtual address into phys-
ical address.

In order for the futex implementation be compatible
with future OKL4 release, user space page table is
implemented. As value must be accessed on a call to
futex_wait in semantics, the page containing the ftx
variable must be mapped in and accessed. The mapping
to OKL4 can be done by using system call. To avoid
overhead, the page is not necessarily be unmapped so
that it can be used for the next call to the futex.

There is no formal process of creating and destroying
a futex. When a new futex is seen by the rootserver, the
necessary state must be created. A futex is identified
by 32-bit physical address of the futex word. The 32-bit
address can be used as a key to associative container
when accessing the state of a futex.

6) Timer Driver: There are two timer devices on ADP1
bus; the general-purpose timer (GPT) and the debug
timer (DGT). OKL4 already uses GPT to implement
timer ticks for context-switching. Hence, DGT is left for
timestamps and a sleep functionality implementation.

7) Video Driver: Video has internal buffer storing
of last sent frame; hence it can be lazily pushed. It is
different to Video Graphic Array (VGA) monitors which
always require a new frame to display and makes
sense for the performance and power requirements of



embedded hardware. Therefore, the video driver needs
to provide three functions; access to the frame buffer,
permission invoking of Direct Memory Access (DMA)
operations to update the screen, and a notification for
when the DMA is complete.

8) Input Driver: The ADP1 has several sources of
events, such as touch screen, the keyboard, the trackball
and various other buttons along the side of the phone.
Each device requires its own driver and each button
pressed or touched generates an interrupt. As all work
is interrupt-driven, only a simple IPC wait loop was
required.

Each touch event consists of several events in the
Linux input framework. The OKL4 touch driver does not
operate exactly the same on Linux. Reading events from
touch device in /dev/input reveals the Linux driver in-
terleaves events resulting in less data being transferred.
The OKL4 touch driver sends all events every time due
to time constraints by generate hard-coded touch sub-
events per touch interrupts.

There are two approach can be done to move event
data out of the driver; to synchronously transfer each
event using the OKL4 IPC message registers and to
use asynchronous notifications and a fixed-size shared
memory region where parties read and write event data
from a single-reader and single-writer lock-free queue.

B. Dalvik Application Framework

Starting up new Dalvik applications is a process
that requires the System Server to provide several
services including Package Manager, Window Manager
and Binder. In order to avoid full runtime stack, a
user application guises the standard API in order to
develop a proof-of-concept demonstration that Android
applications can run on an OKL4-based system.
However, the implementation is used only for user
applications and not the System Server.

1) UI Layout: The UI layout in Android applications
is described by XML file. The entries in the layout
include platform-supplied classes such as TextView,
SurfaceView or application-specific classes. When an
application is packaged for release, the layout file is
compiled into binary form for faster parsing during
application launch. In OKL4-based Android system, the
class name that form the UI layout is extracted and Java
reflection is used to construct Java objects based on the
classes.

2) Image resources : For image resources, Android
access image files by passing an auto-generated
enumeration to the Java framework. Then the object
that representing the image is returned.

3) Event Loop: User applications in Android consist
of an event-loop that processes messages from a queue.
Events can be generated from input devices or from user
applications itself. The event loop waits on OKL4 IPC
to receive key and touch events from the System Server
and thus replicates the behaviors of native Android
application.

C. System Server

Many system services that allow access to devices such
as input, audio and video run in the System Server.
In OKL4-based Android, video and input frameworks
are ported to the system and calls to Binder IPC are
substituted with OKL4 IPC.

The input framework responsibles of getting events
from the OS and deliver them to the appropriate
applications. There are two main components threads of
control; InputDeviceReader and InputDispatcher.
The InputDeviceReader read events from the
kernel and pushes them onto a queue, for the
InputDispatcher to do remaining work whereby the
event is eventually dispatched to the user application
using Binder IPC. In [1], the event reading from the
OS is replaced with OKL4 equivalent solution that is
using asynchronous notifications and a fixed-size shared
memory region where parties read and write event data
from a single-reader single-writer lock-free queue.

1) InputDeviceReader: The InpurDeviceReader re-
sponsibles for reading events from the OS and dealing
with input events that may affect the system. The OKL4
is implemented by using asynchronous notifications and
shared memory, which requires only two system calls
to complete touch event; IPC notify by the driver and
IPC wait by the receiver. It significantly improves the
time taken to extract event data from the OS since Linux
usually require 3 to 6 system calls, one poll and 2 to 5
touch sub-events.

Due to missing some system functionality in the
OKL4-based Android project, various portions of code
were removed to make the event routing path of the
InputDeviceReader functional, including the power
management, battery statistics and replacing checks to
know the phone status.

2) Input Dispatcher: The InputDispatcher respon-
sibles to do routing event for user-applications. The
correct application is determined and the event is mar-
shaled and dispatched over IPC. However, there is a
replacement for dispatching. Android uses a Parcel class
to convert data into a transmissible form. A Parcel is a
dynamically-sized array container used for packing data
to be sent over Binder. It provides function to place prim-
itives and Java built-in classes into the array container.
The Java implementation of Parcel mostly enters native



code using JNI to perform C++ calls on the C++ parcel
class.

Parcel class is used for marshaling, but the Binder call
has been replaced with an OKL4 equivalent function that
passes the IPC capability and the Parcel object to native
code, where the Parcel object is written into the IPC
message registers before being dispatched to the event
loop on the other side.

However, OKL4 IPC has limitation that the use of
shared memory is encouraged for larger transfers. While
the modification is not ideal for benchmarking, which is
the first goal of this OKL4-based Android, performance
of transferring 2 bytes is accepted since it is unlikely to
have a noticeable influence on the results.

Similar to InputDeviceReader, various portions of
InputDispatcher had to be removed, such as power
management, battery statistics and large section of code
that determined the destination of the input event.
Furthermore, there is only one client application to send
events and also feature that stores event history within
MotionEvent, the class that represents touch events,
is removed. Extra events are stored together to avoid
them being dropped, but investigation into this matter
revelaed that it is actually rarely occur in Android and
sending multiple events together can be ignored.

V. System Evaluation
A. Improving Performance with OKL4

There are three segments of performance that has been
improved with the OKL4-based Android; input driver
framework, IPC and superpages. The input framework
is good platform for microkernel-based optimization
because data needs to be moved from the driver, to a
subsystem component and finally to a user application.
A fast IPC mechanism can improve performance in this
area. The OKL4 also offers the ability to experiment with
different page sizes.

The use of asynchronous notifications and fixed-size
shared memory region as method to deliver input events
to the System Server reduce the processing time for
retrieving touch events compared to the implementation
on Linux. It is considered as major advantage since touch
events generate a lot of traffic in the input subsystem.

Binder IPC responsibles for dispatching input events
from the System Server to user application. Improving
IPC performance can reduce the amount of processing
done by the dispatch stage of input routing and therefore
reduce overall processing time of input event.

Another factor to improve the performance is
the usage of superpages and the possibility of having
transparent superpage support. Increasing TLB coverage
on Android is a major advantage due to sheer size
of Dalvik VM and Java runtime framework. With
less cycles wasted on TLB misses, overall processing
time could be reduced which results in an improved

performance across the entire system.

B. Evaluation Environments
1) Android Developer Phone 1 (ADP1):
• Qualcomm MSM7201A system-on chip which has

ARM1136js processor
• ARM9 processor for baseband software
• Separate 4-way 32 Kb and data caches
• Two-level TLB hierarchy with first level of 10-entry

fully-associative MicroTLBs implemented in logic
for both instruction and data. Second level contains
a single MainTLB made up of two memories, an
8-entry dully-associative block and 64-entry 2-way
block

2) Android: Android version 1.5 release 2 as the basis
for the port to OKL4.

3) OKL4: OKL4 was compiled with all performance
options switched on and kernel tracing disabled. Dalvik
was compiled with profiling disabled. OKL4 kdebug
interface is used to access the event counters without
invoking the OS personality.

4) Linux: Linux has a built-in profiling framework
called Oprofile that enables configuration of event
counters on ARM11 CPU. It is not compiled into
the kernel with default build. However, since several
problems encountered, a framework is created and code
is placed inside the Binder device’s ioctl system call.

C. Benchmarking for Comparison of OKL4-based An-
droid to Linux-based Android

In [1], comparison to investigate the performance
of Linux-based Android and OKL4-based Android is
done by using CaffeineMark 3.0 JVM benchmarking
suite. By using the same hardware and Dalvik VM
implementations, but in different OSes, the performance
is expected to be similar. However, to avoid porting
problem, the hardware is tested by running series of
tests, such as :

• Sieve; Uses the Sieve of Eratosthenes algorithm to find
primes numbers

• Loop; sorting and sequence genaration to measure
compiler loop optimization

• Logic; Tests the speed with which the VM executes
decision-making instruction

• String; Meausres memory-management
performance by constructing large strings

• Method; Uses recursion to see how well the VM
handles method calls

• Float; Simulates a 3D rotation of objects around a
point



The results of the benchmark shows similar
performance both in OKL4 and Linux which means all
further benchmarks should be carried out using all 5
libraries.

1) Superpages: As the OKL4-based OS is built from
the scratch, superpages gives big advantages. The ADP1
uses ARM11 CPU which has 72 TLB entries in the main
TLB. For a system that uses 4 Kb page size has a TLB
coverage area of 288 Kb. Hence, by using a larger page
size, the TLB coverage area is increased which means
TLB misses is reduced and it could improve performance
of the system.

On Android, video subsystem uses a compositing
window manager which means each application on
the display has its own pixel buffer and it consumes
memory. Size of background image or framebuffer is
300 Kb which exceeds the TLB coverage area. It means
that some of drawings or images effectively flush the
TLB at least once.

2) IPC Microbenchmark: Performance of IPC in OKL4
and Binder Android could be different. The IPC in
OKL4 is a minimal implementation of a fast IPC mech-
anism while Binder IPC provides more functionality. To
make fair comparisons, isolated performance of both IPC
mechanisms are done. However, IPC performance on
native code will be different than on Java code which
needs to use Java Native Interface (JNI) framework to
access the native IPC functions. Android runs all its
application on Java; hence performance on IPC through
Java JNI should be compared to native code.

Framework of Binder allows set up of simple Remote
Procedure Call (RPC) service. Hence, a simple service
is created to measure the round trip-time for an IPC.
The same scenario is done on OKL4 by using OKL4
IPC. Binder driver API is not so easy to be measured as
kernel schedule any number of arbitrary tasks between
send and receive. Android provides a C++ API and Java
framework API to make it easier to use Binder. The API
allows registering of RPC service with the system Service
Manager. The RPC service is a layer abstraction above
delivering raw uninterpreted data and these data need to
be interpreted in a real environment to make progress.
Thus, all IPC benchmarks are based on simplest RPC
scenario of executing ping-pong.

The test is carried out by executing a ping-pong
loop by client in about thousands of iterations. THe
average of round-trip-time is calculated by dividing
the total number of cycles by the number of ping-pong
iterations. Furthermore, the average Main TLB misses is
also calculated with the same method.

3) Input Framework: The input framework is divided
into three parts for fair comparison purposes; obtaining
events, Java processing and dispatching the event that

will be described as follows.

Obtaining Events The InputDeviceReader obtains
an event from the touch driver. OKL4 uses a single
system call to wake up before accessing the event data
from shared memory and wait for a notification from
the dirver. On the other hand, Linux uses pair of system
calls, poll and read to access the data.

Java Processing After event is obtained, it is passed
back to Java code and being processed to determine its
purpose. Here, in OKL implementation, some of input
routing path in System Server is missing. However,
comparable measurements are taken.

Dispatching the Event
After being processed, the event is dispatched over

Binder IPC to the user application. Preliminary IPC
benchmark showed that OKL4 IPC outperformed the
Binder IPC and improve the dispatch performance. The
measurement were taken from point right before the
touch event is marshalled and dispatched in System
Server until point right after event is reconstructed and
identified.

VI. Results and Analysis

A. Superpages

As expected earlier, number of TLB misses is reduced
in OKL4-based system. However, it does not improve
the performance much since data cache gives the
bottleneck perfromance. In the test, reading and writing
from large buffers will be effectively flushing the 32
Kb data cache several times over just to draw the
background which requires accessing 600 Kb of data
sequentially. Hence cost of data cache miss could not be
estimated without particular measurement on it.

Fig. 3. Benchmark of Application Using a Different Page Size for
Large Pixel Buffers

However, rough estimate of TLB miss can be cal-
culated by obtaining the page size of two buffers in
the two benchmarks. From Figure VI-A, it can be seen
that the standard deviation is low for all measurements
but there is more variance on 64 Kb page size. There
are 192 less TLB misses and saving of 34,149 cycles in
procesing which suggest the cost of 204 cycles. From the
standard deviation in the results, calculated TLB miss
cost ranges between 192 and 217 cycles. Furthermore, it
is confirmed by measuring the cost of uncached memory



reads which done by measuring the number of cycles
when performing 4 reads to uncached memory in a tight
loop for 16384 iterations. The measured cost of a single
read to uncached memory was 95 cycles.

A TLB look-up on ARM11 begin by accessing one
of the MicroTLB on MainTLB. One second of TLB
miss will result in a walk of a two-level page table by
hardware which requires two uncached memory reads
and total cost of 190 cycles. However, the miss latency
of the look-up on the MainTLB is still unaccounted for
and from ARM Reference Manual [3], the remaining
14 cycles can be attributed to this process. It confirms
the early calculation of complete TLB miss cost of 204
cycles is close to the real cost.

B. IPC Micro-benchmarks

Fig. 4. C/C++ ping-pong micro-benchmark

1) Analysis of C/C++ IPC Micro-benchmarks: Figure
VI-B1 proves that OKL4 IPC mechanism is much faster
than Binder IPC. Binder is 58 times slower in sending
and receiving a 4 byte payload and 49 times slower
using OKL4’s maximum payload (124 bytes). Binder IPC
is a deivece in a file system and the ioctl system call
for the Binder device is overloaded to handle all calls
to Binder. There is no IPC fastpath through the kernel
which limits the maximum performance of Binder IPC
and make OKL4 IPC be faster than Binder IPC.

System call ioctl in Binder is a series of command
that is interpreted by Binder driver. The IPC command
is BINDER WRITE READ (BWR) and signals to the
processing driver, that is write, read or write followed
by read. Some important things discovered when using
BWR to do a write followed by a read could affect
performance, such as following:

• The write phase generates a TRANSAC-
TION COMPLETE (TC) message that is appended
to the calling thread’s own job queue

• The TC message is read and returned back to
userspace

• Noticing it has not yet received the reply it was
looking for, the userspace Binder framework ignores
this message and initiates another BWR to restart the
read operation

The TC messags in Android appear to be ignored
but removing the generation of TC message causes the
system fail to boot. It might be part of the design or
a bug, or part of original OpenBinder implementation.
However, it constributes to poor perfromance of Binder.

The Binder implementation also allows multiple user
application to calls into Binder at the same time. A global
Binder lock must be acquired to make progress. The
threads that are waiting on a read operation release the
lock and wait in the driver to be woken up where they
reacquire the lock and continue. The location of user
process’s payload can be anywhere in the user’s address
space and of unpredictable size. On the other hand,
OKL4 IPC implementations have IPC fastpath, not multi-
threaded and accesses user data from a predetermined
location (the thread’s User Thread Control Block, or
UTCB).

Lack of IPC fast path which effectively flushing the
TLB once per iteration can be the reason of high TLB
miss rates on Binder. Whereas on OKL4, use of an IPC
fastpath means it minimizes the amount of text and
data touched to reduce TLB misses.

2) Analysis of Java IPC Micro-benchmarks: The
OKL4 IPC results on Java required implementation of a
JNI interface to OKL4 IPC. The payload was represented
by an integer array to mirror the OKL4 IPC message reg-
isters and to minimize the number of JNI calls required
to perform IPC.

While in C/C++ benchmark change of payload size
make Binder took an extra time of 35 microseconds when
moving from a 4 byte payload to 124 bytes, on Dalvik
VM it is increased by over 1 ms. The change on payload
size does not account for the difference on Dalvik. The
only change is use of JNI to fill up 31 payload integers.
By using a Parcel, a standard Java class is used by Binder
to send IPC data, one JNI operation is required to load
each integer for delivery. The same applied for integer
arrays where each integer is still loaded one-by-one.

Fig. 5. Java ping-pong micro-benchmark

The last column of table VI-B2 measures the cost of
all payload of JNI calls when using 124-byte payload.
However, this benchmark is only conducted on Linux. At
each iteration, two sets of 31 integers are written through
JNI, two sets of 31 integers are read through JNI and
two calls through JNI are made to reset the Parcels for



the next loop. This is 126 JNI calls in total and takes
almost a millisecond to perform. The total JNI per call
is estimated by dividing the total time to 126, which is
around 7.84 microseconds per JNI call. It is longer than
the round-trip-time of a 4-byte using OKL4 IPC on C.

The results shows that Java JNI decreased the IPC
performance. The number of JNI calls for the OKL4
benchmark was minimized to only one. Its benefit is
highlighted with OKL4’s 124-byte round-trip-time on
Java which outperform Binder on C++ using 4-byte
payload.

The TLB miss rate while performing JNI is also
incredibly high. Binder in C++ has contributed stress
on the MainTLB by effectively flushing it once per
iteration. Together with Dalvik and JNI, it appears to be
the cause of sharp drop in performance for the 4-byte
Binder round-trip-time on Java. It explains the reason
of 4-byte round-trip-time on OKL4 does not suffer
performance drop as much as Binder does.

C. Input Framework

Fig. 6. Results for Obtaining an Event

1) Analysis of Obtaining an Event: Processing the
event on Linux is done by read the system call whereas
OKL4 uses shared memory. Reading from shared mem-
ory obviously results in a faster IPC compared to read-
ing from system call. However, a touch event consists
of multiple sub-events and it depends on the applied
interleaving. It means that the event is read from driver
several times before generating touch event in the Java
code and it propagates through the system.

However, the benchmark measures the cost of
reading a single sub-event and not the whole event.
Furthermore, multiplying results from OKL4 to cover
the whole touch event can not be compared to the
results from Linux due to large variance in Linux
measurements. The code measured is native and small
C/C++ code. Despite of this fact, another benchmark
can be implemented and measurement can be taken for
the whole touch event in order to measure the input
cost. However, looking at the results and input path
from table VI-C1, it can be concluded that the input
framework is not a bottleneck of the performance.

2) Analysis of Java Processing: Variations in results
of OKL4 and Linux implementation can be quite in-
teresting. Android normally takes 2 ms to process a

Fig. 7. Results for Java Processing

touch event, but the OKL4 implementation does it in
417 microseconds. A proper process of Java processing
is such following:

1) Check the purpose of event,
2) Notify the power management service that a user

activity is happening,
3) Log the event with battery statistics service,
4) Place the event onto shared queue and notify an-

other thread,
5) Read the event off from queue and examine its type

event,
6) Determine which process to send the event to
In [1], only stages 1,4 and 5 are done, which means the

other stages can contribute to slow-down experienced
on Linux. The TLB misses is definitely the contributor
of long process time. Further profiling is required to
determine the true source of the issue, but JNI is likely
to play a part. As observed in IPC micro-benchmarks
heavy use of JNI destroys the performance.

Fig. 8. Results for IPC Dispatch Stage

3) Analysis of IPC Dispatching: The IPC dispatch
results in table VI-C3 shows that OKL4 IPC outperforms
Binder IPC. In no marshalling column, an extra set of
OKL4 was taken since the JNI cost has been known
beforehand. This is done to be able to differentiate the
cost of IPC from cost of JNI. From this result, it is now
more convincing that JNI is responsible for the majority
of processing time and TLB misses although OKL4 is still
faster than Binder. Replacing Binder IPC with OKL4 IPC
will improve the overall time by about 5%.

It is possible however to achieve near the performance
of the results that do not do marshalling. A custom
JNI interface can be written to perform the entire
marshalling operation in one go in native code. This
would yield roughly a further 12.8% increase in
performance by removing the JNI marshalling cost.
This optimisation can be applied to work around the
slowness of Dalvik for all critical paths. Applying it
could help reduce the impact of touch procsesing on



the system. Android is addressing this issue for future
releases by throttling the frequency of touch events to
35 per second.

VII. OK:Android
The OK:Android is a virtualized Android components,

distributed and integrated as a secure cell under the
control of the microvisor. Microvisor is microkernel-
based embedded hypervisor which developed by OKL4
and supports mobile virtualization, componentization
and security. The OK:Android is an OS support package
for Android from OK labs which enables use of a
guest OS on OKL4 mobile virtualization platform. The
OK:Android provides a standard Android environment
without any modification in Android application.
However, new application can be developed by using
standard Android development tools.

A. Advantages of OK:Android
Benefits creating Virtual Machine (VM) with an

Android guest OS are such as followed.

• Android applications can run on the same processor
side-by-side with legacy applications and legacy OS.
It eliminates the need of multiprocessor hardware or
porting the legacy system to Android

• Through Secure HyperCell Technology, OKL4 cells
complement the Android VM by providing an exe-
cution environment with better real-time properties
and stronger security

• OKL4 cells are well-suited to hosting RTOS, ease
the implementation of latency-sensitive functions
without sacrificing the rich ecosystem support
available for Android

The OKL4 cells make it easier to meet the security and
certification requirements of key applications with much
smaller trusted computing base than is possible for an
Android environment. In OKL4 microvisor, Android
and its application can run in isolation from other
software subsystems which offer higher level security
and reliability to the subsystems without providing
dedicated hardware execution environment.

B. Towards OK:Android
The OK Labs microvisor combines operating system,

embedded hypervisor, virtualization and componentiza-
tion capabilities in a very small piece of system soft-
ware. The key capability of the microvisor is the Secure
HyperCell Technology. The microvisor has complete and
sole control of the underlying hardware and is the only
software running in privileged mode; each microvisor
cell partitions and multiplexes the hardware between

any other software on the target system as required,
from high level OS down to individual applications and
drivers.

In the following subsections, the process to a complete,
rapid and risk-reduced Android migration path will be
discussed.

1) Integration of OKL4 with the target hardware:
The OKL4 microvisor supports common embedded
mobile processors. It has complete System on Chip
Software Development Kit (SoC SDK) and provide a
simple method for system engineers to integrate the OK
Labs microvisor.

Fig. 9. Integration of OKL4 with targetted hardware

2) Mobile phone virtualization and integration of An-
droid: The microvisor has an off-the-shelf pre-virtualized
OK:Android implementation available. The OK:Android
is received and integrated to the system utilizing the
OKL4 system configuration tool. All Linux applications,
including the rest of the Android platform stack, are
completely binary compatible and executed without
modification.

When a syscall is executed by an Android application,
the microvisor simply encodes the syscall into a message
transmitted by its IPC.

Fig. 10. Mobile phone virtualization with integrated Android



3) Mobile phone virtualization and introduction
of the communications stack: The communication
stack component that is most commonly running on
an RTOS can be hosted without change in the OKL4
microvisor environment. Furthermore, a number of
common communications stacks for mobile devices are
already virtualized for the OKL4 microvisor.

Fig. 11. Communication stack in virtualization

4) Migration of legacy components: Several selected
legacy components are migrated to OKL4 microvisor
directly without using OKL4 compatible libraries and
integrated into the final system as a cell. One or more
secure cells can each contain a single, strongly isolated,
highly integrated, legacy component that executes
directly on the OKL4 microvisor.

Fig. 12. Full migration of virtualization with Android

VIII. Conclusion
The Android is not completely ported to OKL4 micro-

kernel in [1], only some sufficient parts are ported. Anal-
ysis on feasibility and worthiness of porting Android to
OKL4 is also elaborated. From the system evaluation and
benchmark result, it is proved that OKL4 could improve
the performance of Android in several aspects, such

as memory usage, IPC performance and exploitation of
superpages. However, measuring memory-usage of in-
complete port provides less information than a complete
port. Therefore, it could not be investigated further than
speculation about OKL4’s minimality principle.

On the other hand, IPC performance is one of the
major advantage by porting OKL4 to Android. Android
componentizes mean of communication between user
applications with another userspace process to access
system services and devices, including input, video and
audio. The fact that OKL4 IPC is much faster does not
improve the performance much since Dalvik has to be in-
terpreted in user environment. Furthermore, interpreted
user environment (Dalvik) decrease the performance
improvements. In addition to it, the JNI implementation
to access native code is slow and size of Dalvik applies
a lot of pressure on the TLB.

Although transparent superpages could not be im-
plemented in [1] due to time consumed in TLB misses
handling, it could improve the performance with its own
characteristic that has been mentioned before. The lacks
of transparent superpages in Linux makes the OKL4 as
an advantage.

From the CaffeineMark 3.0 benchmark, Dalvik perfor-
mance on OKL4 is similar to the one on Linux. In [2],
it shows that use of 64 KiB page improved Java VM
performance by 9%to 48% and in 1 MB pages, the perfor-
mance is improved from 24% to 48%. [1] concludes that if
Android is run under more proper componentization by
isolating services, the increase in reliance on IPC would
make OKL4 a better candidate for a more trustworthy
platform.

Furthermore, OK Labs has introduced OK:Android,
an off-the-shelf paravirtualized version of the Android
smartphone platform. OK:Android uses Secure
Hypercell Technology to enable Android to be used
as guest OS running in a secure hypercell on top of
the OKL4 mobile phone virtualization platform, OKL4
microvisor. Combination of OK:Android and OKL4 also
extends new levels of security and robustness to the
increasingly popular smartphone OS from Google and
the Open Handset Alliance (OHA).

REFERENCES

[1] Michael Hills, Native OKL4 Android Stack.
Bachelor Thesis of University of New South Wales, Australia,
November 2, 2009.

[2] Jinzhan Peng, Guei-Yuan Lueh, Xiaogan Gou, Ryan Rakvic, A
comprehensive Study of Hardwaare/Software Approaches to Improve
TLB Performance for Java Applications on Embedded Systems.
Proceesing of the 2006 Workshop on Memory System Perfor-
mance and Correctness, pages 102-111. New York, USA, 2006.

[3] ARM, ARM1136JF-S and ARM1136J-S Technical Reference Manual.
http://infocenter.arm.com/help/topic/com.arm.doc.set.arm11/
index.html, 2009.


