

Master of Science Thesis

Mobile File Sharing Application
using Bluetooth

2005-11-18

Authors:
Henrik Andersson
Hakan Bertilsson

Abstract

The evolution of mobile phones follows that of computers. Many features that are
available to computers today also exist on mobile phones. File sharing between
computers is very popular today so why not create a tool that supports the possibility to
do this between mobile phones too?

Bluetooth File Share is a mobile application, programmed in J2ME that supports file
sharing between several mobile phones. The application allows the user to choose which
files to share from his/her mobile phone, and specify search criteria to filter files from
other mobile phones. Found files can be downloaded and stored on the local mobile
phone.

The available features and the fact that Bluetooth communication is free gives the mobile
application Bluetooth File Share a great opportunity to become a future success.

Foreword
We would like to give special thanks to Jesper Carlgren of Cybercom who has provided
us with the required equipment and supported us with his expertise. We would also like
to thank our mentor Ali Hamidian who has been a great support throughout the project.

Table of contents

Introduction
1.1 Background
1.2 Goals

1.3 Delimitations

14 The company Cybercom

Bluetooth

2.1 Overview

2.2 History

2.3 The protocol stack

2.4 Bluetooth networks

2.5 Bluetooth profiles

2.6 Bluetooth security

2.6.1 Authentication

2.6.2 Authorization

2.6.3 Encryption

2.7 The basic concepts of a Java Bluetooth application
2.7.1 Stack Initialization

2.7.2 Device Discovery

2.7.3 Device Management

2.7.4 Service Discovery

2.7.5 Communication

O XXX WA & N A W W W N = m N

J2ME programming

3.1 Overview

3.2 Mobile Information Device Profile

3.3 What is a MIDlet?

34 Record Management System

Programs and tools

4.1 Hardware

4.2 NetBeans 4.1

4.3 Wireless ToolKit 2.2

4.3.1 Bluetooth API (JSR-82)

4.3.2 FileConnection (JSR-75)

Bluetooth File Share

5.1 General overview

5.2 Example programs

5.3 Features and GUI

5.4 How the program works

54.1 FileConnection

e e e e
N N NN e e N

—
N N

N = e N
S O ° o

o N
w N

542 RMS 23

543 Security 24

5.5 Evaluation 24

6 Problems 25
7 Discussion 27
8 Conclusions 29
9 References 31
9.1 Literature 31
9.2 Articles 31
9.3 Web-pages 31

10 Appendices 1
10.1 Acronyms 1
10.2 Program code 2

10.2.1 DemoMIDlet.java 2

10.2.2 GUIImageServer.java 4

10.2.3 BTImageServer.java 11

10.2.4 savelmage.java 18

10.2.5 GUIImageClient.java 19

10.2.6 BTImageClient .java 25
Table of figures

Figure 1. The Bluetooth protoCol SEACK...................cocciiviiiiiiiiiiiiit ettt 4

Figure 2. A scatternet with two masters (m) and four SIAves (S)cccoccevviiniiiiiiiiiniiiniiceicec e 5

Figure 3. Examples of packages in CLDC and MIDRP................ccccccoooiimiiimiiiiniiiniiiniieiie e 11

Figure 4. Main MERU.ccccc.coomiiiiiiiiiiii i 20

FigUre 5. SEArCI MEMU.c.cooiiiiiii it 20

Figure 6. FOUNA FileS MERU.c..ccccioiiiiiiiiiiii ettt 21

Figure 7. VIEW IMGAZEcocciiiiiiiiiiiiii e 21

Figure 8. SHAre flles MEMUc.coooiiiiiiiiiii ittt 22

1 Introduction

1 Introduction

This section gives an introduction to the project. The report begins with two chapters of
theory, then the method and result are provided and finally discussion and conclusions
are presented. The target audience of this report is people with some knowledge and
interest in Bluetooth and/or Java programming.

1.1 Background

More and more products in our modern life are becoming more and more multifunctional.
This applies especially to mobile phones that today have Bluetooth as a standard feature.
Many features that for years have been used on computers are now available also in
mobile phones for example games, e-mail etcetera. File sharing has been very popular on
the Internet via computers so why not using your mobile telephone for the same purpose?

This project will result in an application allowing file sharing between several mobile
phones using Bluetooth. The main advantage of this application, to regular file exchange,
is that the user will be able to browse files from more than one mobile phone at the same
time. This without bothering to manually change between different phones since this will
be done by the application. The user will be able to set search criterions to find files of
his/her selection, as for example music, pictures and text files etcetera. By using
Bluetooth the data transmission can be done at no cost compared to using for example
General Packet Radio Service (GPRS) or Universal Mobile Telecommunications Service
(UMTS), where the operators often charge per downloaded kb.

1.2 Goals

The primary goal of this thesis work is to implement a program that supports file sharing
between mobile phones via Bluetooth. The application should allow the user to list and
download files stored in other mobile phones for example music, pictures or program
files. The application is to be designed in a user friendly manner.

To be able to perform this, thorough understanding about the Bluetooth technology and
Bluetooth-focused programming is required. The application will be implemented using
Java 2 Micro Edition (J2ME) since it supports the target hardware. The Java code is to be
implemented following Java’s “code-conventions” to result in a well written code. The
testing-procedures will be executed using existing emulators and three Sony Ericsson
K7501 mobile phones.

1.3 Delimitations

The security issues in Bluetooth are often highlighted, but since the focus of this thesis
lies on the implementation of the program, these concerns will be left to others. The
implementation should support file sharing in a piconet. If there is enough time the
support of file sharing in a scatternet should also be examined. The primary target for the
application is mobile phones created by Sony Ericsson.

1 Introduction

1.4 The company Cybercom

This project was supported by Cybercom in Malmé'. Cybercom is a high-tech
consultancy that uses leading-edge technologies and offers business-critical solutions
within primarily telecom. The company was launched in 1995; it was listed on the
Stockholm stock exchange in 1999. Cybercom has operations in 10 countries and offices
in Denmark, Norway, Sweden and the UK. Cybercom has today about 400 employees.

! The official home page of Cybercom group

2 Bluetooth

2 Bluetooth

This theoretical part explains the basic concepts of Bluetooth. Some background
information about the technology and the essentials needed for this project will be given.

2.1 Overview

Bluetooth is a technology that uses short-range radio links, intended to replace cables
connecting electronic devices®. The key features are robustness, low complexity, low
power and low cost. The maximum theoretical transfer rate in Bluetooth is approximately
700 kbit/s.

Bluetooth radio modules operate in the unlicensed and globally available Industrial,
Scientific and Medical (ISM) band at 2.4 GHz’. The Bluetooth radio is designed to
operate in noisy frequency environments and uses a fast acknowledgement and frequency
hopping scheme to make the link robust. Compared with other systems in the same
frequency band, the Bluetooth radio hops faster and uses shorter packets. The hopping
rate is 1600 hops per second’. The time between two hops is called a slot and each slot
uses a different frequency.

2.2 History

The name Bluetooth derives from the Danish King Harald Bluetooth, who unified
Denmark and Norway in the 10th century®. The Bluetooth technology was born in 1994
Ericsson Mobile Communications initiated a study to investigate the feasibility of a low-
power, low-cost radio interface between mobile phones and their accessories. The aim
was to eliminate cables between mobile phones and PC cards, headset and desktop
devices, etcetera.

In 1998 a group was formed to develop the new Bluetooth wireless technology®.

This group became known as the Bluetooth Special Interest Group (SIG). In the start at
1998, SIG consisted of five companies: Ericsson, Nokia, IBM, Toshiba and Intel.

Since the formation of the Bluetooth SIG, thousands of companies have signed the
Bluetooth adopter agreement and joined the Bluetooth SIG. Among them are world
leaders in the telecommunications, computing, and network industries.

The adopters are all supportive of the wireless technology and committed to developing
Bluetooth products. By signing a zero-cost agreement, member companies qualify for a
royalty-free license to build products based on the Bluetooth wireless technology, as well
to access the Bluetooth specification and intensive training seminars’. The goal is to
create a universal standard for a short-range, cable replacement, radio technology, to
ensure devices from different manufacturers to be compatible.

* Bluetooth tutorial specification
? Mobile Communications
* The Official Bluetooth Website

2 Bluetooth

2.3 The protocol stack

Figure 1 shows that the Bluetooth radio layer is the lowest layer in the stack of the
Bluetooth specification. The radio layer controls specifications of the air interface such as
frequencies, modulation and transmit power’. The transmit power is divided into three
classes depending on the required distance of the communication, reaching from 10 cm to
100 m. The Bluetooth radio modulation scheme is Gaussian Frequency Shift Keying
(GFSK) where a binary one is represented by a positive frequency deviation and a binary
zero by a negative frequency deviation.

Applications
TCS SDP ||RFCOMM

g

]

L2CAP
HCI
LMP
Baseband
Radio

Figure 1. The Bluetooth protocol stack’

The Baseband is the physical layer of Bluetooth® . It manages basic connection
establishments, packet formats and Quality of Service (QoS) parameters. The Baseband
handles two types of links: Synchronous Connection-Oriented (SCO) and Asynchronous
Connection-Less (ACL) link. The SCO link is a symmetric point-to-point link between a
master and a single slave in the piconet whereas the ACL link is a point-to-multipoint
link.

The Link Manager Protocol (LMP) controls the link setup and configuration but also
handles security functions’. The HCI provides a command interface to the baseband
controller and link manager, and access to hardware status and control registers. The
Logical Link Control and Adaptation Layer Protocol (L2CAP) manage connectionless
and connection-oriented services.

> Wireless Application Programming with J2ME and Bluetooth

2 Bluetooth

RFCOMM (Radio Frequency Communications) is a simple transport protocol, which
provides emulation of RS232 serial ports over the L2CAP protocol’. The RFECOMM
protocol supports up to 60 simultaneous connections between two Bluetooth devices.

The Service Discovery Protocol (SDP) makes it possible for a device to discover what
services are available on another device.

2.4 Bluetooth networks

A piconet is a collection of devices connected via Bluetooth technology in an ad hoc
fashion. An ad-hoc (or "spontaneous") network is a local area network or other small
network, especially one with wireless or temporary plug-in connections, in which some
of the network devices are part of the network only for the duration of a communications
session or, in the case of mobile or portable devices, while in some close proximity to the
rest of the network®. A piconet starts with two connected devices, such as a portable PC
and a cellular phone, and may have up to eight simultaneous connected devices. All
Bluetooth devices are peer units and have identical implementations. When establishing a
piconet, one unit will act as a master and the other devices will act as slaves for the
duration of the piconet connection. The device that initiates the connection will become
the master and the device that accepts the connection will become slave. In some
exceptional situations those roles can be changed’. In this thesis the words client and
server will be used more frequently than master and slave because it is more relevant to
point out the server and client behavior in the program to understand the concept.

The Bluetooth system supports both point-to-point and point-to-multi-point connections’.
Several piconets can be linked together to a scatternet, where each piconet is identified by
a different frequency hopping sequence.

Piconet A Piconet B

Figure 2. A scatternet with two masters (m) and four slaves (s)

¢ searchMobileComputing.com Definitions
7 Bluetooth for Java, chapter 2

2 Bluetooth

In Figure 2, there are two interconnected piconets forming a scatternet. They are able to
operate within the surroundings of each other because they are using different hopping
sequences, reducing mutual interference to an acceptable level. In this way it is possible
to have several small groups of Bluetooth devices communicating with each other in the
same area.

2.5 Bluetooth profiles

To be able to communicate via Bluetooth, devices must not only support the Bluetooth
protocol but they must also support a common Bluetooth profile. A Bluetooth profile is a
functionality set for Bluetooth devices. For example, if you have a mobile phone and a
laptop, will the laptop be able to browse the Internet over Bluetooth via the mobile
phone? Yes, if both devices support the Dialup Networking Profile. The profile concept
is used to decrease the risk of interoperability problems between different manufacturers'
products®. Below is a list of some profiles with an explanation of what they do.

* GAP (Generic Access Profile) — Device discovery and link management.

* GOEP (Generic Object Exchange Profile) — Support file transfer and object push.
* SPP (Serial Port Profile) — Setting up a virtual link between two peer devices.

* HS (Headset Profile) — Defines requirements to support the use of headsets.

2.6 Bluetooth security

Data security is a very important aspect for network communication. Data that is
transmitted, both physically and wirelessly, may be caught by an eavesdropper. For
application developers, the Bluetooth specification handles security in three ways;
authentication, authorization and encryption’.

2.6.1 Authentication

Authentication in Bluetooth is done using a Personal Identification Number (PIN). The
PIN code is never transmitted from the client to the server. Instead the client creates a
128-bit shared link key, which is derived from the PIN’. If the PIN codes do not match,
the authentication fails.

Bluetooth servers can request authentication by setting the authenticate parameter to true
in the connection URL string. In the application Bluetooth File Share this is done using
the Serial Port Profile (SPP) as follows:

String url=
" bt spp: / /1 ocal host : FOEODOCOBOA0O00908070605040302010; aut henti cat e=t rue”

¥ Bluetooth Tutorial - Profiles
? Bluetooth for Java, chapter 9

2 Bluetooth

Bluetooth clients can also require the server to authenticate it in similar way. This must
be done if the server does not require authentication but the client wants to send
encrypted data.

2.6.2 Authorization

Servers can choose to demand authorization from clients by adding the authorize
parameter. Since authorization require authentication the connection URL now looks like

this’:

url =" bt spp://1 ocal host : FOEODOCOBOA000908070605040302010;
aut henti cat e=true; aut hori ze=true”

A client cannot request authorization since it is not a requirement for encryption.

2.6.3 Encryption

Authentication and authorization makes an unwanted user unable to access the services of
a Bluetooth device’. Encryption however aims at securing the data during a transmission.
To encrypt data, an encryption algorithm and key is needed. There are two ways of
encrypting information; symmetrical and asymmetrical encryption. Bluetooth uses
symmetrical encryption where the same key is used to encrypt and decrypt the data. In
asymmetrical encryption, two different keys are used.

In Java, Bluetooth servers can request encrypted transmission by setting the encrypt
parameter to true. Since encryption requires authentication the connection URL can look
like this’:

url ="bt spp://1 ocal host: FOEODOCOBOA000908070605040302010;
aut henti cat e=true; encrypt =true”

The client can require the communication with the server to be encrypted in a similar
way.

2.7 The basic concepts of a Java Bluetooth application

There are five basic steps in any kind of Bluetooth communication, not just in Java'’.

Stack Initialization
Device Discovery
Device Management
Service Discovery
Communication

A

' Getting started with Java and Bluetooth

2 Bluetooth

2.7.1 Stack Initialization

The first thing to do when setting up a communication link is to initialize the Bluetooth
stack'®. The stack controls the Bluetooth device and is usually some piece of software or
firmware. The main purpose of the initialization phase is to make the device ready for
wireless communication.

2.7.2 Device Discovery

To be able to communicate with other Java Bluetooth devices the device either have to
make itself visible to other devices or search for other discoverable devices in the
neighbourhood'’. The device discovery procedure is done on the client side. A Java
Bluetooth device uses the Device Discovery classes to find out if there are other devices
nearby. To be able to find other devices there are two classes that are used,
DiscoveryAgent and DiscoveryListener. The object in use must implement the
DiscoveryListener interface, this interface works like any other listener; it will notify
when an event occurs, in this case, when another Bluetooth device is nearby. One good
thing about the DiscoveryAgent class is that the method that searches for devices,
startInquiry(), is non-blocking so other things can be done while it is searching for the
devices. When the inquiry discovers a device, the Java Virtual Machine (JVM) will call
the deviceDiscovered() method of the class that implemented the DiscoveryListener
interface and pass a representation of the device discovered as a RemoteDevice object.

2.7.3 Device Management

Device management is performed using the classes LocalDevice and RemoteDevice'’.
These classes can give information about both the own local device and other Bluetooth
devices in the vicinity. For example every Bluetooth device has its own unique address
and it can be seen using the method getBluetoothAddress(). For the client to be able to
find any other Bluetooth server devices it is assumed that at least one of those nearby
devices are set to be discoverable. This is done by calling the setDiscoverable() method
in the LocalDevice object.

2.7.4 Service Discovery

When one or more devices are found it is time to discover what services they have got to
offer'’. Just like Device Discovery, the Service Discovery is done by the DiscoveryAgent
class. The method to use is searchServices() and when services are found, the JVM will
call the servicesDiscovered method in the object that implemented the DiscoveryListener
interface and pass a ServiceRecord object that correspond to the service. With this
ServiceRecord it is possible to retrieve the remote device’s URL.

Before a Bluetooth client device can do a Service Discovery on a Bluetooth server
device, the Bluetooth server has to register its services in internally in the Service
Discovery Database (SDDB) '°. This is called Service Registration. To do a Service
Registration the server calls Connector.open() and cast the resulting connection to a
StreamConnectionNotifier. The Connector.open() method creates a ServiceRecord. This

2 Bluetooth

ServiceRecord can be modified by the server. When the server sets itself in
communication mode, that is calls the StreamConnectionNotifier.accept AndOpen()
method, the system automatically creates a ServiceRecord in the SDDB.

2.7.5 Communication

One way to send and receive data in Java Bluetooth is to use the RFCOMM protocol .
The Serial Port Profile (SPP) uses this protocol to communicate. There are two ways to
start communicating in Java Bluetooth; either as a server or as a client.

After the server has done its service registration and set itself into discoverable mode it is
ready to communicate. To start the communication the server creates a
StreamConnectionNotifier object. This object is used to instantiate a StreamConnection
object that is used to receive incoming client connections.

After a client has done device and service discovery the client can start the
communication. This is done by making a stream connection to the server with the
retrieved URL from the service record. When a server accepts a connection from a client
it will become the slave and the client will become the master.

2 Bluetooth

-10-

3 I2ME programming

3 J2ME programming

The programming language used in this project is Java 2 Micro Edition (J2ME) since it
is adapted for devices with less processor capacity than a computer, for example a
mobile phone.

3.1 Overview

There are two configurations in J2ME that corresponds to two different kinds of
devices''. The most advanced of them is the Connected Device Configuration (CDC) that
is used by devices that have a network connection, but have less processing power than a
computer. Examples of devices that fit in this category are smart phones and advanced
PDAs. The other configuration has less processing power and is called the Connected
Limited Device Configuration (CLDC). The CLDC, in contrast to the CDC, can only set
up a non-dedicated and non-robust network connection. Most mobile phones, two-way
pagers and some simple PDAs belong to this category.

3.2 Mobile Information Device Profile

The most used J2ME profile is the Mobile Information Device Profile (MIDP)''. Almost
all mobile phones with Java support are a MIDP device. The profiles in J2ME extend the
functionality of a configuration such as the CLDC.

Figure 3 presents some packages that belong to each profile.

CLDC MIDP

Java.lang (basic core language classes) Javax.microedition.midlet (core MIDlet classes)
Java.util (utility classes) Javax.microedition.lcdui (user interface classes)
Java.microedition.io (network classes) Javax.microedition.rms (data persistence classes)

Figure 3. Examples of packages in CLDC and MIDP

Some packages in the CLDC, such as java.lang and java.util, are also available in Java 2
Standard Edition (J2SE), but these are just a subset of the original packages that is
optimized for micro devices''. In the MIDP specification, there are some requirements
for a MIDP 1.0 device. It will have to support for example a minimum screen resolution
0f 9654 pixels and a minimum of 128 kB non-volatile memory for the MIDP
implementation. In the MIDP 2.0 specification the requirements are raised to for example
at least 2565 kB non-volatile memory but new functionality is also implemented. The
MIDP 2.0 increases the network security with HTTPS but also simplifies the creation of
games with an own package for this purpose.

" Bluetooth for Java, chapter 5

- 11 -

3 I2ME programming

3.3 What is a MIDlet?

A MIDlet is a Java application that is executed on a mobile device using the MIDP''. A
MIDlet has three states; active, paused and destroyed. One or more MIDlets packed
together in a Java Archive (JAR) file form a so called MIDlet suite. The java structure of
a typical MIDlet looks like this:

i mport javax.microedition.mdlet.MDlet;
public class MyApplication extends MD et ({

public MyApplication() {
}
public void startApp() {

}
public void pauseApp() {
}

public voi d destroyApp(bool ean unconditional) {

}

3.4 Record Management System

To store persistent data on a mobile phone Java application, the Record Management
System (RMS) is often used. The RMS is a record-oriented database that is stored in the
memory of the mobile device. The package javax.microedition.rms allows classes to
read, write and sort data in the RMS. A record store is a collection of records and a record
is basically a byte array with some arbitrary data'’. Every record has a unique identifier
number that is valid until the record store is deleted. The main class of the RMS is the
RecordStore. The record store contains methods for creating, updating, deleting and
querying a record store.

In MIDP programming RMS is a key feature though most mobile devices do not support
local file system access for storing or retrieving data'’. With RMS it is possible for a
MIDlet to make data persistent over several invocations. MIDlets in the same MIDlet
suite can use RMS to share data amongst each other. A record store is represented by a
RecordStore object and can be retrieved by the following code segment':

i mport javax.mcroedition.rms.*;
RecordStore rs = nul | ;

try {
rs = RecordStore.openRecordStore("nydata", false);
}

cat ch(Recor dSt or eNot FoundException e){
/] doesn't exist

catch(RecordStoreException e){
/1 sone other error
}

"2 Record Managent System Basics
" Understanding the Record Management System

-12-

3 I2ME programming

The first parameter in the openRecordStore("mydata”, false) method is the name of the
record store, the second parameter is if the record store should be created if it does not
exist. If this parameter is set to false a RecordStoreNotFoundException will be thrown if
the record store does not exist. If the second parameter is set to #rue, a new record store
would be created if the record store does not already exist.

There can only be a single instance of a RecordStore object with the same name in the
same MIDlet suite. If two MIDlets open a record store with the same name they both get
a reference to the same record store. To close a record store the following code segment
can be used'”:

try {
rs.closeRecordStore();
}

cat ch(Recor dSt or eNot OpenException e){
/1 already closed
}

cat ch(RecordStoreException e){
/1 sone other error
}

If a record store has been opened by several MIDlets it will not be closed until the
closeRecordStore() method has been called as many times as the openRecordStore()
method has been called'?.

To add a byte array, data, to a record store the following code segment can be used: '

try {
int id = rs.addRecord(data, 0, data.length);

catch(RecordStoreFul | Exception e){
/1 no roomleft for nore data

}

cat ch(Recor dSt oreNot QpenException e){
/1 store has been cl osed

}

catch(RecordStoreException e){
/1 general error
}

The first parameter in the addRecord(data, 0, data.length) method is a byte array, the
second parameter is in what position to start in the array and the third parameter is where
to stop. The value returned, id, is the unique identification number the record is assigned.
There is also a method to delete records: '

try {
rs.del eteRecord(id);

catch(InvalidRecordld e){
/1 if the recordld is invalid

}
cat ch(Recor dStor eNot QpenException e){

-13-

3 I2ME programming

/] store has been cl osed

}

catch(RecordStoreException e){
/1 general error
}

The parameter is the identification number of the record. After the record has been
deleted the record id is not reused by the record store. There are also methods for
retrieving data from a record; one way of doing this is shown below: '

try {
byte[] data = rs.getRecord(id);

catch(Invali dRecordl DException e){
/1 record doesn't exist
}

cat ch(Recor dSt or eNot OpenException e){
/1 store has been cl osed
}

cat ch(RecordStoreException e){
/1 general error
}

There is no way to modify part of the data in a record; the one thing that can be done is
replacing the whole record. An example of how this can be done is shown below: '

try {
rs.setRecord(id, data, O, data.length);
}

cat ch(RecordStoreFul | Exception e){
/1 no roomleft for nore data
}

catch(Invali dRecordl DException e){
/1 record doesn't exist

cat ch(Recor dSt or eNot QpenException e){
/| store has been cl osed

catch(RecordStoreException e){
/1 general error;
}

The first parameter is the identification number of the record, the second parameter, data,
is a byte array, the third parameter states in what position to start in the array and the
fourth parameter is where to stop'”.

- 14 -

4 Programs and tools

4 Programs and tools

This section presents what programs and tools that were used during the development of
the mobile application Bluetooth File Share. The software that were used can all be
downloaded for free on their respective home pages. Some methods of the application are
explained using Java code.

4.1 Hardware

The field tests were performed using three Sony Ericsson K7501 mobile phones. The
reason for this is that this model support both JSR-82 and JSR-75 that will be described
below. This support is only available on newer mobile phones like for example Sony
Ericsson K750i. Since mobile phones may behave differently depending on the vendor
this project has concentrated on mobile phones created by Sony Ericsson.

4.2 NetBeans 4.1

NetBeans is the Integrated Development Environment (IDE) that was used to develop the
program Bluetooth File Share. The IDE was chosen due to its J2ME support and
compatibility with various toolkits. NetBeans is also the base in Sun Java Studio Mobility
that both project members have experienced before. NetBeans also support Bluetooth
emulation which in this case was a must have, to be able to develop the application.

4.3 Wireless ToolKit 2.2

Sun has created a tool for MIDlet development called the Wireless ToolKit (WTK).
WTK contains an emulator and can package, compile, preverify and run CLDC and
MIDP applications. WTK also contains lots of Java Specification Request (JSR) APIs
that are useful for wireless programming for example':

» Java Technology for the Wireless Industry 1.0 (JSR 185)
* Wireless Messaging API 2.0 (JSR 205)

* PDA Optional Packages for the J2ME Platform (JSR 75)
* Java APIs for Bluetooth (JSR 82)

* Mobile 3D Graphics API for J2ME (JSR 184)

Especially two APIs were very useful during the project. These APIs were JSR-82 Java
API for Bluetooth and JSR-75 FileConnection that will be described more in detail
below.

4 Sun Java Wireless Toolkit Overview

-15-

4 Programs and tools

4.3.1 Bluetooth API (JSR-82)

In order to control the Bluetooth technology of a mobile phone the JSR-82 was used.
JSR-82 is an optional package defined by the Java Community Process that provides an
API for Bluetooth connectivity'>. This API contains methods to perform, for example
device- and service discovery.

The code below describes how to open a connection on a Java Bluetooth device that will
act as a server':

St reanConnecti onNotifier notifier = null;
St r eanConnecti on con = null;

Local Devi ce | ocal device = null;

Servi ceRecord servicerecord = nul |;

| nput St ream i nput ;

CQut put St r eam out put ;

/1 let's create a URL that contains a UU D t hat
/1 has a very |l ow chance of conflicting with anything
String url =
"bt spp://1 ocal host: 00112233445566778899AABBCCDDEEFF; nane=seri al conn";
/1 let's open the connection with the url and
/] cast it into a StreanmConnectionNotifier
notifier = (StreamConnecti onNotifier)Connector.open(url);

/1 block the current thread until a client responds
con = notifier.accept AndOpen();

/1 the client has responded, so open sone streans
i nput = con. openl nput Stream);
out put = con. openCut put Streamn();

/1 now that the streans are open, send and
// receive sone data

The server above is using the Bluetooth Serial Port Profile (BTSPP) as seen in the String
URL that begins with btspp.//localhost. The next part of the URL is the Universally
Unique Identifier (UUID), which is 001122334455667788994AABBCCDDEEFF'. This
uuid is just an arbitrary identifier made up for this application. The chance of meeting
someone else with the same id is close to zero. The last part of the URL is the name of
the service, ;name=serialconn.

When the client wants to communicate with the BTSPP the following lines of code can
be used'’:

String connecti onURL = servi ceRecord. get Connecti onURL(0, false);
St reamConnecti on con =(StreantConnecti on) Connect or. open(connecti onURL) ;

The first line of code retrieves the URL String to the server with the preferred service and
the second line starts a connection to the server.

" Developing Applications with the Java APIs for Bluetooth (JSR-82)

-16 -

4 Programs and tools

Here is an example; in order to perform a device discovery, the two classes
DiscoveryAgent and DiscoveryListener are needed'’. These two lines of code retrieves a
LocalDevice object and instantiates a DiscoveryAgent assuming DiscoveryListener has
been implemented by the class.

Local Devi ce | ocal Devi ce = Local Devi ce. get Local Devi ce();
di scoveryAgent = | ocal Devi ce. get Di scover yAgent () ;

To begin searching devices the method startInquiry(DiscoveryAgent. GIAC, this) is called
like this:

try {
di scoveryAgent . startlnquiry(D scoveryAgent. @ AC, this);

} catch (Bl uetoothStateException e) {
Systemerr.println("Can't start inquiry: " + e);
}

When a Bluetooth device is found, the JVM will call the deviceDiscovered() method of
the class that implemented the DiscoveryListener interface. This method will pass a
RemoteDevice object that represents the device discovered by the inquiry'’.

4.3.2 FileConnection (JSR-75)

The FileConnection APIs is an optional package, that is, an API set that may be licensed
and added on top of J2ME configuration and profile implementations by vendors
independent of the JSR process. The APIs is a part of the JSR-75 but there is no
dependency between the FileConnection APIs and other APIs in the JSR-75'°,

The primary goal of the FileConnection APIs is to give access to file systems or other
mounted memory cards. File connections can only be supported if the device has
hardware support for file systems. The types of memory cards that contain file systems
and could be supported include'®:

e SmartMedia card

* CompactFlash® card (registered trademark of SanDisk Corporation)
» Secure Digital card

* Memory Stick® (registered trademark of Sony Corporation)

e MultiMediaCard

The main class of the FileConnection API is the FileConnection class. This is an
interface and is used to gain access to files or directories on a device’s memory or a
memory card. A FileConnection object can only reference to one file or directory at the
same time but can be reused and set to refer to other files or folders. In most cases, the
best way to refer to another file or directory is to create a new FileConnection object. To
open a new file connection on the local devices” memory to a file called
c:/pictures/Winter.png, the following code segment can be used'®:

16 fileconnection_spec_1.00

-17 -

4 Programs and tools

try {
Fi | eConnection fconn =

(Fi I eConnecti on) Connector.open("file://local host/c:/pictures/Wnter.png

/1 1f no exception is thrown, then the URI is valid, but the file
nmay or may not exist.
if (!fconn.exists())
fconn.create(); // create the file if it doesn't exist
fconn. cl ose();

catch (1 Oexception ioe) {
}

In the code example the fconn.exist() method is used to check if the file exist. If the file
does not exist it will be created. There is also a delete() method that can be used in a
similar way as the create() method'®.

A FileConnection object has got one underlying InputStream and one OutputStream.
Trying to open more than one Input- or OutputStream will result in an /OException being
thrown. An /OException is also thrown if trying to open an Qutput- or InputStream when
the file connection is closed'®.

Access to files and directories are often restricted on devices, this is to protect the
device’s and user’s files from unauthorized access. In a situation where access is not
allowed, a java.lang.SecurityException is thrown from the Connector.open() method. The
FileConnection APIs can not access RMS databases'®.

Another class in the FileConnection API is the FileSystemListener class. This class is
used for receiving status notification when adding or removing a file system root. This
can be achieved by inserting or removing a card from a device or by mounting or
demounting file systems to a device'®.

To add or remove a FileSystemListener object the FileSystemRegistry class is used. This
class is a central registry for file system listeners. An important method of the
FileSystemRegistry class is the /istRoots() method. This method returns all mounted roots
on the device including memory cards'®.

- 18-

5 Bluetooth File share

5 Bluetooth File Share

The application that is the result of this project is called Bluetooth File Share. This
section explains how the program works and the features it provides. Some parts of the
program will be explained with code examples in Java.

5.1 Gemneral overview

Bluetooth File Share is a program that allows file sharing between mobile phones. The
program consists of one server and one client part. The server part gives the user an
opportunity to choose what files on his/her device that other users are allowed to
download. In Bluetooth File Share, this is called to publish a file. The client is allowed to
select what kind of files to search for, for example music, pictures, text files etcetera. If
the selected search criteria are met, the found files are displayed. A file is placed into a
category depending on the three last characters in its filename for example the category
Pictures contains jpg, bmp, gif, and png. The client can select to download the file, or if
the file is a picture, the file can be viewed before saving.

For a client to be able to find files on a server, both sides must support and have started
the application. Both sides can be active at the same time. When searching for files, the
client detects all discoverable devices in range and search files from them one by one.
This results in that the client can find files from more than eight phones in one search
without setting up a scatternet. If two devices share a file with the same file name, the
program assume it is the same file and decides to only present one of them. In order to be
able to store files, a mobile phone with a memory card at location e: is required. This
implies for most Sony Ericsson mobile phones.

5.2 Example programs

When the project started a lot of research in Bluetooth programming was performed. To
get an idea of the opportunities with the technique, open source programs written by
other developers were examined. Especially two programs turned out to be extra helpful;
the BluetoothDemo and PDAPdemo. BluetoothDemo shows how to send and receive
images, located at a specified path, using a client — server structure. The user can select
which pictures to share with other users. This program does not use RMS and therefore
does not store the settings whether the images are shared or not from one execution to
another.

The PDAPdemo is an example program included in WTK2.2 that shows how to use the
FileConnection API. The program can navigate in the file system of the mobile phone
and view and create certain files. This helped us to get into and use the file system of the
mobile phone instead of just searching for files at a specified path.

-19-

5 Bluetooth File share

5.3 Features and GUI

When the user starts Bluetooth File Share, a menu with four alternatives Search, Share,
Help and About is displayed as shown in Figure 4. As soon as the program has started the
mobile phone is put into server mode and shared files are available for others to
download. The Help and About alternatives presents brief how the program works and
information about the program respectively.

Famntl i] ? alll i)
Search for...

All

Flhusic

Flpictures

ProgramsiGames
Movies

Exit Ik Back Fircl

Figure 4. Main Menu Figure 5. Search menu

If Search is selected, the mobile phone is also put in client mode and prepares to search
for files. Several search alternatives are shown as can be seen in Figure 5, such as music,
pictures, text files etcetera. The user selects the preferred file types by selecting the
checkboxes next to the predefined categories and chooses Find.

If no files are found, an error message will be shown. This is either because no devices
were found or that some files were found but their categories were not selected by the
user. This generates two different system messages. Otherwise, if files are found, the
found files are displayed as can be seen in Figure 6 with the options to Download File or
View Image. 1f some of the found files are pictures, they can be viewed before saving by
selecting View Image. If View Image is selected for another file type, nothing happens.

-20-

5 Bluetooth File share

T uill EE ; uill EE
Found Files duke.png

Readme txt _',?' =
leaf jpy
pluke png L_F___j

™

Menu
1 Download File
2
|Eack Meru IEIan::k Save File
Figure 6. Found Files menu Figure 7. View Image

Figure 7 shows the picture and gives the opportunity to save the image on the phone or to
go back. The file is saved at a specified location on the memory card given that the root
of the memory card is e:. This procedure is the same as if Download File is selected
without viewing the image before.

If Share is selected from the main menu, a file browser of the mobile phone is displayed
as can be seen in Figure 8. Here the user can navigate through the internal memory of the
mobile phone or through the memory card to choose what files to share. To make a file
available to others, a file must be shared by selecting the option Publish file. The icon to
the left of the filename is turned green when a file has been published and purple if a file
is not shared. The path to the current directory is visible at the top of the screen, in this
case “rootl/”.

_21-

5 Bluetooth File share

= =
rootl/
».
| aiLke g I
B
P ruizichilels
B Readme
Mtestarpoan
Menu
1 “iew
2
3 Unpublizh file
4 Main Menu
|Eack herin

Figure 8. Share files menu

A user can view an image or a text file on the server side, before deciding to publish it or
not, by selecting View. If the user tries to view another file type, nothing will happen. The
option Main Menu returns the user to the main menu.

5.4 How the program works

The application is made up by two parts; one server side, to be able to share files, and one
client side, to be able to search and download files. The program basically works as
follows:

* When the program starts up, Bluetooth is initialized and the device is set to be
discoverable. That is, a file sharing service is put in the Service Discovery
Database (SDDB) and this makes published files searchable for other users. The
server side then awaits incoming connections from clients. This procedure is
always done and it corresponds to the server side of the application.

* A device, the client, discovers nearby devices and then for each discovered device
it searches for services that is, published files.

* The client requests a certain file and the server sends the file to the client.

Since no point-to-multi-point connections are done in the program, no scatternets are
established.

_02-

5 Bluetooth File share

5.4.1 FileConnection

The fileConnection API gives access to the local file system of the mobile phone. The
support of fileConnection is today (2005) only available in some new mobile phones like
for example Sony Ericsson’s K7501 that was used in this project.

When a file is to be saved for the first time, the program must know where to store the
file. Bluetooth File Share creates a folder named download located at e:/MSSEMC/Media
files/other/ where all files are stored. In this folder everyone has permission to read and
write. This is written in Java as follows:

Fi | eConnection fconn =

(Fi | eConnecti on) Connector.open("file://Iocal host/e:/MSSEMJ Medi a
fil es/other/downl oad/");
fconn. nkdir();

When the directory has been created, the program creates an empty file with the same
name as the selected file and copies the received data into that file. This is done as shown
below where fconn2 contains the URL to the empty file, and fileData is a vector of bytes
containing the data of the file to be saved.

Qut put St ream out = fconn2. openQut put St rean() ;
out.wite(fileData);
out.flush();

5.4.2 RMS

In the program a RecordStore object is used to save settings from one execution to
another. In our case a single record is used to save a String array which contains
filenames that are published. This is because the user should not have to choose those
files over and over again. If the program were to be further developed one can imagine
that more settings would be used and therefore more records would be saved.

The setupRecordStore() method is called every time the program starts to retrieve which
files that are shared. The following code segment shows the method:

public void setupRecordStore() {
try {
recordStore = RecordStore. openRecordStore("recordStore",
true);
Systemout.println("recordStore open");
Recor dEnuner ati on enunme = recor dSt ore. enuner at eRecor ds(
null, null, false);
int id =0;
String st = null;
whi | e(enune. hasNext El ement ()){
id = enune. next Recordl d();
recordStore.getRecord(id, data, 0);
st = din.readUrr();
din.reset();
Bool ean b = new Bool ean();

-23.-

5 Bluetooth File share

b. set Bool ean(true);
publ i shed2. put (st, b);
}

enune. destroy();

} catch (Exception e) {
showAl ert (" RecordStore not open. "+ e.getMssage());
Systemout.println(e);

}

The RecordStore.openRecordStore("recordStore”, true) method opens the RecordStore
recordStore and if it does not exist it is created. If the program has been executed on the
device before the record store will exist and if files has been shared in previous
executions of the program the record store will contain them. The
recordStore.enumerateRecords(null, null, false) method returns an enumeration of all
records in the record store, that is shared files. The while (enume.hasNextElement()){
method extracts the filenames from the records and puts them into the published?
HashTable which is used during execution to manage shared files.

5.4.3 Security

This project does not focus on security issues in Bluetooth but to create a working file
share application. Since devices sometimes have trouble connecting using the security
methods described in Section 2.6 Bluetooth security, Bluetooth File Share does not use
any of them.

5.5 Evaluation

One of our goals was to make a user friendly application and an evaluation of the
application was planned to investigate whether it was easy to use or not. But since there
were problems signing the MIDlet, see Section 6 Problems, this evaluation was never
done. One alternative was to perform the test at a computer to get rid of the signing
problems but since a computer environment would have been to unnatural to the user no
evaluation was done.

-4 -

6 Problems

6 Problems

The problems that were encountered during the project are presented in this section.

At the start of this project a list of features that the program should support was made and
a couple of prototypes of the design and layout of the program were created. According
to one layout the program would show the file name, file size and file type but also the
name of the host who shared the file. The plan was to be able to choose how to sort the
found files according to these parameters which could be good if many files are found.
This plan was abandoned early in the project due to the fact that only the file name alone
sometimes filled an entire row on the screen.

The most frustrating problems during this project have been when the simulator does not
behave exactly as the mobile phones. Functionality that works on the simulator does not
necessarily means it works on the phones. This led to many transfers and installations of
the program on the mobile phone each time a test of certain functionality was made. This
takes even longer time when the phone sometimes dumps memory or other errors occur
during the file transfer from the computer to the phone.

One problem that have not been solved is the lack of a certificate required to sign the
application. Now the user, on the mobile device, has to confirm that the program is
permitted to read and write to the file system every time a new directory is opened. This
problem is very annoying and this problem can be solved with a signed MIDlet.
Unfortunately certificates are not for free and the certificates needed to sign the MIDlet to
work properly is hard to get. Cybercom may invest in a certificate so this can be
implemented in a later version.

Another feature that was planned to be implemented was the possibility to select whether
to share an entire folder or not. This was not implemented since this would cause lots of
key-pressing as explained above. Also the option of selecting where to save the
downloaded files was overlooked for the same reason.

If two devices try to search for each other’s files at exactly the same time they will not
find each other’s files. A similar problem occurs when two devices want to download a
file from one server at the same time, this problem could probably be solved using more
threads. The possibility to run the program on mobile phones from other vendors than
Sony Ericsson has not been investigated due to lack of equipment and time.

-25-

6 Problems

-26-

7 Discussion

7 Discussion

Below the project member’s own opinions and thoughts about the project are revealed.

The goal of this project was to create an application for mobile phones that enabled the
user to share and download files from several other users at the same time. We think that
this project has been quite successful since our primary goal has been met. During the
programming, Java’s “code-conventions’ has been followed to a certain extent but this
could be improved in a later version.

This project has taught us lots about both Java programming and Bluetooth. We have also
learned that simulators are not always trustworthy but they can be seen as a good
compliment to real testing. A lot of information and help is available on the Internet for
people who want to learn about Bluetooth-programming with Java. We did expect to
encounter more problems that would take longer time to solve than we actually did.

Bluetooth range from 10 cm to 100 m depending of the transmitted power as explained in
Section 2.3 The protocol stack. Most mobile phones today using Bluetooth only reach a
radius of 10 m which results in that fewer files are found than if the search radius would
be 100 m. We believe that the future will bring more applications for Bluetooth. Mobile
devices will have more battery capacity, high capacity memory cards, increased
transmission rate and they will reach longer. This will greatly enhance the use of our
program.

With more time available, we would have implemented more features into Bluetooth File
Share such as; the possibility to share a directory and its sub directories, choose where to
store the downloaded files, point-to-multipoint connections, etcetera. Since Cybercom
has shown interest in continuing the development of this application, many of the features
discussed above may be implemented in a later version.

We have been speaking with several people working at Cybercom if they believe there is
a future for Bluetooth File Share. The program has been received with curiosity and got
many positive comments for the innovative idea and possibilities. One pessimistic
comment we received was that due to the fact that mobile operators (such as Vodafone
and Telia), has got great influence of the mobile manufacturers (such as Sony Ericsson
and Samsung), the program could be hard to distribute. For operators to be able to charge
people they want them to download music, ring tones etcetera via UMTS or GPRS and
not for free using Bluetooth. This is an important comment that forces us to distribute the
application in other ways, if that decision is made.

-27-

7 Discussion

-08-

8 Conclusions

8 Conclusions

Bluetooth File Share is an application that supports simultaneous communication
between several mobile phones using Bluetooth. The goal of this thesis work was to
create an application that supports file exchange between mobile phones. To be able to do
this for free, Bluetooth was the most effective technology to use. In the application the
user is given the possibility to share only the files he/she desires and also the possibility
to search for different file types, from other mobile devices such as music, pictures or text
files.

This project has given valuable experience about both Java programming and Bluetooth.
A thing to remember is that simulators are not always trustworthy but can be seen as a
good compliment to real testing. A lot of information and help is available on the Internet
for people who want to learn more about Bluetooth-programming with Java.

We believe that the future will bring more applications using Bluetooth and more battery
capacity for mobile phones. This and high capacity memory cards together with increased
transmission rate will greatly enhance the use of our program. If the problem with the
MIDlet signing and minor bugs will be solved the future of Bluetooth File Share looks
very bright.

-29.

8 Conclusions

-30 -

9 References

9 References

Below are the references used to write this thesis.

9.1 Literature
[3] Jochen Schiller, “Mobile Communications” chapter 7.5, 2003

[7] Bruce Hopkins and Ranjith Anthony, “Bluetooth for Java” chapter 2, 2003
[9] Bruce Hopkins and Ranjith Anthony, “Bluetooth for Java” chapter 9, 2003

[11] Bruce Hopkins and Ranjith Anthony, “Bluetooth for Java” chapter 5, 2003

9.2 Articles

[5] Qusay H. Mahmoud, 2003, “Wireless Application Programming with J2ME and

Bluetooth”, acc. 2005-07-06.
http://developers.sun.com/techtopics/mobility/midp/articles/bluetooth 1/index.html

[12] Eric Giguere, 2001-02-20, “Record Management System Basics”, acc. 2005-07-05

http://developers.sun.com/techtopics/mobility/midp/ttips/rmsbasics/index.html

[13] Eric Giguere, 2004-02, “Databases and MIDP, Part 1: Understanding the Record
Management System”, acc. 2005-10-21

http://developers.sun.com/techtopics/mobility/midp/articles/databaserms/index.html

[15] Sony Ericsson, 2004 “Developing Applications with the Java APIs for Bluetooth
(JSR-82)”, acc. 2005-10-21

http://www.microjava.com/articles/Bluetooth-jsr-82-training.pdf

[16] Fileconnection specification 1.0
http://www.jcp.org/aboutJava/communityprocess/final/jsr075/

9.3 Web-pages

[1] The official home page of Cybercom Group, acc. 2005-07-05
http://www.cybercomgroup.com/templates/CCPage.aspx?id=3064

[2] Palo Wireless, “Bluetooth tutorial specification”, acc. 2005-10-05
http://www.palowireless.com/infotooth/tutorial.asp

[4] The Official Bluetooth Website, acc. 2005-11-01
http://www.bluetooth.com/about/

[6] searchMobileComputing.com Definitions, acc. 2005-11-17
http://searchmobilecomputing.techtarget.com/sDefinition/0,290660,s1d40 gci213462.00.html

231 -

9 References

[8] Palo Wireless, “Bluetooth Tutorial — Profiles”, acc. 2005-10-21

http://www.palowireless.com/infotooth/tutorial/profiles.asp

[10] Bruce Hopkins, “Getting Started with Java and Bluetooth”, acc. 2005-10-03
http://today.java.net/pub/a/today/2004/07/27/bluctooth.html

[14] Sun Java Wireless Toolkit Overview, acc. 2005-10-18

http://java.sun.com/products/sjwtoolkit/overview.html

-32-

10 Appendices

10Appendices

There are two appendices attached to this report, Acronyms and Program code.

10.1 Acronyms

Acronym

Short for

Explanation

ACL

Asynchronous Connection-Less

A point-to-multipoint link between the master and all the slaves
participating on the piconet

API Application Programming Interface | A set of public methods
CDC Connected Device Configuration J2ME configuration for smart phones and advanced PDAs.
CLDC Connected Limited Device J2ME configuration for most mobile phones and PDAs.
Configuration
GAP Generic Access Profile Bluetooth profile that support device discovery and link
management
GFSK Gaussian Frequency Shift Keying The modulation scheme used by Bluetooth radio.
GOEP Generic Object Exchange Profile Bluetooth profile that support file transfer and object push.
GPRS General Packet Radio Service Packet based communication service
HCI Host Controller Interface The driver interface for the physical bus that connects LMP and
L2CAP
HS Headset profile Bluetooth profile that defines requirements for the support of
headsets.
IDE Integrated Development An editor that lets you edit, compile and debug all from within
Environment the same program.
JAR Java ARchive Contains the class files of a Java MIDlet
J2ME Java 2 Micro Edition A programming language for mobile telephones.
J2SE Java 2 Standard Edition A programming language for computers.
JSR Java Specification Request Where requests for changes to the Java language are presented
JVM Java Virtual Machine The machine code for an ideal Java CPU
L2CAP Logical Link Control and Adaption | Receives application data and adapts it to the Bluetooth format.
Protocol Handles quality of service.
LMP Link Manager Protocol Establishes connections and manages piconets. Also responsible
for security services.
MIDlet Mobile Information Device appLET | Tiny Java programs
PDA Personal Digital Assistant Handheld computer
PIN Personal Identification Number Security code used during authentication.
RFCOMM | Radio Frequency Communications | A Bluetooth transport protocol using RS232.
SCO Synchronous Connection-Oriented | Symmetric point-to-point link between a master and a single
slave in the piconet
SDDB Service Discovery Database Database where the server contains services.
SDP Service Discovery Protocol Makes it possible for a device to discover what services are
available on another device.
SIG Special Interest Group Group of companies that develops Bluetooth.
SPP Serial Port Profile Bluetooth profile that sets up a virtual link between two devices.
UMTS Universal Mobile 3G mobile system
Telecommunications Service
WTK Wireless ToolKit Toolkit containing APIs for wireless communication.
UUID Universally Unique Identifier Each service and service attribute is uniquely identified by a

UUID.

10 Appendices

10.2 Program code

The program Bluetooth File Share consists of six classes; DemoMID]et.java,
GUIImageServer.java, BTImageServer.java, GUllmageClient.java, BTImageClient.java
and savelmage.java. The commented code is shown below.

10.2.1 DemoMIDlet.java
/*
* DenoM Dl et.java
*/
package exanpl e. bl uet oot h. deno;
import javax.mcroedition.mdlet.MDlet;
i mport javax. m croedition.l|cdui.Comrand;
i mport javax. m croedition.lcdui.CommandLi stener;
i mport javax.mcroedition.l|cdui.Display;
i mport javax. m croedition.lcdui.Displayable;
import javax. m croedition.lcdui.List;

333333

import javax.mcroedition.lcdui.Alert;
i mport javax.mcroedition.lcdui.AlertType;

/**

* The main class displays the Main Menu.

*/

public final class DenoM Dl et extends M D et inplenents CommandLi stener {

/** Keeps the hel p nessage of this denmo. */
private final String hel pText = "Select \"Share\" to choose which files to share " +
"and select \"Search\" to search for files. Before you share files you " +
"can view them by choosing \"Viem". This functionality only works " +
"on pictures and text files. You can also view found pictures before you " +
"save them Downl oaded files are stored at e:/MSSEMC/ Medi a fil es/ ot her/ downl oad/";

/** Keeps the about nessage of this denp. */
private final String about Text = "Bluetooth File Share is a MSc thesis at the " +
"Department of Conmmunication Systens at Lund Institute of Technology " +
"created by Henrik Andersson and Hakan Bertil sson 2005.";

/** The nessages are shown in this deno this anpunt of time. */
static final int ALERT_TI MEQUT = 2000;

/** Soft button for exiting the demp. */
private final Command EXI T_CMD = new Command("Exit", Command. EXIT, 2);

/** Soft button for launching a client or sever. */
private final Command OK_CMD = new Command("Ck", Conmand. SCREEN, 1);

/** Alist of menu items */
private static final String[] elements = { "Search", "Share", "Help", "About" };

/** A menu |ist instance */
private final List nmenu = new List("BluetoothFileShare", List.IMPLICIT,
el enents, null);

/** A QU part of server that publishes inages. */
private GUI | mageServer inageServer;

/** A GJ part of client that receives inage fromclient */
private GUI I maged ient inmagedient;

private final Alert hel pScreen = new Al ert("Hel p");
private final Alert aboutScreen = new Al ert("About");
private final Command backComrand = new Command("Back", Conmand. BACK, 2);

/** Shows the hel p nessage. */

10 Appendices

private final Command hel pCommand = new Command(" Hel p", Conmand. HELP, 1);

private final Command about Cormand = new Command(" About", Command. HELP, 1);

/**
* Constructs main screen of the MDlet.
*/
public DemoM Dl et () {
menu. addConmand(EXI T_CMD) ;
menu. addConmand(OK_CMD) ;
menu. set CormandLi st ener (t hi s);

/1 prepare help screen

hel pScr een. addCommuand(back Comrand) ;
hel pScreen. set Ti neout (Al ert. FOREVER) ;
hel pScreen. set String(hel pText);

hel pScr een. set CommandLi st ener (t hi s);

about Scr een. addConmand(backConmand) ;
about Scr een. set Ti meout (Al ert. FOREVER) ;
about Screen. set St ri ng(about Text);
about Scr een. set CommandLi st ener (this);

}
/**
* Creates the view and action buttons.
*/
public void startApp() {
show() ;

/] Start imageServer
i mmgeServer = new GUl | mageServer (this);

}
/**
* Destroys the application.
*/
protected void destroyApp(bool ean unconditional) {
if (imageServer = null) {
i mageServer.destroy();
}

if (imgedient = null) {
i mageC ient.destroy();
}

}

/**

* Does not hi ng.

*/

protected void pauseApp() {}

/**
* Responds to conmands issued on "client or server" form
*/
public void comrandActi on(Comand c, Displayable d) {
if (c == EXIT_CVD) {
destroyApp(true);
noti fyDestroyed();

return;

}

if (c == backCommand && d == hel pScreen || == about Screen) {
Di spl ay. get Di spl ay(thi s).setCurrent (nmenu);
return;

}

if (c == hel pCommand) {
Di spl ay. get Di spl ay(thi s).set Current (hel pScreen);
return;

if (c == about Command) {
Di spl ay. get Di spl ay(thi s).set Current (about Screen);

return;

}

switch (nenu. get Sel ect edl ndex()) {

case 0: // Search, call imgedient
imgeC ient = new GUl I mageC ient(this);
br eak;

case 1: // Share files
//Start method that shows which files to share
i mageServer. shareFil es();

br eak;
case 2: // Help
/] Show t ext
Di spl ay. get Di spl ay(thi s).setCurrent (hel pScreen);
br eak;
case 3: // About
/] Show t ext
Di spl ay. get Di spl ay(thi s).setCurrent (about Screen);
br eak;
defaul t:
Systemerr.println("Unexpected choice...");
br eak;

}

/** Shows main nmenu of MDlet on the screen. */
voi d show() {

Di spl ay. get Di spl ay(thi s).setCurrent (menu);
}

/**
* Returns the displayable object of this screen -
* it is required for Alert construction for the error
* cases.
*/
Di spl ayabl e get Di spl ayabl e() {
return menu,

}
} /1 end of class 'DenrbM Diet' definition

10.2.2 GUIImageServer.java
/*

* QU | mageServer.java

*/
package exanpl e. bl uet oot h. deno;
import javax.mcroedition.lcdui.Alert;
import javax.mcroedition.lcdui.AlertType;
i mport javax. m croedition.l|cdui.Comrand;
i mport javax. m croedition.lcdui.CommandLi stener;
i mport javax.mcroedition.lcdui.Display;
import javax. m croedition.lcdui.Displayable;
import javax. m croedition.lcdui.G aphics;
i mport javax.mcroedition.l|cdui.lmge;
import javax.m croedition.lcdui.List;
import javax. m croedition.lcdui.Ticker;
import java.io. | OException;
inmport java.util.Vector;

inmport java.util.*;

import java.io.*;

import javax.mcroedition.io.*;
inmport javax.mcroedition.io.file.*;
import java.util.Hashtabl e;

import javax. m croedition.io.Connector;
import javax.mcroedition.lcdui.lmgeltem
i mport javax.mcroedition.|cdui.*;

10 Appendices

10 Appendices

import javax. m croedition.rns. RecordStore;
import javax.mcroedition.rmns.*;

/**

* Allows to customze the file list to be published,

* creates the corresponding service record to describe this |ist
* and send the files to clients by request.

*/

final class QU I mageServer inplenments ConmandLi stener {

/** This command goes to nmin screen. */
private final Command backComrand = new Command("Back", Conmand. BACK, 2);

/** Adds the selected file to the published list. */
private final Comand addCommand = new Commrand("Publish file",
Commrand. SCREEN, 1);
/** Renpves the selected file fromthe published list. */
private final Command renpveConmand = new Conmand(" Unpublish file",
Comrand. SCREEN, 1);
private Command vi ewCommand = new Conmand("Vi ew', Command.| TEM 1);
private Command mai nMenuConmmand = new Commrand(" Mai n Menu", Command. EXIT, 3);

/** The list control to configure files. */
private List imagesList = new List("Bluetooth FileShare", List.IMPLICIT);

/** Keeps the parent M D et reference to process specific actions. */
private DenoM Dl et parent;

/** The list of images file names. */
private Vector imagesNanes;

/** These images are used to indicate the picture is published. */
private | mage onl nage, offlmge;

/** Keeps an information about what images are published. */
private bool ean[] published;

/** This object handles the real transm ssion. */
private BTInageServer bt_server;

private GUI I maged ient inagedient;

/* special string denotes upper directory */
private final static String UP_D RECTORY = "..";

/* special string that denotes upper directory accessible by this browser.
* this virtual directory contains all roots.

*/

private final static String MEGA ROOT = "/";

/* separator string as defined by FC specification */
private final static String SEP_STR = "/";

/* separator character as defined by FC specification */
private final static char SEP = "/";

private String currDirNane;
private Hashtabl e published2;

/*Used for RMS */
private RecordStore recordStore;

private byte[] data = new byte[200]; //200 &r ett bra tal...
private ByteArrayl nput Stream bin = new ByteArrayl nput Strean(data);
private Datal nput Stream di n =new Dat al nput Stream(bin);

Text Box vi ewer;
String fil eNamePat h="";

10 Appendices

private final ForminmageScreen = new Form("Fil enane");

/** Constucts inages server GUJ. */
GUl | nageSer ver (DenoM Dl et parent) {
this.parent = parent;
currDi rNane = MEGA_ROCT;
publ i shed = new bool ean[100] ;
publ i shed2 = new Hasht abl e();
set upRecordStore();
bt _server = new BTl mageServer(this);
set upl di cat or | mage() ;
System out. println(i magesLi st.size());

/1 This is done to avoid initialization problens

Fi | eSystenRegi stry.listRoots();
}

/*

* Returns the list with fileinfo, that is if the file is published or not

*/
publ i ¢ Hashtabl e get Publ i shed() {
return published2;

/**

* Setup the publlished Iist using a recordStore and a hashtabl e

*/

public void setupRecordStore() {

/1 Opens the RecordStore to retrieve the filenanes of published files,
/1if there is no previously saved recordStore a new one is created.

try {

recordStore = RecordStore. openRecordStore("recordStore",

Systemout.println("recordStore open");

Recor dEnuner ati on enume = recordStore. enuner at eRecor ds(

null, null, false);

int id =0;

String st = null;

whi | e(enune. hasNext El ement ()){
id = enune. next Recordl d();
//recordStore. del eteRecord(id);
Systemout.println("fére getR');
recordStore. get Record(id, data, 0);
Systemout.println("efter getR");
st = din.readUTF();
Systemout. println(st);
din.reset();
Bool ean b = new Bool ean();
b. set Bool ean(true);
publ i shed2. put (st, b);

}

enume. destroy();

} catch (Exception e) {

showAl ert ("RecordStore not open. "+ e.getMessage());

Systemout.println(e);

}

/**

* Updates the recordStore, that is changes the state of the inage,

* or not published.
*/

true);

publ i ¢ bool ean updat eRecordStore(String fil eNanme, bool ean published) {

try {

int nunmRecords = recordStore. get NunRecords();

bool ean i nRecord = fal se;
String s = null;
Systemout.println("innan felet");

Recor dEnuner ati on enunme = recordStore. enunerat eRecords(null, null,

int i =0;

whi | e(enune. hasNext El ement () && !inRecord){

i = enune. next Recordl d();
Systemout.println("fére getR');

publ i shed

false);

10 Appendices

recordStore. get Record(i, data, 0);
Systemout.println("efter getR");
s = din.readUTF();

din.reset();

i nRecord=fil eName. equal s(s);

enune. destroy();
if(inRecord && published==fal se){
recordStore. del et eRecord(i);
} else if(!inRecord && published) {
Byt eArr ayQut put St ream bout = new Byt eArrayQut put Strean();
Dat aQut put Stream dout = new Dat aCut put Stream bout);
dout.witeUTF(fileNane);
dout . flush();
byte[] b = bout.toByteArray();
recordSt ore. addRecord(b, 0, b.length);
bout . reset();

//showAl ert ("recordStore updated successfully");
return true;
}catch (Exception e){
showAl ert ("RecordStore not updated. " +e.getMessage());
Systemout.println(e);
return fal se;

/**
* Process the command event.
*/
public void comrandActi on(Comand c, Displayable d) {
if (c == viewCommand) {
List curr = (List)d;
final String currFile = curr.getString(curr.getSel ectedl ndex());
new Thr ead(new Runnabl e() {
public void run()
if (currFile.endsWth(SEP_STR) || currFile.equal s(UP_DI RECTORY)) {
traverseDirectory(currFile);
} else {
/1 Show file contents
showFil e(currFile);
}

}
}).start();
return;

}

if (c == mai nMenuConmand && d == i mageslList) {
destroy();
parent. show();
return;

}

if (c == backCommand && d == inmgeScreen || d == viewer) {
Di spl ay. get Di spl ay(parent).setCurrent (i magesList);
return;

}

if (c == backCommand && d == inmmagesList) {

if (MEGA_ROOT. equal s(currDirNane)) {
destroy();
parent. show();
return;

} else {
traverseDirectory(UP_DI RECTORY) ;
return;

}

/*
* Changing the state of base of published images

10 Appendices

*/
int index = i magesLi st. get Sel ect edl ndex();

bool ean publ i shed2St at e;

publ i shed2St at e=((Bool ean)

publ i shed2. get ((currDi r Nane+i magesLi st. get Stri ng(index)))). get Bool ean();
String fil eName2=i nagesLi st. get String(index);

/1 nothing to do
if ((c == addCommand) == published2State) {

return;
}
Bool ean b = new Bool ean();
b. set Bool ean(c == addCommand) ;

publ i shed2. put (currDi r Nane+fi | eName2, b);
bool ean bo = updat eRecor dSt or e(
currDi r Nane+fi | eNanme2, b. get Bool ean());

I mage statelng = ¢ == addConmand ? onl nage : of fl mage;
i mgesLi st. set (i ndex, inmgesList.getString(index), statelnp);

/1 update bluetooth service information
if (!bt_server.changel magel nf o(currDirName+fil eName2, b.getBoolean())) {

/1 either a bad record or SDDB is buzy

Alert al = new Alert("Error", "Can't update base", null,
Al ert Type. ERROR) ;

al . set Ti neout (DenoM Dl et . ALERT_TI MEQUT) ;

Di spl ay. get Di spl ay(parent).setCurrent(al, imagesList);

b. set Bool ean(! b. get Bool ean());
publ i shed2. put (currDi r Nane+fi | eName2, b);
bo = updat eRecor dSt or e(
currDi r Nane+fi | eNanme2, b. getBool ean());
statelmg = b. get Bool ean() ? onlmage : offlnage;

i mgesLi st. set (i ndex, inmgesList.getString(index), statelnp);

}

public void shareFiles(){
bool ean i sBTReady=tr ue;
showCurrDir();

}

/1Show the file if it is a text or a picture else do nothing
voi d showFil e(String fileNane) {
String fileType = fileNane.substring(fileNane.length()-4, fileNane.length());

if(fileType.equal s(".png") || fileType.equals(".jpg")
|| fileType.equals(".gif") || fileType.equal s(".bmp")
|| fileType.equals(".PNG') || fileType.equal s(".JPG")
|| fileType.equals(".GF") || fileType.equal s(".BW")) {

byte[] inmgData = bt_server. getl nageDat a(currDi r Nane+fil eNane) ;
Image ing = null;

try {

img = | mage. createl mge(i ngbata, 0, ingData.length);
} catch (Exception e) {

showAl ert ("Wong file data. " + e.getMessage());

}

i mageScreen. del eteAll ();

i mgeScr een. append(new | nagel ten("", ing,
| magel t em LAYOUT_CENTER | | nagel t em LAYOUT_VCENTER,
"Downl oaded file: " + fileNane));

i mmgeScreen.setTitle(fil eNane);

i mgeScr een. addConmand(back Command) ;

i mageScr een. set ConmandLi st ener (this);

10 Appendices

}

/**

Di spl ay. get Di spl ay(parent). set Current (i nageScreen);

} else if (fileType.equals(".txt") || fileType.equal s(".TXT")) {
try {
Fi | eConnection fc = (Fil eConnection)
Connector.open("file://local host/" + currDirName + fil eNane);
if (!fc.exists()) {
throw new | CException("File does not exists");
}

Input Stream fis = fc.openl nput Strean();
byte[] b = new byte[1024];

int length = fis.read(b, 0, 1024);

fis.close();
fc.close();

vi ewer = new TextBox(fileNane, null, 1024,
Text Fi el d. ANY | Text Fi el d. UNEDI TABLE) ;

vi ewer . addCommand(back Command) ;
vi ewer . set CommandLi st ener (t hi s);

if (length > 0) {
vi ewer.set String(new String(b, 0, length));
}

Di spl ay. get Di spl ay(parent).setCurrent(viewer);
} catch (Exception e) {
Alert alert = new Alert("Error!",
"Can not access file " + fil eName

+ " in directory " + currDirNane
+ "\ nException: " + e.getMessage(),
nul |,

Al ert Type. ERROR) ;
al ert. setTi meout (Al ert. FOREVER) ;
Di spl ay. get Di spl ay(parent).setCurrent(alert);

Destroys this conmponent. */

voi d destroy() {

}

/**

* Creates the inmge to indicate the base state.

*/

private void setupldicatorlmge() {

/**

/] create "on" imge
try {

onl mage = | mage. creat el mage("/i mages/ st-on. png");
} catch (1 OException e) {

/'l provide off-screen i mage then
onl mage = createlndi catorl mage(12, 12, 0, 255, 0);

}
/] create "off" image
try {

of fImage = | mage. creat el mage("/i mages/ st-off.png");
} catch (1 OException e) {

/'l provide off-screen i mage then
of fImage = createl ndi catorlmage(12, 12, 255, 0, 0);

10 Appendices

* Creates the off-screen image with specified size an col or.

*/

private | mage createlndicatorlnage(int w, int h, int r, int g, int b) {
I mage res = | nage. createl mage(w, h);
Graphics gc =

gc.setCol or (r, ;
gc.fill Rect (0, O, w, h);

return res;

}

/**

* Show file Iist

*/

res. get Graphi cs();
g, b

) .

in the current directory .

void showCurrDir () {

Enunerati on

€;

Fi |l eConnection currDir = null;
String fil eNamePat h="";

try {

if (MEGA_ROOT. equal s(currDirNane)) {
Fi | eSystenRegi stry.listRoots();
i mgesList = new List(currDirNane, List.IMPLICIT);

e =

} else {
currDir = (Fil eConnection)Connector.open("file://local host/"

e =

}

currDi rNane) ;

currDir.list();

i mgesList = new List(currDirNane, List.IMPLICIT);
/'l not
i mgesLi st. append(UP_DI RECTORY, offlnage);

root - draw UP_DI RECTORY

while (e.hasMreEl ements()) {
String fileName = (String)e. nextEl ement();

if (currbDirName! =MEGA ROOT) {

fil eNanePat h=curr Di r Nane+fi | eNane;
} else {

fil eNanePat h=fil eNane;

}

i f(!published2. containsKey(fileNanmePath)) ({
publ i shed2. put (fil eNamePat h, new Bool ean());
bool ean bo = updat eRecor dSt or g(

}

fil eNanePath, false);

if (((Bool ean) published2.get(fil eNanmePath)). getBool ean()){
i mageslLi st. append(fil eNane, onlnage);

} else {

i mgesLi st. append(fil eNane, offlnmage);

}

magesLi

magesLi
magesLi
magesLi
magesLi
magesLi
magesLi

if (currDr

st.

st

st

st

set Sel ect Command(vi ewConmand) ;

. addConmand(vi ewCommand) ;
st.
. addConmmand(addComand) ;
st.
st.

addCommand(backCommand) ;

addCommand(r emoveComrand) ;
addCommand(mai nMenuCormand) ;

. set ConmandLi st ener (this);

'= null) {

currDir.close();

}

Di spl ay. get Di spl ay(parent).setCurrent (i magesList);
} catch (1 OException ioe) {
ioe.printStackTrace();

}

-10-

10 Appendices

void traverseDirectory(String fil eName) {
/* In case of directory just change the current directory
* and show it

*/

}

if (currbDirNane. equal s(MEGA_ROOT)) {
if (fileNane.equal s(UP_DI RECTORY)) {

}

/1 can not go up from MEGA ROOT
return;

currDirName = fil eNane;
} else if (fileNane.equal s(UP_DI RECTORY)) {
/1 Go up one directory
int i = currDirNane.|astlndexCOf (SEP, currDirNane.length()-2);
if (i '=-1) {

currDirNane = currDirNane. substring(0, i+1);

} else {

currDi rNane = MEGA_ROCT;

} else {
currDirName = currDirNane + fil eNaneg;

}
showCurrDir();

public void showAlert(String alert){
Alert al = new Alert("System nessage", alert, null,

Al ert Type. ERROR) ;

al . set Ti neout (7000) ;

Di spl

ay. getDi spl ay(parent).setCurrent(al, parent.getDi splayable());

} /1 end of class 'GU I mageServer' definition

cl ass Bool ean {
private bool ean shared;

publ i c Bool ean(){
shar ed=f al se;

}

publ i c bool ean get Bool ean(){
return shared;

}
public void setBool ean(bool ean set) {
shar ed=set ;
}
}
10.2.3 BTImageServer.java
/*

* BTl mageServer.java

*/

package exanpl e. bl uet oot h. deno;

Il jsros2 APl

i mport
i mport
i mport
i mport
i mport
i mport

j avax.
j avax.
j avax.
j avax.
j avax.
j avax.

/1 mdp/cldc

i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport

j avax.
j avax.
j avax.
java.i
java.i
java.i
java.i
java.i

bl uet oot h. Dat aEl enent ;

bl uet oot h. Di scover yAgent ;

bl uet oot h. Local Devi ce;

bl uet oot h. Servi ceRecord;

bl uet oot h. Servi ceRegi strati onExcepti on;
bl uet oot h. UUI D;

AP|

i croedition.io.Connector;

i croedition.io.StreanConnecti on;
icroedition.io.StreamConnecti onNotifier;
. Byt eArrayQut put St ream

.1 OExcepti on;

. I nput St ream

. Dat al nput St ream

. Qut put St ream

00000333

- 11 -

10 Appendices

i mport
i mport
i mport
i mport

/**

java.io. Dat aCut put St ream
java.util. Vector;

java. util.Hashtabl e;
java.util.*;

* Established the BT service, accepts connections
* and send the requested files.

*/

final class BTlImageServer inplenments Runnable {

/** Describes this server */
private static final UU D Pl CTURES_SERVER UUI D =
new UUI D(" FOEODOCOBOA000908070605040302010", fal se);

/** The attribute id of the record itemwith file nanes. */
private static final int | MAGES NAMES ATTRI BUTE | D = 0x4321;

/** Keeps the |l ocal device reference. */
private Local Devi ce | ocal Devi ce;

/** Accepts new connections. */
private StreanConnecti onNotifier notifier;

/** Keeps the infornmation about this server. */
private ServiceRecord record;

/** Keeps the parent reference to process specific actions. */
private GUI | nageServer parent;

/** Becones 'true' when this conponent is finilized. */
private bool ean isCd osed;

/** Creates notifier and accepts clients to be processed. */
private Thread accepter Thread;

/** Process the particular client from queue. */
private CientProcessor processor;

/** Optimzation: keeps the table of data elenents to be published.

private final Hashtabl e dataEl enents = new Hashtabl e();

/**
* Constructs the bluetooth server, but it is initialized
* in the different thread to "avoi d dead | ock".
*/
BTl mageSer ver (GUl | mageServer parent) {
this.parent = parent;

/1 we have to initialize a systemin different thread...
accepter Thread = new Thread(this);
accepter Thread. start();

}
/**
* Accepts a new client and send himher a requested file.
*/
public void run() {
bool ean i sBTReady = fal se;

try {

Il create/get a |local device
| ocal Devi ce = Local Devi ce. get Local Devi ce();
System out. println(l ocal Devi ce. get Bl uet oot hAddress());

/] set we are discoverable

if (!local Device.setDi scoverabl e(Di scoveryAgent. d AC)) {
/1 Some inplenentations always return false, even if
/'l setDi scoverabl e successful

-12-

*/

10 Appendices

/] prepare a URL to create a notifier
StringBuffer url = new StringBuffer("btspp://");

/1 indicate this is a server
url . append("l ocal host") . append(':");

/! add the UUID to identify this service
url . append(Pl CTURES_SERVER UUI D.toString());

/1 add the nane for our service
url . append("; name=Pi cture Server");

/1 request all of the client not to be authorized
/1 some devices fail on authorize=true
url . append("; aut hori ze=f al se");

/1 create notifier now
notifier = (StreanConnectionNotifier) Connector.open(
url.toString());

/1 and remenber the service record for the |ater updates
record = | ocal Devi ce. get Record(notifier);

/] create a special attribute with i mages nanes
Dat aEl enent base = new Dat aEl ement (Dat aEl enment . DATSEQ) ;
record. set AttributeVal ue(l MAGES_NAMES_ATTRI BUTE_I| D, base);

/'l remenber we've reached this point.

i sBTReady = true;
} catch (Exception e) {

Systemerr.println("Can't initialize bluetooth: " + e);
}

/1 nothing to do if no bluetooth avail abl e
if (!isBTReady) {

return;
}

Enunerati on en = parent. get Published().keys();
String key = null;
whi l e (en. hasMoreEl enents()) {

key = (String) en.nextEl enent();

changel magel nf o(key, true);

/1 ok, start processor now
processor = new CientProcessor();

/'l ok, start accepting connections then
while (!isC osed) {
St reanConnecti on conn = nul | ;

try {
conn = notifier.accept AndOpen();
} catch (1 OException e) {

/!l wong client or interrupted - continue anyway
continue;

}

processor. addConnecti on(conn);

* Updates the service record with the information
* about the published inmages availability.
* This method is invoked after the caller has cheched
* already that the real action should be done.
*/
bool ean changel magel nfo(String name, bool ean isPublished) {
/1 ok, get the record from service
Dat aEl enent base = record. get AttributeVal ue(l MAGES_NAMES_ATTRI BUTE_I D) ;

-13-

10 Appendices

}

/**

* Destroy a work with bluetooth - exits the accepting
* thread and cl ose notifier.

/'l check the correspondi ng Dat aEl enent object is created already
Dat aEl enent de = (DataEl enent) dataEl enents. get (nane);

/1 if no, then create a new DataEl ement that describes this imge
if (de == null) {

de = new Dat aEl enent (Dat aEl enent. STRI NG, nane) ;

dat aEl ement s. put (nanme, de);

}

Enuner ati on e=dat aEl enents. el ements();
whi | e(e. hasMoreEl ements()) {

Systemout.println("elenment: " +e.nextEl ement().toString());
}

/1 we know this data el ement has DATSEQ type
if (isPublished) {

base. addEl enent (de) ;
} else {

if (!base.renpveEl enent(de)) {

Systemerr.println("Error: itemwas not renoved for: " + nane);

return fal se;
} }
record. set AttributeVal ue(l MAGES_NAMES_ATTRI BUTE_I| D, base);

try {
| ocal Devi ce. updat eRecord(record);

} catch (ServiceRegistrati onException sere) {
Systemerr.println("Can't update record now for: " + nane);
return fal se;

}

return true;

voi d destroy() {

}

/**
* Reads the filename fromthe specified connection

* and sends this file through this connection, then
* close it after all.

isClosed = true;

/1 finilize notifier work
if (notifier !'=null) {
try {
notifier.close();
} catch (1 Oexception e) {} // ignore

/1 wait for acceptor thread is done
try {
accepter Thread. join();
} catch (InterruptedException e) {} // ignore

/1 finilize processor

if (processor != null) {
processor.destroy(true);

}

processor = null;

private void processConnecti on(StreanConnection conn) {

/1 read the filename first
String i mgNane = readl mageName(conn);

/Il check this file is published and get the fil enane

- 14 -

10 Appendices

Hasht abl e published = new Hashtabl e();
publ i shed = parent.getPublished();
byte[] imgData = null;

Bool ean b = new Bool ean();

/] Check that the file is still published
if (!((Bool ean) published. get (i ngNane)). get Bool ean()) {
imgData = "F".getBytes();

} else {
/1 load i mage data into buffer to be send
i mgDat a = get | mageDat a(i ngNane) ;

}

/1 send i mage data now
sendl mageDat a(i ngDat a, conn);

/'l close connection
try {
conn. cl ose();
} catch (1 Oexception e) {} // ignore

/** Send i mage data. */
private void sendl nageDat a(byte[] inmgData, StreamConnection conn) {
if (ingData == null) {
return;

Dat aCut put Stream out = null;

i nt nbr O Sent Byt es;

int | apCount =0;

try {
out = conn. openDat aQut put Strean();
System out. println("out= "+out);
// Har | &ggs | angden pa datan till
out.write(imbData.length >> 24);
out.write(imbData.l ength >> 16);
out.write(imgData.length >> 8);
out.wite(ingData.length & Oxff);

/* Here the transmi ssion data is divided in snaller parts. This have
* to be done due to phone problens.*/
int byteNor = 0;
int breakpoint = 10;
int nbrOf DataParts = ingData.l ength/breakpoint;
int remai nder = ingData.length%breakpoint;
byte[] inmgDataPart = null;
i f (remai nder!=0){
nbr O Dat aPart s++;

//Create the first part array
i f (nbr O Dat aPar t s>0) {
i f (nbr O Dat aPart s>1) {
i mgDat aPart = new byt e[br eakpoi nt];
} else{
i mgDat aPart = new byt e[renni nder];
}

}
whi | e(byt eNor +I apCount *br eakpoi nt ! =i ngDat a. | engt h) {
i mgDat aPar t [byt eNbr] =i ngDat a[byt eNbr +I apCount * br eakpoi nt] ;
byt eNbr ++;
i f (byt eNor ==br eakpoi nt) {
| apCount ++;
byt eNbr =0;
out.write(ingDataPart, 0, ingDataPart.|ength);
out. flush();
i f (1 apCount +1==nbr O Dat aParts && remai nder! =0){
i mgDat aPart = new byt e[renni nder];
} else {
i mgDat aPart = new byt e[breakpoint];
}

-15-

10 Appendices

}
}
out.write(ingDataPart, 0, ingDataPart.!|ength);
out.flush();

} catch (1 OException e) {
parent.showAl ert("Can't send file data: " + e.getMessage());
}

/1 cl ose output stream anyway
if (out !'=null) {
try {
out.close();
} catch (1 Oexception e) {} // ignore

}

/** Reads image name from specified connection. */
private String readl mageNanme(StreamConnecti on conn) {
String i mgNane = nul | ;
Dat al nput Streamin = null;
System out. println("readl nageNane");

try {
in = conn. openDat al nput Strean() ;
int length = in.read(); // 'nane' length is 1 byte

if (length <= 0) {
t hrow new | CException("Can't read name | ength");

byte[] nanmeData = new byte[l ength];

length = 0;

while (length != naneData.length) {
int n = in.read(naneData, |ength, naneData.length - |ength);
if (n==-1) {

throw new | CException("Can't read name data");
}
length += n;

}
i mgNane = new String(naneData) ;

} catch (1 OException e) {
Systemerr.println(e);

} catch (Null Poi nterException ne) {
Systemerr.printin("Nullfel: "+ne);

}

/1 close input stream anyway
if (in!=null) {
try {
in.close();
} catch (1 Oexception e) {} // ignore
catch (Nul |l Poi nter Exception ne) {
Systemout.printin("null!ttt");
}
}

return inmgNamne;

}

/** Reads immges data fromMD et archive to array. */
public byte[] getlnageData(String ingNanme) {
if (ingName == null) {
return null;
}

i mgNane="file://l ocal host/"+i mgNane;
I nput Stream i n=nul | ;

try {
in = Connector. openl nput St rean(i ngNane) ;

-16 -

10 Appendices

} catch (1 OException ioe) {
parent. showAl ert (i oe. get Message());
}

/1 read i mage data and create a byte array
byte[] buff = new byte[1024];
Byt eAr r ayQut put St r eam baos = new Byt eArrayQut put Strean(1024);

try {
while (true) {
Systemout.println("fére in.read(buff)=" +buff.toString());
int length = in.read(buff);
if (length == -1) {
br eak;
}

baos. write(buff, 0, length);

}
} catch (1 OException e) {
Systemerr.println("Can't get inage data: ingName=" + inmgName + "

+ e);
return null;
} catch (Null PointerException ne) {
Systemerr.println("Nullpontfel!!l " +ne);
}
return baos.toByteArray();
}
/**

* Orginizes the queue of clients to be processed,
* processes the clients one by one until destroyed.
*/
private class CientProcessor inplenments Runnable {
private Thread processor Thread;
private Vector queue = new Vector();
private bool ean isCk = true;

ClientProcessor() {
processor Thread = new Thread(this);
processor Thread. start();

}

public void run() {
while (!isC osed) {

/1 wait for new task to be processed
synchroni zed (this) {
if (queue.size() == 0) {

try {
wai t () ;

} catch (InterruptedException e) {
Systemerr.println("Unexpected exception: " + e);
destroy(fal se);
return;

}

}

/1 send the inmage to specified connection
St reanConnecti on conn;

synchroni zed (this) {
/'l may be awaked by "destroy" method.
if (isCosed) {
return;
conn = (StreanmConnection) queue.firstEl ement();

queue. r enoveEl enent At (0) ;
processConnecti on(conn);

-17 -

10 Appendices

}

/** Adds the connection to queue and notifys the thread. */
voi d addConnecti on(StreamConnecti on conn) {
synchroni zed (this) {
queue. addEl enent (conn) ;
notify();

}

/** Closes the connections and . */
voi d destroy(bool ean needJoin) {
St reanConnecti on conn;

synchroni zed (this) {
notify();

whil e (queue.size() !'=0) {
conn = (StreanmConnection) queue.firstEl ement();
queue. r enoveEl enent At (0) ;

try {
conn. cl ose();
} catch (1 Oexception e) {} // ignore

}
/1 wait until dispatching thread is done
try {

processor Thread. j oi n();
} catch (InterruptedException e) {} // ignore

}

public void log(String I) {
Systemout.println(l);

} /1 end of class 'BTlImageServer' definition

10.2.4 savelmage.java
/*

* savel mage. j ava

*/

package exanpl e. bl uet oot h. deno;

import javax.mcroedition.io.*;
inmport javax.microedition.io.file.*;
inmport java.io.*;

import java.l ang. Thread;

/**
*

* @ut hor Henrik Ander sson
*/

public class savel nage extends Thread {
GUl I naged i ent parent;

/** Creates a new instance of savel mage */
public savel nage(GU | mageC i ent parent) {
thi s. parent =parent;

}

public void run() {
/] Save the picture BTImagedient (via GU I magedient)
par ent . savel ngPassage() ;

- 18-

10 Appendices

10.2.5 GUIImageClient.java

/*
* QU lmageCient.java
*/
package exanpl e. bl uet oot h. deno;

/1 mdp GU classes

import javax.mcroedition.lcdui.Alert;

i mport javax.mcroedition.lcdui.AlertType;

i mport javax. m croedition.l|cdui.Comrand;

i mport javax. m croedition.lcdui.ComandLi stener;
i mport javax.mcroedition.l|cdui.Display;

i mport javax. m croedition.lcdui.Displayable;
import javax. m croedition.lcdui.Form

i mport javax.m croedition.l|cdui.Gauge;

i mport javax. mcroedition.l|cdui.lmge;
import javax.mcroedition.lcdui.lmgeltem
import javax. m croedition.lcdui.List;

import javax.mcroedition.lcdui.Stringltem

333333333333

i mport javax. m croedition.l|cdui.ChoiceG oup;
i mport javax. m croedition.lcdui.Choice;
inmport java.util.Vector;

/1 mdp/cldc classes
import java.io.|OException;
import java.util.Hashtabl e;
import java.util.Enuneration;
import javax. m croedition.io.Connector;
/**
* Provides a GUI to present the downl oad options
* to used, gives a chance to nake a choi ce,
* finally shows the downl oaded i mage.
*/
final class QU I magedient inplenments ConmandLi stener {

/** This command goes to denp mmin screen. */
private final Command SCR_MAI N BACK_CMD = new Command("Back", Conmand. BACK,
2);

/** Starts the proper services search. */
private final Command SCR_MAI N_SEARCH CMD = new Conmmand("Fi nd", Command. OK,
1);
/** Cancel s the device/services discovering. */
private final Command SCR_SEARCH CANCEL_CMD = new Command(" Cancel ",
Comrand. BACK, 2);
/** This command goes to client nmin screen. */
private final Command SCR_| MAGES BACK_CMD = new Conmand(" Back",
Comrand. BACK, 2);
private final Command updat eConmand = new Command(" Back", Command. BACK, 1);
public final Command vi ewComrand = new Comand("Vi ew | mage", Conmand. OK, 1);
private final Comand downl oadConmand = new Command(" Downl oad File", Conmand. OK, 1);
/** Cancel s the i mage downl oad. */
private final Command SCR_LOAD CANCEL_CMD = new Conmand(" Cancel ",
Comrand. BACK, 2);
/** This command goes fromimage screen to inmages |list one. */
private final Comand SCR_SHOW BACK_CMD = new Command("Back", Conmand. BACK,
2);

/** Save the downl oaded image. */

-19-

private final Comand SAVE_CMD = new Conmand("Save File", Command. OK,
1);

/** The main screen of the client part. */
private final Form mai nScreen = new Forn("Search for...");

/** The screen with found i nages nanes. */
private final List |istScreen = new List("Found Files", List.IMPLICIT);

/** The screen with downl oad image. */
private final FormimgeScreen = new Form("Filenane");

/** Keeps the parent M D et reference to process specific actions. */
public DemoM Dl et parent;

/** This object handles the real transm ssion. */
private BTInageCient bt_client;

private ChoiceG oup searchAlternatives;
public Command c_state;

public Hashtable fileList;

private bool ean[] narked;

/** Constucts client GUI. */

GUl I naged i ent (DenoM Dl et parent) {
this.parent = parent;
bt _client = new BTImaged ient(this);
mai nScr een. addCommand(SCR_MAI N_BACK_CMD) ;
mai nScr een. addCommand(SCR_MAI N_SEARCH_CMD) ;
mai nScr een. set CormandLi st ener (t hi s);

/111 stScreen. addComand(SCR_| MAGES_BACK_CMD) ;
i st Scr een. addComand(downl oadConmand) ;

|'i st Scr een. addCommuand(updat eConmand) ;

i st Screen. addCommand(vi ewComand) ;

i st Screen. set CormandLi st ener (thi s);

i mgeScr een. addConmand(SCR_SHOW BACK_CMND) ;
i mgeScr een. addConmand(SAVE_CMD) ;
i mageScr een. set ConmandLi st ener (this);

fileLi st=new Hashtabl e();
}
/**
* Process the command events.
*/
public void comrandActi on(Comand c, Displayable d) {

/1 back to denp main screen
if (c == SCR_MAI N_BACK_CMD) {
destroy();
parent. show();
return;

}

/1 starts file (devicel/services) search

if (c == SCR_MAI N_SEARCH CMD || c==updateCommand) {
c_stat e=c;
Systemout.println("c_state= "+c_state);
Formf = new Forn("");

i f (c==updat eCommand) {
| og("destroy");
bt _client.destroy();
bt _client = new BTImaged ient(this);
f.deleteAll();

-20-

10 Appendices

10 Appendices

f . addCommand(SCR_SEARCH_CANCEL_CMD) ;

f . set ConmandLi st ener (this);

f.append(new Gauge("Searching files...", false, Gauge.| NDEFI N TE,
Gauge. CONTI NUOUS_RUNNI NG)) ;

Di spl ay. get Di spl ay(parent).setCurrent(f);
bt _client.request Search();
return;

/'l cancel s device/services search

if (c == SCR_SEARCH_CANCEL_CMD) {
bt _client.cancel Search();
Di spl ay. get Di spl ay(parent).set Current (nai nScreen);
return;

/'l back to client nain screen

if (c == SCR_| MAGES_BACK_CMD) {
bt _client.requestLoad(null);
Di spl ay. get Di spl ay(parent).set Current (nai nScreen);
return;

/] starts image downl oad
if (c == viewCommand || ¢ == downl oadConmmand) {
c_stat e=c;
List | = (List) d;
String markedRow=l . get String(l . get Sel ect edl ndex());
| og(" mar kedRow== " +nar kedRow) ;

if (c_state==vi ewCommand) {
String ext=bt_client. get Extensi on(mar kedRow) ;
if (ext.equals(".png") || ext.equals(".gif") || ext.equals(".jpg") ||
ext.equal s(". bnp")
|| ext.equals(".PNG') || ext.equals(".AF") || ext.equals(".JPG') ||
ext.equal s(".BW")) {
| og("picture=true "+ext);
} else {
| og("picture=fal se "+ext);
showAl ert ("The selected file is not a picture. To download the file
choose \"Downl oad File\".");
return;

}

Formf = new Forn("");

f . addCommand(SCR_LOAD_CANCEL_CMD) ;

f . set ConmandLi st ener (this);

f.append(new Gauge("Loading file...", false, Gauge.|NDEFI N TE,
Gauge. CONTI NUOUS_RUNNI NG)) ;

Di spl ay. get Di spl ay(parent).setCurrent(f);
/1Cet filenane

String | oadFile=fileList.get(nmarkedRow) +mar kedRow;,
bt _client.requestLoad(l oadFile);
return;

}

/1 cancel | oad

if (c == SCR_LOAD_CANCEL_CMD) {
bt _client.cancel Load();
Di spl ay. get Di spl ay(parent).setCurrent(listScreen);
return;

}

/1 back to client nain screen
if (c == SCR_SHOW BACK_CMD) {
Di spl ay. get Di spl ay(parent).setCurrent(listScreen);

_21-

10 Appendices

return;

}

/]l Store file on the phone
if (c == SAVE_CWD) {
savel mage savel ng = new savel nage(this);
savel ng.start();
Di spl ay. get Di spl ay(parent). set Current (i nageScreen);
return;

}

public Comand getC state() {
return c_state;

}
public Command get Vi ewConmand() {
return vi ewConmand;

}

/**

* W have to provide this method due to "do not do network
* operation in command |istener method" restriction, which
* is caused by crooked midp design.

*

* This method is called by BTImageClient after it is done
* with bluetooth initialization and next screen is ready

* to appear.

*/

voi d conpletelnitialization(bool ean i sBTReady) {

/1 bluetooth was initialized successfully.
if (isBTReady) {
mai nScreen. del eteAll ();
mai nScr een. append(creat eSearchAl ternatives());
i f (get C_stat e() ==updat eConmand) {
searchAl ternatives. set Sel ect edFl ags(mar ked) ;

}
Di spl ay. get Di spl ay(parent).set Current (nai nScreen);
return;
}
/1 somet hing wrong
Alert al = new Alert("Error", "Can't inititialize bluetooth", null,

Al ert Type. ERROR) ;
al . set Ti neout (DenoM Dl et . ALERT_TI MEQUT) ;
Di spl ay. get Di spl ay(parent).setCurrent(al, parent.getDi splayable());

}

/** Creates a menu with search criterions */
private ChoiceG oup createSearchAlternatives() {
searchAl ternatives = new Choi ceG oup("", Choice. MILTI PLE);
searchAl ternatives. append("All", null);
searchAl ternatives. append("Misic", null);
searchAl ternatives. append("Pictures", null);
sear chAl ternati ves. append(" Prograns/ Games", null);
searchAl ternatives. append(" Mvies", null);
searchAl ternatives. append("Text files", null);
return searchAlternatives;

public Vector getSearchExtensions() {
Vect or sear chExt ensi ons = new Vector ();
mar ked = new bool ean[6] ;

if (searchAlternatives.isSelected(0)) {
sear chExt ensi ons. addEl enent ("Al 1 ") ;
mar ked[0] =t r ue;
} else {
if (searchAlternatives.isSelected(1)) { //Misic
sear chExt ensi ons. addEl enent (". np3");
sear chExt ensi ons. addEl enent (". wav");

_02-

10 Appendices

if (searchAlternatives.isSelected(2)) { //Pictures

}
if (searchAlternatives.isSelected(3)) { //Prograns/ Ganmes

sear chExt ensi
sear chExt ensi
sear chExt ensi
sear chExt ensi

ons.
ons.

ons

ons.

mar ked[1] =t r ue;

addEl emrent (".
addEl emrent (".
. addEl enent (".
addEl emrent (".

sear chExt ensi ons. addEl enent (".j pg");
sear chExt ensi ons. addEl enent (".gi f");
sear chExt ensi ons. addEl enent (". png");
sear chExt ensi ons. addEl enent (". bmp");
sear chExt ensi ons. addEl enent (". JPG') ;
sear chExt ensi ons. addEl enent (". G F");
sear chExt ensi ons. addEl enent (". PNG') ;
sear chExt ensi ons. addEl enent (". BMP") ;

mar ked[2] =t r ue;

sear chExt ensi ons. addEl enent (".j ad");
sear chExt ensi ons. addEl enent (".jar");
sear chExt ensi ons. addEl enent (". JAD") ;
sear chExt ensi ons. addEl enent (". JAR");
mar ked[3] =t r ue;

}

if (searchAlternatives.isSelected(4)) { //Mvies
3gp");
rm');
wi') ;
avi");
mg");
3GP") ;
RM')
W) ;
AVI "),
MPG')

sear chExt ensi
sear chExt ensi
sear chExt ensi
sear chExt ensi
sear chExt ensi
sear chExt ensi
sear chExt ensi
sear chExt ensi
sear chExt ensi
sear chExt ensi

ons.

ons

ons.

ons

ons.
ons.

ons

ons.

ons

ons.

mar ked[4] =t r ue;

addEl emrent (".
. addEl enent (".
addEl emrent (".
. addEl enent (".
addEl emrent (".
addEl emrent (".
. addEl enent (".
addEl emrent (".
. addEl enent (".
addEl emrent (".

if (searchAlternatives.isSelected(5)) {
sear chExt ensi ons. addEl enent (".txt");
sear chExt ensi ons. addEl enent (". TXT");
mar ked[5] =t r ue;

}

return searchExtensi ons;

/** Destroys this conponent.
voi d destroy() {

*/

/1 finilize the imge client work
bt _client.destroy();

}

/**

* Informs the error during the i mages search.

*/

voi d infornSearchError (String resivsg) {

Alert al

= new Alert("Error",

resMsg,

nul I,

al . set Ti neout (DenoM Dl et . ALERT_TI MEQUT) ;
Di spl ay. get Di spl ay(parent).setCurrent(al,

}

/**

mai nScr een) ;

* Informs the error during the selected inage | oad.

*/

voi d informLoadError(String resMsg) {

Alert al

= new Alert("Error",

resMsg,

nul I,

al . set Ti neout (DenoM Dl et . ALERT_TI MEQUT) ;
Di spl ay. get Di spl ay(parent).setCurrent(al,

-23.-

i stScreen);

Al ert Type. ERROR) ;

Al ert Type. ERROR) ;

10 Appendices

/**
* Shows the downl oaded i mage.
*/
voi d showl mage(l mage inmg, String ingNane) {
i mageScreen. del eteAll ();

i mageScr een. append(new | nagel ten("", ing,
| magel t em LAYOUT_CENTER | | nagel t em LAYOUT_VCENTER,
"Downl oaded file: " + ingNane));
i mmgeScreen.setTitle(bt_client.getFileNanme(i ngNane));
Di spl ay. get Di spl ay(parent). set Current (i nageScreen);
}

/**
* Shows the avail abl e i mages nanes.
*
* @eturns false if no i mages names were found actually
*/
bool ean showl magesNanes(Hasht abl e base) {
Enuner ati on keys = base. keys();

/1 no inmages actually
if (!keys.hasMoreEl ements()) {

infornSearchError("No files with the sel ected extensions were found. \nPl ease
try again");
return fal se;

}

/] prepare the list to be shown

while (listScreen.size() !=0) {
i st Screen. del ete(0);

}

whi | e (keys. hasMoreEl ements()) {
String key=(String) keys.nextEl enment();
String filePath=bt_client.getFilePath(key);
String fileName=bt _client.getFil eName(key);

fileList.put(fileNane, filePath);
log("filePath= "+filePath);
log("fileName= "+fil eNane);
log("fileList="+fileList.get(fileNane));

i st Screen. append(fileNane, null);

}
Di spl ay. get Di spl ay(parent).setCurrent(listScreen);
return true;

}

public void savel ngPassage() {
bt _client.savel mg();

}
public void showAlert(String alert){
Alert al = new Alert("System nessage", alert, null,
Al ert Type. ERROR) ;
al . set Ti neout (6000) ;
Di spl ay. get Di spl ay(parent).setCurrent(al, |istScreen);
}
public void showAl ertStartMenu(String alert){
Alert al = new Alert("System nessage", alert, null,
Al ert Type. ERROR) ;
al . set Ti neout (6000) ;
Di spl ay. get Di spl ay(parent).setCurrent(al, parent.getDi splayable());
}

public void log(String I) {
Systemout.println(l);

-4 -

10 Appendices

} /1 end of class 'GUI I magedient' definition

10.2.6 BTImageClient .java

* BTl magedient.java
*/
package exanpl e. bl uet oot h. deno;

/1 jsr082 API

i mport javax. bl uet oot h. Bl uet oot hSt at eExcepti on;
i mport javax. bl uet oot h. Dat aEl enent ;

i mport javax. bl uet oot h. Devi ced ass;

i mport javax. bl uet oot h. Di scover yAgent ;

i mport javax. bl uet oot h. Di scoverylLi stener;

i mport javax. bl uet oot h. Local Devi ce;

i mport javax. bl uet oot h. Renpt eDevi ce;

i mport javax. bl uet oot h. Servi ceRecord;

i mport javax. bl uet oot h. UUl D;

/1 mdp/cldc API

i mport javax. m croedition.io.Connector;

import javax. m croedition.io.StreamConnecti on;
i mport javax. mcroedition.l|cdui.lmge;

import java.io. | OException;

import java.io.lnputStream

import java.io.CQutputStream

import java.util.Enuneration;

import java.util.Hashtabl e;

inmport java.util.Vector;

©oo0333

croedition.io.*;
croedition.io.file.*;
croedition. | cdui.Comand;
croedition.|lcdui.*;

import javax.m
import javax.m
import javax.m
import javax.m
/**
* Initialize BT device, search for BT services,
* presents themto user and picks his/her choice,
* finally downl oad the choosen i mage and present
* it to user.
*/
final class BTImaged ient inplenments Runnabl e, DiscoverylListener {
/** Describes this server */
private static final UU D Pl CTURES_SERVER UUI D =
new UUI D(" FOEODOCOBOA000908070605040302010", fal se);

/** The attribute id of the record itemw th inages nanes. */
private static final int | MAGES NAMES ATTRI BUTE | D = 0x4321;

/** Shows the engine is ready to work. */
private static final int READY = 0;

/** Shows the engine is searching bluetooth devices. */
private static final int DEVI CE_SEARCH = 1;

/** Shows the engine is searching bluetooth services. */
private static final int SERVI CE_SEARCH = 2;

/** Keeps the current state of engine. */
private int state = READY;

/** Keeps the discovery agent reference. */
private Di scoveryAgent discoveryAgent;

/** Keeps the parent reference to process specific actions. */
private GUI I naged ient parent;

/** Becones 'true' when this conponent is finilized. */
private bool ean isC osed;

-25-

10 Appendices

/** Proccess the search/downl oad requests. */
private Thread processor Thread;

/** Collects the renpte devices found during a search. */
private Vector /* RenoteDevice */ devices = new Vector();

/** Collects the services found during a search. */
private Vector /* ServiceRecord */ records = new Vector();

/** Keeps the device discovery return code. */
private int discType;

/** Keeps the services search IDs (just to be able to cancel them). */
private int[] searchl Ds;

/** Keeps the image nanme to be |load. */
private String i mageNameTolLoad;

/** Keeps the table of {nane, Service} to process the user choice. */
private Hashtabl e base = new Hashtabl e();

/** Inforns the thread the downl oad shoul d be cancel ed. */
private bool ean i sDownl oadCancel ed;

/** Optimzation: keeps service search patern. */
private UUI D[] uuidSet;

/** Optimzation: keeps attributes list to be retrieved. */
private int[] attrSet;

byte[] ingData;
Fi | eConnection fconn;

/** Contains the sel ected extensions */
Vect or extensions;

/** |s it a picture or not? */
bool ean picture;

bool ean ok;
private int serviceCount;
private bool ean i sSearchStarted;

private static final String downl oadPath = "e:/MSSEMC Medi a fil es/ ot her/ Downl oad/";

/**

* Constructs the bluetooth server, but it is initialized
* in the different thread to "avoid dead | ock".

*/
BTl maged i ent (GUl | mageCl i ent parent) {
ok=t rue;
this.parent = parent;
imgData = nul | ;
/1 we have to initialize a systemin different thread...
processor Thread = new Thread(this);
processor Thread. start();
}
/**
* Process the search/downl oad requests.
*/

public void run() {

/1 initialize bluetooth first
bool ean i sBTReady = fal se;

try {

-26-

10 Appendices

/] create/get a local device and discovery agent
Local Devi ce | ocal Devi ce = Local Devi ce. get Local Devi ce();
di scoveryAgent = | ocal Devi ce. get Di scoveryAgent ();

/'l remenber we've reached this point.

i sBTReady = true;
} catch (Exception e) {

Systemerr.println("Can't initialize bluetooth: " + e);
}

parent.conpletelnitialization(isBTReady);

/1 nothing to do if no bluetooth avail abl e
if (!isBTReady) {

return;
}

/] initialize some optimzation variables
uui dSet = new UUI D] 2] ;

/1l ok, we are interesting in btspp services only
uui dSet[0] = new UUI D(0x1101);

/1 and only known ones, that allows pictures
uui dSet [1] = PI CTURES_SERVER UUI D;

/1 we need an only service attribute actually
attrSet = new int[1];

/] it's "images nanes" one
attrSet[0] = | MAGES_NAMES_ATTRI BUTE_| D

/] start processing the inmages search/ downl oad
processl magesSear chDownl oad() ;

}

/**

* I nvoked by system when a new renpte device is found -

* remenber the found device.

*/

public void deviceDi scovered(Renot eDevi ce bt Devi ce, DeviceC ass cod) {

/'l same device may found several times during single search
if (devices.indexOf (btDevice) == -1) {
devi ces. addEl enent (bt Devi ce) ;

}
}
/**
* I nvoked by system when device discovery is done.
*o<p>
* Use a trick here - just renenber the discType
* and process its evaluation in another thread.
*/

public void inquiryConpleted(int discType) {
this.di scType = di scType;

synchroni zed (this) {

notify();
}
public void servicesDi scovered(int translD, ServiceRecord[] servRecord) {
for (int i =0; i < servRecord.length; i++) {
records. addEl enent (servRecord[i]);
}
}

public void serviceSearchConpl eted(int translD, int respCode) {
/1 first, find the service search transaction index
int index = -1;
for (int i =0; i < searchlDs.length; i++) {

-27-

10 Appendices

if (searchlDs[i] == translD) {
index = i;
br eak;
}
}
/1 error - unexpected transaction index
if (index == -1) {
Systemerr.println("Unexpected transaction index: " + translD);
/'l FI XME: process the error case
} else {
searchl Ds[i ndex] = -1;
}

synchroni zed (this) {
System out. println("serviceSearchCom eted sync o notify");
notify();

}

/** Sets the request to search the devices/services. */
voi d request Search() {
synchroni zed (this) {
notify();

}

/** Cancel's the devices/services search. */
voi d cancel Search() {
synchroni zed (this) {
if (state == DEVI CE_SEARCH) {
di scoveryAgent. cancel I nquiry(this);
} else if (state == SERVI CE_SEARCH) {
for (int i =0; i < searchlDs.length; i++) {
di scoveryAgent. cancel Servi ceSearch(searchl Ds[i]);
}

}

/** Sets the request to load the specified image. */
voi d requestLoad(String nane) {
synchroni zed (this) {
i mmgeNanmeToLoad = nane;
notify();

}

/** Cancel's the imge downl oad. */
voi d cancel Load() {
/*
* The image downl oad process is done by
* this class's thread (not by a system one),
* so no need to wake up the current thread -
* it's running already.
*/
i sDownl oadCancel ed = true;

}

/**
* Destroy a work with bluetooth - exits the accepting
* thread and cl ose notifier.
*/
voi d destroy() {
synchroni zed (this) {
isClosed = true;
i sDownl oadCancel ed = true;
notify();

/1l wait for acceptor thread is done
try {

-08-

10 Appendices

processor Thread. j oi n();
} catch (InterruptedException e) {} // ignore

}
/**
* Processes imnges search/downl oad until conponent is closed
* or systemerror has happen.
*/
private synchroni zed void processl magesSear chDownl oad() {
while (!isC osed) {
/1 wait for new search request from user
state = READY;

try {
wai t () ;

} catch (InterruptedException e) {
Systemerr.println("Unexpected interuption: " + e);
return;

}

/1 check the component is destroyed
if (isCosed) {

return;
}

/1 search for devices

if (!searchDevices()) {
return;

} else if (devices.size() == 0) {
conti nue;

}

/| search for services now
state = SERVI CE_SEARCH;
records. renpveAl | El enments();
searchl Ds = new int[devices.size()];
i sSearchStarted = fal se;
servi ceCount = O;
whi | e(servi ceCount < devices. size()){
if (!searchServices()) {
return;
}

servi ceCount ++;

}

/1 ok, something was found - present the result to user now
if (!presentUserSearchResults()) {

/'l services are found, but no nanes there

conti nue;

}

/1 the several downl oad requests nay be processed
while (true) {

System out. println("while-satsen");

/1 this download is not canceled, right?

i sDownl oadCancel ed = fal se;

/1 ok, wait for download or need to wait for next search

try {
wai t () ;

} catch (InterruptedException e) {
Systemerr.println("Unexpected interuption: " + e);
return;

}

/1 check the conmponent is destroyed

if (isCosed) {
Systemout.println("isC osed");
return;

}

/1 this neans "go to begining"

-29.

10 Appendices

if (imgeNaneToLoad == null) {
System out. println("i mgeNameToLoad==nul|");
br eak;

}

I og("i mgeNaneToLoad= " +i mageNaneToLoad) ;
String ext=get Ext ensi on(i mageNaneToLoad) ;
if (ext.equals(".png") || ext.equals(".gif") || ext.equals(".jpg") ||
ext . equal s(". bnp")
|| ext.equals(".PNG') || ext.equals(".AF") || ext.equals(".JPG') ||
ext.equal s(".BW")) {
| og("picture=true");
pi cture=true;
} else {
I og("picture=fal se "+ext);
pi cture=fal se;

}

I mage i ng=nul | ;
/1 1oad selected i mage data
bool ean i mageDat ai sCorrect = | oadl mage();

Commrand cs=parent.getC state();

Commrand csv=par ent . get Vi ewComrand() ;

log("cs=" +cs+", csv= "+csvV);

/11t is a picture and vi ewCommand was sel ect ed
if (picture & cs==csv && i mageDatai sCorrect) {

if (ok) {
try {

log("ingData is a picture");
img = I mage. createl mage(i ngData, 0, ingData.length);

} catch (Exception e) {
parent.showAl ert ("Wong data received, please try again");
continue;

}

} else {
I og("not ok");
br eak;

}

} else if(imgeDataisCorrect) {
| og("Save file");

savel ng();
return;

/1l FI XME: this never happen
if (isCosed) {
return;

if (isDownl oadCancel ed) {
continue; // may be next image to be downl oad

if (img == null) {
parent.infornLoadError("Can't load file:
+ i mageNameTolLoad) ;
continue; // may be next image to be downl oad

}

/1 ok, show inage to user
par ent . showl mage(i ng, i nageNaneToLoad);

/1 may be next inmage to be downl oad
continue;

-30 -

10 Appendices

}

/**

* Search for bluetooth devices.
*/

private bool ean searchDevices() {

/] ok, start a new search then
state = DEVI CE_SEARCH,
devi ces. renpveAl | El ement s();

try {
di scoveryAgent. startlnquiry(Di scoveryAgent. G AC, this);
} catch (Bl uetoothStateException e) {
Systemerr.println("Can't start inquiry now. " + e);
parent.infornSearchError("Can't start device search");
return true;

}

try {
wait(); // until devices are found

} catch (InterruptedException e) {
Systemerr.println("Unexpected interuption: " + e);
return fal se;

}

/1 this "wake up" may be caused by 'destroy' call
if (isCosed) {

return fal se;
}

/1 no?, ok, let's check the return code then
switch (discType) {
case | NQUI RY_ERROR:
parent.infornSearchError("Device discovering error...");

/1 fall through
case | NQUI RY_TERM NATED:

/1 make sure no garbage in found devices |ist
devi ces. renpveAl | El ement s();

/1 nothing to report - go to next request
br eak;

case | NQUI RY_COVPLETED:
if (devices.size() == 0) {
parent.infornSearchError("No devices in range");
}

/!l go to service search now
br eak;
defaul t:

Systemerr.println("systemerror:"

+ " unexpected device discovery code:
destroy();
return fal se;

+ di scType);

}
return true;
}
/**
* Search for proper service.
*/

private bool ean searchServices() {
Renmot eDevi ce rd = (Renot eDevi ce) devi ces. el enent At (servi ceCount) ;
try {
sear chl Ds[servi ceCount] = di scoveryAgent. searchServices(attr Set,
rd, this);
} catch (Bl uetoothStateException e) {

231 -

uui dSet,

10 Appendices

Systemerr.println("Can't search services for:
+ rd. get Bl uet oot hAddress() + " due to " + e);

sear chl Ds[servi ceCount] = -1;

[/ conti nue;

i sSearchStarted = true;
/1 at |east one of the services search should be found
if (lisSearchStarted) {
parent.infornSearchError("Can't search services.");
return true;

}

try {
wait(); // until services are found

} catch (InterruptedException e) {
Systemerr.println("Unexpected interuption:
return fal se;

+ e);

}

/1 this "wake up" may be caused by 'destroy' call
if (isCosed) {

return fal se;
}

/1 actually, no services were found
if (records.size() == 0) {

parent.infornSearchError("No proper services were found");
}

return true;

/**
* CGets the collection of the inages titles (names)
* fromthe services, prepares a hashtable to match
* the image name to a services list, presents the i mages nanes
* to user finally.
*/
private bool ean presentUser SearchResul ts() {
base. cl ear();

/1Kol lar vilka fil &ndel ser som &ar narker ade
ext ensi ons = new Vector ();
ext ensi ons=par ent . get Sear chExt ensi ons() ;

for (int i =0; i < records.size(); i++) {
Servi ceRecord sr = (ServiceRecord) records. el ementAt(i);

/1 get the attribute with inages nanes
Dat aEl enent de = sr.getAttri buteVal ue(l MAGES_NAMES_ATTRI BUTE_I D) ;

if (de == null) {
Systemerr.println("Unexpected service - mssed attribute");
continue;

}

/1 get the images nanes fromthis attribute
Enunerati on enume = (Enuneration) de.getVal ue();

whi | e (enune. hasMor eEl ements()) {
de = (DataEl ement) enune. next El ement () ;
String name = (String) de.getValue();

/11f the extension is chosen, show the file
i f (extensions.contains(get Extensi on(nane))
|| extensions.contains("All")) {

/1 name may be stored al ready
Obj ect obj = base. get(nane);

/1 that's either the ServiceRecord or Vector

if (obj '=null) {
Vect or v;

-32-

10 Appendices

if (obj instanceof ServiceRecord) {
v = new Vector();
v. addEl enent (obj) ;

} else {
v = (Vector) obj;

v. addEl enent (sr);

obj = v;
} else {
obj = sr;

base. put (nane, obj);

}
}
return parent.show nagesNanes(base);
}
/**
* Loads sel ected i mage data.
*/

private bool ean | oadl mage() {
if (imgeNaneToLoad == null) {
Systemerr.println("Error: imgeNameToLoad=null");
return fal se;

/1 ok, get the list of service records
Servi ceRecord[] sr = null;
Obj ect obj = base. get (i nageNaneToLoad) ;

if (obj == null) {
Systemerr.println("Error: no record for: " + imageNanmeTolLoad);
return fal se;
} else if (obj instanceof ServiceRecord) {
sr = new ServiceRecord[] { (ServiceRecord) obj };
} else {
Vector v = (Vector) obj;
sr = new Servi ceRecord[v.size()];

for (int i =0; i <v.size(); i++) {
sr[i] = (ServiceRecord) v.elenmentAt(i);

}
/1 nowtry to load the image from each services one by one
for (int i =0; i <sr.length; i++) {

St reanConnection conn = nul | ;

String url = null;

/1 the process may be cancel ed
if (isDownl oadCancel ed) {
return fal se;

/1 first - connect
try {
url = sr[i].getConnectionURL(
Ser vi ceRecor d. NOAUTHENTI CATE_NCENCRYPT, fal se);
conn = (StreamConnection) Connector.open(url);
} catch (1 OException e) {

Systemerr.println("Note: can't connect to: " + url);
/'l ignore
continue;

} catch (Null PointerException ne)
Systemerr.println("Nullpointer!!ttiim");

}

/1 then open a streamand wite a nane

try {

Qut put St ream out = conn. openCQut put Strean();

-33 -

10 Appendices

out .
out .
out .
out .
} catch

Systemerr.println("Can't wite to server for:

write(i mageNaneToLoad. |l ength()); // length is 1 byte

write(i mgeNaneToLoad. get Bytes());
flush();

cl ose();

(1 Cexception e) {

/1 cl ose stream connection

try

{

Systemout.println("try close connection");
conn. cl ose();

} catch (1 OException ee) {} // ignore

continue;
} catch (Null PointerException ne){

System out. println("NUUUUUL!IEETEEETy:
}
/1 then open a stream and read an i mage

I nput Stream i n=nul | ;

try {

in =

conn. openl nput Strean() ;

/Il read a length first

Systemout.println("try in.read()=" +in);
int length = in.read() << 24;

length | = in.read() << 16;

length | = in.read() << 8;

length | = in.read();

if (length <= 0) {

}

throw new | OException("Can't read a length");

/11f the chosen file does not exists
if (length==1) {

} el

parent.showAl ert("The file is not shared anynore.
again");

/'l request Sear ch();

ok=f al se;

se {
/1 read the inage now

i mgData = new byte[l ength];
length = 0;

+ url);

\nPl ease try

while (length != ingData.length & !i sDownl oadCancel ed) {
int n =in.read(ingData, |ength, ingData.length - length);

if (n==-1) {

throw new | CException("Can't read a file data");

length += n;

}
i f (i sDownl oadCancel ed) {

System out. printl n("DOAMNLOADCANCELED! ! 11 1IITTTTE"+] engt h)
return fal se;
}
in.close();
} catch (1 OException e) {

parent.showAl ert("Cant read fromserver for: "+url);

cont
} catch
Syst
} finall

i nue;
(Nul I Poi nt er Excepti on ne){
emout.printin("Nullfel: "+ne);
y {

/] close stream connecti on anyway
{

try

-34-

10 Appendices

conn. cl ose();
} catch (Exception e) {

parent. showAl ert (e. get Message());
} /1 ignore

}

return true;

}

public void savel ng() {

try {
Systemout.println("l savelng");

Fi | eConnection fconn2 = (Fil eConnecti on)
Connector.open("file://local host/"+downl oadPat h) ;

/1 1f no exception is thrown, then the URI is valid, but the file may or may
not exi st.

if (!fconn2.exists()) {
fconn2.nkdir(); // create the directory if it doesn't exist

}

f conn2. set Readabl e(true);
fconn2. setWitable(true);
fconn2. close();

String fil eName= get Fi | eNanme(i nageNaneToLoad) ;
fconn2 = (Fil eConnecti on)
Connector.open("file://local host/"+downl oadPat h+fi | eNane) ;

if (!fconn2.exists()) {
fconn2.create();
f conn2. set Readabl e(true);
fconn2. setWitable(true);

Qut put Stream out = fconn2. openCut put Strean();

out.write(ingData);

out.flush();

parent . showAl ert Start Menu(fil eNanme+" has been successfully saved at;
+downl oadPat h+fi | eNane) ;

} else {

parent . showAl ert Start Menu(fil eName+" does al ready exist at;

+downl oadPat h+fi | eNane) ;

fconn2. cl ose();
} catch (Exception e) {

parent.showAl ert Start Menu("The file could not be saved. " +e.get Message());
}

}

String getFilePath(String nanme) {
String filePath = nane.substring(0, nane.lastlndexOr('/"')+1);
return filePath;

String getFil eName(String nanme) {
String fileName = nane. substring(name.|astlndexOf('/")+1, nane.length());
return fil eNane;

}
public String getExtension(String s) {
String name;
name=s. substring(s.length()-4, s.length()); //Get extension
return nane;
}

public void log(String I) {
Systemout.println(l);
}

} /1 end of class 'BTlmagedient' definition

-35-

