
Design of Reconfigurable Hardware

Architectures for Real-time Applications

Modeling and Implementation

Thomas Lenart

Lund 2008



The Department of Electrical and Information Technology
Lund University
Box 118, S-221 00 LUND
SWEDEN

This thesis is set in Computer Modern 10pt,
with the LATEX Documentation System
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Abstract

This thesis discusses modeling and implementation of reconfigurable hardware
architectures for real-time applications. The target application in this work
is digital holographic imaging, where visible images are to be reconstructed
based on holographic recordings. The reconstruction process is computation-
ally demanding and requires hardware acceleration to achieve real-time perfor-
mance. Thus, this work presents two design approaches, with different levels
of reconfigurability, to accelerate the image reconstruction process and related
computationally demanding applications.

The first approach is based on application-specific hardware accelerators, which
are usually required in systems with high constraints on processing perfor-
mance, physical size, or power consumption, and are tailored for a certain
application to achieve high performance. Hence, an acceleration platform
is proposed and designed to enable real-time image reconstruction in digital
holographic imaging, constituting a set of hardware accelerators that are con-
nected in a flexible and reconfigurable pipeline. Hardware accelerators are
optimized for high computational performance and low memory requirements.
The application-specific design has been integrated into an embedded system
consisting of a microprocessor, a high-performance memory controller, a digi-
tal image sensor, and a video output device. The system has been prototyped
using an FPGA platform and synthesized for a 0.13µm standard cell library,
achieving a reconstruction rate of 30 frames per second running at 400 MHz.

The second approach is based on a dynamically reconfigurable architecture
to accelerate arbitrary applications, which presents a trade-off between versa-
tileness and hardware cost. The proposed reconfigurable architecture is con-
structed from processing and memory cells, which communicate using a com-
bination of local interconnects and a global network. High-performance local
interconnects generate a high communication bandwidth between neighboring
cells, while the global network provides flexibility and access to external mem-
ory. The processing and memory cells are run-time reconfigurable to enable
flexible application mapping. Proposed reconfigurable architectures are mod-
eled and evaluated using Scenic, which is a system-level exploration environ-
ment developed in this work. A design with 16 cells is implemented and synthe-
sized for a 0.13µm standard cell library, resulting in low area overhead when
compared with application-specific solutions. It is shown that the proposed
reconfigurable architecture achieves high computation performance compared
to traditional DSP processors.
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Science may set limits to knowledge,

but should not set limits to imagination

Bertrand Russell (1872 - 1970)
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celeration Platform for Digital Holographic Imaging,” Springer Journal
of Signal Processing Systems, DOI: 10.1007/s11265-008-0161-2, January
2008.
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Chapter 1

Introduction

This thesis discusses modeling and implementation of both application-specific
and dynamically reconfigurable hardware architectures. Application-specific
hardware architectures are usually found in systems with high constraints on
processing performance, physical size, or power consumption, and are tailored
for a certain application or algorithm to achieve high performance. However, an
application-specific architecture provides limited flexibility and reuse. It is also
likely that a system platform may require a large number of specific hardware
accelerators, but only a few units will operate concurrently. In contrast, a re-
configurable architecture trades performance for increased flexibility. It allows
the hardware architecture to be changed during run-time in order to accelerate
arbitrary algorithms, hence extends the application domain and versatileness
of the device.

In this work, two approaches to reconfigurable hardware design are pre-
sented. In the first approach, a high-performance application-specific hardware
accelerator is proposed, which is designed to enable real-time image recon-
struction in digital holographic imaging [1]. The hardware accelerator provides
reconfigurability on block level, using a flexible pipeline architecture. In the sec-
ond approach, a reconfigurable platform is designed and modeled by combining
a conventional processor based solution with a dynamically reconfigurable ar-
chitecture. Hence, the platform can be reused to map arbitrary applications,
which is a trade-off between versatileness and hardware cost. A reconfigurable
approach enables flexibility in the algorithm design work, and also the possibil-
ity to dynamically reconfigure the accelerator for additional processing steps.
An example is post-processing operations to enhance the quality and perception
of reconstructed images.

1



2 CHAPTER 1. INTRODUCTION

1.1 Challenges in Digital Hardware Design

The hardware design space is multi-dimensional and constrained by many phys-
ical and practical boundaries. Hence, designing hardware is a trade-off between
system performance, resource and development costs, power consumption, and
other parameters related to the implementation. Hence, a design goal is to
find an optimal balance to efficiently utilize available system resources to avoid
performance bottlenecks.

However, performance bottlenecks do not disappear – they move around.
Improving a part of the design is in practice to push the performance issues
into another part of the design, or even to another part of the design space. For
example, increasing the processing performance traditionally requires a higher
clock frequency fclk, which will increase the power consumption and therefore
also the heat dissipation. Heat dissipation is physically constrained to avoid
damage due to overheating of the device. One way to prevent this situation is
to lower the supply voltage VDD, since it has a quadratic effect on the dynamic
power as

Pdyn = αCLV
2
DDfclk,

where α is the switching activity and CL is the load capacitance [2]. However,
the supply voltage also affects the propagation time tp in logic gates as

tp ∝ VDD

(VDD − VT)β
,

where VT is the threshold voltage and β is a technology specific parameter.
Hence, lowering the supply voltage means that the system becomes slower and
counteracts the initial goal. This is the situation for most sequential processing
units, e.g. microprocessors, where the processing power heavily depends on the
system clock frequency.

The current trend in the computer industry is to address this situation us-
ing multiple parallel processing units, which shows the beginning of a paradigm
shift towards parallel hardware architectures [3]. However, conventional com-
puter programs are described as sequentially executed instructions and can not
easily be adapted for a multi-processor environment. This situation prevents
a potential speed-up due to the problem of finding enough parallelism in the
software. The speedup S from using N parallel processing units is calculated
using Amdahl’s law as

S =
1

(1 − p) + p
N

,
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where p is the fraction of the sequential program that can be parallelized [4].
Assuming that 50% of the sequential code can be executed on parallel proces-
sors, the speedup will still be limited to a modest factor of 2, no matter how
many parallel processors that are used. Parallel architectures have a promising
future, but will require new design approaches and programming methodologies
to enable high system utilization.

1.1.1 Towards Parallel Architectures

In 1965, Intel’s co-founder Gordon E. Moore made an observation that the
number of transistors on an integrated circuit is increasing exponentially [5].
Since then, Moore’s law has been used more than four decades to describe
trends in computer electronics and integrated circuits. Niklaus E. Wirth, the
developer of the Pascal programming language, more recently stated another
”law” that software gets slower faster than hardware gets faster. This is only
an ironic observation that software developers rely on Moore’s law when the
software complexity increase, and expect continuous exponential growth in per-
formance as well as in complexity (number of transistors). However, there is
a more serious aspect to this observation related to the current trend towards
multi-processor and highly parallel systems. In the past, software abstraction
has been a way to hide complex behavior. However, parallel systems require
more from the software developer in terms of knowledge about the underly-
ing architecture to fully utilize the hardware. From a software perspective,
this would imply the use of programming languages that describe concurrent
systems, to expose and utilize the system hardware resourced in order to effi-
ciently program future parallel computer systems, or the use of programming
interfaces for parallel computing [6, 7].

In addition, increasing hardware design complexity advocates tools for high-
level modeling and virtual prototyping for hardware and software co-design.
This is becoming an emergent requirement when designing multi-processor
based systems, to understand and analyze system-level behavior and perfor-
mance.

1.1.2 Application-Specific vs. Reconfigurable Architectures

Despite the rapid development pace of modern computer systems, there will
always be situations where more customized solution will have a better fit.
Examples are in mobile applications where power is a crucial factor, or in em-
bedded systems that require real-time processing. These systems are usually
composed by a generic processor-based hardware platform that includes one or
more application-specific hardware accelerators. Application-specific architec-
tures results in the highest performance with the lowest power consumption,
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which may seem like an ideal situation. However, application-specific hard-
ware accelerators provide limited flexibility and reusability compared to more
general-purpose processing units. They are also a physical part of device, which
increase the manufacturing cost and the power consumption even if the hard-
ware accelerator is only active for a fraction of the user-time.

In contrast, the design of reusable and reconfigurable architectures is an
alternative to combine the flexibility of generic processing units with the pro-
cessing power of application-specific architectures. Today, proposed reconfig-
urable architectures and processor arrays range from clusters of homogeneous
full-scale multiprocessors to arrays of weakly programmable elements or con-
figurable logic blocks, which communicate over a network of interconnects. By
observing current trends, the question for the future will probably not be if
highly parallel and reconfigurable architectures will become mainstream, but
rather how they can be efficiently explored, constructed, and programmed [8].
A likely scenario for the future is processing platforms combining application-
specific architectures, reconfigurable architectures, and generic processors to
support a wide range of applications.

1.2 Contributions and Thesis Outline

The thesis is divided into four parts, which cover modeling, design, and im-
plementation of application-specific and reconfigurable hardware architectures.
Parts I and II present an application-specific hardware acceleration platform
for digital holographic imaging. Part I proposes a system architecture, where
a set of hardware accelerations are connected in a reconfigurable communica-
tion pipeline, to enable flexibility and real-time image reconstruction. Part II
presents a high-performance and scalable FFT core, which is the main building
block in the hardware acceleration platform in Part I. Furthermore, proposed
ideas on index scaling in pipeline FFT architectures, originally presented in [9],
has been further developed by other research groups [10].

In Parts III and IV, the research is generalized towards dynamically recon-
figurable architectures based on scalable processing arrays. Part III presents an
exploration framework and simulation models, which are used for constructing
and evaluating reconfigurable architectures. In Part IV, a coarse-grained re-
configurable architecture is proposed, which consists of an array of processing
and memory cells for accelerating arbitrary applications. An intended target
application for this work is again digital holographic imaging.

A general overview of hardware design is given in Chapter 2, discussing
processing alternatives and memory concerns. This chapter also presents the
design flow from high-level specification down to physical layout, with the em-
phasis on system modeling and the use of virtual platforms for design explo-
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ration and hardware/software co-design. Chapter 3 presents an introduction
to digital holographic imaging, which has been the driver application for the
first part of this work, and as a motivation for the second part of the work.
Algorithmic requirements and hardware design trade-offs are also discussed.

The research on reconfigurable architectures is a collaboration between the
author of this thesis and PhD student Henrik Svensson. The work is however
based on an individually developed set of reconfigurable models, using the pre-
sented Scenic exploration environment as a common development platform.
For published material, the first named author indicates which reconfigurable
modules that are evaluated. The Scenic core library has been mainly de-
veloped by the author, while the environment has been ported to additional
operating systems and integrated with ArchC [11], which is an academic archi-
tectural description language for processors, by Henrik Svensson.

Some of the VHDL models presented in Part IV have been developed in
collaboration with students in the IC project and verification course, according
to the authors specification. The author especially wants to acknowledge the
work of Chenxin Zhang.

Part I: A Hardware Acceleration Platform for Digital Holographic Imaging

Many biomedical imaging systems have high computational demands but still
require real-time performance. When desktop computers are not able to satisfy
the real-time requirements, dedicated or application-specific solutions are nec-
essary. In this part, a hardware acceleration platform for digital holographic
imaging is presented, which transforms an interference pattern captured on a
digital image sensor into visible images. A computationally and memory effi-
cient pipeline, referred to as Xstream, is presented together with simulations
and implementation results for the final design. The work shows significant
reductions in memory requirements and high speedup due to improved mem-
ory organization and efficient processing. The accelerator has been embedded
into an FPGA system platform, which is integrated into a prototype of the
holographic system.

Publications:

Thomas Lenart, Mats Gustafsson, and Viktor Öwall, “A Hardware Acceler-
ation Platform for Digital Holographic Imaging,” Springer Journal of Signal

Processing Systems, DOI: 10.1007/s11265-008-0161-2, January 2008.

Thomas Lenart and Viktor Öwall, “XStream - A Hardware Accelerator for
Digital Holographic Imaging,” in Proceedings of IEEE International Conference

on Electronics, Circuits, and Systems, Gammarth, Tunisia, December 2005.
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Thomas Lenart, Viktor Öwall, Mats Gustafsson, Mikael Sebesta, and Peter
Egelberg, “Accelerating Signal Processing Algorithms in Digital Holography
using an FPGA Platform,” in Proceedings of IEEE International Conference

on Field-Programmable Technology, Tokyo, Japan, December 2003, pp. 387–
390.

Mats Gustafsson, Mikael Sebesta, Bengt Bengtsson, Sven-Göran Pettersson,
Peter Egelberg, and Thomas Lenart, “High Resolution Digital Transmission
Microscopy - a Fourier Holography Approach,” in Optics and Lasers in Engi-

neering, vol. 41, issue 3, March 2004, pp. 553–563.

Part II: A High-performance FFT Core for Digital Holographic Imaging

The main building block in the holographic imaging platform is a large size
two-dimensional FFT core. A high-performance FFT core is presented, where
dynamic data scaling is used to increase the accuracy in the computational
blocks, and to improve the quality of the reconstructed holographic image.
A hybrid floating-point scheme with tailored exponent datapath is proposed
together with a co-optimized architecture between hybrid floating-point and
block floating-point. A pipeline FFT architecture using dynamic data scaling
has been fabricated in a standard CMOS process, and is used as a building
block in the FPGA prototype presented in Part I.

Publications:

Thomas Lenart and Viktor Öwall, “Architectures for Dynamic Data Scaling in
2/4/8K Pipeline FFT Cores,” IEEE Transactions on Very Large Scale Integra-

tion Systems, vol. 14, no. 11, November 2006, pp. 1286–1290.

Thomas Lenart and Viktor Öwall, “A 2048 Complex Point FFT Processor
using a Novel Data Scaling Approach,” in Proceedings of IEEE International

Symposium on Circuits and Systems, vol. 4, Bangkok, Thailand, May 2003, pp.
45–48.

Thomas Lenart and Viktor Öwall, “A Pipelined FFT Processor using Data
Scaling with Reduced Memory Requirements,” in Proceedings of Norchip, Copen-
hagen, Denmark, November 2002, pp. 74–79.

Part III: A Design Environment and Models for Reconfigurable Computing

System-level simulation and exploration tools and models are required to rapidly
evaluate system performance in the early design phase. The use of virtual plat-
forms enables hardware modeling as well as early software development. The
exploration tool Scenic is developed, which introduces functionality to ac-
cess and extract performance related information during simulation. A set of



1.2. CONTRIBUTIONS AND THESIS OUTLINE 7

model generators and architectural generators are also proposed to create cus-
tom processor, memory, and system architectures that facilitate design explo-
ration. The Scenic exploration tool is used in Part IV to evaluate dynamically
reconfigurable architectures.

Publications:

Henrik Svensson, Thomas Lenart, and Viktor Öwall, “Modelling and Explo-
ration of a Reconfigurable Array using SystemC TLM,” in Proceedings of Re-

configurable Architectures Workshop, Miami, Florida, USA, April 2008.

Thomas Lenart, Henrik Svensson, and Viktor Öwall, “A Hybrid Interconnect
Network-on-Chip and a Transaction Level Modeling approach for Reconfig-
urable Computing,” in Proceedings of IEEE International Symposium on Elec-

tronic Design, Test and Applications, Hong Kong, China, January 2008, pp.
398–404.

Part IV: A Run-time Reconfigurable Computing Platform

Reconfigurable hardware architectures are emerging as a suitable approach to
combine high performance with flexibility and programmability. While fine-
grained architectures are capable of bit-level reconfiguration, more recent work
focus on more coarse-grained architectures that enable higher performance us-
ing word-level data processing. A coarse-grained dynamically reconfigurable
architecture is presented, and constructed from an array of processing and
memory cells. The cells communicate using local interconnects and a hierarchi-
cal network using routers. The design has been modeled using the Scenic ex-
ploration environment and simulation models, and implemented in VHDL and
synthesized for a 0.13µm cell library.

Publications:

Thomas Lenart, Henrik Svensson, and Viktor Öwall, “Modeling and Explo-
ration of a Reconfigurable Architecture for Digital Holographic Imaging,” in
Proceedings of IEEE International Symposium on Circuits and Systems, Seat-
tle, USA, May 2008.

Henrik Svensson, Thomas Lenart, and Viktor Öwall, “Modelling and Explo-
ration of a Reconfigurable Array using SystemC TLM,” in Proceedings of Re-

configurable Architectures Workshop, Miami, Florida, USA, April 2008.

Thomas Lenart, Henrik Svensson, and Viktor Öwall, “A Hybrid Interconnect
Network-on-Chip and a Transaction Level Modeling approach for Reconfig-
urable Computing,” in Proceedings of IEEE International Symposium on Elec-

tronic Design, Test and Applications, Hong Kong, China, January 2008, pp.
398–404.





Chapter 2

Digital System Design

Digital systems range from desktop computers for general-purpose processing
to embedded systems with application-specific functionality. A digital system
platform comprises of elements for data processing and storage, which are con-
nected and integrated to form a design-specific architecture.

In this chapter, elements for data processing are further divided into three
classes, namely programmable, reconfigurable, and application-specific architec-
tures. Programmable architectures include for example the general-purpose
processor (GPP), the application-specific instruction processor (ASIP), and
the digital signal processor (DSP). The reconfigurable architectures range from
bit-level configuration, such as the field-programmable gate array (FPGA), to
word-level configuration in coarse-grained reconfigurable architectures (CGRA).
Application-specific architectures are required when there are high constraints
on power consumption or processing performance, such as in hand-held devices
and real-time systems, where tailored hardware may be the only feasible so-
lution [12]. Figure 2.1 illustrates how different architectures trade flexibility
for higher efficiency. The term flexibility includes programmability and versa-
tility, while the term efficiency relates to processing performance and energy
efficiency. General-purpose devices provide a high level of flexibility and are lo-
cated in one end of the of the design space, while the specialized and optimized
application-specific architectures are located in the other end [13].

Efficient memory and storage elements are required to supply the processing
elements with data. Memory performance depends on how the memory system
is organized, as well as how data is stored. The memory organization includes
the memory hierarchy and configuration, while storage aspects relate to how

9
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Figure 2.1: Efficiency and performance as a function of flexibility for
various architectures. Architectures from different domains can not be
directly relates, hence they are grouped in different domains.

well data is re-used through caching, and the memory access pattern to non-
cacheable data [14]. Hence, system performance is a balance between efficient
processing and efficient memory management.

Constructing digital systems not only require a set of hardware building
blocks, but also a methodology and design flow to generate a functional cir-
cuit from a high-level specification. In addition, the current trends towards
high-level modeling and system-level exploration require more advanced design
steps to enable software and hardware co-development from a common virtual
platform [15]. For complex system design, exploration tools require the use of
abstraction levels to trade modeling accuracy for simulation speed [16], which
is further discussed in Part III.

2.1 Programmable Architectures

Programmable architectures are further divided into three groups: general-
purpose processors (GPP), configurable instruction-set processors, and special-
purpose processors. The GPP has a general instruction set that has not been
optimized for any specific application domain. Configurable instruction-set
processors offer the possibility to extend the instruction set and to tune the
processor for a user-defined application [17]. The special-purpose processors in-
clude instructions and additional hardware resources for primitives commonly
used in its field of operation, for example signal or graphics processing. The
processor architectures are trade-offs between computational efficiency, flexi-
bility, and hardware requirements.
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2.1.1 General-Purpose Processors

The microprocessor is a generic computational unit, designed to support any
algorithm that can be converted into a computer program. Microprocessors suf-
fer from an obvious performance bottleneck: the sequential nature of program
execution. Instructions are processed one after the other, with the upside being
high instruction locality and the downside being high instruction dependency.

There are several ways to improve the performance of microprocessors,
i.e. increase the number of executed instructions per second. By dividing the
instruction execution into a set of stages, several instructions can execute con-
currently in an instruction pipeline. An extension to the pipelining concept
is to identify independent instruction in run-time that can be sent to different
instruction pipelines, commonly known as a superscalar architecture. However,
evaluating instruction dependency during run-time is a costly technique due to
the increased hardware complexity. Another approach is to let software analyze
the dependencies and provide a program where several instructions are given
in parallel, which is known as a very long instruction word (VLIW) processor.
A comparison between different processor architectures are presented in [18].

In recent computer systems, multi-core processors are introduced to address
the limitation of pure sequential processing. Independent applications, or parts
of the same application, are parallelized over a plurality of processing units.
This means that processing speed may potentially increase with a factor equal
to the number of processing cores. In reality, speed-up for a single thread is
limited by the instruction level parallelism (ILP) in the program code, which
indicates to what extent a sequential program can be parallelized [19]. In the
situation of a single-threaded application with limited ILP, multi-core will not
be able to provide any noticeable speed-up. However, if the programmer divides
the application into multiple parallel threads of execution, a multi-core system
can provide thread level parallelism (TLP).

2.1.2 Configurable Instruction-Set Processors

One way to improve processing performance is to adapt and extend the pro-
cessor’s instruction set for a given application [20]. Profiling tools are first
used analyze the application data-flow graph to find and extract frequently
used computational kernels, which constitute the main part of the execution
time [21]. The kernels are groups of basic instructions that often occur in con-
junction, hence it is possible to merge them into a specialized instruction [22].
By extending the processor with support for such operations, the overall per-
formance of the system is significantly improved. However, from a system
perspective the performance improvement has to be weighted against resource,
area, and power requirements for introducing specialized instructions.
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Figure 2.2: (a) A DSP architecture with two separate register files and
multiple functional units on each data path. (b) A stream processor with
a high-performance register file connected to an array of ALU clusters.
Each cluster contains multiple functional units and local register files.
The stream controller handles data transfers to external memory.

In addition to extending the processor with new instructions, the compiler
tools have to be modified to support the extended instruction set. Frame-
works for building extendable processors can be found in industry as well as in
academia [23]. Advanced tools also provide generation of processor models for
simulation, and tools for system tuning and exploring architectural trade-offs.

2.1.3 Special-Purpose Processors

An example of a special-purpose device is the digital signal processor (DSP).
A digital signal processor has much in common with a general-purpose micro-
processor but contains additional features and usually include more than one
computation unit and register bank, as illustrated in Figure 2.2(a). In sig-
nal processing algorithms, a set of frequently used operations can be isolated.
An example is multiplication followed by accumulation, present in for instance
FIR filters [24]. In a DSP, this operation is executed in a single clock cycle
using dedicated multiply-accumulate (MAC) hardware. Another useful fea-
ture is multiple addressing modes such as modulo, ring-buffer, and bit-reversed
addressing. In signal processing, overflow causes serious problems when the
values exceed the maximum wordlength. In a conventional CPU, integer val-
ues wrap around on overflow and corrupt the result value. DSPs often include
saturation logic for integer arithmetic, preventing the value to wrap and cause
less damage to the final result. Despite the fact that DSPs are referred to as a
special-purpose processors, their application domain is fairly wide.
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Stream processors combine a highly parallel processing architecture with
a memory controller that supervise the data streams from external and local
memories, and an architectural overview is shown in Figure 2.2(b) [25]. A
stream register file (SRF) manages the exchange of data between computational
clusters and the external memory. The clusters are based on parallel processing
elements that are programmed using VLIW instructions. Examples of stream
processors are Imagine and Merrimac from Stanford [26,27].

Another special-purpose processor with a more narrow application domain
is the graphic processing units (GPU), which resembles the stream processor.
Traditionally, accelerators for graphic processing have been application-specific
to be able to handle an extreme amount of operations per second. As a re-
sult, GPUs provided none or limited programmability. However, the trend is
changing towards general purpose GPUs (GPGPU), which widens the applica-
tion domain for this kind of special-purpose processors [28]. Due to the mas-
sively parallel architecture, the GPGPU is suitable for mapping parallel and
streaming applications. The use of high-performance graphic cards for gen-
eral processing is especially interesting for applications with either real-time
requirements or long execution times.

A common characteristic for special-purpose processors is the ability to op-
erate on sets of data. Execution in a generic processor is divided into which
data to process and how to process that data, referred to as control-flow and
data-flow, respectively. The control flow is expressed using control statements
such as if, for, while. When applying a single operation to a large data set
or a data stream, the control statements will dominate the execution time.
A solution is to use a single operation or kernel that is directly applied to a
larger data set. This is referred to as a single-instruction multiple-data (SIMD)
or multiple-instruction multiple-data (MIMD) processing unit, according to
Flynn’s taxonomy [29]. Hence, the control overhead is reduced and the pro-
cessing throughput increased.

2.2 Reconfigurable Architectures

In contrast to programmable architectures, the reconfigurable architectures en-
able hardware programmability. It means that not only the software that runs
on a platform is modified, but also how the architecture operates and commu-
nicates [13, 30–32]. Hence, an application is accelerated by allocating a set of
required processing, memory, and routing resource.

Many presented reconfigurable architectures consist of an array of process-
ing and storage elements [33]. Architectures are either homogeneous, meaning
that all elements implement the same functionality, or heterogeneous where el-
ements provide different functionality. Processing elements communicate using
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Table 2.1: A comparison between fine-grained and coarse-grained architectures.
Development time and design specification refers to applications running on the
platform.

Properties Fine-grained Coarse-grained

Granularity bit-level (LUT) word-level (ALU)
Versatility/Flexibility high medium/high
Performance medium high
Interconnect overhead large small
Reconfiguration time long (ms) short (µs)
Development time long medium
Design specification hardware software

Application domain
Prototyping RTR systems

HPC HPC

either statically defined interconnects or programmable switch boxes, which
are dynamically configured during run-time. Physical communication chan-
nels for transferring data are reserved for a duration of time, referred to as
circuit switching, or shared between data transfers using packet switching to
dynamically route the traffic [34].

The size of the reconfigurable elements is referred to as the granularity of the
device. Fine-grained devices are usually based on small look-up tables (LUT) to
enable bit-level manipulations. These devices are extremely versatile and can
be used to map virtually any algorithm. However, fine-grained architectures
are inefficient in terms of hardware utilization of logic and routing resources.
In contrast, coarse-grained architectures use building blocks in a size ranging
from arithmetic logic units (ALU) to full-scale processors. This yields a higher
performance when constructing standard datapaths, since the arithmetic units
are constructed more efficiently, but the device becomes less versatile. The
properties of fine-grained and coarse-grained architectures are summarized in
Table 2.1, and are further discussed in the following sections.

Reconfigurable architectures are used for multiple purposes and for a wide
application domain, which includes:

Prototyping - Versatile fine-grain architectures, i.e. FPGAs, are com-
monly uses for functional verification prior to ASIC manufacturing. This
is of high importance when software simulations are not powerful enough
to verify that the design operates correctly during exhaustive runs.

Reconfigurable computing - As an alternative to develop application-
specific hardware for low-power and compute-intensive operation, coarse-
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grained reconfigurable architectures are used to combine efficiency with
reconfigurability. This enables post-manufacturing programmability and
a reduced development time and risk. Application mapping becomes
flexible, where all hardware resources are either used for a single task, or
shared to handle parallel task simultaneously.

High-Performance Computing - A reconfigurable architecture can
accelerate and off-load compute-intensive tasks in a conventional com-
puter system. The reconfigurable architecture is either placed inside
the processor datapath, or as an external accelerator that communi-
cates over the system bus or directly on the processor front side bus
(FSB). Both fine-grained and coarse-grained architectures are candidates
for high-performance computing [35].

2.2.1 Fine-Grained Architectures

Fine-grained reconfigurable architectures have been available for almost three
decades, and is a natural part of digital system design and verification. The
fine-grained devices include programmable array logic (PAL), complex pro-
grammable logic devices (CPLD), and field-programmable gate arrays (FPGA).
The devices are listed in increasing complexity, and also differ in architecture
and how the configuration data is stored. Smaller devices use internal non-
volatile memory, while larger devices are volatile and programmed from an
external source. However, since FPGAs have the most versatile architecture,
it will here be used as a reference for fine-grained reconfigurable architectures.

The traditional FPGA is a fine-grained logic device that can be reconfigured
after manufacturing, i.e. field programmable. The FPGA architecture is illus-
trated in Figure 2.3(a), and is constructed from an array of configurable logic
blocks (CLB) that emulate boolean logic and basic arithmetic using look-up
tables (LUT). An interconnect network, which is configured using switchboxes,
enables the logic blocks to communicate.

The realization of memories using logic blocks is an inefficient approach,
hence FPGAs include small dedicated block RAMs to implement single and
dual port memories. Block RAMs may be connected to emulate larger memo-
ries, and also enables data exchange between two clock domains on the device.
Furthermore, a current industry trend is to include more special-purpose struc-
tures in the FPGA, referred to as macro-blocks. Available macro-blocks are
multipliers and DSP units, which lead to significant performance improvement
over implementations using logic blocks. Larger devices may include one or
more GPP, which are directly connected to the FPGA fabric. This enables
rapid system design using a single FPGA platform.
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Figure 2.3: (a) Overview of the FPGA architecture with embedded mem-
ory (in gray) and GPP macro-blocks. The FPGA fabric containing logic
blocks and switchboxes are magnified. (b) An example of a coarse-
grained reconfigurable architecture, with an array of processing elements
(ALU) and a routing network.

The FPGA design flow starts with a specification, either from a hardware
description language (HDL) or from a more high-level description. HDL code
is synthesized to gate level and the functionality is mapped onto the logic
blocks in the FPGA. The final step is to route the signals over the interconnect
network and to generate a device specific configuration file (bit-file). This file
contains information on how to configure logic blocks, interconnect network,
and IO-pads inside the FPGA. The configuration file is static and can not
alter the functionality during run-time, but some FPGAs support run-time
reconfiguration (RTR) and the possibility to download partial configuration
files while the device is operating [36]. However, the reconfiguration time is in
the range of milliseconds since the FPGA is configured at bit-level.

2.2.2 Coarse-Grained Architectures

Coarse-grained reconfigurable architectures are arrays constructed from larger
computational elements, usually in the size of ALUs or smaller programmable
kernels and state-machines. The computational elements communicate using a
routing network, and an architectural overview is illustrated in Figure 2.3(b).
In this way, the coarse-grained architecture requires less configuration data,
which improves the reconfiguration time, while the routing resources generate
a lower hardware overhead.

In contrast to a fine-grained FPGA, course-grained architectures are de-
signed for partial and run-time reconfiguration. This is an important aspect
due to situations when hardware acceleration is required for short time dura-
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tions or only during the device initialization phase. Instead of developing an
application-specific hardware accelerator for each individual situation, a recon-
figurable architecture may be reused to accelerate arbitrary algorithms. Once
the execution of one algorithm completes, the architecture is reconfigured for
other tasks. The work on a dynamically reconfigurable architecture is further
discussed in Part IV.

The possibility to support algorithmic scaling is also an important aspect.
Algorithmic scaling means that an algorithm can be mapped to the reconfig-
urable array in multiple ways, which could be a trade-off between processing
performance and area requirements. A library containing different algorithm
mappings would enable the programmer or the mapping tool to select a suitable
architecture for each situation. A low complexity algorithm mapping may be
suitable for non-critical processing, while a parallel mapping may be required
for high performance computing.

From an algorithm development perspective, the coarse-grained architec-
tures differ considerably from the design methodology used for FPGA develop-
ment. While FPGAs use a hardware-centric methodology to map functionality
into gates, the coarse-grained architectures enable a more software-centric and
high-level approach. Hence, it allows hardware accelerators to be developed
on-demand, and potentially in the same language used for software develop-
ment. Unified programming environments enhance productivity by simplifying
system integration and verification.

2.3 Application-Specific Architectures

In some cases it is not feasible to use programmable solutions, where the reasons
can be constraints related to power consumption, area requirements, and real-
time performance. Instead, an application-specific architecture that satisfies
the constraints is tailored for this situation. Many digital signal processing
(DSP) algorithms, such as filters and transforms, allow efficient mapping to
an application-specific architecture due to their highly regular structure. DSP
algorithms are also easy to scale, using folding and un-folding, to find a balance
between throughput and area requirements.

Application-specific architectures are found in most embedded systems, of-
ten in parts of the design that has hard real-time constraints. In cellular ap-
plications, the most time-critical parts of the digital transceiver require dedi-
cated hardware to handle the high real-time and the throughput requirements.
Application-specific hardware is also required when communicating with ex-
ternal components using fixed protocols, such as interfaces to memories and
digital image sensors.
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For embedded systems, application-specific hardware accelerators are com-
monly used to off-load computationally intensive software operations, in order
to save power or to gain processing speed. First, profiling is used to reveal
and identify performance critical sections that consume most processing power.
Secondly, a hardware accelerator is designed and connected to the processing
unit, either as a tightly-coupled co-processor or as a loosely-coupled accelerator
directly connected to the system bus [37].

Since application-specific architectures are only restricted by user-defined
constraints, the architectural mapping can take several forms. For design con-
strained by area, the hardware can be time-multiplexed to re-use a single pro-
cessing element. The idea is the same as for the microprocessor: to process
data sequentially. The difference is that the program is replaced by a state-
machine, which reduces the control-flow overhead and increases the efficiency.
In contrast to time-multiplexed implementations, pipeline and parallel archi-
tectures are designed to maximize throughput. Parallel architectures are often
referred to as direct-mapped, which relates to the data-flow graph of the parallel
algorithm.

Even application-specific architectures are often designed with flexibility in
mind, but are still often limited to fixed algorithms. In datapath designs, a
flexible dataflow enables algorithmic changes on a structural level. Examples
are algorithms with similar dataflow, such as the discrete cosine transform
(DCT) and the fast Fourier transform (FFT), hence having small structural
differences. In control-based designs, programmable state-machines provide
flexibility to change algorithmic parameters using the same structural datapath.
Examples in filter design are variable filter length and ability to update filter
coefficients.

2.4 Memory and Storage

In addition to the computation elements, efficient memory and storage ele-
ments are required to store and supply the system with data. However, for
decades the speed of processors has improved at a much higher rate than for
memories, causing a processor-memory performance gap [38]. The point where
computational elements are limited by the memory performance is referred to
as the memory wall. For high-performance systems using dedicated hardware
accelerators or highly parallel architectures, this problem becomes even more
critical.

2.4.1 Data Caching

There are several techniques to hide the processor-memory gap, both in terms
of latency and throughput. The most common approach is caching of data,
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Figure 2.4: Modern SDRAM is divided into banks, rows and columns.
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must be considered to achieve high performance.

which means that frequently accessed information is stored in a smaller but
faster memory close to the processing unit. Caches use static random access
memory (SRAM), which has the desirable property of fast uniform access time
to all memory elements. Thus, random access to data has low latency, assuming
that the data is available in the cache. In contrast, accessing data that is
currently not available in the cache generates a cache miss. For state-of-the-
art processors, a cache miss is extremely expensive in terms of processor clock
cycles. It is not uncommon that a cache miss stalls the processor for hundreds
of clock cycles until data becomes available. The reasons are long round-trip
latency and the difference in clock frequency between external memory and the
processor.

Unfortunately, caching is not always helpful. In streaming applications each
data value is often only referenced once, hence resulting in continuous access
to new data in external memory. In this situation, the memory access pattern
is of high importance as well as hiding the round-trip latency. In this case, the
use of burst transfers with consecutive data elements is necessary to minimize
the communication overhead, and to enable streaming applications to utilize
the memory more efficiently.

2.4.2 Data Streaming

Many signal processing algorithms are based on applying one or more kernel
functions to one or more data sets. If a data set can be described as a sequential
stream, the kernel function can efficiently be applied to all elements in the
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stream. From an external memory perspective, streaming data generates a
higher bandwidth than random access operations. This is mainly from the
fact that random access generates a high round-trip latency, but also due to
the physical organization of burst-oriented memories. While high-performance
processors rely on caches to avoid or hide the external memory access latency,
streaming application often use each data value only once and can not be
cached. In other words the stream processor is optimized for streams, while
the general purpose microprocessor handles random access by assuming a high
locality of reference.

Modern DRAMs are based on several individual memory banks, and the
memory address is separated into rows and columns, as shown in Figure 2.4.
The three-dimensional organization of the memory device results in non-uniform
access time. The memory banks are accessed independently, but the two-
dimensional memory array in each bank is more complicated. To access a
memory element, the corresponding row needs to be selected. Data in the se-
lected row is then transferred to the row buffer. From the row buffer, data is
accessed at high-speed and with uniform access time for any access pattern.
When data from a different row is requested, the current row has to be closed,
by pre-charging the bank, before the next row can be activated and transferred
to the row buffer. Therefore, the bandwidth of burst-oriented memories highly
depends on the access pattern. Accessing different banks or columns inside
a row has a low latency, while accessing data in different rows has a high la-
tency. When processing several memory streams, a centralized memory access
scheduler can optimize the overall performance by reordering the memory ac-
cess requests [39]. Latency for individual transfers may increase, but the goal
is to minimize average latency and maximize overall throughput. Additional
aspects on efficient memory access is discussed in Part I.

2.5 Hardware Design Flow

Hardware developers follow a design flow to systematically handle the design
steps from an abstract specification or model to a functional hardware platform.
A simplified design flow is illustrated in Figure 2.5 and involves the following
steps:

Specification - The initial design decisions are outlined during the spec-
ification phase. This is usually in the form of block diagrams and hierar-
chical schematics, design constraints, and design requirements.

Virtual prototype - A virtual hardware prototype is constructed to
verify the specification and to allow hardware and software co-design [40].
It is usually based on a high-level description using sequential languages,
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Figure 2.5: Design flow for system hardware development, starting from
behavioral modeling, followed by hardware implementation, and finally
physical placement and routing.

such as C/C++ or Matlab, or a high-level hardware description language
such as SystemC [41]. More accurate descriptions yield better estimates of
system performance, but results in increased simulation time [42]. High-
level simulation models from vendor specific IP are also integrated if
available.

Hardware description - Converting the high-level description into a
hardware description can be done automatically or manually. Manual
translation is still the most common approach, where the system is de-
scribed at register-transfer level (RTL) using a hardware description lan-
guage such as VHDL or Verilog.

Logic synthesis - The hardware description is compiled to gate level
using logic synthesis. Gate primitives are provided in form of a standard
cell library, describing the functional and physical properties of each cell.
The output from logic synthesis is a netlist containing standard cells,
macro-cells, and interconnects. The netlist is verified against the RTL
description.

Physical placement and routing - The netlist generated after logic
synthesis contains logic cells, where the physical properties are extracted
from the standard cell library. A floorplan is specified, which describes the
physical placement of IO-cells, IP macro-cells, and standard cells as well
as power planning. The cells are then placed according to the floorplan
and finally the design is routed.
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The design flow is an iterative process, where changes to one step may
require the designer to go back to a previous step in the flow. The virtual
hardware prototype is one such example since it performs design exploration
based on parameters given by the initial specification. Therefore, architectural
problems discovered during virtual prototyping may require the specification to
be revised. Furthermore, the virtual prototype is not only reference design for
the structural RTL generation, but also a simulation and verification platform
for software development. Changing the RTL implementation requires that the
virtual platform is updated correspondingly, to avoid inconsistency between the
embedded software and the final hardware.

2.5.1 Architectural Exploration

For decades, RTL has been a natural abstraction level for hardware designers,
which is completely different from how software abstractions have developed
over the same time. The increasing demands towards unified platforms for de-
sign exploration and early software development is pushing for higher abstrac-
tions in electronic design automation (EDA). To bridge the hardware-software
gap, electronic system level (ESL) is a recent design methodology towards
modeling and implementation of systems on higher abstraction levels [43]. The
motivation is to raise the abstraction level, to increase productivity and to man-
age increasing design complexity. Hence, efficient architectural exploration and
system performance analysis require virtual prototyping combined with models
described at appropriate abstraction levels. Virtual prototyping is the emu-
lation of an existing or non-existing hardware platform in order to analyze
the system performance and estimate hardware requirements. Hence, models
for virtual prototyping need to be abstracted and simplified to achieve high-
performance exploration. An exploration environment and models for virtual
prototyping is presented in Part III.

Modeling Abstraction Levels

RTL simulation is over-detailed when it comes to functional verification, which
results in long run-times, limited coverage of system behavior, and poor observ-
ability about how the system executes. In contrast, the ESL design method-
ology promotes the use of appropriate abstractions to increase the knowledge
and understanding of how a complex system operates [44]. The required level
of detail is hence defined by the current modeling objectives. In addition, large
system may require simulations described as a mix of different abstraction lev-
els [45]. Common modeling abstractions are presented in Figure 2.6, which
illustrates how simulation accuracy is traded for higher simulation speed, and
can be divided into the following categories:
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Figure 2.6: Abstraction levels is the ESL design space, ranging from
abstract transaction-level modeling to pin and timing accurate modeling.

Algorithm - The algorithm design work is the high level implementation
of a system, usually developed as Matlab or C code. At this design level,
communication is modeled using shared variables and processing is based
on sequential execution.

Transaction level - Transaction level modeling (TLM) is an abstrac-
tion level to separate functionality from communication [46]. Trans-
actions, e.g. the communication primitives, are initiated using function
calls, which results in a higher simulation speed than traditional pin-level
modeling. TLM also enables simplified co-simulation between different
systems since communication is handled by more abstract mechanisms.
In this case, adapters are used to translate between different TLM and
pin-accurate interfaces.

Cycle callable - A cycle callable (CC) model is also referred to as a cy-
cle approximate or loosely timed model. A cycle callable model emulates
time only on its interface, hence gaining speed by using untimed simula-
tion internally. Simulations of embedded systems may use cycle callable
models for accurate modeling of bus-transactions, but at the same time
avoid the simulation overhead from the internal behavior inside each bus
model.

Cycle accurate - A cycle accurate (CA) model uses the same model-
ing accuracy at clock cycle level as a conventional RTL implementation.
Cycle accurate models are usually also pin-accurate.

Timing accurate - A timing accurate simulation is required to model
delays in logic and wires. Timing can be annotated to the netlist produced
after logic synthesis or after place and route, but is sometimes required



24 CHAPTER 2. DIGITAL SYSTEM DESIGN

Acc #1CPU Acc #2

void process() {

    ...

    x = acc1.read()

    acc2.write(x)

    acc2.start()

    ..

}

Mem

ctrl

Peri 

#1

Peri 

#2
Slave

Master

(a) (b)

Figure 2.7: (a) The programmer’s view of an embedded system, where
the hardware is register-true, but not clock cycle accurate. (b) Hardware
architect’s view of an embedded system. The design is cycle- and pin
accurate.

during the RTL design phase to simulate for example the complex timing
constraints in memory models.

During the implementation phase, models sometimes need to be refined by
providing more details to an initial high-level description [42]. For example,
at algorithmic level there is no information about how a computational block
receives data. This is the system view for the algorithmic designer. When the
model is converted into a hardware description, the communication is initially
modeled using transactions on a bus, which is the programmer’s view of a
system [47]. Software development only requires the register map and memory
addressing to be accurate, but depends less on the actual hardware timing. In
contrast, the hardware architect’s view requires clock cycle accurate simulation
to verify handshaking protocols and data synchronization. The software and
hardware views are illustrated in Figure 2.7(a-b), respectively.

2.5.2 Virtual Platforms

A virtual platform is a software simulation environment to emulate a complete
hardware system [48]. It is a complement to functional verification on pro-
grammable logic devices, i.e. FPGAs, but introduces additional features that
can not be addressed using hardware prototyping systems. Since a virtual
platform is available before the actual hardware has been developed, it enables
early software development and the possibility to locate system bottlenecks
and other design issues in the initial design process. Hence, exploration of
the hardware architecture using a virtual platform has several advantages over
hardware-based prototyping, including:
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• Precise control - In contrast to hardware-based verification, software
simulation enables the possibility to freeze the execution in all simulation
modules simultaneously at clock cycle resolution.

• Full visibility - All parts of virtual platform can be completely visible
and analyzed using unlimited traces, while hardware-based verification is
limited to hardware probing and standardized debug interfaces.

• Deterministic execution - A software simulation is completely deter-
ministic, where all errors and malfunctions are reproducible. A repro-
ducible simulation is a requirement for efficient system development and
debugging.

However, controllability and visibility come with the price of longer exe-
cution times. Hence, hardware-based prototyping using FPGA platforms is
still an important part of ASIC verification, but will be introduced later in the
design flow.

2.5.3 Instruction Set Simulators

A majority of digital systems include one or more embedded processor, which
require additional simulation models for the virtual platform. A processor
simulation model is referred to as an instruction-set simulator (ISS), and is a
functional model for a specific processor architecture. The ISS executes binary
instructions in the same way as the target processor, hence all transactions
on the bus correspond to the actual hardware implementation. An ISS based
virtual platform normally reaches a simulation performance in the range of 1-
10 MIPS, and academic work targeting automatic ISS generation is presented
in [49]. Faster simulation is possible using a compiled ISS, where the target
processor instructions are converted into native processor instructions [50]. In
contrast to an interpreted instruction-set simulator, a compiled ISS can typi-
cally reach a simulation performance of 10-100 MIPS.

Given this background, the virtual platform and ISS concepts are further dis-
cussed in Part III, which proposes a design environment and a set of scalable
simulation models to evaluate reconfigurable architectures.





Chapter 3

Digital Holographic Imaging

In 1947, the Hungarian scientist Dennis Gabor developed a method and theory
to photographically create a three-dimensional recording of a scene, commonly
known as holography [51]. For his work on holographic methods, Dennis Ga-
bor was awarded the Nobel Prize in physics 1971. A holographic setup is
shown in Figure 3.1, and is based on a coherent light source. The interference
pattern between light from a reference wave and reflected light from an ob-
ject illuminated with the same light source is captured on a photographic film
(holographic plate). Interference between two wave fronts cancels or amplifies
the light in each point on the holographic film. This is called constructive and
destructive interference, respectively.

A recorded hologram has certain properties that distinguish it from a con-
ventional photograph. In a normal camera, the intensity (amplitude) of the
light is captured and the developed photography is directly visible. The pho-
tographic film in a holographic setup captures the interference, or phase differ-
ence, between two waves [52]. Hence, both amplitude and phase information
are stored in the hologram. By illuminating the developed photographic film
with the same reference light as used during the recording phase, the original
image is reconstructed and appears three-dimensional.

The use of photographic film in conventional holography makes it a time-
consuming, expensive, and inflexible process. In digital holography, the pho-
tographic film is replaced by a high-resolution digital image sensor to capture
the interference pattern. The interference pattern is recorded in a similar way
as in conventional holography, but the reconstruction process is completely
different. Reconstruction requires the use of a signal processing algorithm to

27
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Figure 3.1: The reflected light from the scene and the reference light
creates an interference pattern on a photographic film.

transform the digital recordings into visible images [1,53]. The advantage over
conventional holography is that it only takes a fraction of a second to capture
and digitally store the image, instead of developing a photographic film. The
downside is that current sensor resolution is in the range 300-500 pixels/mm,
whereas the photographic film contains 3000 lines/mm.

A holographic setup with a digital sensor is illustrated in Figure 3.2. The
light source is a 633 nm Helium-Neon laser, which is divided into separate ref-
erence and object lights using a beam splitter. The object light passes through
the object and creates an interference pattern with the reference light on the
digital image sensor. The interference pattern (hologram) is used to digitally
reconstruct the original object image.

3.1 Microscopy using Digital Holography

Digital holography has a number of interesting properties that has shown use-
ful in the field of microscopy. The study of transparent specimens, such as
organic cells, conventionally requires either the use of non-quantitative mea-
surement techniques, or the use of contrast-increasing staining methods that
could be harmful for the cells. This issue can be addressed with a microscope
based on digital holography, introducing a non-destructive and quantitative
measurement technique to study living cells over time [54].

Most biological specimens, such as cells and organisms, are almost com-
pletely colorless and transparent [55]. In conventional optical microscopy, this
results in low contrast images of objects that are nearly invisible to the human
eye, as illustrated in Figure 3.3(a). The reason is that the human eye only mea-
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Figure 3.2: The experimental holographic setup. The reference, object,
and interference pattern are captured on a high-resolution digital image
sensor, instead of using a photographic film as in conventional hologra-
phy. The images are captured by blocking the reference or object beam.

sures the light amplitude (energy), but the phase shift still carries important
information. In the beginning of the 1930s, the Dutch physicist Frits Zernike
invented a technique to enhance the image contrast in microscopy, known as
phase contrast, for which he received the Nobel Prize in physics 1953. The
invention is a technique to convert the phase shift in a transparent specimen
into amplitude changes, in other words making invisible images visible [56].
However, the generated image does not provide the true phase of the light,
only improved contrast as illustrated in Figure 3.3(b).

An alternative to phase contrast microscopy is to instead increase the cells
contrast. A common approach is to stain the cells using various dyes, such
as Trypan blue or Eosin. However, staining is not only a cumbersome and
time-consuming procedure, but could also be harmful to the cells. Therefore,
experiments to study growth, viability, and other cell characteristics over time
require multiple sets of cell samples. This prevents the study of individual cells
over time, and is instead based on the assumption that each cell sample has
similar growth-rate and properties. In addition, the staining itself can generate
artifacts that affect the result. In Figure 3.4(a), staining with Trypan blue has
been used to identify dead cells.

In contrast, digital holography provides a non-invasive method and does
not require any special cell preparation techniques [57]. The following sections
discuss the main advantages of digital holography in the field of microscopy,
namely the true phase-shift, the software autofocus, and the possibility to gen-
erate three-dimensional images.
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Figure 3.3: Images of transparent mouse fibroblast cells. (a) Conven-
tional microscopy. (b) Phase-contrast microscopy. (c) Reconstructed
phase information from the holographic microscope. (d) Unwrapped
and background processed holographic image with true phase. (e) 3D
view from the holographic microscope. (f) Close-up from image (d).
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Figure 3.4: To the left a dead cell and to the right a living cell. (a) Using
Trypan blue staining in a phase contrast microscope to identify dead
cells. Dead cells absorb the dye from the surrounding fluid. (b) Using
phase information in non-invasive digital holography to identify dead
cells. (c) Phase-shift when parallel light pass through a cell containing
regions with different refractive index.
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Figure 3.5: Reconstructed images of an USAF resolution test chart eval-
uated at the distances −200µm to 50µm in step of 50µm from the
original position.

3.1.1 Phase Information

The true phase-shift is of great importance for quantitative analysis. Since
the phase reveals changes to the light path, it can be used to determine either
the integral refractive index of a material with known thickness, or the thick-
ness in a known medium. The phase shift is illustrated in Figure 3.4(c). In
digital holography, the obtained interference pattern contains both amplitude
and phase information. The amplitude is what can be seen in a conventional
microscope, while phase information can be used to generate high-contrast im-
ages and to enable quantitative analysis. The analysis can yield information
about refractive index, object thickness, object volume, or volume distribution.
Figure 3.4(a-b) show images obtained with a phase contrast microscope and a
holographic microscope, respectively.

3.1.2 Software Autofocus

In conventional microscopes, the focus position is manually controlled by a
mechanical lens system. The location of the lens determines the focus position,
and the characteristics of the lens determine the depth of field. The image
is sharp only at a certain distance, limited by the properties of the lens, and
the objects that are currently in focus are defined to be in the focal plane.
Naturally, images captured in conventional microscopy only show a single focal
plane, which may cause parts of the image to be out of focus.
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In digital holography, individual focal planes are obtained from a single
recording by changing a software parameter inside the reconstruction algo-
rithm. Hence, no mechanical movements are required to change the focus
position. As an example, Figure 3.5 shows the reconstruction of a resolution
test chart in different focal planes, in this case either in focus or out of focus.
Microscope recordings can thus be stored and transmitted as holographic im-
ages, which simplifies remote analysis with the ability to interactively change
focal plane and magnification.

3.1.3 Three-Dimensional Visualization

Phase and amplitude information enable visualization of captured images in
three dimensions. The phase information reveals the optical thickness of an
object, and can be directly used to visualize the cell topology. To avoid visual
artifacts, it is assumed that cells grow on a flat surface, and that there is
minimal overlap between adjoining cells. Examples of topology images are
shown in Figure 3.3(e-f).

Extraction of accurate three-dimensional information requires more com-
plex image processing, and involves the analysis of a stack of reconstructed
amplitude images obtained at different focal planes [58]. Each reconstructed
image is processed to identify and extract the region that is currently in focus.
The resulting stack of two-dimensional shapes is joined into a three-dimensional
object. The same technique can be used to merge different focal planes to pro-
duce an image where all objects are in focus [59].

3.2 Processing of Holographic Images

This section presents the numerical reconstruction, phase unwrapping, and im-
age analysis required to enable non-invasive biomedical imaging. Numerical
reconstruction is the process to convert holographic recordings into visible im-
ages, and is the main focus of this work. Reconstruction is followed by phase
unwrapping, which is a method to extract true phase information from images
that contain natural discontinuities. Finally, image analysis is briefly discussed
to illustrate the potential of the holographic technology, especially to study cell
morphology [55].

3.2.1 Numerical Reconstruction

Three different images are required to reconstruct one visible image. In consec-
utive exposures, the hologram ψh, object ψo, and reference light ψr are captured
on the digital image sensor. First, the hologram is captured by recording the
interference light between the object and reference source. Then, by block-
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Figure 3.6: (a) Reference image ψr. (b) Object image ψo. (c) Holo-
gram or interference image ψh. (d) Close-up of interference fringes in a
holographic image.

ing either the object or the reference beam, the reference and object light are
captured respectively. An example of captured holographic images is shown in
Figure 3.6 together with a close-up on the recorded interference fringes in the
hologram.

The images captured on the digital image sensor need to be processed using
a signal processing algorithm, which reconstructs the original and visible image.
The reference and object light is first subtracted from the hologram, and the
remaining component is referred to as the modified interference pattern ψ

ψ(ρ) = ψh(ρ) − ψo(ρ) − ψr(ρ), (3.1)

where ρ represents the (x, y) position on the sensor. A visible image of an
object (the object plane) is reconstructed from ψ(ρ), which is the object field
captured by the digital sensor (the sensor plane), as illustrated in Figure 3.7.
The reconstruction algorithm, or inversion algorithm, can retrofocus the light
captured on the sensor to an arbitrary object plane, which makes it possible
to change focus position in the object. This is equivalent to manually moving
the object up and down in a conventional microscope.

An image is reconstructed by computing the Rayleigh-Sommerfeld diffrac-
tion integral as

Ψ(ρ′) =

∫

sensor

ψ(ρ)e−ik|r−rr|eik|r−r
′| dSρ, (3.2)
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Figure 3.7: (a) Definition of vectors from origin of coordinates to the
sensor surface, reference point, and object plane. (b) Sensor and ob-
ject planes. Modifying the z-position of the object plane changes focus
position.

where k = 2π/λ is the angular wave number for a wavelength λ, and the
reference field is assumed to be spherical for simplicity [60]. By specifying
a point of origin, r′ represents the vector to any point in the object plane
and r represents the vector to any point in the sensor plan, as illustrated in
Figure 3.7. The three-dimensional vectors can be divided into a z component
and an orthogonal two-dimensional vector ρ representing the x and y positions
as r = ρ+ zẑ. The distance z′ specifies the location of the image plane to be
reconstructed, whereas z is the distance to the sensor. The integral in (3.2)
can be expressed as a convolution

Ψ(ρ′) = ψ1 ∗G, (3.3)

where
ψ1(ρ) = ψ(ρ)e−ik

√
|z−zr|2+|ρ−ρ

r
|2

and
G(ρ) = eik

√
|z−z′|2+|ρ|2 .

The discrete version of the integral with an equidistant grid, equal to the sen-
sor pixel size (∆x, ∆y), generates a discrete convolution of (3.3) that can be
evaluated with the FFT [61] as

Ψ(ρ′) = F−1(F(ψ1) · F(G)). (3.4)

The size of the two-dimensional FFT needs to be at least the sum of the sensor
size and the object size in each dimension. Higher resolution is achieved by
shifting the coordinates a fraction of a pixel size and combining the partial
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results. Hence, an image with higher resolution requires several processing
iterations, which increases the reconstruction time with a factor N2 for an
interpolation of N times in each dimension. The image reconstruction requires
three FFT calculations (3.4), while each additional interpolation only requires
two FFT calculations, since only G(ρ) changes.

Several approximations to simplify the reconstruction process exist, based
on assumptions about distance and angle between the image plane and the
sensor plane. Figure 3.8 illustrates how different approximations can be applied
when the distance between the object and sensor plane increases. The Fresnel
approximation simplifies the relation to an arbitrary point in the image plane
to an arbitrary point in the sensor plane [62]. In the far-field, the Fraunhofer
approximation is applicable, which further simplifies the distance equation [63].
The approximations are further discussed in Section 3.3.2, and used in Part I
to reduce the computational requirements of an application specific hardware
accelerator.

3.2.2 Image Processing

The output data from the reconstruction algorithm is complex valued, repre-
sented as magnitude and phase. However, this means that the phase is con-
strained to an interval (−π, π], which is referred to as the wrapped phase. A
wrapped phase image contains 2π discontinuities, and requires further pro-
cessing to extract the unwrapped phase image. Figure 3.3(c) shows a wrapped
phase image where changes in the cell thickness have resulted in discontinuities.
Figure 3.3(d) shows the same image after phase unwrapping.

Several algorithms to compute phase unwrapping exist, with various com-
plexity in terms of processing speed and accuracy [64]. Phase-unwrapping algo-
rithms are mainly divided into two groups, path-following and minimum norm.
Path-following algorithms, such as Goldstein’s and Flynn’s algorithm [65], iden-
tifies paths on which to integrate. The algorithms are less sensitive to noise
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but the run-time is not deterministic. Minimum norm algorithms, based on
the discrete cosine transform (DCT) or discrete Fourier transform (DFT), are
faster but more sensitive to noise. Algorithm selection is a trade-off between
run-time and accuracy, where faster algorithms are useful for real-time visual-
ization, while more accurate algorithms are suitable for quantitative analysis.

Image reconstruction followed by phase unwrapping produces amplitude
and phase images from the obtained hologram. Hence, the images are ready
to be further processed for more advanced analysis. The imaging operations
commonly desired to be able to study, quantify, classify, and track cells and
other biological specimens are:

Cell visualization - Providing intuitive ways of visualizing cell infor-
mation is desirable, and has previously been discussed in Section 3.1.3.
Three-dimensional imaging provides depth information, and the use of
two-dimensional image superposition of amplitude and phase may illus-
trate and highlight different cell properties.

Cell quantification - The possibility to automatically measure cells and
cell samples is favorable over manual time-consuming and error-prone
methods. Cell counting and viability studies are today a highly manual
procedure, but which can be automated using holographic technology.
Other desirable measurements are cell area, cell coverage, cell/total vol-
ume, and cell density.

Cell classification - Classification is a statistical procedure of placing
individual cells into groups, based on quantitative information and feature
extraction. The cell is matched against a database, containing training
sets of previously classified cells, to find the most accurate classification.
In biomedical imaging, this can be used to analyse the distribution of
different cell types in a sample.

Cell morphology - Morphology refers to the change in a cells appear-
ance, including properties such as shape and structure. Morphology can
be used to study the development of cells, and to determine the cells
condition and internal health [55]. Due to the non-invasive properties
of a holographic microscope, it has shown to be a suitable candidate for
time-lapse studies, i.e. the study of cells over time.

Cell tracking - Morphology requires each cell to be studied individu-
ally, hence the location of each cell must be well-defined. However, it
is assumed that cells will not only change their physical properties over
time, but also their individual location. Therefore, tracking is required
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to study cells over time. In biomedical imaging, this information can also
be used to study cell trajectories.

3.3 Acceleration of Image Reconstruction

As previously discussed, the reconstruction process is computationally demand-
ing and the use of a standard computer is not a feasible solution to perform
image reconstruction in real-time. In a microscope, a short visual response
time is required to immediately reflect changes to the object position, illumi-
nation, or focus point. It is also useful to study real-time events, for example
when studying a liquid flow. The human perception of real-time requires an
update rate in a range of 20 to 60 frames per second (fps), depending on appli-
cation and situation. However, for a biological application a frame rate around
frate = 25 fps would be more than sufficient.

The sensor frame rate is one of the factors that affect the required system
performance. Other parameters are the sensor resolution and the image re-
construction time. These properties are discussed in the following sections to
specify the requirements for the hardware accelerator.

3.3.1 Digital Image Sensors

Digital image sensors are available in two technologies, either as charge-coupled
devices (CCD) or as complementary metal oxide semiconductors (CMOS). The
CCD sensor has superior image quality, but the CMOS sensor is more robust
and reliable. The CCD is based on a technique to move charges from the
sensor array and then convert the charge into voltage. In contrast, CMOS
sensors directly convert the charge to voltage directly at each pixel, and also
integrate control circuitry inside the device. A comparison between image
sensor technologies is presented in [66].

The term resolution is often used to indicate the number of pixels on the
image sensor array, while the term pixel pitch refers to the size of each active
element in the array. Over the past few years the resolution of digital sensors
has continuously increased, whereas the pixel pitch consequently has decreased
to comply with standardized optical formats.

The frame rate for digital image sensors highly depends on the sensor reso-
lution. In a digital video camera the real-time constraints require a high frame
rate for the images to appear as motion video. However, sensors with high
resolution are often not able to produce real-time video. This limitation is
addressed by either lowering the resolution by reading out less pixels from the
sensor array, or by using binning functionality to cluster neighboring pixels.

In digital holography, both high resolution and high frame rate are required.
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Table 3.1: Algorithmic complexity (two-dimensional FFTs) and required
throughtput for a holographic system with a resolution of 2048 × 2048 pix-
els and a frame rate of 25 fps.

Properties
Rayleigh- Fresnel/Fraunhofer

Sommerfeld approximation

Algorithmic complexity∗ 2N2 + 1 1
Software run-time∗∗ (s) ≈ 82 ≈ 1.1
Required throughput (samples/s) 15.3G 210M

∗ Number of 2D-FFTs required. The original algorithm requires refinement with N = 6.
∗∗ based on FFTW 2D-FFT [67] on a Pentium-4 2.0 GHz.

For the current application, a 1.3Mpixel CMOS sensor with a video frame rate
of 15 fps has been selected. This is a trade-off to be able to produce high quality
images in close to video speed. However, it is likely that future image sensors
would enable combinations of higher resolution with higher frame rate.

3.3.2 Algorithmic Complexity

Table 3.1 compares the Rayleigh-Sommerfeld diffraction integral and the ap-
proximations in terms of complexity, run-time and required throughput for
real-time performance. The two-dimensional FFT is assumed to dominate
the reconstruction time, hence the comparison has been limited to a part of
the complete reconstruction process. For complexity analysis, the Rayleigh-
Sommerfeld diffraction integral is evaluated using 3 FFT calculations, with
additional 2 FFTs required for each refinement step. In contrast, only a single
FFT is required when applying the Fresnel and Fraunhofer approximations,
which is shown in Part I.

The two-dimensional FFT is evaluated on arrays that are larger than the
actual sensor size. The FFT size must be at least the sum of the sensor size
and the object size in each dimension. The digital image sensor used in this
work has a resolution of 1312×1032 pixels. The object size can be at most the
size of one quadrant on the sensor array, extending the processing dimensions
to 1968 × 1548 pixels. However, the size of the FFT must be selected and
zero-padded to a size of 2n, where n is an integer number. The closest option
is n = 11, which corresponds to an FFT of size 2048×2048 points. This defines
NFFT = 2048.

The frame rate in this application is a soft contraint. Based on the current
sensor device and the above definition of real-time video, the desired frame rate
is in the range of 15-25 fps. However, for the algorithmic complexity analysis
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Figure 3.9: Feasible design space points (grey) that comply with the
system requirements. Area is estimated based on similar designs.

in Table 3.1, a real-time video frame rate of 25 fps is assumed. The table shows
the run-time in software and the required throughput to meet the real-time
constraints.

3.3.3 Hardware Mapping

For hardware mapping, the approximations are applied and the complexity
reduction is further explained in Part I. To estimate the hardware requirements,
the throughput of the two-dimensional FFT is used. However, due to the large
transform size, implementation of the two-dimensional FFT is separated into
one-dimensional FFTs, first applied over rows and then over columns [68].
Hence, 2 × 2048 transforms of size 2048 must be computed for each frame,
resulting in a required throughput of

2N2
FFT × frate ≈ 210Msample/s,

where FFT size NFFT and frame rate frate are given by the specification. The
choice of hardware architecture and the selected system clock frequency control
the throughput, which results in the following relations

{
fclk × Tcc = 2N2

FFT × frate
A ∝ Tcc,

where fclk is the clock frequency, and Tcc is the scaled throughput in sam-
ples per clock cycle. It is assumed that the required area (complexity) A is
propositional to the throughput. An attempt to double the throughput for the
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FFT algorithm, for given operational conditions such as frequency and supply
voltage, would result in twice the amount of computational resources.

The equations enable design space exploration based on the variable param-
eters. Samples per clock cycle relate to architectural selection, while frequency
corresponds to operational conditions. Figure 3.9 shows points in the design
space that comply with the specification. Both graphs use the horizontal axis
to represent the architectural scaling, ranging from time-multiplexed (folded)
to more parallel architectures. Figure 3.9(a) shows the clock frequency required
for a certain architecture. Since the clock frequency has an upper feasible limit,
it puts a lower bound on Tcc. Figure 3.9(b) shows the area requirement, which
is assumed to grow linearly with the architectural complexity, and puts an up-
per bound on Tcc. Hence, Tcc is constrained by system clock frequency and the
hardware area requirement. The graphs can be used to select a suitable and
feasible architecture, where Tcc = 1 seems to be reasonable candidate. Based
on this estimated analysis, the architectural decisions are further discussed in
Part I.



Part I

A Hardware Acceleration Platform for

Digital Holographic Imaging

Abstract

A hardware acceleration platform for image reconstruction in digital holo-
graphic imaging is proposed. The hardware accelerator executes a computa-
tionally demanding reconstruction algorithm which transforms an interference
pattern captured on a digital image sensor into visible images. Focus in this
work is to maximize computational efficiency, and to minimize the external
memory transfer overhead, as well as required internal buffering. We present
an efficient processing datapath with a fast transpose unit and an interleaved
memory storage scheme. The proposed architecture results in a speedup with
a factor 3 compared with the traditional column/row approach for calculating
the two-dimensional FFT. Memory sharing between the computational units
reduces the on-chip memory requirements with over 50%. The custom hard-
ware accelerator, extended with a microprocessor and a memory controller,
has been implemented on a custom designed FPGA platform and integrated
in a holographic microscope to reconstruct images. The proposed architec-
ture targeting a 0.13µm CMOS standard cell library achieves real-time image
reconstruction with over 30 frames per second.

Based on: T. Lenart and M. Gustafsson and V. Öwall, “A Hardware Acceleration
Platform for Digital Holographic Imaging,” Springer Journal of Signal Processing

Systems, DOI: 10.1007/s11265-008-0161-2, Jan 2008.
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1 Introduction

In digital holography, the photographic film used in conventional holography
is replaced by a digital image sensor to obtain a digital hologram, as shown
in Figure 1(a). A reconstruction algorithm processes the images captured by
the digital sensor to create a visible image, which in this work is implemented
using a hardware acceleration platform, as illustrated in Figure 1(b).

A hardware accelerator for image reconstruction in digital holographic imag-
ing is presented. The hardware accelerator, referred to as Xstream, executes
a computationally demanding reconstruction algorithm based on a 2048×2048
point two-dimensional FFT, which requires a substantial amount of signal pro-
cessing. It will be shown that a general-purpose computer is not capable of
meeting the real-time constraints, hence a custom solution is presented.

The following section presents how to reduce the complexity of the recon-
struction algorithm, as presented in Chapter 3.2.1, and how it can be adapted
for hardware implementation. System requirements and hardware estimates
are discussed in Section 2, and Section 3 presents the proposed hardware archi-
tecture and the internal functional units. In Section 4, the hardware accelerator
is integrated into an embedded system, which is followed by simulation results
and proposed optimizations in Section 5. Results and comparisons are pre-
sented in Section 6 and finally conclusions are drawn in Section 7.

1.1 Reduced Complexity Image Reconstruction

As discussed in Chapter 3.2.1, the Rayleigh-Sommerfeld diffraction integral is
compute-intensive since it requires three two-dimensional FFTs to be evalu-
ated. However, by observing that |r′| ≪ |r|, the Fraunhofer or far-field ap-
proximation [63] simplifies the relation between the sensor plane and object
plane as

|r − r′| ≈ r − r · r′/r,

where r = |r|. This changes the diffraction integral in (3.2) to

Ψ(ρ′) =

∫

sensor

ψ(ρ)e−ik|r−rr|eik|r−r
′| dSρ

≈
∫

sensor

ψ(ρ)e−ik(|r−rr|−r)e−ikr·r′/r dSρ

=

∫

sensor

ψ(ρ)e−ik(|r−rr|−r)e−ikzz′/re−ikρ·ρ′/r dSρ

=

∫

sensor

ψ2(ρ)e−ikρ·ρ′/r dSρ. (1)
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Figure 1: (a) Simplified holographic setup capturing the light from a
laser source on a digital sensor. By blocking the reference or the object
beam, totally three images are captured representing the reference, the
object, and the hologram. (b) The three captured images are processed
by the presented hardware accelerator to reconstruct visible images on
a screen.

Assuming r ≈ z, which is a constant, the integral in (1) is the definition of the
two-dimensional FFT, where

ψ2(ρ) = ψ(ρ)e−ik(|r−rr|−r)e−ikzz′/r. (2)

The first exponential term in (2) can be removed since it only affects the object
location in the reconstructed image. Instead, the coordinates of the object loca-
tion can be modified after reconstruction. The image reconstruction algorithm
with reduced complexity requires only a single FFT as

Ψ(ρ′) ≈ F(ψ(ρ)e−ikzz′/r), (3)

where α(ρ) = kzz′/r is referred to as the phase factor.

1.2 Algorithm Selection

The visible quality difference between using the convolution algorithm and
applying the far-field approximation is shown in Figure 2(b-c). In this example,
the convolution algorithm is interpolated N = 6 times in each dimension, which
requires a total of 2(N2) + 1 = 73 FFTs to be evaluated, while the algorithm
based on the far-field approximation requires only a single FFT. For the current
application, the visual difference between the images is negligible. Hence, the
algorithm with reduced complexity has been chosen due to the substantially
lower computational effort. The possibility to evaluate convolutions is still
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(a) (b) (c)

Figure 2: (a) Reconstructed images from the reference, object, and holo-
gram captured by the digital sensor. (b) Close-up of the resulting im-
age using the convolution reconstruction algorithm. (c) Close-up of the
resulting image using the reduced complexity reconstruction algorithm
(far-field approximation). The difference in visual quality is negligible.

supported by our proposed architecture, and a special bidirectional pipeline
FFT is presented in Section 3.3 for this purpose.

2 System Requirements

As discussed in Chapter 3.3, the performance of the two-dimensional FFT will
limit the number of frames that can be reconstructed per second. The selected
digital image sensor has a resolution of 1312 × 1032 pixels, with a pixel pitch
of 6 × 6µm, and a precision of 8 bits per pixel. The hardware accelerator is
designed to satisfy the following specification:







frate = 25 fps
NFFT = 2048 points
Tcc = 1 sample/cc

Captured images and intermediate results during computation must be
stored in external memory. Each captured image requiring 1312 × 1032 × 8 ≈
1.3Mbytes of storage space, and a table of the same size is required to store
pre-computed phase factors. Two intermediate memory areas, in 32-bit preci-
sion and with the same size as the two-dimensional FFT, are needed during
processing. Hence, an estimate of the required amount of external memory is
4 · 1.3 + 2(4 ·N2

FFT) ≈ 37.2Mbytes. Due to the large amount of external mem-
ory, the use of static RAM (SRAM) is not a feasible solution, and instead two
parallel 512-Mbit Synchronous Dynamic RAM (SDRAM) has been used [69].

An estimate of the required processing speed can be found by analyzing
the two-dimensional FFT, which is the most compute intensive part of the
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Figure 3: Dataflow divided into three processing steps, where grey
boxes indicate memory transfers and white boxes indicate computation.
(a) Combine, rotate, and one-dimensional FFT over rows. (b) One-
dimensional FFT over columns and store peak amplitude. (c) Calculate
magnitude or phase and scale result into pixels.

system. The FFT is a separable transform and can be calculated by con-
secutively applying one-dimensional transforms over rows and columns [68].
However, the three-dimensional organization of SDRAM devices into banks,
rows, and columns, results in non-uniform access time to memory contents.
Accessing different banks or consecutive elements inside a row has a low la-
tency, while accessing data in different rows has a high latency. Therefore, the
memory bandwidth is highly dependent on the access pattern, and data should
be transferred in bursts accessing consecutive row elements [14]. Calculating
the FFT over columns will consequently result in a longer latency for each
memory access, resulting in a reduced throughput. An alternative, which is
presented in Section 3.4, is to transpose the data as an intermediate step in
the two-dimensional FFT. This improves the overall performance, but requires
data to be transferred to and from memory three times to compute a single
frame. With a dual memory system, supporting simultaneous reads and writes
in burst mode, the system operating frequency must hence be in the range of
3 ·N2

FFT · 25 fps ≈ 300MHz.

3 Proposed Architecture

Figure 3 shows the dataflow for the reconstruction algorithm and additional
processing to obtain the result image. Images recorded with the digital sensor
are transferred and stored in external memory. The processing is divided into
three sequential steps, each streaming data from external memory. Storing
images or intermediate data in on-chip memory is not feasible due to the size of
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Figure 4: Functional units in the Xstream accelerator. Grey boxes (M)
indicate units that contain local memories. All processing units commu-
nicate using a handshake protocol as illustrated between the DMA and
the combine unit.

the two-dimensional FFT, which requires the processing flow to be sequential.
Figure 3(a) shows the first processing step where images are combined and
each pixel vector is rotated with a phase factor according to (3), and one-
dimensional FFTs are calculated over the rows. Figure 3(b) shows the second
processing step, which calculates one-dimensional FFTs over the columns. The
peak amplitude max(|Ψ|) is stored internally before streaming the data back
to memory. In the final processing step, shown in Figure 3(c), the vector
magnitude or phase is calculated to produce a visible image with 8-bit dynamic
range.

3.1 Algorithm Mapping

The dataflow in Figure 3 has been mapped onto a pipeline architecture con-
taining several 32-bit processing units, referred to as Xstream. The name
Xstream denotes that the accelerator operates on data streams with focus
on maximizing the computational efficiency with concurrent execution, and
optimizing global bandwidth using long burst transfers. Processing units com-
municate internally using a handshake protocol, with a valid signal from the
producer and an acknowledge signal back from the receiver. Each of the units
has local configuration registers that can be individually programmed to setup
different operations, and a global register allows units to be enabled and dis-
abled to bypass parts of the pipeline.

Figure 4 shows the Xstream pipeline, which streams data from external
memories using DMA interfaces, where each interface can be connected to a
separate bus or external memory to operate concurrently. In the first processing
step, the recorded images are combined to compute the modified interference
pattern. The combine unit is constructed from a reorder unit to extract pixels
from the same position in each image, and a subtract unit. The resulting
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interference pattern is complex-valued with the imaginary part set to zero.
This two-dimensional pixel vector is then rotated with the phase factor α(ρ),
defined in Section 1.1, using a coordinate rotation digital computer (CORDIC)
unit operating in rotation mode [70]. The CORDIC architecture is pipelined
to produce one complex output value each clock cycle. Rotation is followed by
a two-dimensional Fourier transformation, evaluated using a one-dimensional
FFT separately applied over rows and columns. Considering the size of the two-
dimensional FFT, data must be transferred to the main memory between row
and column processing, which requires a second processing step. The buffer unit
following the FFT is required to unscramble the FFT output since it is produced
in bit-reversed order, and to perform a spectrum shift operation to center the
zero-frequency component. In the third processing step, the CORDIC unit is
reused to calculate magnitude or phase images from the complex-valued result
produced by the FFT. The output from the CORDIC unit is scaled using
the complex multiplier (CMUL) in the pipeline, from floating-point format
back to fixed-point numbers that represent an 8-bit grayscale image. The
following sections present architectures and simulations of the functional units
in detail. The simulation results are further analyzed in Section 5 to select
design parameters.

To efficiently supply the processing units with data, a high bandwidth to
external memories is required. The external SDRAM is burst oriented and the
bandwidth depends on how data is being accessed. Linear or row-wise access
to the memory generates a high bandwidth since the read/write latency for
accessing sequential element is low, while random and column-wise access sig-
nificantly degrades the performance due to increased latency. Some algorithms,
for example the two-dimensional FFT, require both row-wise and column-wise
data access. Memory access problems are addressed in the following sections,
where we propose modifications to the access pattern to optimize the memory
throughput.

3.2 Image Combine Unit

The combine unit processes the three images captured by the digital sensor
according to (3.1) in Chapter 3.2.1. An additional table (image) containing
pre-calculated phase factors α(ρ) is stored in main memory, and is directly
propagated through the combine unit to the CORDIC unit. Since all four
images have to be accessed concurrently, the physical placement in memory
is an important aspect. We first consider the images to be stored in separate
memory regions, as shown in Figure 5(a). The read operation would then
either be single reads accessing position (x, y) in each image, or four burst
transfers from separate memory location. In the former case, simply accessing
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Figure 5: (a) The three captured images and the phase factor. (b) Ex-
ample of how the captured images are stored interleaved in external
memory. The buffer in the combine unit contains 4 groups holding 8
pixels each, requiring a total buffer size of 32 pixels. Grey indicates the
amount of data copied to the input buffer in a single burst transfer.

the images pixel-by-pixel from a burst oriented memory is inefficient since it
requires four single transfers for each pixel. For the latter approach the burst
transfers will require four separate DMA transfers, and each transfer will cause
latency when accessing a new memory region. Accessing the data in one single
burst transfer would be desirable, and therefore our approach is to combine
images by reordering the physical placement in memory during image capture.

Instead of storing the images separately, they can be stored interleaved in
memory directly when data arrive from the sensor, as shown in Figure 5(b).
Hence, partial data from each image is fetched in a single burst transfer and
stored in a local buffer. Thereafter, the data sequence is reordered using a
modified n-bit address counter from linear address mode [an−1an−2 . . . a1a0]
to extract image information pixel-by-pixel using a reordered address mode
[a1a0an−1 . . . a2] as

in : {{ψ0...B−1
h }{ψ0...B−1

o }{ψ0...B−1
r }{ψ0...B−1

α }}
out : {{ψ0

hψ
0
oψ

0
rψ

0
α}{. . .}{. . .}{ψB−1

h ψB−1
o ψB−1

r ψB−1
α }},

where B is the size of the block of pixels to read from each image. Hence,
the internal buffer in the combine unit must be able to store 4B pixels. Using
this scheme, both storing captured images and reading images from memory
can be performed with single burst transfers. Figure 6 shows how the reorder
operation depends on the burst size Nburst, a parameter that also defines the
block size B and the required internal buffering. For a short burst length, it is
more efficient to store the images separately since the write operation can be
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including both the write and the read operation to and from mem-
ory. The dashed lines show the read and write part from the inter-
leaved version. Simulation assumes that two memory banks are con-
nected the Xstream accelerator. (Memory device: [69], 2 × 16 bit,
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burst oriented. When the burst length increases above 8, interleaving becomes
a suitable alternative but requires more buffer space. A trade-off between speed
and memory is when the curve that represents interleaving flattens out, which
suggests a burst length between 32 and 64. Parameter selection is further
discussed in Section 5.

3.3 One-Dimensional Flexible FFT Core

The FFT is a separable transform, which means that a two-dimensional FFT
can be calculated using a one-dimensional FFT applied consecutively over the
x and y dimensions of a matrix. We present the implementation of a high-
precision one-dimensional FFT using data scaling, that is used as the core
component in a two-dimensional FFT presented in Section 3.4. The FFT im-
plementation is based on a radix-22 single-path delay feedback architecture [71].
It supports data scaling to reduce the wordlength to only 10 bits, and supports
input data in both linear and bit-reversed order.
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Figure 7: (a) The FFT pipeline is constructed from modified radix-2
units (MR-2). For a 2048-point FFT, totally 5 MR-22 and one MR-2
unit is required. (b) A modified radix-2 unit containing a selection unit
for switching between linear and bit-reversed mode, an alignment unit
for hybrid floating-point, and a butterfly unit.

Scaling alternatives - Various data scaling alternatives have been evaluated
in this work and the approach selected for the current implementation is briefly
presented below. A more detailed description and comparison is given in [72],
with the focus on various types of data scaling, and related work is presented
in [73]. We propose to use a reduced complexity floating-point representation
for complex valued numbers called hybrid floating-point, which uses a shared
exponent for the real and imaginary part. Besides reduced complexity in the
arithmetic units, especially the complex multiplication, the total wordlength
for a complex number is reduced. Figure 7(a) shows the pipeline architecture
with cascaded processing units. The radix-2 units are modified to support data
scaling by adding an alignment unit before the butterfly operation, presented in
Figure 7(b). The output from the complex multipliers requires normalization,
which is implemented using a barrel shifter. The proposed hybrid floating-point
architecture has low memory requirements but still generates a high SQNR of
45.3 dB.
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Bidirectional pipeline - An architecture with a bidirectional pipeline has
been implemented to support the convolution-based algorithm. A bidirectional
dataflow can be supported if the wordlength is constant in the pipeline, which
enables the data to be propagated through the butterfly units in reverse order.
Reversing the data flow means that it is possible to support both linear and
bit-reversed address mode on the input port, as shown in Figure 7(a). To-
day, one-directional FFT with optimized wordlength in each butterfly unit is
commonly used, increasing the wordlength through the pipeline to maintain ac-
curacy. Implementations based on convergent block floating-point (CBFP) are
also proposed in [74], but both of these architectures only work in one direction.
Our bidirectional pipeline simplifies the memory access pattern when evaluat-
ing a one- or two-dimensional convolution using the FFT [75]. If the forward
transform generates data in bit-reversed order, input to the reverse transform
should also be bit-reversed. The result is that both input and the output from
the convolution is in normal bit order, hence no reorder buffers are required.
Other applications for a bidirectional pipeline is in OFDM transceivers to min-
imize the required buffering for inserting and removing the cyclic suffix, which
has been proposed in [76].

3.4 Two-Dimensional FFT

The two-dimensional FFT is calculated using the one-dimensional FFT core
from Section 3.3. Calculating the two-dimensional FFT requires both row-
wise and column-wise access to data, which will cause a memory bottleneck as
discussed in Section 2. The memory access pattern when processing columns
will cause a serious performance loss since new rows are constantly accessed,
preventing burst transfers. However, it can be observed that an equivalent pro-
cedure to the row/column approach is to transpose the data matrix between
computations. This means that the FFT is actually applied two times over
rows in the memory separated with an intermediate transpose operation. If
the transpose operation combined with FFTs over rows is faster than FFTs
over columns, then the total execution time is reduced. To evaluate this ap-
proach, a fast transpose unit is proposed.

Transpose unit - Considering the large size of the data matrix, on-chip storage
during processing is not realistic and transfers to external memory is required.
The access pattern for a transpose operation is normally reading rows and
writing columns, or vice versa. To avoid column-wise memory access, a trans-
pose operation can be broken down into a set of smaller transpose operations
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]

.

The matrix is divided recursively using a divide-and-conquer approach,
which can be performed all the way down to single elements. Breaking the
matrix down into single elements is not desirable, since all accesses result in
single read and write operations. However, if the matrix is divided into smaller
macro blocks that fit into an on-chip buffer with a minimum size of M ×M
elements, burst transfers of size Nburst ≤ M can be applied for both read and
write operations. Hence, data is always transferred to and from the buffer
as consecutive elements, while the actual transpose operation is performed in
the buffer by writing rows and reading columns. The transpose operation is
illustrated in Figure 8. The macro blocks are transferred to the internal buffer
using direct memory access (DMA) units and address generation units (AGU)
provide a base address for each macro block as

ADDRx,y = M(x+ yNFFT) x, y = 0, 1, . . . ,M − 1.

Input and output AGUs generate base addresses in reverse order by exchanging
index counters x, y to relocate the macro blocks. Figure 9 shows a simulation of
the row-column FFT and the row-transpose-row FFT. For the latter approach,
the transpose operation is required, also shown separately in the graph. When
the burst length is short, the transpose overhead dominates the computation
time. When the burst length increases, the row-transpose-row FFT improves
the overall performance. The graph representing row-transpose-row flattens
out when the burst length is between 16 and 32 words, which is a good trade-
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also shown separately. Simulation assumes that two memory banks are
connected the Xstream accelerator. (Memory device: [69], 2 × 16 bit,
fmem = fbus = 133MHz)

off between speed and memory. Parameter selection is further discussed in
Section 5.

4 System Design

This section presents the integration of the Xstream accelerator into an em-
bedded system and a prototype of a holographic microscope. The system cap-
tures, reconstructs and presents holographic images. The architecture is based
on the Xstream accelerator, extended with an embedded SPARC compat-
ible microprocessor [77] and a memory controller for connecting to external
memory. Only a single memory interface is supported in the prototype, but
the Xstream accelerator supports streaming from multiple memories. Two
additional interface blocks provide functionality for capturing images from an
external sensor device and to present reconstructed images on a monitor. The
complete system is shown in Figure 10.
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Figure 10: The system is based on a CPU (LEON), a hardware acceler-
ator, a high-speed memory controller, an image sensor interface and a
VGA controller.

4.1 External Interface

Xstream communicates using a standard bus interface to transfer data be-
tween the processing pipeline and an external memory, where data is trans-
ferred using DMA modules as shown in Figure 11. The custom designed DMA
modules connect to the on-chip bus, and are constructed from three blocks:
a bus interface, a buffer module and a configuration interface. One side con-
nects to the external bus while the other side connects to the internal dataflow
protocol.

The DMA bus interface is compatible with the advanced high-speed bus
(AHB) protocol which is a part of the AMBA specification [78]. Configuration
data is transferred over the advanced peripheral bus (APB). The bus interface
reads and writes data using transfers of any length, which allows fast access to
burst oriented memories. By specifying a base address (addr), the transfer size
(hsize, vsize), and the space between individual rows (skip), the bus interface
can access a two-dimensional matrix of any size inside a two-dimensional ad-
dress space of any size. The DMA interface also supports an external address
generation unit (AGU). This interface can be used to automatically restart the
DMA transfer from a new base address when the previous transfer has com-
pleted. Hence, there is no latency between transfers. This is useful when pro-
cessing or moving data inside a larger memory space, e.g. a matrix of blocks.
An illustrating example is the transpose operation described in Section 3.4,
which relocates blocks of data inside a matrix. The block is the actual transfer
and matrix is the current address space.

The DMA buffer contains a format transformation unit that allows splitting
of words into sub-word transfers on the read side and combining sub-words into
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Figure 11: (a) The DMA interface connects the internal dataflow protocol
to the external bus using a buffer and an AMBA bus interface. (b)
The DMA interface can access a two-dimensional matrix inside a two-
dimensional memory array, where skip is the distance to the next row.

words on the write side. An example is when calculating the vector magnitude
of the resulting image and then rescaling the value into an 8-bit pixel. Pixels
are processed individually, but combined into 32-bit words (groups of 4 pixels)
in the buffer before transferred to the memory to reduce the transfer size. The
buffer also has the ability to reorder the output data in various ways, which is
further explained in Section 5.1.

4.2 Software Design

The Xstream accelerator is configured by an on-chip processor. A program
is running on the embedded processor, utilizing the hardware accelerator to
capture, process and present images. For development purpose, the software
program also has the capability of emulating all the hardware resources in soft-
ware, which means that the system can run on any computer with a C compiler.
For evaluation purpose, the software also contains a full-precision floating-point
model, which can be activated to evaluate the arithmetic accuracy of the hard-
ware units.

On the embedded system, platform specific drivers control the underlying
hardware through configuration registers. Each driver has two modes, one for
controlling the hardware and one for controlling the corresponding hardware
emulator. Switching between hardware and emulated hardware is done trans-
parently during compile time, based on the current platform. For example,
capturing images from the sensor is on the computer implemented by reading
a bitmap image from a file. Output to a monitor is emulated with a graph-
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Figure 12: The platform independent software running in Microsoft Vi-
sual Studio. The hardware accelerator, sensor and monitor are emulated
in software.

ical window, as shown in Figure 12. From an application point of view, the
behavior of the system is the same.

5 Simulation and Optimization

Design parameter values that affect the performance and on-chip memory re-
quirements, such as the burst length Nburst, are chosen based on the Matlab
simulations presented in previous sections. For an accurate simulation, mem-
ory timing parameters are extracted from the same memory device as used in
the hardware prototype, which is two parallel 512-Mbit SDRAM devices from
Micron Technology, with a combined wordlength of 32 bits [69].

5.1 Flexible Addressing Modes

Many of the functional units contain buffers to store and re-arrange data, where
each buffer requires a special addressing mode as presented in Table 1. In the
next section some of the buffers are merged to save storage space, and therefore
it is important that each buffer supports a flexible addressing mode to maintain
the original functionality after merging. Figure 13 illustrates how different
addressing modes are used to rearrange input data. Data is always written
to the buffer using linear addressing, and when reading from the buffer the
address mode determines the order of the output sequence. Both bit-reverse
and FFT spectrum shift depends on the transform size, i.e. the number of
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Table 1: Required buffering inside each processing block for the original and op-
timized pipeline. The addressing mode for each buffer depends on the function
that the block is evaluating.

Unit Buffer Original Optimized Addr mode

DMA Input buffer Nburst Nburst Linear
Combine Reorder Nburst 0 Interleaved
FFT Delay feedback NFFT−1 NFFT−1 FIFO
Buffer Transpose Nburst

2 max(Nburst
2, NFFT) Col-row swap

Bit-reverse NFFT 0 Bit-reversed
Spectrum shift NFFT/2 0 FFT shift

DMA Output buffer Nburst 0 Linear

address bits, which requires the addressing modes to be flexible with a dynamic
address wordlength. Since bit-reverse and FFT spectrum shift is often used in
conjunction, this addressing mode can be optimized. The spectrum shift inverts
the MSB, as shown in Figure 13(d), and the location of the MSB depends on
the transform size. However, in bit-reversed addressing the MSB is actually the
LSB, and the LSB location is always constant. By reordering the operations,
the cost for moving the spectrum is a single inverter.

5.2 Memory Optimization

Table 1 presents the required buffering in each functional unit, where some
of the units can merge buffers if they support the flexible addressing mode
presented in Section 5.1. The table also presents an optimized pipeline with
merged buffers. Units without a buffer after optimization read data directly
from the buffer located in the previous unit. The following optimizations are
performed:

• The reorder operation in the image combine block is moved to the DMA
input buffer. The only modification required is that the DMA input
buffer must support both linear and interleaved addressing mode.

• The transpose buffer for two-dimensional FFT transforms is reused for
bit-reversal and FFT spectrum shift. These are in fact only two different
addressing modes, which are supported by the transpose buffer. Merging
these operations save a large amount of memory, since both bit-reverse
and FFT shift require the complete sequence and half the sequence to be
stored, respectively.
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Figure 13: Buffers support multiple addressing modes to rearrange data.
an represents the address bits, and the input data (top) is addressed
with a linear counter. (a) Interleaving with 4 groups and 8 values in
each group. (b) Transpose addressing for an 8 × 8 macro block matrix
by swapping row and column address bits. (c) Bit-reversed addressing
to unscramble FFT data. (d) FFT spectrum shift by inverting the MSB.

• The output DMA read data in linear mode directly from the main buffer
unit.

Figure 14 shows the memory requirements before and after optimization and
how it depends on Nburst. The delay feedback memory in the FFT can not be
shared and is not included in the memory simulation. For short burst lengths,
the memory requirements are reduced from ≈ 3K words to ≈ 2K words. The
memory requirement then increases with the burst length for the unoptimized
design, but stays constant for the optimized design up to Nburst = 32. After
this point, the memory requirements for both architectures rapidly increase.

5.3 Parameter Selection

The shared buffer unit in the pipeline must be at least the size of NFFT to
support the bit-reverse operation. It is reused for the transpose operation,
which requires Nburst

2 elements. The buffer size is hence the maximum of the
two. Figure 14 shows how the memory requirements depend on the design
parameter Nburst, which should be maximized under the condition that

N2
burst ≤ NFFT = 2048,



60 PART I. A HARDWARE ACCELERATION PLATFORM FOR DIGITAL...

Burst length Nburst

M
em

or
y

w
or

d
s

Unoptimized pipeline
Optimized pipeline

1 2 4 8 16 32 64 128
0

2K

4K

6K

8K

10K

12K

14K

Figure 14: Memory requirements in 32-bit words for different values on
Nburst when NFFT= 2048. The delay feedback memory is not included
since it can not be shared with other units.

and that Nburst is an integer power of 2. When Nburst
2 exceeds NFFT, internal

memory requirements rapidly increases, which leads to a high area cost accord-
ing to Figure 14 and a relatively low performance improvement according to
Figure 6 and Figure 9. Another condition is that the image read operation
should generate one set of pixels per clock cycle, or at least close to this value,
to supply the FFT with input data at full speed to balance the throughput.
Selecting Nburst = 32 satisfy the conditions and results in:

• A total of 3.2 cc/element for calculating the two-dimensional FFT, com-
pared with up to 10 clock cycles for the traditional row-column approach,
as shown in Figure 9. This is a speed-up factor of approximately 3 for
the two-dimensional FFT.

• The combine unit requires 2.8 cc/element to store and read the image
data from external memory in interleaved mode. This is a speed-up factor
of approximately 2 compared to storing images separately in memory, as
shown in Figure 6.

• The combine unit is capable of constantly supplying the FFT unit with
data. Hence, the total system speed-up factor is the same as for the
two-dimensional FFT.
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Table 2: Equivalent gates (NAND2) and memory cells (RAM and ROM) after
synthesis to a 0.13µm standard cell library. Slice count and block RAMs are
presented for the FPGA design.

Module Eq. gates RAM ROM FPGA # Block
(logic only) (Kbit) (Kbit) (Slices) RAMs

DMA Input 3123 (3%) 1.0 0 223 (3%) 1
Combine 2489 (2%) 0 0 198 (2%) 0
CORDIC 10016 (8%) 0 0 403 (5%) 0
CMUL 5161 (4%) 0 0 362 (5%) 0
FFT 83430 (70%) 49.0 47.6 5826 (73%) 25
Buffer 1287 (1%) 65.5 0 166 (2%) 16
DMA Output 2592 (2%) 0 0 102 (1%) 0
AGU (2x) 2148 (2%) 0 0 110 (1%) 0
Sensor I/F 4574 (4%) 1.0 0 280 (4%) 1
VGA I/F 4469 (4%) 1.0 0 315 (4%) 1

Total 119289 117.5 47.6 7985 45

• The optimized pipeline requires less then 50% of the memory compared
to the original pipeline, reduced from over 4Kbit down to 2Kbit as shown
in Figure 14.

6 Results and Comparisons

The system presented in Section 4 has been synthesized for FPGA, targeting
a Xilinx Virtex-1000E device, and integrated into a microscope based on digi-
tal holography to reconstruct images captured with a sensor device, shown in
Figure 15(a). The microscope is shown to the right, and the screen in middle
is connected to the FPGA platform to display the resulting image from the
reconstruction. The computer to the left runs a graphical user interface to
setup the hardware accelerator and to download reconstructed images for fur-
ther processing. The FPGA prototyping board is shown in Figure 15(b) and
contains a Virtex-1000E device, 128MB of SDRAM, a digital sensor interface,
and a VGA monitor interface.

The design has also been synthesized to a high-speed 0.13µm standard
cell library from Faraday. Synthesis results from both implementations can be
found in Table 2. The table shows the number of equivalent gates (nand2)
and the memory requirements including both RAM and ROM (twiddle factor
tables in the FFT). For FPGA synthesis, the number of occupied slices and
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Table 3: Comparison between related work and the proposed architecture. Per-
formance is presented as fps/MHz, normalized to 1.0 for the proposed FPGA
design.

Technology Freq Mem Rate FPGA Performance
(MHz) I/F (fps) Slices (relative)

Pentium-4 Dual Core 3GHz Dual 0.8 - 0.0044
0.35µm [79] 133 Single 2.6 - 0.3
XCV2000E [80] 35 Quad 2.0 8480 0.9
Proposed XCV1000E 24 Dual 1.5 7985 1.0
Proposed 0.13µm 398 Dual ≈ 31 - 1.27

required block RAMs are presented, where the Xstream accelerator occupies
approximately 65% of the FPGA resources. The largest part of the design is
the 2048-point pipeline FFT, which is approximately 73% of the Xstream ac-
celerator. The FPGA design runs at a clock frequency of 24MHz, limited by
the embedded processor, while the design synthesized for a 0.13µm cell library
is capable of running up to 398MHz. A floorplan of the Xstream accelerators
is shown in Figure 16, with a core area of 1500 × 1400µm2 containing 352K
equivalent gates.

In related work on two-dimensional FFT implementation, the problem with
memory organization is not widely mentioned. Instead, a high bandwidth from
memory with uniform access-time is assumed (SRAM). However, for computing
a large size multi-dimensional FFT the memory properties and data organiza-
tion must be taken into account, as discusses in this work. Table 3 shows a
comparison between the proposed architecture, a modern desktop computer,
and related work. In [79], an ASIC design of a 512-point two-dimensional FFT
connected to a single memory interface has been presents. [80] presents an
FPGA implementation with variable transform size storing data in four sep-
arate memory banks. To compare the processing efficiency between different
architectures, a performance metric is defined as (fps / MHz) and normalized
to 1.0 for the proposed FPGA implementation. The frame rate is estimated for
a transform size of 2048× 2048 points. The table shows the proposed architec-
ture to be highly efficient, resulting in real-time image reconstruction with over
30 fps for the proposed ASIC design. The reason for increased efficiency when
targeting ASIC is that the DMA transfers with fixed bandwidth requirements,
such as the sensor and VGA interfaces from Figure 10, will have less impact
on the total available bandwidth as the system clock frequency increases.
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Figure 15: (a) Microscope prototype connected to an external monitor.
(b) The hardware platform containing a Virtex-1000E device, 128MB of
SDRAM, a digital sensor interface, and a VGA monitor interface.
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Figure 16: Final layout of the Xstream accelerator using a 0.13µm cell
library. The core size is 1500 × 1400µm2.
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7 Conclusion

A hardware acceleration platform for image processing in digital holography
has been presented. The hardware accelerator contains an efficient datapath
for calculating FFT and other required operations. A fast transpose unit is
proposed to significantly improve the computation time for a two-dimensional
FFT, which improves the computation time with a factor of 3 compared with
the traditional row/column approach. To cope with the increased bandwidth
and to balance the throughput of the computational units, a fast reorder unit is
proposed to store captured images and read data in an interleaved fashion. This
results in a speedup of 2 compared with accessing separately stored images in
memory. It is also shown how to reduce the memory requirement in a pipelined
design with over 50% by sharing buffers between modules. The design has been
synthesized and integrated in an FPGA-based system for digital holography.
The same architecture targeting a 0.13µm CMOS standard cell library achieves
real-time image reconstruction with over 30 frames per second.
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A High-performance FFT Core for Digital

Holographic Imaging

Abstract

Dynamic data scaling in pipeline FFTs is suitable when implementing large
size FFTs in applications such as DVB and digital holographic imaging. In
a pipeline FFT, data is continuously streaming and must hence be scaled
without stalling the dataflow. We propose a hybrid floating-point scheme
with tailored exponent datapath, and a co-optimized architecture between hy-
brid floating-point and block floating-point to reduce memory requirements for
two-dimensional signal processing. The presented co-optimization generates
a higher SQNR and requires less memory than for instance convergent block
floating-point. A 2048 point pipeline FFT has been fabricated in a standard
CMOS process from AMI Semiconductor [9], and an FPGA prototype integrat-
ing a two-dimensional FFT core in a larger design shows that the architecture
is suitable for image reconstruction in digital holographic imaging.

Based on: T. Lenart and V. Öwall, “Architectures for dynamic data scaling in
2/4/8K pipeline FFT cores,” IEEE Transaction on Very Large Scale Integration.
ISSN 1063-8210, vol. 14, no. 11, Nov 2006.

and: T. Lenart and V. Öwall, “A 2048 Complex Point FFT Processor using a Novel
Data Scaling Approach,” in Proceedings of IEEE International Symposium on Circuits

and Systems, vol. 4, Bangkok, Thailand, May 2003, pp. 45–48.
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1 Introduction

The discrete Fourier transform is a commonly used operation in digital signal
processing, where typical applications are linear filtering, correlation, and spec-
trum analysis [68]. The Fourier transform is also found in modern communi-
cation systems using digital modulation techniques, including wireless network
standards such as 802.11a [81] and 802.11g [82], as well as in audio and video
broadcasting using DAB and DVB.

The DFT is defined as

X(k) =

N−1∑

n=0

x(n)W kn
N 0 ≤ k < N, (1)

where

WN = e−i2π/N . (2)

Evaluating (1) requires N MAC operations for each transformed value in X, or
N2 operations for the complete DFT. Changing transform size significantly af-
fects computation time, e.g. calculating a 1024-point Fourier transform requires
three orders of magnitude more work than a 32-point DFT.

A more efficient way to compute the DFT is to use the fast Fourier transform
(FFT) [83]. The FFT is a decomposition of an N -point DFT into successively
smaller DFT transforms. The concept of breaking down the original problem
into smaller sub-problems is known as a divide-and-conquer approach. The
original sequence can for example be divided into N = r1 · r2 · ... · rq where each
r is a prime. For practical reasons, the r values are often chosen equal, creating
a more regular structure. As a result, the DFT size is restricted to N = rq,
where r is called radix or decomposition factor. Most decompositions are based
on a radix value of 2, 4 or even 8 [84]. Consider the following decomposition of
(1), known as radix-2

X(k) =

N−1∑

n=0

x(n)W kn
N

=

N/2−1
∑

n=0

x(2n)W
k(2n)
N +

N/2−1
∑

n=0

x(2n+ 1)W
k(2n+1)
N

=

N/2−1
∑

n=0

xeven(n)W kn
N/2

︸ ︷︷ ︸

DFTN/2(xeven)

+W k
N

N/2−1
∑

n=0

xodd(n)W kn
N/2

︸ ︷︷ ︸

DFTN/2(xodd)

. (3)
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The original N -point DFT has been divided into two N/2 DFTs, a procedure
that can be repeated over again on the smaller transforms. The complexity is
thus reduced from O(N2) to O(N log2N). The decomposition in (3) is called
decimation-in-time (DIT), since the input x(n) is decimated with a factor of 2
when divided into an even and odd sequence. Combining the result from each
transform requires a scaling and add operation. Another common approach
is known as decimation-in-frequency (DIF), splitting the input sequence into
x1 = {x(0), x(1), ..., x(N/2 − 1)} and x2 = {x(N/2), x(N/2 + 1), ..., x(N − 1)}.
The summation now yields

X(k) =

N/2−1
∑

n=0

x(n)W kn
N +

N−1∑

n=N/2

x(n)W kn
N (4)

=

N/2−1
∑

n=0

x1(n)W kn
N +W

kN/2
N

︸ ︷︷ ︸

(−1)k

N/2−1
∑

n=0

x2(n)W kn
N ,

where W
kN/2
N can be extracted from the summation since it only depends on

the value of k, and is expressed as (−1)k. This expression divides, or decimates,
X(k) into two groups depending on whether (−1)k is positive or negative. That
is, one equation calculate the even values and one calculate the odd values as
in

X(2k) =

N/2−1
∑

n=0

(

x1(n) + x2(n)
)

W kn
N/2 (5)

= DFTN/2(x1(n) + x2(n))

and

X(2k + 1) =

N/2−1
∑

n=0

[(

x1(n) − x2(n)
)

Wn
N

]

W kn
N/2 (6)

= DFTN/2((x1(n) − x2(n))Wn
N ).

(5) calculates the sum of two sequences, while (6) calculates the difference and
then scales the result. This kind of operation, adding and subtracting the same
two values, is commonly referred to as butterfly due to its butterfly-like shape in
the flow graph, shown in Figure 1(a). Sometimes, scaling is also considered to
be a part of the butterfly operation. The flow graph in Figure 1(b) represents
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Figure 1: (a) Butterfly operation and scaling. (b) The radix-2
decimation-in-frequency FFT algorithm divides an N -point DFT into
two separate N/2-point DFTs.

the computations from (5) and (6), where each decomposition step requires
N/2 butterfly operations.

In Figure 1(b), the output sequence from the FFT appears scrambled. The
binary output index is bit-reversed, i.e. the most significant bits (MSB) have
changed place with the least significant bits (LSB), e.g. 11001 becomes 10011.
To unscramble the sequence, bit-reversed indexing is required.

1.1 Algorithmic Aspects

From an algorithmic perspective, several possible decomposition algorithms
exist [85]. The radix-2 algorithm can be used when the size of the transform
is N = 2q, where q ∈ Z

+. The algorithm requires q decomposition steps, each
computing N/2 butterfly operation using a radix-2 (R-2) butterfly, shown in
Figure 1(a).

However, when the size is N = 4q, more hardware efficient decomposition
algorithms exist. One possible alternative is the radix-4 decomposition, which
reduces the number of complex multiplications with the penalty of increas-
ing the number of complex additions. The more complex radix-4 butterfly is
shown in Figure 2(a). Another decomposition similar to radix-4 is the radix-
22 algorithm, which simplifies the complex radix-4 butterfly into four radix-2
butterflies [71]. On a flow graph level, radix-4 and radix-22 requires the same
number of resources. The difference between the algorithms become evident
when folding is applied, which is shown later. The radix-22 (R-22) butterfly
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Figure 2: (a) Radix-4 butterfly. (b) Radix-22 butterfly.

is found in Figure 2(b). To calculate an FFT size not supported by radix-4
and radix-22, for example 2048, both radix-4 decompositions and a radix-2
decomposition is needed since N = 2048 = 2145.

1.2 Architectural Aspects

There are several ways of mapping an algorithm to hardware. Three approaches
are discussed and evaluated in this section: direct-mapped hardware, a pipeline
structure, and time-multiplexing using a single butterfly unit. Direct-mapped
hardware basically means that each processing unit in the flow graph is im-
plemented using a unique arithmetic unit. Normally, using this approach in a
large and complex algorithm is not desirable due to the huge amount of hard-
ware resources required. The alternative is to fold operations onto the same
block of hardware, an approach that saves resources but to the cost of increased
computation time.

Figure 3(a) shows a 4-point radix-2 FFT. Each stage consists of two butter-
fly operations, hence the direct-mapped hardware implementation requires 4
butterfly units and 2 complex multiplication units, numbers that will increase
with the size of the transform. Folding the algorithm vertically, as shown in
Figure 3(b), reduces hardware complexity by reusing computational units, a
structure often referred to as a pipeline FFT [86]. A pipeline structure of the
FFT is constructed from cascaded butterfly blocks. When the input is in se-
quential order, each butterfly operates on sample xn and xn+N/2, hence a delay
buffer of size N/2 is required in the first stage. This is referred to as a single-
path delay feedback (SDF). In the second stage, the transform is N/2, hence
the delay feedback memory is N/4. In total, this sums up to N − 1 words in
the delay buffers.
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Figure 3: (a) Flow graph of a 4-point radix-2 FFT (b) Mapping of the
4-point FFT using two radix-2 butterfly units with delay feedback mem-
ories, where the number represents the FIFO depth.

Folding the pipeline architecture horizontally as well reduces the hardware
to a single time-multiplexed butterfly and complex multiplier. This approach
saves arithmetic resources, but still requires the same amount of storage space
as a pipeline architecture. The penalty is further reduced calculation speed,
since all decompositions are mapped onto a single computational unit.

To summarize, which architecture to use is closely linked to the required
computational speed and available hardware and memory resources. A higher
computational speed normally requires more hardware resources, a trade-off
that has to be decided before the actual implementation work begins.

Another important parameter associated with the architectural decisions is
the wordlength, which affects the computational accuracy and the hardware
requirements. An increased wordlength improves the computational quality,
measured in signal-to-quantization-noise-ratio (SQNR), but also increases the
hardware cost and the latency in arithmetic units. The trade-off between low
hardware cost and high SQNR is referred to as wordlength optimization. The
SQNR is defined as

SQNRdB = 10 · log10

Px

Pq
, (7)

where Pq is the quantization energy and Px is the energy in the input signal. A
way to increase the SQNR for signals with large dynamic range is to use data
scaling, which is discussed in the next section.

2 Proposed Architectures

Currently the demands increase towards larger and multidimensional trans-
forms for use in synthetic aperture radar (SAR) and scientific computing, in-
cluding biomedical imaging, seismic analysis, and radio astronomy. Larger
transforms require more processing on each data sample, which increases the
total quantization noise. This can be avoided by gradually increasing the
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Figure 4: The radix-22 (R-22) butterfly is constructed from two radix-2
(R-2) butterflies, separated with a trivial multiplication.

wordlength inside the pipeline, but will also increase memory requirements
as well as the critical path in arithmetic components. For large size FFTs,
dynamic scaling is therefore a suitable trade-off between arithmetic complexity
and memory requirements. The following architectures have been evaluated
and compared with related work:

(A) A hybrid floating-point pipeline with fixed-point input and tailored expo-
nent datapath for one-dimensional (1D) FFT computation.

(B) A hybrid floating-point pipeline for two-dimensional (2D) FFT compu-
tation, which also requires the input format to be hybrid floating-point.
Hence, the hardware cost is slightly higher than in (A).

(C) A co-optimized design based on a hybrid floating-point pipeline combined
with block floating-point for 2D FFT computation. This architecture has
the processing abilities of (B) with hardware requirements comparable to
(A).

The primary application for the implemented FFT core is a microscope
based on digital holography, where visible images are to be digitally recon-
structed from a recorded interference pattern [87]. The pattern is recorded on
a large digital image sensor with a resolution of 2048 × 2048 pixels and pro-
cessed by a reconstruction algorithm based on a 2D Fourier transformation.
Hence, the architectures outlined in (B) and (C) are suitable for this appli-
cation. Another area of interest is in wireless communication systems based
on orthogonal frequency division multiplexing (OFDM). The OFDM scheme is
used in for example digital video broadcasting (DVB) [88], including DVB-T
with 2/8K FFT modes and DVB-H with an additional 4K FFT mode. The
architecture described in (A) is suitable for this field of application.

Fixed-point is a widely used format in real-time and low power applications
due to the simple implementation of arithmetic units. In fixed-point arith-
metic, a result from a multiplication is usually rounded or truncated to avoid a
significantly increased wordlength, hence generating a quantization error. The
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Figure 5: Building blocks for a hybrid floating-point implementation.
(a) Symbol of a modified butterfly containing an align unit on the input.
(b) Symbol for a modified complex multiplier containing a normalization
unit.

quantization energy caused by rounding is relatively constant due to the fixed
location of the binary point, whereas the total energy depends on how the input
signal utilizes the available dynamic range. Therefore, precision in the calcula-
tions depends on properties of the input signal, caused by uniform resolution
over the total dynamic range. Fixed-point arithmetic usually requires an in-
creased wordlength due to the trade-off between dynamic range and precision.
By using floating-point and dynamically changing the quantization steps, the
energy in the error signal will follow the energy in the input signal and the re-
sulting SQNR will remain relatively constant over a large dynamic range. This
is desirable to generate a high signal quality, less dependent on the transform
length. However, floating-point arithmetic is considerably more expensive in
terms of chip area and power consumption, and alternatives are presented in
the following subsections followed by a comparison in Section 4.

2.1 Hybrid Floating-Point

Floating-point arithmetic increases the dynamic range by expressing numbers
with a mantissa m and an exponent e, represented with M and E bits, re-
spectively. A hybrid and simplified scheme for floating-point representation of
complex numbers is to use a single exponent for the real and imaginary part.
Besides reduced complexity in the arithmetic units the total wordlength for a
complex number is reduced from 2 × (M +E) to 2 ×M +E bits. Supporting
hybrid floating-point requires pre- and post-processing units in the arithmetic
building blocks, and Figure 5 defines symbols used for representing these units.
The FFT twiddle factors are represented with T bits.
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Figure 6: An example of convergent block floating-point. The buffer
after each complex multiplier selects a common exponent for a group
of values, allowing fixed-point butterfly units. The first buffer is often
omitted to save storage space, but will have a negative impact on signal
quality.

2.2 Block Floating-Point

Block floating-point (BFP) combines the advantages of simple fixed-point arith-
metic with floating-point dynamic range. A single exponent is assigned to a
group of values to reduce memory requirements and arithmetic complexity.
However, output signal quality depends on the block size and characteristics of
the input signal [89]. Finding a common exponent requires processing of the
complete block. This information is directly available in a parallel FFT archi-
tecture, but for pipeline FFT architectures scaling becomes more complicated
since data is continuously streaming. A scheme known as convergent block
floating-point (CBFP) has been proposed for pipeline architectures [73]. By
placing buffers between intermediate stages, data can be rescaled using block
floating-point, as shown in Figure 6. The block size will decrease as data propa-
gates through the pipeline until each value has its own exponent. Intermediate
buffering of data between each stage requires a large amount of memory, and
in practical applications the first intermediate buffer is often omitted to save
storage space. However, this leads to a reduced SQNR as will be shown in
Section 4 and referred to as CBFPlow due to the lower memory requirements.

2.3 Co-Optimization

In this section a co-optimized architecture that combines hybrid floating-point
and BFP is proposed. By extending the hybrid floating-point architecture
with small intermediate buffers, the size of the delay feedback memory can be
reduced. Figure 7(a-c) show dynamic data scaling for hybrid floating-point,
CBFP, and the proposed co-optimization architecture. Figure 7(c) is a com-
bined architecture with an intermediate buffer to apply block scaling on D
elements, which reduces the storage space for exponents in the delay feed-
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Figure 7: (a) Hybrid floating-point. (b) Convergent block floating-point
with D = 2N − 1 using a large buffer and fixed-point butterfly. (c) A
small buffer reduces the exponent storage space in the delay feedback
memory.

back memory with a factor D. We will derive an expression to find optimum
values for the block size in each butterfly stage i to minimize the memory re-
quirements for supporting dynamic scaling. The equations can be used for all
configurations in Figure 7(a-c) by specifying D = 1 for hybrid floating-point
and D = 2Ni for CBFP. The length of the delay feedback memory, or FIFO,
at stage i is

Ni = 2i 0 ≤ i ≤ imax = log2NFFT − 1

and the number of exponent bits for the same stage is denoted Ei. The block
size D spans from single elements to 2Ni, which can be expressed as

D(αi) = 2αi 0 ≤ αi ≤ i+ 1.

The total bits required for supporting dynamic scaling is the sum of exponent
bits in the delay feedback unit and the total size of the intermediate buffer.
This can be expressed as

Memi = Ei

⌊ γNi

D(αi)

⌋

︸ ︷︷ ︸

delay feedback

+L(D(αi) − 1)
︸ ︷︷ ︸

buffer

, (8)

where

γ =

{
1 Radix-2
3/2 Radix-22

and

L =

{
2M + Ei i = imax

2(M + T ) 0 ≤ i < imax



76 PART II. A HIGH-PERFORMANCE FFT CORE FOR DIGITAL...

Intermediate buffer length D

M
em

or
y

(b
it

s)
NFFT = 8192 (i = 12)

NFFT = 4096 (i = 11)

NFFT = 2048 (i = 10)

1 2 4 8 16 32 64 128 256 512 1024
0

2K

4K

6K

8K

10K

12K

14K

16K

18K

?

Co-optimization

�
�

�
���

CBFP

@
@

@
@@I

Hybrid FP

Figure 8: Memory requirements for supporting dynamic scaling as a
function of D for the initial butterfly in an NFFT point FFT using data
format 2× 10 + 4. D = 1 represent a hybrid floating-point architecture,
whereas D → NFFT approaches the CBFP architecture. An optimal
value can be found in between these architectures.

For radix-22 butterflies, (8) is only defined for odd values of i. This is com-
pensated by a scale factor γ = 3/2 to include both delay feedback units in the
radix-22 butterfly, as shown in Figure 4. The buffer input wordlength L differs
between initial and internal butterflies. For every butterfly stage, αi is chosen
to minimize (8). For example, an 8192 point FFT using a hybrid floating-point
format of 2 × 10 + 4 bits requires 16Kb of memory in the initial butterfly for
storing exponents, as shown in Figure 8. The number of memory elements for
supporting dynamic scaling can be reduced to only 1256 bits by selecting a
block size of 32, hence removing over 90% of the storage space for exponents.
The hardware overhead is a counter to keep track of when to update the block
exponent in the delay feedback, similar to the exponent control logic required
in CBFP implementations. Thus the proposed co-optimization architecture
supports hybrid floating-point on the input port at very low hardware cost.
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reversed order.

Since the input and output format is the same, this architecture then becomes
suitable for 2D FFT computation.

3 Architectural Extensions

The architectures described in this paper have been extended with support for
bidirectional processing, which is important for the intended application and
also in many general applications. A pipeline FFT can support a bidirectional
dataflow if all internal butterfly stages have the same wordlength. The advan-
tage with a bidirectional pipeline is that input data can be supplied either in
linear or bit-reversed sample order by changing the dataflow direction. One
application for the bidirectional pipeline is to exchange the FFT/IFFT struc-
ture using reordering buffers in an OFDM transceiver to minimize the required
buffering for inserting and removing the cyclic suffix, proposed in [76]. OFDM
implementations based on CBFP have also been proposed in [74], but these
solutions only operate in one direction since input and output format differ.
Another application for a bidirectional pipeline is to evaluate 1D and 2D convo-
lutions. Since the forward transform generates data in bit-reversed order, the
architecture is more efficient if the inverse transform supports a bit-reversed
input sequence as shown in Figure 9. Both input and output from the convo-
lution are in linear sample order, hence no reorder buffers are required. The
hardware requirement for a bidirectional pipeline is limited to multiplexers on
the inputs of each butterfly and on each complex multiplier. Each unit requires
26 two-input muxes for internal 2×11+4 format, which is negligible compared
to the size of an FFT stage.

4 Simulations

A simulation tool has been designed to evaluate different FFT architectures in
terms of precision, dynamic range, memory requirements, and estimated chip
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size based on architectural descriptions. The user can specify the number of
bits for representing mantissa M , exponents E, twiddle factors T , FFT size
(NFFT), rounding type and simulation stimuli. To make a fair comparison
with related work, all architectures have been described and simulated in the
developed tool.

First, we compare the proposed architectures with CBFP in terms of mem-
ory requirements and signal quality. In addition to the lower memory require-
ments, we will show how the co-optimized architecture produces a higher SQNR
than CBFP. Secondly, we will compare the fabricated design with related work
in terms of chip size and data throughput.

Table 1 shows a comparison of memory distribution between delay feed-
back units and intermediate buffers. 1D architectures have fixed-point input,
whereas 2D architectures support hybrid floating-point input. The table shows
that the intermediate buffers used in CBFP consume a large amount of memory,
which puts the co-optimized architecture in favor for 1D processing. For 2D
processing, the co-optimized architecture also has lower memory requirements
than hybrid floating-point due to the buffer optimization. Figures 10 and 11
present simulation results for the 1D architectures in Table 1. Figure 10 is a
simulation to compare SQNR when changing energy level in the input signal.
In this case, the variations only affect CBFPlow since scaling is applied later
in the pipeline. Figure 11 shows the result when applying signals with a large
crest factor, i.e. the ratio between peak and mean value of the input. In this
case, both CBFP implementations are strongly affected due to the large block
size in the beginning of the pipeline. Signal statistics have minor impact on the
hybrid floating-point architecture since every value is scaled individually. The
SQNR for the co-optimized solution is located between hybrid floating-point
and CBFP since it uses a relatively small block size.

Table 1: Memory requirements in Kbits for pipeline architectures, based on a
2048 point radix-22 with M = 10 and E = 4.

Architecture
Delay Intermediate Total

feedback buffers memory

1D Co-optimization 45.8 1.6 47.4
1D Hybrid FP (A) 49.0 - 49.0
1D CBFPlow 45.7 14.7 60.4
1D CBFP 45.7 60.0 105.7

2D Co-optimization(C) 50.0 0.4 50.4
2D Hybrid FP (B) 53.9 - 53.9
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Figure 10: Decreasing the energy in a random value input signal affects
only the architecture when scaling is not applied in the initial stage.
Signal level=1 means utilizing the full dynamic range.

Table 2 shows an extended comparison between the proposed architectures
and related work. The table includes two pipeline architectures using hybrid
floating-point, for 1D signal processing (A) using a tailored datapath for ex-
ponent bits E = 0 . . . 4, and for 2D signal processing (B) using a constant
number of exponent bits E = 4. Then the proposed co-optimized architecture
for 2D signal processing (C), with a reduced hardware cost more comparable
to the 1D hybrid floating-point implementation. It uses block scaling in the
initial butterfly unit and then hybrid floating-point in the internal butterfly to
show the low hardware cost for extending architecture (A) with support for 2D
processing.

The parallel architecture proposed by Lin et al. [90] uses block floating point
with a block size of 64 elements. The large block size affects the signal quality,
but with slightly lower memory requirements compared to pipeline architec-
tures. A pipeline architecture proposed by Bidet et al. [73] uses convergent
block floating point with a multi-path delay commutator. The memory require-
ments are high due to the intermediate storage of data in the pipeline, which
significantly affects the chip area. However, CBFP generates a higher SQNR
than traditional BFP. The pipeline architecture proposed by Wang et al. [91]



80 PART II. A HIGH-PERFORMANCE FFT CORE FOR DIGITAL...

Crest Factor

S
Q

N
R

(d
B

)

Hybrid floating-point

CBFP

Co-optimization
CBFPlow

5 10 15 20
20

25

30

35

40

45

50

Figure 11: Decreasing the energy in a random value input signal with
peak values utilizing the full dynamic range. This affects all block scal-
ing architectures, and the SQNR depends on the block size. The co-
optimized architecture performs better than convergent block floating-
point, since it has a smaller block size through the pipeline.

does not support scaling and is not directly comparable in terms of precision
since SQNR depends on the input signal. The wordlength increases gradually
in the pipeline to minimize the quantization noise, but this increases the mem-
ory requirements or more important the wordlength in arithmetic components
and therefore also the chip area.

The proposed architectures have low hardware requirements and produce
high SQNR using dynamic data scaling. They can easily be adapted to 2D sig-
nal processing, in contrast to architectures without data scaling or using CBFP.
The pipeline implementation results in a high throughput by continuous data
streaming, which is shown as peak performance of 1D transforms in Table 2.
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5 VLSI Implementation

A 2048 complex point pipeline FFT core using hybrid floating-point and based
on the radix-22 decimation-in-frequency algorithm [71] has been designed, fab-
ricated, and verified. This section presents internal building blocks and mea-
surements on the fabricated ASIC prototype.

The butterfly units calculate the sum and the difference between the input
sequence and the output sequence from the delay feedback. Output from the
butterfly connects to the complex multiplier, and data is finally normalized
and sent to the next FFT stage. The implementation of the delay feedbacks
is a main consideration. For shorter delay sequences, serially connected flip-
flops are used as delay elements. As the number of delay elements increases,
this approach is no longer area and power efficient. One solution is to use
SRAM and to continuously supply the computational units with data, one
read and one write operation have to be performed in every clock cycle. A dual
port memory approach allow simultaneous read and write operations, but is
larger and consumes more energy per memory access than single port memories.
Instead two single port memories, alternating between read and write each clock
cycle could be used. This approach can be further simplified by using one single
port memory with double wordlength to hold two consecutive values in a single
location, alternating between reading two values in one cycle and writing two
values in the next cycle. The latter approach has been used for delay feedback
exceeding the length of eight values. An area comparison can be found in [9].

A 2048 point FFT chip based on architecture (A) has been fabricated in
a 0.35µm 5ML CMOS process from AMI Semiconductor, and is shown in
Figure 12. The core size is 2632× 2881µm2 connected to 58 I/O pads and
26 power pads. The implementation requires 11 delay feedback buffers, one
for each butterfly unit. Seven on-chip RAMs are used as delay buffers (ap-
proximately 49 K bits), while the four smallest buffers are implemented using
flip-flops. Twiddle factors are stored in three ROMs containing approximately
47 K bits. The memories can be seen along the sides of the chip. The number
of equivalent gates (2-input NAND) is 45900 for combinatorial area and 78300
for non-combinatorial area (including memories). The power consumption of
the core was measured to 526 mW when running at 50 MHz and using a supply
voltage of 2.7 V. The pipeline architecture produces one output value each clock
cycle, or 37K transforms per second running at maximum clock frequency. The
2D FFT architecture (B) has been implemented on FPGA in [92].
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Figure 12: Chip photo of the 2048 complex point FFT core fabricated in
a 0.35µm 5ML CMOS process. The core size is 2632× 2881µm2.

6 Conclusion

Dynamic data scaling architectures for pipeline FFTs have been proposed for
both 1D and 2D applications. Based on hybrid floating-point, a high-precision
pipeline with low memory and arithmetic requirements has been constructed. A
co-optimization between hybrid floating-point and block floating-point has been
proposed, reducing the memory requirement further by adding small interme-
diate buffers. A 2048 complex point pipeline FFT core has been implemented
and fabricated in a 0.35µm 5ML CMOS process, based on the presented scal-
ing architecture and a throughput of 1 complex point/cc. The bidirectional
pipeline FFT core, intended for image reconstruction in digital holography, has
also been integrated on a custom designed FPGA platform to create a complete
hardware accelerator for digital holographic imaging.
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Part III

A Design Environment and Models for

Reconfigurable Computing

Abstract

System-level simulation and exploration tools are required to rapidly evaluate
system performance early in the design phase. The use of virtual platforms
enables hardware modeling as well as early software development. An explo-
ration framework (Scenic) is proposed, which is based on OSCI SystemC and
consists of a design exploration environment and a set of customizable simula-
tion models. The exploration environment extends the SystemC library with
features to construct and configure simulation models using an XML descrip-
tion, and to control and extract performance data using run-time reflection.
A set of generic simulation models have been developed, and are annotated
with performance monitors for interactive run-time access. The Scenic frame-
work is developed to enable design exploration and performance analysis of
reconfigurable architectures and embedded systems.

Based on: T. Lenart, H. Svensson, and V. Öwall, “Modeling and Exploration of
a Reconfigurable Architecture for Digital Holographic Imaging,” in Proceedings of

IEEE International Symposium on Circuits and Systems, Seattle, USA, May 2008.

and: T. Lenart, H. Svensson, and V. Öwall, “A Hybrid Interconnect Network-on-
Chip and a Transactional Level Modeling approach for Reconfigurable Computing,”
in Proceedings of IEEE International Symposium on Electronic Design, Test and Ap-

plications, Hong Kong, China, Jan. 2008.
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1 Introduction

Due to the continuous increase in design complexity, system-level exploration
tools and methodologies are required to rapidly evaluate system behavior and
performance. An important aspect for efficient design exploration is the design
methodology, which involves the construction and configuration of the system
to be simulated, and the controllability and observability of simulation models.

SystemC has shown to be a powerful system-level modeling language, mainly
for exploring complex system architectures such as System-on-Chip (SOC),
Network-on-Chip (NoC) [93], multi-processor systems [94], and run-time re-
configurable platforms [95]. The Open SystemC Initiative (OSCI) maintains
an open-source simulator for SystemC, which is a C++ library containing rou-
tines and macros to simulate concurrent processes using an HDL like seman-
tic [96]. Systems are constructed from SystemC modules, which are connected
to form a design hierarchy. SystemC modules encapsulate processes, which
describe behavior, and communicate through ports and channels with other
SystemC modules. The advantages with SystemC, besides the well-known
C++ syntax, include modeling at different abstraction levels, simplified hard-
ware/software co-simulation, and a high simulation performance compared to
traditional HDL. The abstraction levels range from cycle accurate (CA) to
transaction level modeling (TLM), where abstract models trade modeling ac-
curacy for a higher simulation speed [42].

SystemC supports observability by tracing signals and transactions using
the SystemC verification library (SCV), but it only provides limited features
using trace-files. Logging to trace-files is time-consuming and requires post-
processing of extracted simulation data. Another drawback is that the OSCI
simulation kernel does not support real-time control to allow users to start and
stop the simulation interactively. Issues related to system construction, system
configuration, and controllability are not addressed.

To cover the most important aspects on efficient design exploration, a Sys-
temC Environment with Interactive Control (Scenic) is proposed. Scenic is
based on OSCI SystemC 2.2 and extends the SystemC library with functional-
ity to construct and configure simulations from eXtensible Markup Language
(XML), possibilities to interact with simulation models during run-time, and
the ability to control the SystemC simulation kernel using micro-step simula-
tion. Scenic extends OSCI SystemC without modifying the core library, hence
proposing a non-intrusive exploration approach. A command shell is provided
to handle user interaction and a connection to a graphical user interface. In
addition, a library of customizable simulation models is developed, which con-
tains commonly used building blocks for modeling embedded systems. The
models are used in Part IV to simulate and evaluate reconfigurable architec-
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Figure 1: The Scenic environment extends OSCI SystemC with func-
tionality for system exploration (core) and user interaction (shell).
Model generators are basic building blocks for the architectural gen-
erators, which are used to construct complex simulations.

tures. The Scenic exploration framework is illustrated in Figure 1, where the
Scenic core implements SystemC extensions and the Scenic shell provides
an interface for user interaction.

Section 2 presents related work on existing platforms for design exploration.
This is followed by the proposed Scenic exploration environment in Section 3,
which is divided into scripting environment, simulation construction, simulation
interaction, and code generation. Section 4 propose model generators and ar-
chitectural generators to construct highly customizable processor and memory
architectures. The use of the Scenic framework for system design is presented
in Part IV, where a platform for reconfigurable computing is proposed. More
detailed information on the Scenic exploration environment can be found in
Appendix A.

2 Related Work

Performance analysis is an important part of design exploration, and is based
on extracted performance data from a simulation. Extraction of performance
data requires either the use of trace files, for post-processing of simulation data,
or run-time access to performance data inside simulation models. The former
approach is not suitable for interactive performance exploration due to the lack
of observability during simulation, and also has a negative impact on simulation
performance. The latter approach is a methodology referred to as data intro-
spection. Data introspection is the ability to access run-time information using
a reflection mechanism. The mechanism enables either structural reflection, to
expose the design hierarchy, or run-time reflection to extract performance data
and statistics for performance analysis.

General frameworks to automatically reflect run-time information in soft-
ware are presented in [97] and [47]. While this approach works well for stan-
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dard data types, performance data is highly model-specific and thus can not
be automatically annotated and reflected. Dust is another approach to reflect
structural and run-time information [98]. Dust is a Java visualization front-
end, which captures run-time information about data transactions using SCV.
However, performance data is not captured, and has to be evaluated and ana-
lyzed from recorded transactions. Design structure and recorded transactions
are stored in XML format and visualized in a structural view and a message
sequence chart, respectively. Frameworks have also been presented for mod-
eling at application level, where models are annotated with performance data
and trace files are used for performance analysis [15]. However, due to the use
of more abstract simulation models, these environments are more suitable for
software evaluation than hardware exploration.

The use of structural reflection have been proposed in [99] and [100] to
generate a visual representation of the simulated system. This can be useful
to ensure structural correctness and provide greater understanding about the
design hierarchy, but does not provide additional design information to enable
performance analysis. In contrast, it is argued that structural reflection should
instead be used to translate the design hierarchy into a user-specified format
to enable automatic code generation.

Related work only covers a part of the functionality required for efficient
design exploration. This work proposes an exploration environment, Scenic,
that supports simulation construction using XML format, simulation interac-
tion using run-time reflection, and code generation using structural reflection.

3 Scenic Exploration Environment

Design exploration is an important part of the hardware design flow, and re-
quires tools and models that allow rapid simulation construction, configuration,
and evaluation. The Scenic exploration environment is proposed to address
these important aspects. Scenic is a system exploration tool for hardware
modeling, and use simulation models annotated with user-defined performance
monitors to capture and reflect relevant information during simulation-time.

Figure 2(a) illustrates the Scenic exploration flow from simulation con-
struction, using XML format, to an interactive SystemC simulation model. The
Scenic environment is divided into two tightly-coupled parts: the Scenic core
and the Scenic shell. The Scenic core handles run-time interaction with sim-
ulation models, and the Scenic shell handles the user interface and scripting
environment. Figure 2(b) illustrates user interaction during run-time, to con-
figure and observe the behavior of simulation models.
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Figure 2: (a) A simulation is created from an XML design specification
using simulation models from a module library. (b) The models inter-
act with the Scenic shell using access variables, simulation events, and
filtered debug messages.

Scenic is characterized by the following modeling and implementation
properties:

• Scenic supports mixed application domains and abstraction levels, and
is currently evaluated in the field of embedded system design and recon-
figurable computing using transaction level modeling.

• Scenic presents a non-intrusive approach that does not require the OSCI
SystemC library to be changed. Furthermore, port or signal types are not
modified or extended. This enables interoperability and allows integra-
tion of any simulation module developed in SystemC.

Scenic interacts with simulation models during simulation-time, which is
implemented by extending the OSCI SystemC module class with run-time re-
flection. To take advantage of the Scenic extensions, the only required change
is to use sci module, which encapsulates functionality to access the simulation
models from the Scenic shell. Scenic can still simulate standard OSCI Sys-
temC modules without any required modifications to the source code, but they
will not be visible from the Scenic shell. Compatibility is an important aspect
since it allows integration and co-simulation with existing SystemC models.

The class hierarchy and the extended functionality provided by sci module
is shown in Figure 3. sci module is an extension of sci access and the
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Figure 3: Class hierarchy for constructing simulation models. The access
variables are stored in sci access and exported to the Scenic shell.
The custom access function enable user defined commands to be imple-
mented.

SystemC sc module classes. sci module supports automatically binding
of simulation models and code generation in any structural language format.
sci access handles debug message filtering, run-time reflection, and custom
access functions. Debug message filtering enables the user to set a debug level
on which messages are produced from each simulation model, and custom ac-
cess methods provide an interface to implement user-defined shell commands
for each simulation model. The SystemC extensions provide means for more
effective simulation and exploration, and are briefly described below:

• Scripting Environment - The Scenic shell provides a powerful script-
ing environment to control simulations and to interact with simulation
models. The scripting environment supports features to define user sce-
narios by interactively configuring the simulation models. It can also
be used to access and process performance data that is captured inside
each model during simulation. The scripting environment is presented in
Section 3.1.

• Simulation Construction - The simulation construction and static con-
figuration is specified in XML format. Hence, simulation models are
dynamically created, connected and configured from a single design spec-
ification language. This enables rapid simulation construction since no
compilation processes is involved. Simulation construction is presented
in Section 3.2.

• Simulation Interaction - An extension to access internal data struc-
tures inside simulation models is proposed. This allows simulation models
to be dynamically controlled, to describe different simulation scenarios,
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Figure 4: Graphical user interface connecting to Scenic using a tcp/ip
socket. It is used to navigate through the design hierarchy, modify access
variables, and to view data captured over time. The Scenic shell is
shown on top of the graphical user interface.

and observed to extract performance data during simulation. Simulation
interaction is presented in Section 3.3.

• Code Generation - Simulation models provide an interface to generate
structural information in a user-specific language. This allows the design
hierarchy to be visually represented [101], or user-developed hardware
models to be constructed and configured in HDL syntax. Hence, it is
possible to generate structural VHDL directly from the simulation models
to support component instantiation and parameterization, port mapping,
and signal binding. Code generation is presented in Section 3.4.

3.1 Scripting Environment

The Scenic environment is a user-interface to construct, control, and interact
with a simulation. It provides a command line interface (the Scenic shell) that
facilitates advanced scripting, and supports an optional tcp/ip connection to
a graphical user interface. The Scenic shell and graphical user interface are
shown in Figure 4. The graphical user interface includes a tree view to navigate
through the design hierarchy (structural reflection) and provides a list view with
accessible variables and performance data inside each simulation module (run-
time reflection). Variable tracing is used to capture trends over time, which is
presented in a wave form window.
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Built-in commands are executed from the Scenic shell command line in-
terface by typing the command name followed by a parameter list. Built-in
commands include for example setting environment variables, evaluate basic
arithmetic or binary operations, and random number generation. If the name
of a SystemC module is given instead of a Scenic shell command, then the
command is forwarded and evaluated by that module’s custom access method.
The interface enables fast scripting to setup different scenarios in order to eval-
uate system architectures. The Scenic shell commands are presented in detail
in Appendix A.

Simulation Control

OSCI SystemC currently lacks the possibility to enable the user to interactively
control the SystemC simulation kernel, and simulation execution is instead di-
rectly described in the source code. Hence, changes to simulation execution
require the source code to be recompiled, which is a non-desirable approach
to control the simulation kernel. In contrast, Scenic addresses the issue of
simulation control by introducing micro-step simulation. Micro-step simula-
tion allows the user to interactively pause the simulation, to modify or view
internal state, and then resume execution. A micro-step is a user-defined dura-
tion of simulation time, during which the SystemC kernel simulates in blocking
mode. The micro-steps are repeated until the total simulation time is com-
pleted. From a user-perspective, the simulation appears to be non-blocking
and fully interactive. The performance penalty for using micro-steps is evalu-
ated to be negligible down to clock cycle resolution.

From the Scenic shell, simulations are controlled using either blocking or
non-blocking run commands. Non-blocking commands are useful for interac-
tive simulations, whereas blocking commands are useful for scripting. A stop
command halts a non-blocking simulation at the beginning of the next micro-
step.

3.2 Simulation Construction

SystemC provides a pre-defined C-function (sc main) that is called during
elaboration-time to instantiate and bind the top-level simulation models. A
change to the simulation architecture requires the source files to be updated
and re-compiled, which makes design exploration more difficult. In Scenic,
the use of XML is proposed to construct and configure a simulation. XML is a
textural language that is suitable to describe hierarchical designs, and has been
proposed as an interchangeable format for ESL design by the Spirit Consor-
tium [102]. The use of XML for design specification also enables the possibility
to co-simulate multiple projects, since several XML files can be overloaded in
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Figure 5: XML is used for design specification, to instantiate and config-
ure simulation models from the Scenic module library. Automatic port
binding enables models and designs to be connected.

Scenic to construct larger simulations. By using multiple design specifications,
parts of the simulation may be substituted with abstract models to gain simu-
lation performance during the exploration cycle. Once the individual parts of
the system have been verified, a more detailed and accurate system simulation
can be executed.

Simulation models are instantiated from the Scenic module library, as pre-
viously illustrated in Figure 2(a). User-models that are based on sci module
are automatically registered during start-up and stored in the module library.
A design specification in XML format specifies instantiations, bindings, and
configuration of simulation models from the module library, as illustrated in
Figure 5. All models based on sci module use the same constructor argu-
ments, which simplify the instantiation and configuration process. Configu-
ration parameters are transferred from the XML specification to the models
using a data structure supporting arbitrary data types. Hence, models receive
and extract XML parameters to obtain a user-defined static configuration.

3.3 Simulation Interaction

Run-time reflection is required to dynamically interact with simulation models
and to access internal information inside each model during simulation time. It
is desirable to be able to access internal member variables inside each simulation
model, and it is also valuable to trace such information over time. Hence, access
variables are proposed, which makes it possible to access member variables from
the Scenic shell. Access variables may also be recorded during simulation, and
the information can be retrieved from the Scenic shell to study trends over
time. Finally, simulation events are proposed and provides the functionality
to notify the simulator when user-defined events occur. Simulation events are
introduced to allow a more interactive simulation.
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Access Variables

Member variables inside an sci module are exported to the Scenic shell as
configurable and observable access variables. This reflects the variables data
type, data size and value during simulation time. Access variables enable dy-
namic configuration (controllability) and extraction of performance data and
statistics during simulation (observability). Hence, the user can configure mod-
els for specific simulation scenarios, and then observe the corresponding simu-
lation effects.

Performance data and statistics that are represented by native and trivial
data types can be directly reflected using an access variable. An example
is a memory model that contains a counter to represents the total number
of memory accesses. However, more complex operations are required when
performance values are data or time dependent. This requires functional code
to evaluate and calculate a performance value, and is supported in Scenic by
using variable callbacks. When an access variable is requested, the associated
callback function is evaluated to assign a new value to the member variable.
This new value is then reflected in the Scenic shell. The callback functionality
can also be used for the reverse operation of assigning values that affect the
model functionality or configuration. An example is a variable that represents
a memory size, which requires the memory array to be resized (reallocated)
when the variable change. The following code is a trivial example on how to
export member variables and how to implement a custom callback function:

class ScenicModule : public sci_module { /* extended module */
private:

void* m_mem; /* pointer to data */
short m_size; /* scalar data type */
double m_average; /* scalar data type */
int m_data[5]; /* static vector */

public:
ScenicModule(sc_module_name nm, SCI_PARAMS& params) :

sci_module(nm, params)
{

scenic_variable(m_data, "data"); /* variable "data" */
scenic_callback(m_size, "size"); /* callback "size" */
scenic_callback(m_average, "average"); /* callback "average" */

}

virtual SCI_RETURN callback(SCI_OP op, string name) { /* callback function */
if (name == "size")

if (op == WRITE) m_mem = realloc(m_mem, m_size); /* realloc "size" bytes */
if (name == "average")

if (op == READ) m_average = average(m_data); /* return average value */
}

};

Modifying the value of the size variable triggers the callback function to
be executed and the memory to be reallocated. The variable average is also
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Figure 6: A local variable is first registered, which creates a sci variable
object pointing to the variable. It contains features to create a history
buffer and to register a periodic logging interval with a global scheduler
to capture the value of a variable at constant intervals. The user interface
can access a variable through the sci access object, which contains a
list of all registered sci variable objects.

evaluated on demand, while the data vector is constant and reflects the current
simulation value. Registered variables are accessed from the Scenic shell as:

[0 ns]> ScenicModule set -var size -value 256
[0 ns]> ScenicModule set -var data -value "4 7 6 3 8"
[0 ns]> ScenicModule get

data 5x4 [0] { 4 7 6 3 8 }
average 1x8 [0] { 5.6 }
size 1x2 [0] { 256 }

Figure 6 shows how a user-defined simulation model exports a member
variable named data 1©, which is encapsulated by creating a new sci variable
2© that contains a reference to the actual member variable 3©. sci variable
provides functionality to enable for example get and set operations on arbitrary
data types using standard C++ iostreams. Hence, the stream operators (<<
and >>) must be supported for all access variable types. The Scenic shell
obtains information about variables by calling the access method in sci access
4©. The call is responded by the sci variable that is associated with the
requested access variable 5©.

Access Variable Tracing

It is desirable to be able to study trends over time and to trace the values of ac-
cess variables. Hence, the value of an access variable may be periodically logged
and stored into a history buffer during simulation. The periodical time inter-
val and history buffer depth are configurable parameters from the Scenic shell,
which is also used to request and reflect data from history buffers. However,
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support sci variable logging and when using a global scheduler to re-
duce context switching in the simulation kernel. The graph represents
relative performance overhead.

periodical logging requires the variable class to be aware of SystemC simula-
tion time. Normally, this would require each sci variable to inherit from
sc module and to create a separate SystemC process. This would consume
a substantial amount of simulation time due to increased context switching in
the SystemC kernel.

To reduce context switching, an implementation based on a global scheduler
is proposed, which handles logging for all access variables inside all simulation
models. The global scheduler, shown in Figure 6, is configured with a periodical
time intervall from the Scenic shell through a sci variable 6©. A global
scheduler improves the simulation performance since it is only invoked once for
each time event that requires variable logging. Hence, multiple variables are
logged in a single context switch.

To evaluate the performance improvement, a comparison between using a
conventional sc module module and the proposed global scheduler is shown
in Figure 7. In the former approach there is large performance penalty even if
logging is disabled, due to the increased number of SystemC processes. For the
latter approach, there is negligible simulation overhead when logging is turned
off. When logging is enabled, two approaches are presented. The first simula-
tion is based on a conventional approach when using standard macros (mutex)
to enable mutually exclusive data access. These macros prevent simultaneous
access to history buffers to protect the thread communication between the sim-
ulation kernel and the Scenic shell. The second approach propose a method
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Figure 8: The function call flow to create a dynamic simulation event
from the Scenic shell. A condition is created and registered with an
access variable. When a simulation condition is satisfied, the associated
event is triggered.

based on atomic steps (micro-steps), discussed in Section 3.1, which prevents
race conditions between the simulation thread and the Scenic shell. As shown,
the proposed implementation based on a global scheduler and atomic simula-
tion steps results in lower overhead compared to conventional approaches.

Simulation Events

During simulations, it is valuable to automatically receive information from
simulation models regarding simulation status. This information could be in-
formative messages on when to read out generated performance data, or warn-
ing messages to enable the user to trace simulation problems at an exact time
instance. Instead of printing debug messages in the Scenic shell, it is desirable
to be able to automatically halt the simulation once user-defined events occur.

An extension to the access variables provides the ability to combine data
logging with conditional simulation events. Hence, dynamic simulation events
are proposed, which can be configured to execute Scenic commands when
triggered. In this way, the simulation models can notify the simulator of specific
events or conditions on which to observe, reconfigure, or halt the simulation.

A simulation event is a sci variable that is assigned a user-specified
Scenic shell command. Simulation events are created dynamically during run-
time from the Scenic shell to notify the simulator when a boolean condition
associated with an access variable is satisfied. The condition is evaluated on
data inside the history buffer, hence repeated assignments between clock cycles
are effectively avoided.
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The internal call graph for creating a simulation event is shown in Figure 8.
An access variable is first configured with a periodical logging intervall on
which to evaluate a boolean condition. A boolean condition is created from the
Scenic shell, which registers itself with the access variable and creates a new
simulation event. This simulation event is configured by the user to evaluate
a Scenic shell command when triggered. Every time the access variable is
logged, the condition is evaluated against the assigned boolean expression. If
the condition is true, the associated event is triggered. The event executes
the user command, which in this case is set to halt the simulation. Hence,
the simulation events operate in a similar way as software assertions, but are
dynamically created during simulation time.

3.4 Code Generation

Simulation models provide an interface to generate structural information in
a user-specific language, where Scenic currently supports DOT and VHDL
formats. The code generators are executed from the Scenic shell by specifying
the format and a top-level. A code generator use multiple passes to traverse
all hierarchical modules from the top-level to visit each simulation module.
Modules can implement both pre visitors and post visitors, depending on in
which order the structural information should be produced. In addition, the
code generator divides a structural description into separate files and sections,
which are user-defined to represent different parts of the generated code. For
example, a VHDL file is divided into sections representing entity, architecture,
type declarations, processes, and concurrent statements.

A DOT generator is implemented to create a visual representation of a
system design and is used to verify the connectivity and design hierarchy for the
complex array architectures presented in Part IV. DOT is a textural language
describing nodes and edges, which is used to represent graphs and hierarchical
relations [101]. A DOT specification is converted into a visible image using
open-source tools.

A VHDL generator is implemented to generate structural information to in-
stantiate and parameterize components, and to generate signal and port bind-
ings. Hence, only the behavioral description of each simulation model has to
be translated. The generator produces a VHDL netlist, where the modules are
instantiated, parameterized, and connected according to a Scenic XML design
specification and dynamic configuration generated by architectural generators,
presented in Section 4.3. Hence, all manual design steps between system spec-
ification and code generation have been effectively removed.
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Figure 9: (a) Constructing an embedded system using the processor and
memory generators. The processor uses the external memory interface
to communicate with a system bus, and an i/o register to communicate
with an external hardware accelerator. (b) Constructing a processor
array using the model and architectural generators. The array elements
are connected using bi-directional i/o registers.

4 Scenic Model and Architectural Generators

The Scenic exploration environment allows efficient hardware modeling by
combining rapid simulation construction with simulation interaction. Simula-
tion interaction requires simulation models that are highly configurable and
that export performance data and statistics to the Scenic shell. Hence, this
section presents simulation primitives developed to enable design exploration.

A set of generic models are developed to provide commonly used build-
ing blocks in digital system design. The models enable design exploration by
exporting configuration parameters and exposing performance metric to the
Scenic shell. Hence, models for design exploration are characterized by scal-
ability (static parameterization), configurability (dynamic parameterization),
and a high level of observability. Scalability enables model re-use in various
parts of a system, while configurability allows system tuning. Finally, observ-
ability provides feedback about the system behavior and performance.

The module library contains highly configurable and reusable simulation
models, referred to as model generators. Two model generators have been de-
veloped to simplify the modeling of digital systems, namely the processor gener-
ator and the memory generator. The processor generator constructs a custom
processor model based on a user-defined architectural description, while the
memory generator constructs a custom memory model based on user-defined
timing parameters. The module library also contains several architectural gen-
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Table 1: Highly customizable model generators for rapid design exploration.

Generator Scalability Configurability Observability

Processor

- Wordlength - Execution flow
- Instruction set Program code - Registers & Ports
- Registers - Memory access
- Memory i/f

Memory
- Wordlength - Bandwidth/Latency
- Memory size Memory timing - Access pattern

- Memory contents

erators. An architectural generator constructs more complex simulation ob-
jects, such as Network-on-Chip (NoC) or embedded system architectures.

The model and architectural generators are used in Part IV to construct
a dynamically reconfigurable architecture, and are further described in the
following sections. Figure 9(a) illustrates an embedded system, where the pro-
cessor and memory generators have been used to construct the main simulation
models. The models communicate with the system bus using adaptors, which
translate a model-specific interface to a user-specific interface. An array of pro-
cessors and memories are shown in Figure 9(b) and illustrates the architectures
presented in Part IV.

4.1 Processor Generator

The Scenic module library includes a processor generator to create custom
instruction-set simulators (ISS) from a user-defined architectural description.
An architectural description specifies the processor data wordlength, instruc-
tion wordlength, internal registers, instruction set, and external memory inter-
face, where the properties are summarized in Table 1. Furthermore, a generated
processor automatically provides a code generator (assembler) that translates
processor-specific assembly instructions into binary format.

Generated processors are annotated with access variables to extract per-
formance data and statistics during simulation time. The performance data
and statistics include processor utilization, number of executed and stalled in-
structions, and internal register values. Logging of performance data allows
designers to study processor execution over time, and captured statistics are
valuable for high-accuracy software profiling.
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Processor Registers

The register bank is user-defined, thus each generated processor has a different
register configuration. However, a register holding the program counter is
automatically created to control the processor execution flow.

There are two types of processor registers: internal general-purpose regis-
ters and external i/o port registers. General-purpose registers hold data values
for local processing, while i/o port registers are bi-directional interfaces for ex-
ternal communication. i/o port registers are useful for connecting external
co-processors or hardware accelerators to a generated processor. Each uni-
directional link uses flow control to prevent the processor from accessing an
empty input link or a full output link. Similar port registers are found in many
processor architectures, for example the IBM PowerPC [103].

Processor Instructions

The instruction set is also user-defined, to emulate arbitrary processor archi-
tectures. An instruction is constructed from the sci instruction class, and
is based on an instruction template that describes operand fields and bitfields.
The operand fields specify the number of destination registers (D), source reg-
isters (S), and immediate values (I). The bitfields specifies the number of bits
to represent opcode (OP), operand fields, and instruction flags (F). Figure 10
illustrates how a generic instruction format is used to represent different in-
struction templates, based on {OP,D, S, I,F}. An instruction template has
the following format:

class TypeB : public sci_instruction { /* instruction template */
public:

TypeB(string nm) : sci_instruction(nm, /* constructor */
"D=1,S=1,I=1", /* operand fields */
"opcode=6,dst=5,src=5,imm=16,flags=0") /* bitfields */

{ }
};

In this example the opcode use 6 bits, source and destination registers use 5
bits each, the immediate value use 16 bits, and the instruction flags are not
used. Templates are reused to group similar instructions, i.e. those represented
with the same memory layout. For example, arithmetic instructions between
registers are based on one template, while arithmetic instructions involving
immediate values are based on another template.

A user-defined instruction inherit properties from an instruction template,
and extends it with a name and an implementation. The name is used to ref-
erence the instruction from the assembly source code, and the implementation
specifies the instructions functionality. An execute method describes the func-
tionality by reading processor registers, performing a specific operation, and
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Figure 10: Instruction templates. (a) Specification of operand fields to
set the number of source, destination, and immediate values. (b) Speci-
fication of bitfields to describe the instructions bit-accurate format. (c)
General format used to derive instruction templates.

writing processor registers accordingly. An instruction can also control the pro-
gram execution flow by modifying the program counter, and provides a method
to specify the instruction delay for more accurate modeling. Instructions have
the following format:

class subtract_immediate : public TypeB { /* instruction class */
public:

subtract_immediate() : TypeB("subi") {} /* a TypeB template */
int cycle_delay() { return 1; } /* instruction delay */

void execute(sci_registers& regs, sci_ctrl& ctrl) /* implementation */
{

dst(0)->write( src(0)->read() - imm(0) ); /* behavioral description */
}

};

The execute method initiates a read from zero or more registers (i/o or general-
purpose) and a write to zero or more registers (i/o or general-purpose). The
instruction is only allowed to execute if all input values are available, and the
instruction can only finish execution if all output values can be successfully
written to result registers. Hence, an instruction performs blocking access to
i/o port registers and to memory interfaces.

Memory Interfaces

The processor provides an interface to access external memory or to connect the
processor to a system bus. External memory access is supported using virtual
function calls, for which the user supply a suitable adaptor implementation.
For the processor to execute properly, functionality to load data from memory,
store data in memory, and fetch instructions from memory are required. The
implementation of virtual memory access methods are illustrated in Figure 9(a),
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.restart
  addi    %LACC,%R0,0    
  addi    %HACC,%R0,0
  addi    %R1,$PIF,0     
  addi    $POF,$PID,0     
  ilc     $C_FILTER_ORDER       
.repeat
  dmov    $POF,%R1,$PIF,$PIF
  mul{al} $PIC,%R1       
  jmov    $POD,%HACC,%LACC
  bri     .restart     
    

00: 0x844d0000  addi  %LACC,%R0,0 
01: 0x846d0000  addi  %HACC,%R0,0 
02: 0x85cb0000  addi  %R1,%L6,0 
03: 0x85640000  addi  %L6,%G,0 
04: 0xac000024  ilc   36 
05: 0x1d6e5ac0  dmov  %L6,%R1,%L6,%L6 
06: 0x10003b83  mul{al} %L2,%R1 
07: 0x18e01880  jmov  %L2,%HACC,%LACC 
08: 0xa400fff8  bri   -8 
09: 0x00000000  nop
0a: 0x00000000  nop

Assembly program Disassembly view

nop   [opcode|------------------------------]  
mul   [opcode|-----------| src | src |flags ] 
dmov  [opcode| dst | dst | src | src |flags ] 
addi  [opcode| dst | src |       imm        ]  
ilc   [opcode|-----------|       imm        ] 
...

Instruction set (px)

px

Figure 11: The processor provides a code generator to convert user-
developed assembly code into processor specific machine code. The ma-
chine code is stored in an external memory, and instructions are retrived
using the memory interface.

and is performed by the adapter unit. The adapter translates the function calls
to bus accesses, and returns requested data to the processor.

Programming and Code Generation

The architectural description provides the processor with information regarding
the instructions binary format, the instruction and register names, and the reg-
ister coding. Based on this information, the processor automatically provides a
code generator to convert user-developed assembly code into processor specific
machine code. Hence, when extending the instruction set with additional in-
struction, these can be immediately used in the assembly program without any
manual development steps. The reverse process is also automatically supported
and generates the disassembled source code from binary format. Figure 11 il-
lustrates an embedded system, where an assembly program is downloaded to
a processor. The processor translates the assembly program and stores the
instructions in an external memory. The disassembly view of the external
memory is also illustrated in Figure 11. Processors request instructions from
external memory over the external memory interface connected to the bus.
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Figure 12: The memory models are accessed using either the simulation
ports or thought the untimed interface. The untimed interface enables
access to the memory contents from the Scenic shell.

4.2 Memory Generator

Memories are frequently used in digital system designs, operating as external
memories, cache memories, or register banks. The memory generator enables
the possibility to generate custom memory models for all these situations by
allowing the memory wordlength, access latency, and timing parameters to be
configurable. Each generated memory module implements a generic interface
for reading and writing the memory contents, which can also be accessed from
the Scenic shell. As shown in Figure 9(a), adaptors translate user requests
into memory accesses. Hence, the memory can be connected to standard bus
formats such as AMBA [78], by using appropriate adaptors.

The memory is not only active during simulation time, but also when down-
loading program code and when reading and writing application data from the
Scenic environment. Therefore, an additional untimed interface is provided by
the processors and memories, to be used even if the simulation is not running.
The untimed interface is byte-oriented, and can hence be used for any mem-
ory regardless of the user-defined data type (abstraction). In addition, several
memories can be grouped using a common memory map. A memory map is
an address space that is shared by multiple memories, as shown in Figure 12.
An assembly program can be translated by a processor and downloaded to any
external memory through a global memory map.

The generated memories contain performance monitors to export statistics
and implement a custom access method to access memory contents. The perfor-
mance monitors provide information about the bandwidth utilization, average
data latency, and the amount of data transferred. The memory access pattern
can be periodically logged to identify memory locations that are frequently
requested. Frequent access to data areas may indicate that data caching is
required in another part of the design.
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Table 2: Architectural generators used to construct reconfigurable architec-
tures.

Generator Scalability Configurability

Tile
- Dimension (W ×H) - Dynamic reconfiguration
- Static template

Topology
- Topologies:
- Mesh, Torus,
- Ring, Custom

Network
- Router fanout - Router queue depth
- Routing schemes - Router latency
- Network enhancements - External connections

4.3 Architectural Generators

In addition to the model generators, three architectural generators are pro-
vided to construct more complex simulation platforms. The architectural gen-
erators construct customized arrays containing processor and memory models.
Architectures are constructed in three steps using a tile generator, a topology
generator, and a network generator. The tile generator creates arrays of simula-
tion models, while the topology and network generators creates and configures
the local and global communication networks, respectively. Table 2 presents a
summary over the scalability and configurability of the proposed architectural
generators. The generators are used in Part IV to model and evaluate dynam-
ically reconfigurable architectures, using both the presented model generators
and the architectural generators. The following architectural generators for
reconfigurable computing have been designed and are briefly described below:

• Tile Generator - The tile generator use a tile template file to create
a static array of resource cells, presented in Part IV, which are generic
containers for any type of simulation models. When constructing larger
arrays, the tile is used as the basic building block, as illustrated in Fig-
ure 13(a), and extended to arrays of arbitrary size. The resource cells are
configured with a functional unit specified by the tile template, and can
be either a processing cell or a memory cell.

• Topology Generator - The topology generator creates the local in-
terconnects between resource cells, and supports mesh, torus, ring, and
user-defined topologies. Figure 13(b) illustrates resource cells connected
in a mesh topology. The local interconnects provide a high bandwidth
between neighboring resource cells.
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Tile template
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Figure 13: (a) Constructing the array from a tile description. (b) Building
local communication topology, which can be mesh, ring, torus or custom
topology. (c) Building global network with routers (in grey).

• Network Generator - The network generator inserts a global net-
work, which connects to resource cells using routers, as illustrated in
Figure 13(c). The network generator is highly configurable, including
number of devices to connect to a single router (fanout), the router queue
depth and latency, and the possibility to create user-defined links to en-
hance the global communication network. The routing tables are auto-
matically configures to enable global communication.

5 Conclusion

SystemC enables rapid system development and high simulation performance.
The proposed exploration environment, Scenic, is a SystemC environment
with interactive control that addresses the issues on controllability and ob-
servability of SystemC models. It extends the SystemC functionality to en-
able system construction and configuration from XML, and provides access
to simulation and performance data using run-time reflection. Scenic pro-
vides advanced scripting capabilities, which allow rapid design exploration and
performance analysis in complex designs. In addition, a library of model gen-
erators and architectural generators is proposed. Model generators are used to
construct designs based on customized processing and memory elements, and
architectural generators provide capabilities to construct complex systems, such
as reconfigurable architectures and Network-on-Chip designs.





Part IV

A Run-time Reconfigurable Computing Platform

Abstract

Reconfigurable hardware architectures are emerging as a suitable and feasi-
ble approach to achieve high performance combined with flexibility and pro-
grammability. While conventional fine-grained architectures are capable of
bit-level reconfiguration, recent work focuses on medium-grained and coarse-
grained architectures that result in higher performance using word-level data
processing. In this work, a coarse-grained dynamically reconfigurable architec-
ture is proposed. The system is constructed from an array of processing and
memory cells, which communicate using local interconnects and a hierarchical
routing network. Architectures are evaluated using the Scenic exploration en-
vironment and simulation models, and implemented VHDL modules have been
synthesized for a 0.13µm cell library. A reconfigurable architecture of size 4×4
has a core area of 2.48mm2 and runs up to 325MHz. It is shown that mapping
of a 256-point FFT generates 18 times higher throughput than for commercial
embedded DSPs.

Based on: T. Lenart, H. Svensson, and V. Öwall, “Modeling and Exploration of
a Reconfigurable Architecture for Digital Holographic Imaging,” in Proceedings of

IEEE International Symposium on Circuits and Systems, Seattle, USA, May 2008.

and: T. Lenart, H. Svensson, and V. Öwall, “A Hybrid Interconnect Network-on-
Chip and a Transactional Level Modeling approach for Reconfigurable Computing,”
in Proceedings of IEEE International Symposium on Electronic Design, Test and Ap-

plications, Hong Kong, China, Jan. 2008.
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1 Introduction

Platforms based on reconfigurable architectures combine high performance pro-
cessing with flexibility and programmability [104, 105]. A reconfigurable ar-
chitecture enables re-use in multiple design projects to allow rapid hardware
development. This is an important aspect for developing consumer electronics,
which are continuously required to include and support more functionality.

A dynamically reconfigurable architecture (DRA) can be reconfigured dur-
ing run-time to adapt to the current operational and processing conditions.
Using reconfigurable hardware platforms, radio transceivers dynamically adapt
to radio protocols used by surrounding networks [106], whereas digital cameras
adapt to the currently selected image or video compression format. Reconfig-
urable architectures provide numerous additional advantages over traditional
application-specific hardware accelerators, such as resource sharing to provide
more functionality than there is physical hardware. Hence, currently inacti-
vated functional units do not occupy any physical resources, which are instead
dynamically configured during run-time. Another advantage is that a reconfig-
urable architecture may enable mapping of future functionality without addi-
tional hardware or manufacturing costs, which could also extend the lifetime
of the platform.

In this part, a DRA is proposed and modeled using the Scenic exploration
framework and simulation models presented in Part III. By evaluating the
platform at system level, multiple design aspects are considered during per-
formance analysis. The proposed design flow for constructing, modeling, and
implementing a DRA is presented in Figure 1. System construction is based
on the Scenic architectural generators, which use the model library to cus-
tomize simulation components. Related work is discussed in Section 2, and the
proposed architecture is presented in Section 3. In Section 4, the Scenic ex-
ploration environment is used for system-level integration, and the platform is
modeled and evaluated for application mapping in Section 5. However, auto-
mated application mapping is not part of the presented work, but is a natural
extension. In Section 6, the exploration models are translated to VHDL, syn-
thesized, and compared against existing architectures.

2 Related Work

A range of reconfigurable architectures have been proposed for a variety of
application domains [33]. Presented architectures differ in granularity, pro-
cessing and memory organization, communication strategy, and programming
methodology. For example, the GARP project presents a generic MIPS proces-
sor with reconfigurable co-processors [107]. PipeRench is a programmable dat-
apath of virtualized hardware units that is programmed through self-managed
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Figure 1: Design flow to construct a DRA platform. Modeling is based
on the Scenic model and architectural generators, and the hardware
implementation is described using VHDL.

configurations [108]. Other proposed architectures are the MIT RAW pro-
cessor array [109], the REMARC array of 16-bit nano processors [110], the
Cimaera reconfigurable functional unit [111], the RICA instruction cell [112],
weakly programmable processor arrays (WPPA) [113, 114], and architectures
optimized for multimedia applications [115]. A medium-grained architecture is
presented in [116], using a multi-level interconnection network similar to this
work.

Examples of commercial dynamically reconfigurable architectures include
the field programmable object array (FPOA) from MathStar [117], which is an
array of 16-bit objects that contain local program and data memory. The adap-
tive computing machine (ACM) from QuickSilver Technology [118] is a 32-bit
array of nodes that each contain an algorithmic core supporting arithmetic,
bit-manipulation, general-purpose computing, or external memory access. The
XPP platform from PACT Technologies is constructed from 24-bit processing
array elements (PAE) and communication is based on self-synchronizing data
flows [119, 120]. The Montium tile processor is a programmable architecture
where each tile contains five processing units, each with a reconfigurable in-
struction set, connected to ten parallel memories [106].

A desirable programming approach for the architectures above is software-
centric, where applications are described using a high-level design language
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to ease development work and to increase productivity. The high-level de-
scription is then partitioned, scheduled, and mapped using automated design
steps. Many high-level design languages for automated hardware generation
exist [121], but few for application mapping onto arrays containing coarse-
grained reconfigurable resources. For these architectures, the most widely used
programming approach today is hardware-centric, where the designer manually
develop, map, and simulate applications. Processing elements are programmed
using either a C-style syntax or directly in assembly code. Although being
a more complex design approach, this is the situation for most commercial
reconfigurable platforms.

3 Proposed Architecture

Based on recently proposed architectures, it is evident that coarse-grained de-
signs are becoming increasingly complex, with heterogeneous processing units
comprising a range of application-tuned and general-purpose processors. As a
consequence, efficient and high-performance memories for internal and external
data streaming are required, to supply the computational units with data.

However, increasing complexity is not a feasible approach for an embedded
communication network. In fact, it has lately been argued that interconnect
networks should only be sufficiently complex to be able to fully utilize the
computational power of the processing units [122]. For example, the mesh-
based network-on-chip (NoC) structure has been widely researched in both
industry and academia, but suffers from inefficient global communication due to
multi-path routing and long network latencies. Another drawback is the large
amount of network routers required to construct a mesh. As a consequence,
star-based and tree-based networks are being considered [123], as well as a
range of hybrid network topologies [124].

This work proposes reconfigurable architectures based on the following
statements:

• Coarse-grained architectures result in better performance/area trade-off
than fine-grained and medium-grained architectures for the current ap-
plication domain. Flavors of coarse-grained processing elements are pro-
posed to efficiently map different applications.

• Streaming applications require more than a traditional load/store archi-
tecture. Hence, a combination of a RISC architecture and a streaming
architecture is proposed. Furthermore, the instruction set of each pro-
cessor is customized to extend the application domain.

• Multi-level communication is required to combine high bandwidth with
flexibility to a reasonable hardware cost [116]. A separate local and global
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communication network is proposed, which also simplifies the interface
to external resources.

• Presented systems where a processor provides data to a tightly-coupled
reconfigurable architecture is not a feasible solution for high-performance
computing [110]. Hence, stream memory controllers are proposed to effi-
ciently transfer data between the reconfigurable architecture and external
memories.

3.1 Dynamically Reconfigurable Architecture

A hardware acceleration platform based on a dynamically reconfigurable archi-
tecture is proposed. The DRA is constructed from a tile of W × H resource
cells and a communication network, which is shown in Figure 2(a). Resource
cell is the common name for all types of functional units, which are divided
into processing cells (PC) and memory cells (MC). Processing cells implement
the processing functionality to map applications to the DRA, while memory
cells are used to store data tables and intermediate results during processing.
The resource cells are dynamically reconfigurable to support run-time mapping
of arbitrary applications.

An array of resource cells is constructed from a tile template. A tile template
is user-defined and contains the pattern in which processing and memory cells
are distributed over the array. For example, the architecture presented in
Figure 2(a) is based on a tile template of size 2 × 2, with two processing cells
and two memory cells. The template is replicated to construct an array of
arbitrary size.

The resource cells communicate over local interconnects and a global hi-
erarchical network. The local network of dedicated wires enable high-speed
communication between neighboring resource cells, while the global network
provides communication flexibility to allow any two resource cells in the array
to communicate [122].

3.2 Processing Cells

Processing cells are computational units on which applications are mapped, and
the processing cells contain a configurable number of local input and output
ports (Lx) to communicate with neighboring processing or memory cells, and
one global port (G) to communicate on the hierarchical network.

Three different processing cells are presented and implemented: A 32-bit
DSP processor with radix-2 butterfly support, a 16/32-bit MAC processor with
multiplication support, and a 16-bit CORDIC processor for advanced function
evaluation. The DSP and MAC processors are based on a similar architecture,
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Figure 2: (a) Proposed architecture with an array of processing and
memory cells, connected using a local and a global (hierarchical) net-
work. W = H = 8. (b) Internal building blocks in a processing cell,
which contain a programmable processing element.

with a customized instruction set and a program memory to hold processor
instructions, as shown in Figure 2(b). Data is processed from a register bank
that contains the general-purpose registers (R0-Rx) and the i/o port registers
(L0-Lx,G). An instruction that access i/o port registers is automatically stalled
until data becomes available. Hence, from a programming perspective there is
no difference between general-purpose registers and i/o port register access.
The DSP and MAC processors have the following functionality and special
properties to efficiently process data streams:

• i/o port registers - The port registers connect to surrounding processing
and memory cells. Port registers are directly accessible in the same way as
general-purpose processor registers, to be used in arithmetic operations.
Hence, no load/store operations are required to move data between reg-
isters and ports, which significantly increase the processing rate.

• Dual ALU - A conventional ALU takes two input operands and produces
a single result value. In contrast, the DSP and MAC processors include
two separate ALUs to produce two values in a single instruction. This
is useful when computing a radix-2 butterfly or when moving two data
values in parallel. The MAC processor uses a parallel move instruction
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Table 1: Supported functionality by the configurable processing cells.

Processor
ALU Dual ALU Separable ALU Special

format (ALU1/ALU2) (ALUhi

n
/ALUlo

n
) functions

DSP
32-bit +/+ 2 × 32-bit +/+ 2 × 16-bit

2 × 16-bit −/− 2 × 32-bit −/− 2 × 16-bit Radix-2 Butterfly
+/− 2 × 32-bit +/− 2 × 16-bit

MAC
Split/Join: Multiply

16-bit 2 GPR → i/o Multiply/Add
i/o → 2 GPR Multiply-Acc.

CORDIC
Multiply/Divide

2 × 16-bit 16-stage Trigonometric
pipeline Magnitude/Phase

to split and join 16-bit internal registers and 32-bit i/o registers.

• Separable ALU - Each 32-bit ALU data path can be separated into two
independent 16-bit fields, where arithmetic operations are applied to both
fields in parallel. This is useful when operating on complex valued data,
represented as a 2 × 16-bit value. Hence, complex values can be added
and subtracted in a single instruction.

• Inner loop counter - A special set of registers are used to reduce control
overhead in compute-intensive inner loops. The inner loop counter (ILC)
register is loaded using a special instruction that stores the next program
counter address. Each instruction contains a flag that indicates end-of-
loop, which updates the ILC register and reloads the previously stored
program counter.

The CORDIC processor is based on a 16-stage pipeline of adders and sub-
tractors, with 2 input and 2 output values, capable of producing one set of
output values each clock cycle. The CORDIC processor operates in either
vectoring or rotation mode to support multiplication, division, trigonometric
functions, and to calculate magnitude and phase of complex valued data [70].

The supported functionality is summarized in Table 1. As shown, the DSP
processor is designed for standard and complex valued data processing, while
the MAC processor supports multiply-accumulate and the CORDIC processor
provides complex function evaluation. The instruction-set and a more detailed
architectural schematic of the DSP and MAC processors are presented in Ap-
pendix B.
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Figure 3: A memory cell contains a descriptor table, a memory array, and
a controller. The descriptor table indicates how data is to be transferred
between the ports and which part of the memory that is allocated for
each descriptor.

3.3 Memory Cells

Most algorithms require intermediate storage space to buffer, reorder, or delay
data. Memories can be centralized in the system, internal inside processing
cells, or distributed over the array. However, to fully utilize the computational
power of the processing cells, storage units are required close to the computa-
tional units. Naturally, an internal memory approach satisfies this requirement,
but suffers from the drawback that it is difficult to share between processing
cells [125]. In contrast, a distributed approach enables surrounding cells to
share a single memory. Hence, shared memory cells are distributed in a user-
defined pattern (tile template) over the array.

An overview of the memory cell architecture is shown in Figure 3, which is
constructed from a descriptor table, a memory array, and a controller unit. The
descriptor table contains stream transfers to be processed, and is dynamically
configured during run-time. The memory array is a shared dual-port memory
bank that stores data associated with each stream transfer. The controller
unit manages and schedules the descriptor processing and initiates transfers
between the memory array and the external ports.

Stream transfers are rules that define how the external ports communicate
with neighboring cells, operating in either fifo or ram mode. A stream transfer
in fifo mode is configured with a source and destination port, and an allocated
memory area. The source and destination reference either local ports (L0-Lx)
or the global port (G). The memory area is a part of the shared memory bank
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that is reserved for each stream transfer, which is indicated with a base address
and a high address. In fifo mode, the reserved memory area operates as a
circular buffer, and the controller unit handles address pointers to the current
read and write locations. Input data is received from the source port and placed
at the current write location inside the memory array. At the same time, the
destination port receives the data stored in the memory array at the current
read location.

In a similar fashion, a stream transfer in ram mode is configured with an
address port, a data port, and an allocated memory area. The controller unit
is triggered when the address port receives either a read or a write request,
that specifies a memory address and a transfer length. If the address port
receives a read request, data will start streaming from the memory array to
the configured data port. Consequently, if the address port receives a write
request, data is fetched from the configured data port and stored in the memory
array.

3.4 Communication and Interconnects

The resource cells communicate over local and global interconnects, where data
transactions are synchronized using a handshake protocol. The local intercon-
nects handle communication between neighboring resource cells, and provide
a high communication bandwidth. Hence, it is assumed that the main part of
the total communication is between neighboring cells and through local inter-
connects. However, a global hierarchical network enables non-neighboring cells
to communicate and provides an interface to external memories. Global com-
munication is supported by routers that forward network packets over a global
network. In the proposed architecture, routers use a static lookup-table that
is automatically generated at design-time. Since the routing network is static,
there is only one valid path from each source to each destination. Static rout-
ing simplifies the hardware implementation, and enables each router instance
to be optimized individually during logic synthesis. However, a drawback with
static routing is network congestion, but mainly concerns networks with a high
degree of routing freedom, for example a traditional mesh topology.

An overview of the network router architecture is shown in Figure 4(a),
which is constructed from a decision unit with a static routing table, a routing
structure to direct traffic, and a packet queue for each output port. The decision
unit monitors the status of input ports and output queues, and configures the
routing structure to transfer data accordingly. The complexity of the routing
structure determines the routing capacity, as illustrated in Figure 4(b). A
parallel routing structure is associated with a higher area cost and requires a
more complex decision unit.
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Figure 4: (a) Network router constructed from a decision unit, a routing
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and extension for global routing (grey).

Network Packets

The routers forward network packets over the global interconnects. A network
packet is a carrier of data and control information from a source to a destination
cell, or between resource cells and an external memory. A data stream is
a set of network packets, and for streaming data each individual packet is
send as a network flow control digit (flit). A flit is an atomic element that is
transferred as a single word on the network, as illustrated in Figure 4(c). A
flit consists of a 32-bit payload and a 2-bit payload type identifier to indicate
if the flit contains data, a read request, or a write request. For global routing,
unique identification numbers are required and discusses in the next section.
An additional 2-bit network type identifier indicates if the packet carries data,
configuration, or control information. Data packets have the same size as a
flit, and contain a payload to be either processed or stored in a resource cell.
Configuration packets contain a functional description on how resource cells
should be configured, and is further discussed in Section 4.2. Configurations
are transferred with a header specifying the local target address and the payload
size, to be able to handle partial configurations. Control packets are used to
notify the host processor of the current processing status, and are reserved to
exchange flow control information between resource cells.
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Figure 5: (a) Recursively assignment of network IDs. (b) A range of con-
secutive network IDs are assigned to each router table. (c) Hierarchical
router naming as Rindex,level.

Network Routing

Each resource cell allocates one or more network identifiers (ID), which are
integer numbers to uniquely identify a resource cell. Each resource cell allocates
one (or more) network ID as shown in Figure 5(a). The identification field is
represented with ⌈log2(W × H + IDext)⌉ bits, where IDext is the number of
network IDs allocated for external communication.

A static routing table is stored inside the router and used to direct traffic
over the network. At design-time, network IDs and routing tables are recur-
sively assigned by traversing the global network from the top router. Recursive
assignment results in that each entry in the routing table for a router Ri,l,
where i is the router index number and l is the routers hierarchical level as
defined in Figure 5(c), is a continuous range of network IDs as illustrated in
Figure 5(b). Hence, network ID ranges are represented with a base address
and a high address. The network connectivity C is defined by a function

C(Ri,l, Rm,n) =

{

1, Ri,l
link→ Rm,n

0, otherwise,

where the value 1 indicates that there is a link from router Ri,l to router Rm,n

(Ri,l 6= Rm,n) and 0 otherwise. Based on the network connectivity, the routing
table Λ for a router Ri,l is defined as

Λ(Ri,l) = {λ(Ri,l), κ(Ri,l)}, (1)

where λ(Ri,l) is the set of network IDs to reachable routers from Ri,l to lower
hierarchical levels, and κ(Ri,l) is the set of network IDs from Ri,l to reachable
routers on the same hierarchical level as

λ(Ri,l) = {λ(Rj,l−1) : C(Ri,l, Rj,l−1) = 1, l > 0}
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(a) (b)

Figure 6: (a) Enhancing the router capacity when the hierarchical level
increase. (b) Enhancing network capacity by connecting routers at the
same hierarchical level.

and
κ(Ri,l) = {λ(Rj,l) : C(Ri,l, Rj,l) = 1}.

At the lowest hierarchical level, where l = 0, the reachable nodes in λ(Ri,0) is
a set of network IDs that are reserved by the connected resource cells. At this
level, λ is always represented as a continuous range of network IDs.

A link from a router Ri,l to a router Rj,l+1 is referred to as an uplink. Any
packet received by router R is forwarded to the uplink router if the packets net-
work ID is not found in the router table Λ(R). A router may only have a single
uplink port, else the communication path could become non-deterministic.

In the Scenic environment, routing tables can be extracted for any router,
and contain the information below for top router R0,1 and sub-router R0,0 from
Figure 5(b):

Routing table for R_01: Routing table for R_00:
------------------------------ --------------------------------------

Port 0 -> ID 0-3 [R_00] Port 0 -> ID 0-0 [resource cell #0]
Port 1 -> ID 4-7 [R_10] Port 1 -> ID 1-1 [resource cell #1]
Port 2 -> ID 8-11 [R_20] Port 2 -> ID 2-2 [resource cell #2]
Port 3 -> ID 12-15 [R_30] Port 3 -> ID 3-3 [resource cell #3]
Port 4 -> ID 16-16 [Memory] Uplink is port 4

The top router connects to an external memory, which is further discussed in
Section 4.1.
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Figure 7: (a) Hierarchical view of the router interconnects and external
interfaces. (b) External memories connected to the network routers. The
memories are uniquely identified using the assigned network ID.

Network Capacity

When the size of a DRA increases, the global communication network is likely
to handle more traffic, which requires network enhancements. A solution to im-
prove the communication bandwidth is to increase the network capacity in the
communication links, as shown in Figure 6(a). Since routers on a higher hierar-
chical level could become potential bottlenecks to the system, these routers and
router links are candidates for network link capacity scaling. Thus, this means
that a single link between two routers is replaced by parallel links to improve
the network capacity. A drawback is increased complexity, since a more ad-
vanced router decision unit is required to avoid packet reordering. Otherwise,
if packets from the same stream are divided onto different parallel links, this
might result in that individual packets arrive out-of-order at the destination.

Another way to improve the communication bandwidth is to insert addi-
tional network paths to avoid routing congestion in higher level routers, referred
to as network balancing. Figure 6(b) shows an example where all Ri,1 routers
are connected to lower the network traffic through the top router. Additional
links may be inserted between routers as long as the routing table in each
network router is deterministic. When a network link is created between two
routers, the destination router’s reachable IDs (λ) is inserted in the routing
table (Λ) for the source router. Links that do not satisfy the conditions above
are not guaranteed to automatically generate deterministic routing tables, but
could still represent a valid configuration.
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Figure 8: An embedded system containing a DRA, which is connected to
a stream memory controller (SMC) to transfer streaming data between
the DRA and external memory. Configurations are generated by the
GPP and sent over the DRA bridge.

External Communication

The network routers are used for connecting external devices to the DRA,
as illustrated in Figure 7(a). When binding an external device to a router, a
unique network ID is assigned and the routing tables are automatically updated
to support the new configuration. Examples of external devices are memories
for data streaming, as illustrated in Figure 7(b), or an interface to receive con-
figuration data from an embedded GPP. Hence, data streaming to and from
external memories require the use of a global network. Details about exter-
nal communication and how to enable efficient memory streaming is further
discussed in Section 4.1.

4 System-Level Integration

Additional system components are required to dynamically configure resource
cells, and to transfer data between resource cells and external memories. There-
fore, the proposed DRA is integrated into an embedded system containing a
general-purpose processor, a multi-port memory controller (MPMC), and a
proposed stream memory controller (SMC) to efficiently supply the DRA with
data. The GPP and the MPMC are based on the Scenic processor and mem-
ory generators, while the SMC is custom designed. The system architecture
is shown in Figure 8, where the top network router is connected to the SMC
to receive streaming data from an external memory. The top network router
is also connected to a bridge, which allows the GPP to transmit configuration
data over the system bus.

The MPMC contains multiple ports to access a shared external memory,
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Figure 9: A stream memory controller (SMC) that handles data transfers
to and from a DRA. Data is transferred in blocks and the SMC handles
memory addressing and double-buffering. An active transfer is indicated
by a star sign (∗).

were one port is connected to the system bus and one port to the SMC. For
design exploration, the MPMC can be configured to emulate different memory
types by changing operating frequency, wordlength, data-rate, and internal
parameters for controlling the memory timing. This is useful when optimizing
and tuning the memory system, which is presented in 5.2.

4.1 Stream Memory Controller

The SMC is connected to one of the memory ports on the MPMC, and manages
data streams between resource cells and external memory. Hence, the DRA is
only concerned with data processing, whereas the SMC provides data streams
to be processed.

Internal building blocks in the SMC are shown in Figure 9, and includes
a stream descriptor table, a control unit, and i/o stream buffers. The stream
descriptor table is configured from the GPP, and each descriptor specifies how
data is transferred [126]. The control unit manages the stream descriptors and
initiates transfers between the external memory and the stream buffers. Data
is transferred from the stream buffers to stream ports, which are connected to
the DRA.

There is one stream descriptor for each allocated network ID, which are indi-
vidually associated with the corresponding resource cells. A stream descriptor
consists of a memory address, direction, size, shape, and additional control bits.
The memory address is the allocated area in main memory that is associated
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Figure 10: 32-bit configuration packets. (a) Configuration of a processing
cell, including program memory and control register. (b) Configuration
of a memory cell, including memory array and descriptor table.

with the stream transfer. The transfer direction is either read or write, and
number of words to transfer is indicated by size. A shape describes how data
is accessed inside the memory area, and consists of a three parameters: stride,
span, and skip [127]. Stride is the memory distance to the next stream element,
and span is the number of elements to transfer. Skip indicates the distance to
the next start address, which restarts the stride and span counters. The use
of programmable memory shapes is a flexible and efficient method to avoid
address generation overhead in functional units.

Additional control bits enable resource cells to share buffers in an external
memory. The reference field (ref) contains a pointer to an inactivated stream
descriptor that shares the same memory area. When the current transfer com-
pletes, the associated stream is activated and allowed to access the memory.
Hence, the memory area is used by two stream transfers, but the access to the
memory is mutually exclusive. Alternatively, the descriptors are associated with
different memory regions, and the data pointers are automatically interchanged
when both stream transfers complete, which enables double-buffering. An ex-
ample is shown in Figure 9, where stream descriptors 0 and 2 are configured
to perform a 8 × 8 matrix transpose operation. Data is written column-wise,
and then read row-wise once the write transaction completes.

4.2 Run-Time Reconfiguration

The resource cells are reconfigured during run-time to emulate different func-
tionality. Configuration data is sent over a global network, and a destination
cell is specified using the network ID. Hence, there is no additional hardware
cost due to dedicated configuration interconnects. Furthermore, partial recon-
figuration is supported, which means that only the currently required part of a
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processing or memory cell is reconfigured. This may significantly improves the
reconfiguration time.

A resource cell is reconfigured by sending configuration packets to the allo-
cated network ID. Each configuration packet contains a header, which specifies
the target address and size of payload data, as well as the payload. Several
partial configuration packets may be sent consecutively to configure different
regions inside a resource cell. Configuration packet format for a processing cell
is illustrated in Figure 10(a). A processing cell has two configurable parts, a
program memory and a control register. The program memory is indexed from
address 1 to Mpc, where Mpc is the size in words of the memory array. Address
0 is reserved for the control register, which contains configuration bits to reset,
start, stop, and single-step the processor. Configuration packet format for a
memory cell is illustrated in Figure 10(b). A memory cell is also divided into
two configurable parts, a memory array and a descriptor table. The memory
array contains 32-bit data, while descriptors are 64-bit wide, hence requiring
two separate configuration words for each descriptor.

System configuration time depends on the required resources for an appli-
cation mapping A, which includes the size of the application data and pro-
grams to be downloaded. The reconfiguration time tr is measured in clock
cycles and is the sum of all the partial reconfigurations in A. For the array
in Figure 2(a) with W = H = 8, Mpc = 64 words of program memory, and
Mmc = 256 words in the memory array, the configuration time is in the range
of tr = 32Mpc + 32Mmc ≈ 10K clock cycles for a complete system reconfigura-
tion. At 300MHz, this corresponds to a configuration delay of 34µs. However,
in most situations the partial reconfiguration time is only a fraction of the time
required for full system reconfiguration.

5 Exploration and Analysis

This section presents simulation results and performance analysis of the pro-
posed reconfigurable platform. It is divided into network simulation, memory
simulation and application mapping. The Scenic exploration framework en-
ables configuration of resource cells to define different scenarios, and supports
extraction of performance metric, such as throughput and latency, during sim-
ulation. For application mapping, Scenic is used to configure resource cells
using an XML-based description, and to analyze systems for potential perfor-
mance bottlenecks during simulation.

5.1 Network Performance

To evaluate network performance, a DRA is configured as an 8×8 array consist-
ing of traffic generators, which are resource cells that randomly send packets
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Original network from Figure 2(a).
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Network with increased link capacity from Figure 6(a).
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Network with balanced traffic load from Figure 6(b).
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Figure 11: Network performance in terms of accepted traffic T and net-
work latency L. Three simulations show original network, network with
increased link capacity, and network with balanced traffic load.
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to neighboring cells and to the global network. Packets are annotated with
statistical information to monitor when each packet was produced, injected,
received, and consumed. It also contains information about the number of
network hops from the source node to the destination node, while the traffic
generators monitor the number of received packets and the transport latency.
Since communication is both local and global, a localization factor α is defined
as the ratio between the amount of local and global communication, where
α = 1 corresponds to pure local communication and α = 0 corresponds to fully
global communication.

The traffic generators inject packets into the network according to the
Bernoulli process, which is a commonly used injection process to character-
ize networks [128]. The injection rate, r, is the number of packets per clock
cycle and per resource cell injected into the local or global network. The ac-
cepted traffic is the network throughput T , which is measured in packets per
clock cycle and per resource cell. Ideally, accepted traffic should increase lin-
early with the injection rate. However, due to traffic congestion in the global
network the amount of accepted traffic will saturate at a certain level. The
average transport latency is defined as L =

∑
Li/N , where Li is the transport

latency for packet i and N is the total number of consumed packets. Transport
latency is measured as the number of clock cycles between a successful injection
into the network and consumption at the final destination.

The network performance depends on both the local and global network. As
discussed in Section 3.4, the global network may be enhanced by either improv-
ing the link capacities or by inserting additional network links between routers.
Figure 11 shows the simulation results from three network scenarios based on
an 8 × 8 resource array. The first simulation is the original network configura-
tion shown in Figure 2(a). The second and third scenarios are the enhanced
routing networks shown in Figure 6(a-b). As shown, network enhancements
generate a higher communication bandwidth with reduced latency. Perfor-
mance is measured as the combined local and global communication, i.e. the
overall performance, while latency is measured for global communication. The
routers used in this simulation can manage up to two data transactions per
clock cycle, but only for transactions that do not access the same physical
ports.

The simulations in Figure 11 indicate how much traffic is injectable into
the global network before saturation. Assuming an application with 80% local
communication, i.e. α = 0.8, the networks can manage an injection rate of
around 0.3, 0.8 and 0.8, respectively. Thus, this illustrates the need for capacity
enhancements in the global network. Since both enhancement techniques have
similar performance, the network in Figure 6(b) is a better candidate since
it is less complex and easier to scale with existing router models. However,
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Figure 12: The impact on network performance for different router out-
put queue depth Q when α = 0. The curve start to flatten out around
Q = 8.

if a shared memory is connected to the top router, more bandwidth will be
required, which instead implies increased link capacity to the top router.

Another important system parameter is the router output queue depth,
which affects the router complexity and the network performance. Network
buffers are expensive, and avoiding large memory macros for each router is
desirable. Figure 12 shows the global network performance when α = 0 as a
function of the router queue depth Q. The final simulation point shows the
performance with unlimited buffer space, to illustrate the difference between
feasible implementations and maximum theoretical performance. Around Q =
8, the curve start to flatten out with a performance of 80−90% of Tmax for each
curve, hence a suitable trade-off between resource requirements and network
performance. The hardware requirements for different router implementations
are presented in Section 6.

5.2 Memory Simulation

Other important system aspects are the external memory configuration and
the external memory interface. The functional units operate on streams of
data, which are managed by the SMC. An input stream, i.e. from memory to
the DRA, is fully controlled by the SMC unit and is transferred as a block of
consecutive elements (assuming a trivial memory shape). Hence, the memory
access pattern renders a high bandwidth to external memory. In contrast, an
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output stream, i.e. from the DRA to memory, can be managed in different
ways, either as a locally controlled or as a globally controlled memory transfer.
Local control means that each resource cell transfers data autonomously, while
global control implies stream management by the SMC.

To evaluate the memory stream interface, two architectural mappings and
five memory scenarios is evaluated. The first mapping is when an applica-
tion executes on a single processing cell, and the second mapping is when the
data processing is shared and divided onto two processing cells, as shown in
Figure 13(a-b). This will illustrate that throughput is not only a matter of
parallelism, but a balance between shared system resources such as the global
network and the memory interface.

A processing cell is configured with an application to post-process images
in digital holography, as illustrated in Part I Figure 3(c). The post-processing
step generates a superposed image between magnitude and phase data after
image reconstruction, to enhance the visual perception. A configuration is
downloaded to combine the RGB-colors of two input streams, and write the
result to an output stream. Four clock cycles are required to process one pixel,
resulting in a throughput of 1/4 samples per clock cycle. The DRA and the
external memory are assumed to operate at the same clock frequency, hence
3/4 of the theoretical memory bandwidth is required for three streams. The
following Scenic script constructs a DRA platform, downloads two bitmap
images through the MPMC, and inserts stream descriptors in the SMC to
transfer data to and from the DRA:

xml load -file "system_4x4.xml" % load XML design
sim % create simulation platform
xml config -name "post-process" % load XML configuration

MPMC wr -addr 0x100000 -file "amplitude.bmp" % download bitmaps to memory
MPMC wr -addr 0x200000 -file "phase.bmp"
SMC insert -id 1 -addr 0x100000 -rnw TRUE -size $IMSIZE % insert stream descriptors
SMC insert -id 3 -addr 0x200000 -rnw TRUE -size $IMSIZE
SMC insert -id 2 -addr 0x300000 -rnw FALSE -size $IMSIZE

runb 4 ms % run simulation

MPMC rd -addr 0x300000 -size $IMSIZE -file "result.bmp" % save result image
set TRANSFERS [ra.cell* get -var transfers] % extract transfers
set SIM_CC [SMC get -var last_transfer] % extract clock cycles
set UTILIZATION [eval [eval sum $TRANSFERS] / $SIM_CC] % calculate utilization

The system is evaluated for different transfer lengths, which is the size in words
of a transfer between the external memory and the processing cell. The transfer
length is important for a realistic case study, since external memory is burst
oriented with high initial latency to access the first word in a transfer. Conse-
quently, the simulation in Figure 14 plot (a) shows improved throughput when
the transfer length increases.
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Figure 13: (a) Application mapping to a single processing cell, using two
read and one write stream to external memory. (b) Dividing the compu-
tations onto two processing cells, which require two sets of i/o streams
and double bandwidth to external memory.

The application mapping is modified to execute on two parallel processing
cells, sharing the computational workload to increase throughput. Initially,
the performance curve follows the result from mapping to a single processing
cell, as shown in Figure 14 plot (b). However, for a certain burst length the
performance suddenly decrease, presenting a worse result than for the previous
application mapping. With further analysis, by inspecting the MPMC statistics
using Scenic, it can be seen in Figure 15 plot (b) that the memory access
pattern change abruptly at this point, caused by interleaving of the result
streams from the two processing cells. Interleaving results in shorter burst
transfers to external memory, and therefore also a lower throughput.

The stream interleaving problem can be addressed by using globally con-
trolled streaming, where the SMC operates as an arbitration unit and grants the
resource cells access to external memory. To avoid transfer latency between two
consecutive grants, two resource cells are granted access to the memory with an
overlap in time, and the two streams are reordered inside the SMC to optimize
the memory access pattern for burst oriented memories.

The result with globally controlled and reordered streams is shown in Fig-
ure 14 plot (c). Reordering solves the burst transfer issue, but the throughput
has not increased. By inspecting the processing cells unit Scenic, it can be
seen that the utilization is only 50% in each processing element. Hence, more
memory bandwidth is required to supply the processing elements with data.

To address the bandwidth issue, the MPMC is reconfigured to evaluate
new scenarios, first emulating a double data-rate (DDR) memory and then
increasing memory wordlength to 64 bits. Simulations with DDR and 64-bit
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memory are shown in Figure 14 plot (d-e), and presents dramatically increased
data throughput as expected. Hence, it illustrates that system performance is
a combination of many design parameters.
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.restart
  addi    %LACC,%R0,0    
  addi    %HACC,%R0,0
  addi    %R1,$PIF,0     
  addi    $POF,$PID,0     
  ilc     $FIR_ORDER       
.repeat
  dmov    $POF,%R1,$PIF,$PIF
  mul{al} $PIC,%R1       
  jmov    $POD,%HACC,%LACC
  bri     .restart     
    

<SCENIC>
 <CONFIG name="FIR-filter"> 
  <MODULE name="pc2x2">
   <PARAM name="SRC"  value="fir.asm">
   <PARAM name="ADDR" value="0x1">
   <PARAM name="PID"  value="%G">
   <PARAM name="PIC"  value="%L2">
   <PARAM name="PIF"  value="%L3">
   <PARAM name="POF"  value="%L3">
   <PARAM name="POD"  value="%L1">
   <PARAM name="FIR_ORDER" value="36">
  </MODULE>
  ...
   

(a) (b)

Figure 16: Application mapping (FIR filter) that allocates one processing
cell and two memory cells (grey). (a) The XML configuration specifies
a source file and parameters for code generation, and from which ports
data are streaming. (b) A generic assembly program that use the XML
parameters as port references.

5.3 Application Mapping

Currently, applications are manually mapped to the DRA using configurations.
Configurations are specified in XML format, to allow rapid design exploration,
which can be translated to binary files and reloaded by the embedded processor
during run-time. A configuration allocates a set of resource cells, and contains
parameters to control the application mapping, as shown in Figure 16(a). For
memory cells, these parameters configure the memory descriptors and the initial
memory contents. For processing cells, the parameters specify a program source
file and port mappings to assist the code generator. The source file is described
using processor-specific assembly code, as presented in Part III in Section 4.1,
and an example is shown in Figure 16(b). Hence, algorithm source files only
describe how to process data, while port mappings describe how to stream data.

The following applications have been evaluated for the proposed DRA,
which are common digital signal processing algorithms and are also used in
image reconstruction for digital holographic imaging:

• FIR Filter - The time-multiplexed and pipeline FIR filters are mapped
to the DRA using MAC processors. The time-multiplexed design requires
one MAC unit and two memory cells, one for coefficients and one operat-
ing as a circular buffer for data values. The inner loop counter is used to
efficiently iterate over data values and coefficients, which are multiplied
pair-wise and accumulated. When an iteration completes, the least re-
cent value in the circular buffer is discarded and replaced with the value
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on the input port. At the same time, the result from accumulation is
written to the output port. The time-multiplexed FIR implementation
is illustrated in Figure 17(a), and the corresponding mapping to resource
cells is shown in Figure 17(b). In contrast, the pipeline design requires
one MAC unit for each filter coefficient, which are serially connected to
form a pipeline. Each unit multiplies the input value with the coefficient,
adds the partial sum from the preceding stage, and forwards the data
value and result to the next stage.

• Radix-2 FFT - The time-multiplexed and pipeline FFT cores are mapped
to the DRA using DSP and CORDIC processors. DSPs are used for the
butterfly operations, while CORDIC units emulate complex multiplica-
tion using vector rotation. Delay feedback units are connected to each
DSP butterfly, which are implemented using memory cells operating in
FIFO mode. An example of an FFT stage is illustrated in Figure 17(c),
and the corresponding mapping to resource cells is shown in Figure 17(d).
For the time-multiplexed design, data is streamed through the DSP and
CORDIC units n times for a 2n-point FFT, where the butterfly size
changes for every iteration. The pipeline radix-2 design is constructed
from n DSP and n − 1 CORDIC units, which significantly increases the
throughput but also requires more hardware resources.

• Matrix Transpose - A matrix transpose operation is mapped to illus-
trate that the DSP processors may alternatively be used as address gen-
eration units (AGU). A fast transpose operation requires two DSP units
to generate read and write addresses, and the data is double-buffered in-
side a memory cell. While one buffer is being filled linearly, the other is
drained using an addressing mode to transpose the data. When both op-
erations finish, the DSP units switch buffers to transpose the next block.

Table 2 presents the mapping results in terms of reconfiguration time,
throughput, and resource requirements. It can be seen that the reconfiguration
time is negligible for most practical applications. A configuration is assumed
to be active for a much longer time than it takes to partially reconfigure the
resource cells. It is also shown that both the pipeline FFT and the fast matrix
transpose unit generates a throughput of close to 1 sample per clock cycle, hence
these configurations are candidates for mapping the presented reconstruction
algorithm in digital holographic imaging, as discussed in Part I.
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6 Hardware Prototyping

The Scenic models have been translated to VHDL, and verified using the same
configuration as during design exploration and analysis. Currently available
VHDL models are the DSP and MAC processors presented in Section 3.2, the
memory cell presented in Section 3.3, and the router presented in Section 3.4.
VHDL implementations have been individually synthesized to explore different
parameter settings, and integrated to construct arrays of size 4 × 4 and 8 × 8.
The results from logic synthesis in a 0.13µm technology are presented in Ta-
ble 3, where each design has been synthesized with the following configuration
parameters:

R Number of general purpose registers
L Number of local ports
D Number of descriptors in each memory cell
Mpc Number of 32-bit words of program memory
Mmc Number of 32-bit words in the memory array
Q Router output queue depth

The table also presents the maximum frequency and the memory storage
space inside each hardware unit. The router overhead illustrates how large
part of the system resources that is spent on global routing. Synthesis results
show how configuration parameters affect the area, frequency, and required
storage space. The DSP and MAC units are in the same area range, but
the memory cell is slightly larger. When constructing an array of cells, it
is important to choose cells that have similar area requirements. Hence, a
memory cell with Mmc = 256 is a trade-off between area and memory space,
since it is comparable is size with the processing cells. For routers, it can be
seen that the output queue depth is associated with large hardware cost. To
avoid overhead from routing resources, it is important to minimize the queue
depth. Hence, a router with Q = 4 has been chosen as a trade-off between area
and network performance. As an example, the floorplan and layout of a 4 × 4
array, with 8 processing cells and 8 memory cells, are shown in Figure 18 and
19, respectively. The floorplan size is 1660 × 1660µm2 (90% core utilization).

7 Comparison and Discussion

Table 4 presents a comparison between different platforms for computing a
256-point FFT, to relate the hardware cost and performance to existing archi-
tectures. The Xstream FFT core from Part II is presented as an application-
specific alternative, with low area requirements and high performance. Hard-
ware requirements for the time-multiplexed and pipelined FFT from Section 5.3
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Table 3: Synthesis results for the processor, memory, router, and array. The
results are based on a 0.13µm cell library. Mpc = 64 for all processing cells.

Architecture
Eq. Kgates Area fmax Storage Router
(nand2) (mm2) (MHz) (bytes) overhead

DSP (R = 4, L = 2) 17.3 0.089 325 256 -
DSP (R = 8, L = 4) 20.7 0.106 325 256 -
DSP (R = 16, L = 8) 27.6 0.141 325 256 -
MAC (R = 4, L = 2) 17.4 0.089 325 256 -
MAC (R = 8, L = 4) 20.5 0.105 325 256 -
MAC (R = 16, L = 8) 25.0 0.128 325 256 -
CORDIC (16-bit) 24.7∗ 0.126 1100 0 -

MC (D = 4, Mmc = 256) 30.2 0.155 460 1024 -
MC (D = 4, Mmc = 512) 41.3 0.211 460 2048 -
MC (D = 4, Mmc = 1024) 62.5 0.320 460 4096 -

4-port Router (Q = 4) 12.9 0.066 1000 4 × 16 -
4-port Router (Q = 8) 22.4 0.115 1000 4 × 32 -
4-port Router (Q = 16) 35.5 0.182 1000 4 × 64 -
5-port Router (Q = 4) 17.0 0.087 990 5 × 16 -
8-port Router (Q = 4) 28.4 0.145 890 8 × 16 -

4x4 Array (5 routers) 484 2.48 325 10 K 15.8%
8x8 Array (21 routers) 1790 9.18 325 40 K 17.7%

∗ CORDIC pipeline presented in Part I. Control overhead is not included.

are estimated based on how many resource cells that are allocation for each
application. Table 4 also includes a recently proposed medium-grained archi-
tecture for mapping a 256-point FFT [116]. Finally, commercial CPU and DSP
processors are presented to compare with general-purpose and special-purpose
architectures.

Compared with an application-specific solution, a time-multiplexed version
of the FFT can be mapped to the proposed DRA at an even lower cost, but
with the penalty of reduced performance. In contrast, the proposed pipeline
FFT generates the same throughput as the application specific solution, but
with four times higher cost. Based on this application, this is the price for
flexible for a reconfigurable architecture.

The area requirement for the proposed DRA of size 4 × 4 is 2.48mm2, as
shown in Table 3. As a comparison, the PowerPC 405F6 embedded processor
has a core area of 4.53mm2 (with caches) in the same implementation technol-
ogy [103], while the Pentium 4 processor requires 305mm2. Area numbers for
the TMS320VC55 DSP are not available.
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Table 4: Architectural comparison for computing a 256-point FFT. Latency
is not considered. Required area is scaled to 0.13µm technology. Perfor-
mance/Area ratio is (samples per cc) / (required area).

Architecture
Required fmax Cycles Performance/

Area (mm2) (MHz) (cc) Area ratio

Xstream 256-point FFT 0.51 398 256 1.96
Proposed DRA (TM) 0.31 325 1536 0.54
Proposed DRA (pipeline) 2.04 325 256 0.49
Medium-Grain DRA [116] 32.08 267 256 0.03

Texas TMS320VC5502 [129] - 300 4786 -
IBM PowerPC 405 F6 [103] 4.53 658 > 20K∗ < 0.0028
Intel Pentium 4 [130] 305 3000 20K 0.00004

∗ Estimated to require more clock cycles than an Intel Pentium 4.

Recent related work proposes a medium-grained architecture for mapping
a 256-point FFT [116]. However, Table 4 shows that this architecture results
in poor performance/area ratio due to only 4-bit granularity in processing el-
ements. With the same throughput, the area requirement is 16 times higher
than for the proposed DRA.

DSP architectures include MAC support, but still requires more than 18
times the number of clock cycles over pipelined solutions [129]. General purpose
processors require even more processing, due to the lack of dedicated hardware
for MAC operations [130]. General-purpose architectures gain performance
through higher clock frequency, but this solution is not scalable. In contrast,
presented architectures result in high performance and low area requirements.

8 Conclusion

Modeling and implementation of a dynamically reconfigurable architecture has
been presented. The reconfigurable architecture is based on an array of pro-
cessing and memory cells, communicating using local interconnects and a hier-
archical network. The Scenic exploration environment and models have been
used to evaluate the architecture and to emulate application mapping. Various
network, memory, and application scenarios have been evaluated using Scenic,
to facilitate system tuning during the design phase. A 4×4 array of processing
cells, memory cells, and routers has been implemented in VHDL and synthe-
sized for a 0.13µm cell library. The design has a core size of 2.48mm2 and is
capable of operating up to 325MHz. It is shown that mapping of a 256-point
FFT generate 18 times higher throughput than a traditional DSP solution.
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DSP MC MAC MC

MC MAC MC DSP
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Figure 18: Floorplan of an 4 × 4 array of 8 processing cells (blue) and
8 memory cells (green) connected with 5 network routers. The internal
memories in each resource cell are represented in slightly darker color.
For this design R = 8, L = 4, D = 4, Mpc = 64, Mmc = 256, and Q = 4.

Figure 19: Final layout of a 4 × 4 array of processing and memory cells
connected with network routers. The core size is 1660 × 1660µm2.





Conclusion and Outlook

Flexibility and reconfigurability are becoming important aspects of hardware
design, where the focus is the ability to dynamically adapt a system to a range
of various applications. There are many ways to achieve reconfigurability, and
two approaches are evaluated in this work. The target application is digital
holographic imaging, where visible images are to be reconstructed based on
holographic recordings.

In the first part of the thesis, an application-specific hardware accelerator and
system platform for digital holographic imaging is proposed. A prototype is
designed and constructed to demonstrate the potential of hardware accelera-
tion in this application field. The presented result is a hardware platform that
achieves real-time image reconstruction when implemented in a modern tech-
nology. It is concluded that application-specific architectures are required for
real-time performance, and that block-level reconfiguration provides sufficient
flexibility for this application.

In the second part of the thesis, the work is generalized towards dynamically
reconfigurable architectures. Modeling and implementation results indicate the
processing potential, and the cost of flexibility, of such architectures. An ex-
ploration framework and simulation modules for evaluating reconfigurable plat-
forms are designed to study architectural trade-offs, system performance, and
application mapping. An array of run-time reconfigurable processing and mem-
ory cells is proposed, and it is shown that arrays of simplified programmable
processing cells, with regular interconnects and memory structures, result in
increased performance over traditional DSP solutions. It is concluded that
reconfigurable architectures provide a feasible solution to accelerate arbitrary
applications.

Current trends towards parallel and reconfigurable architectures indicate the
beginning of a paradigm shift for hardware design. Within a few years, we
are likely to find massively parallel architectures in desktop computers and
inside embedded systems. This paradigm shift will certainly also require us
to change our mindset and our view on traditional software design, to allow
efficient mapping onto such architectures.

141





Bibliography

[1] U. Schnars and W. Jueptner, Digital Holography. Springer-Verlag,
Berlin, Heidelberg: Springer, 2005.

[2] J. M. Jabaey, A. Chandrakasan, and B. Nikolić, Digital Integrated Cir-
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Appendix A

The Scenic Shell

Scenic is an extension to the OSCI SystemC library and enables rapid sys-
tem prototyping and interactive simulations. This manual presents the built-in
Scenic shell commands, how to start and run a simulation, and how to in-
teract with simulation models and access information during the simulation
phase. An overview of the Scenic functionality is presented in Figure 1. A
module library contains simulation modules that can be instantiated, bound,
and configured from an XML description. The Scenic shell provides access
to internal variables during simulation and enables extraction of performance
data from simulation models.

1 Launching Scenic

Scenic is started using the command scenic.exe from the windows command
prompt, or using the command ./scenic from a cygwin or linux shell.

scenic.exe <file> [-ip] [-port] [-exec] [-exit]

If a file named scenic.ini is present in the startup directory, it is executed before
any other action is taken. Scenic can be launched with optional arguments
to execute a script file or to set environment variables. The first argument,
or the flag exec, specifies a script to execute during startup, and the flag exit
indicates with true or false if the program should terminate once the script has
finished execution (for batch mode processing). The flags ip and port are used
to open a socket from which the program can be interactively controlled, either
from Matlab or from a custom application. All startup flags are registered as
environment variables in the Scenic shell to simplify parameter passing.
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Figure 1: (a) A simulation is created from an XML description format
using a library of simulation modules. (b) The modules can communi-
cate with the Scenic shell to access member variables, notify simulation
events, and filter debug messages.

1.1 Command Syntax

The built-in Scenic commands are presented in Table 2. Commands are exe-
cuted from the Scenic shell by typing a built-in command, or the hierarchical
name of a simulation module. The command is followed by a list of parameters,
i.e. single values, and flag/value pairs. The ordering of flag/value pairs does
not matter, but parameters need to be specified in the correct order.

command/module {parameter}* {-flag value}* {-> filename} {;}

Variable substitution replaces environment variables with their corresponding
value. Substitution is evaluated on all parameters and on the value for a
flag/value pair. A parameter or value containing space characters must be
enclosed by single or double quotation marks to be treated as a single value.
Variable substitution is performed on a value enclosed by double quotation
marks, but single quotation marks prevent variable substitution. Command
substitution is expressed using square brackets, where a command inside a
square bracket is evaluated before the parent command is executed.

A semicolon ”;” at the end of a command prevents the return value to be
printed on the screen. The return value can also be directed to a file by ending
the line with ”-> filename” to create a new file, or ”->> filename” to append
an existing file.

Comments are preceded by a ”#” or a ”%” token. The comment characters
only have significance when they appear at the beginning of a new line.
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[0 s]> set a 10 % assigns variable a = 10
[0 s]> random -min 0 -max $a % generated random number between 0 and 10
[0 s]> set b [eval $a - 2] % calculate 10-2=8 and assign to b
[0 s]> set c "$a $b" % assign c the concatinated string "10 8"
[0 s]> set d ’$a $b’ % assign d the unmodified string "$a $b"

1.2 Number Representations

Integer values may be specified in decimal, hexadecimal, or binary represen-
tation. The decimal value 100 is represented in hexadecimal as 0x64 and in
binary as b1100100. Negative and floating point numbers must be specified in
decimal format. Boolean values are represented with true or 1 for true, and
false or 0 for false.

1.3 Environment Variables

Environment variables are used to store global variables, intermediate results
from calculations, and parameters during function calls. Variables are assigned
using the set command and can be removed using unset. Environment vari-
ables are treated as string literals and can represent any of the standard data
types such as integer, float, boolean, and string.

[0 s]> set I 42
[0 s]> set S "Hello World"

Environment variable values are accessed by using the $ operator followed by
the variable name.

[0 s]> set MSG "$S $I"
[0 s]> echo $MSG

Hello World 42

1.4 System Variables

System variables are special environment variables that are set by the system,
including the simulation time, execution time, and other global variables related
to the simulation. The system variables are useful for calculating simulation
performance or execution time.

[0 s]> set start $_TIME
...

[1 ms]> set time [eval $_TIME - $start]
[1 ms]> echo "execution time: $time ms"

execution time: 5225 ms
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Both environment and system variables can be listed using either the set com-
mand without specifying any parameters or by typing list env.

[1 ms]> set

system variable(s) :
_DELTACOUNT : "276635"
_ELABDONE : "TRUE"
_MICROSTEP : "25"
_RESOLUTION : "1 ns"
_SIMTIME : "1000000"
_TIME : "5225"

environment variable(s) :
I : "42"
S : "Hello World"
MSG : "Hello World 42"

2 Simulation

Scenic modeling is divided into two phases, a system specification phase and
simulation phase. System specification means describing the hierarchical mod-
ules, the static module configuration, and the module interconnects. The sys-
tem specification phase will end when the command sim is executed, which
launches the SystemC simulator and constructs the simulation models (elab-
oration). After elaboration, simulation modules can not be instantiated, but
dynamic configuration can be sent to the simulation modules.

2.1 Starting a Simulation

Simulation architectures are described using XML language, and are loaded
before the simulation can begin. The architectural description format will
be further explained in Section 4. Modular systems can be described using
multiple XML files, which will be merged into a single simulation. If two
modular systems share a common simulation module with the same instance
name, Scenic will automatically create a single instance to which both sub-
systems can connect.

[0 s]> xml load -file demo_system.xml
[0 s]> sim

SystemC 2.2.0 --- Feb 8 2008 16:25:45
Copyright (c) 1996-2006 by all Contributors

ALL RIGHTS RESERVED

Simulation Started [1]

[0 s]>
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After loading the XML system descriptions, the command sim launches the
SystemC simulator, instantiates and configures the library modules, and binds
the module ports. If the optional argument nostart is set to true, the simu-
lator stays in specification phase until the simulation is actually run.

2.2 Running a Simulation

A simulation runs in either blocking or non-blocking mode, using the commands
runb and run, respectively. The former is useful when the execution time is
known or when running the simulation from a script, while the latter is useful
for user-interactive simulations. A non-blocking simulation can be aborted
using the stop command, which will halt the simulation at the start of the
next micro-step.

[1 ms]> step 25 us
[1 ms]> runb 1 ms
[2 ms]> run 10 ms
[2 ms]> stop

Simulation halted at 3125 us
[3125 us]>

A non-blocking simulation is executing in time chunks referred to as micro-
steps. The size of a micro-step is configurable using the step command with
the preferred micro-step size as a parameter. Using the step function without
parameters will run the simulation for a time duration equal to one micro-step.
It can be used to for example single-step a processor simulation module, where
the step size is set to the processors clock period. A larger step size results in
a higher simulation performance, but may not be able to halt the simulation
with clock cycle accuracy.

3 Simulation Modules

Simulation modules are described in SystemC and uses Scenic macros to regis-
ter the module in a module library, read configuration data during instantiation,
export internal member variables, register simulation events, and generate de-
bug messages and trace data.

3.1 Module Library

The module library handles both module registration and instantiation. When
Scenic is launched, all simulation modules will automatically be registered
in the module library (using a Scenic macro). System specification refers to
simulation modules in the module library, which will be instantiated with the
dynamic module configuration specified in the XML file.
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The simulation modules in the module library can be listed using the com-
mand list lib, which will show the module name and the number of currently
instantiated components of each type.

[0 s]> list lib

library module(s) :

GenericProcessor_v1_00 [1 instance(s)]
mpmc_v1_00 [1 instance(s)]
spb2mpmc_v1_00 [1 instance(s)]
spb_v1_00 [1 instance(s)]

3.2 Module Hierarchy

During the simulation phase, the hierarchical view of the constructed system
can be shown using the list mod command. The command shows the hierar-
chical names of each module and the module type.

[0 s]> list mod

instantiated module(s) :

Adapter [spb2mpmc_v1_00]
BUS [spb_v1_00]
CPU [GenericProcessor_v1_00]
CPU.program [sci_memory]
MEM [mpmc_v1_00]
_memory [access object]
_scheduler [sci_module]

An addition to the user simulation modules, Scenic creates a number of spe-
cial simulation objects. The special simulation objects use an underscore in the
beginning of the name to separate them from user simulation modules. The
” memory” module handles global memory and implements function to list,
read, and write memories that are registered as global. The ” scheduler” mod-
ule handles logging of registered variables to improve simulation performance.

3.3 Module Commands

Each simulation module support basic functionality, inherited from sci access,
to list parameters and variables, read and write variables, periodical logging of
variables, creating conditional simulation events, and tracing data to file. In
addition, a module based on sci module also supports port binding. The help
command lists the supported functions and shows which class that implements
the functionality.
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[0 s] > CPU.program help
---------------- access object ----------------
. : Show sub-modules
list <-display> : Show internal variables
param <name> : Show / get parameter
get [-var] <-vmin> <-vmax> : Get variable value
set [-var] [-value] <-vmin> <-recursive> : Set variable value
size [-var] : Get the size of a variable
log [-var] <-depth> <-every> : Log to history buffer
push [-var] : Push variable to history
read [-var] <-vmin/vmax/tmin/tmax> <-timed> : Read history buffer
event [name] [-when] <-message> : Create conditional event
trace <on,off> <-filename> : Trace to file
----------------- sci_memory ------------------
rd <-addr> <-size> <-bin> <-file> : Read memory contents
wr <-addr> <-size> <-bin> <-file> <-data> : Write memory contents

Scenic contains base classes for frequently used objects, such as sci memory
and sci processor, which provide additional module specific functionality.
For example, the memory class implements functions to read and write memory
contents as shown below. In the same way, user modules can implement custom
functions to respond to requests from the Scenic shell.

[0 s]> CPU.program rd -addr 0x0 -size 64

00000000h: 64 00 00 0c 00 00 20 0c 00 00 40 0c 00 10 01 08 d..... ...@.....
00000010h: 00 10 01 04 04 00 21 10 02 00 00 10 00 10 01 08 ......!.........
00000020h: fc ff 00 18 00 00 00 00 00 00 00 00 00 00 00 00 ................
00000030h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................

3.4 Module Parameters

The parameters used when instantiating a module are listed using the param
command. The command shows the parameter name, the type index, and the
parameter value.

[10 ns]> MEM param
C_BASE_ADDR [typeID=6] { 0 }
C_BYTE_SIZE [typeID=6] { 1048576 }
C_CAS_LATENCY [typeID=6] { 3 }
C_DATA_WIDTH [typeID=6] { 32 }
C_ENABLE_DDR [typeID=0] { FALSE }
C_PERIOD [typeID=13] { 10 ns }

Parameters are read-only and can be accessed individually by specifying the
parameter name as a second argument.
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3.5 Module Variables

Each module can export local member variables to be accessible from the
Scenic shell. This reflects the variable type, size and value during simula-
tion time. Accessible variables enable the possibility of dynamic configuration,
and extraction of performance data, during simulation. All registered variables
in a module can be viewed using the modules list command. It shows the
name, vector size, data type size, history buffer size, and the variable value.

[1 ms]> CPU list
_debug_level 1x4 [0] { MESSAGE }
_trace_file 1x32 [0] { }
_trace_flag 1x1 [0] { 0 }
%PC 1x1 [0] { 19 }
stat_exec_instructions 1x4 [0] { 98662 }
batch_size 1x4 [0] { 1 }
use_data_bus 1x1 [0] { TRUE }
use_instr_bus 1x1 [0] { TRUE }

Each registered variable can be accessed and modified using the get and set
commands. The example below illustrated how the program counter (PC) in
a process or set to instruction 4. After simulating two clock cycles, the PC
reaches the value 6. For vector variables, the value is specified as a string of
values.

[10 ns]> CPU set -var "%PC" -value 4
[10 ns]> runb 20 ns
[30 ns]> CPU get -var "%PC"

[ 6 ]

Each variable can be periodically logged to study trends over time. The com-
mand log configures the history buffer depth and the logging time interval.
To disable logging, the time interval is set to 0. The read command is used
to access data in the history buffer, where time and vector range are optional
parameters. Time/value pairs can also be acquired by setting the timed flag
to true.

[0 us]> CPU log -var "%PC" -depth 10 -every "10 ns"
[0 us]> runb 1 us
[1 us]> CPU read -var "%PC"

[ 4 ; 5 ; 6 ; 7 ; 8 ; 4 ; 5 ; 6 ; 7 ; 8 ]

3.6 Module Debug

Modules use a set of macros to write debug information to the screen, shown
in Table 1. In this way, the level of detail can be configured for each individual
module. Each module contain a system variable named ” debug level” that
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can be changed by either the global command debug, which configures all
simulation modules, or individually by changing the variable with the set
command. The following command will set the debug level for all modules to
warning, and then set the debug level for the processor to message. During
simulation, the processor reports the executed instructions using a message
macro, which prints the information on the screen.

[0 s]> debug -level WARNING
[0 s]> CPU set -var _debug_level -value MESSAGE
[0 s]> runb 50 ns

[0 ns] <CPU> In reset
[10 ns] <CPU> processing instruction @0
[20 ns] <CPU> processing instruction @1
[30 ns] <CPU> processing instruction @2
[40 ns] <CPU> processing instruction @3

[50 ns]>

Tracing is used to extract information from a simulation models to a file, and
the macros can be found in Table 1. If the simulation model generates trace
data, it can be configured using the trace command to start streaming to
file. Tracing can be interactively turned on and off during simulation and the
hierarchical name of the module will be used if a filename is not given.

[0 us]> MEM trace on -file "memory_trace.txt"
[0 us]> runb 1 us
[1 us]> MEM trace off

4 System Specification

System description is based on eXtensible Markup Language (XML), which
is divided into module instantiation, binding, and configuration. Instantiation
and binding is handled during the specification phase using the command xml
load, while configurations can be loaded during the simulation phase using
xml config. Multiple XML files can be loaded and will be merged into a
single system during elaboration.

xml load -file system.xml % load system decription
xml load -file config.xml % load configurations
sim % build the simulation
runb 1 ns % start simulation phase
xml config -name "config_processor" % configure module

4.1 Module Instantiation

Simulation models are instantiated from the module library based on a system
specification. The specification contains the models to instantiate (type), the
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hierarchical name of the module (name), and parameters to statically configure
each module.

<INSTANTIATE>
<MODULE type="Processor_v1_00" name="CPU">

<PARAMETER name="C_PERIOD" type="TIME" value="5 ns"/>
<PARAMETER name="C_USE_CACHE" type="BOOL" value="TRUE"/>
<PARAMETER name="C_REGISTERS" type="UINT" cmd="$I"/>

</MODULE>
...

</INSTANTIATE>

Parameter are given for each module to be instantiated, and consists of a
parameter name, type, and value. The parameter name is unique and used
by the simulation model (in the constructor) to read out the configuration.
The type can be one of the following: string, bool, char, uchar, short,
ushort, int, uint, long, ulong, float, double, time. string is assumed
if no type name is given, and the value must match the type.

4.2 Module Binding

If a simulation module supports binding to another simulation module, then
the modules can be bound from the system specification using bind tags. Each
module implements functionality to bind to compatible modules, which can be
called during the specification phase.

<CONNECT>
<BIND src="CPU" dst="BUS" if="ICACHE"/>
<BIND src="CPU" dst="BUS" if="DCACHE"/>

</CONNECT>

All parameters specified in the bind tag are sent to the modules bind function,
for example parameter if, but src and dst represents the modules to be bound.

4.3 Module Configuration

In some cases it is useful to dynamically reconfigure the simulation modules
during the simulation phase. Therefore, it is possible to create different named
configuration that can be loaded during simulation. A configuration is loaded
using the xml config command and by specifying the name of the configuration.

<CONFIG name="config_processor">
<MODULE name="CPU">

<PARAMETER name="C_PROGRAM" type="STRING" value="demo.asm"/>
<PARAMETER name="C_ADDR" type="UINT" value="0"/>

</MODULE>
</CONFIG>
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The configuration contains information about how to reconfigure one or more
simulation modules. It uses the modules hierarchical name, and parameters
are given in the same way as for module instantiation.
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Table 2: Description of Scenic user commands and global simulation modules.

Command Description

codegen [-format] [-top] [-

proj] [-dir]

run the code generator specified by format on a hierarchi-

cal simulation module top.

debug [-level] set the global debug level.

echo [text] print text message.

eval [A] [op] [B] evaluate mathematical or logical operation.

exec [-file] [-repeat] [-fork] execute a script file with scenic commands repeat times.

fork executes the script in a new context.

exit exit program.

foreach [-var] [-iterator] [-

command]

execute a command cmd for every value in a set var.

function(parameters) function declaration with parameter list.

list [mod,gen,lib,env,arch] list module, generator, library, env ironment, architecture.

random [-min] [-max] [-

size] [-round] [-seed]

generate a sequence with size random numbers in the

range min to max.

return [value] return value from function call.

run [time] [unit] run simulation for time time units. valid time units are

[fs,ps,ns,us,ms,s].

runb [time] [unit] blocking version of run.

set [var] [value] assign or list environment variables.

sim [-arch] [-nostart] launch SystemC simulator and create system from

architectural description or from loaded XML.

step [time] [unit] run a single micro-step / set micro-step value.

stop halts a running simulation at next micro-step.

system [command] execute system shell command.

unset [var] remove environment variable var.

xml [clear,load,config,view] load XML system description or configure simulation mod-

ules from XML.

Global modules Description

memory [map,rd,wr] Scenic module that manages the global memory map

scheduler [active] Scenic module that manages access variable logging





Appendix B

DSP/MAC Processor Architecture

The DSP and MAC processors, presented in Part IV, are based on the same
architectural description, but with minor differences in the instruction set. The
DSP processor uses a 32-bit ALU and supports real and complex valued radix-2
butterfly. The MAC unit is based on a 16-bit ALU with multiplication support,
and implements instructions to join and split data transactions between the
external ports and the internal registers.

Table 2 presents the instruction set for the VHDL implementation, while
the Scenic models support additional and configurable functionality. Figure 1
presents a detailed description of the processor architecture. It is based on a
three-stage pipeline for instruction decoding, execution, and write-back. The
program is stored internally in the processing cell (PGM), and the main con-
troller handles configuration management and the control/status register.

Table 1: Flags for instructions of type A.

Flag Bit Processor Description

l 0 DSP/MAC End of inner loop
c 1 DSP Separated ALU for complex data (2 × 16 bits)
a 1 MAC Accumulate value to xACC
r 2 DSP/MAC Local i/o port read request
w 3 DSP/MAC Local i/o port write request
s 5 MAC Barrel shifter enabled (uses bit 0-4)
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