
Dynamically Reconfigurable Architectures

for Real-time Baseband Processing

Chenxin Zhang

Doctoral Dissertation

Digital Circuit Design

Lund, May 2014

Department of Electrical and Information Technology
Lund University
Box 118, 221 00 Lund
Sweden

Series of licentiate and doctoral thesis
ISSN 1654-790X; No. 60
ISBN 978-91-7473-973-2

c© 2014 Chenxin Zhang
Typeset in Computer Modern 10pt,
with the LATEXDocumentation System
using Pontus Åströms thesis template.

Printed in Sweden by Tryckeriet i E-huset, Lund University, Lund.

No part of this thesis may be reproduced or transmitted in any form or by any
means, electronically or mechanical, including photocopy, recording, or any
information storage and retrieval system, without written permission from the
author.

Abstract

Motivated by challenges from today’s fast-evolving wireless communication
standards and soaring silicon design cost, it is important to design a flexible
hardware platform that can be dynamically reconfigured to adapt to current
operating scenarios, provide seamless handover between different communi-
cation networks, and extend the longevity of advanced systems. Moreover,
increasingly sophisticated baseband processing algorithms pose stringent re-
quirements of real-time processing for hardware implementations, especially
for power-budget limited mobile terminals. With existing hardware platforms
such as Application-Specific Integrated Circuits (ASICs), Field-Programmable
Gate Arrays (FPGAs), and Digital Signal Processors (DSPs), the contradictory
design requirements of flexibility, computational performance, and hardware ef-
ficiency cannot be attained at the same time.

To achieve a balance between the aforementioned design requirements, a
coarse-grained dynamically reconfigurable cell array architecture is proposed.
The architecture is constructed from an array of heterogeneous function units
interconnected through a hierarchical on-chip network. The adopted in-cell
configuration scheme enables fast context switching between standards and be-
tween computational tasks during run-time. Although cell array is a generic
hardware platform, this thesis focuses on the architectural development of the
cell array tailored specifically for digital baseband processing of contemporary
wireless communication systems. Various degrees of flexibilities among operat-
ing scenarios, algorithms, tasks, and supporting standards are exploited. Be-
sides, high hardware efficiency is attained by conducting algorithm-architecture,
hardware-software, and processing-memory co-design.

In this thesis, flexibility, performance and efficiency of the proposed archi-
tecture are demonstrated through two case studies. First, the cell array is de-
ployed in a digital front-end receiver, aiming to support concurrent processing
of multiple radio standards, 3GPP Long Term Evolution (LTE), IEEE 802.11n,
and Digital Video Broadcasting for Handheld (DVB-H). Dynamic configura-
tion of the cell array enables run-time switching between different operation
modes, multi-standard single-stream and multi-standard multi-stream, in or-
der to maximize hardware usage for attaining high computational performance
while sufficing current processing demands. Implementation results show that
the immense flexibility offered by the cell array comes at the cost of only about
16% area overhead in comparison to its ASIC counterpart. In the second
study, the cell array architecture is extended with extensive vector computing
capabilities, aiming to perform high-throughput MIMO signal processing. As

iii

an illustration, three computationally intensive blocks, namely channel estima-
tion, pre-processing, and symbol detection, of a 4×4 MIMO processing chain in
a 20MHz 64-QAM 3GPP LTE-Advanced downlink are mapped and processed
in real-time. With 6 processing and 10 memory cells deployed in the array, the
achieved system throughput is 368Mb/s at 500MHz and the corresponding
energy consumption for processing one information bit is 1.49 nJ/b. Compared
to state-of-the-art implementations, the proposed solution outperforms related
programmable platforms by up to 6 orders of magnitude in energy efficiency,
and is 1.7−13.6 and 1.4−15 times less efficient than ASICs in terms of area
and energy, respectively, when performing each individual task.

Learning is not attained by chance,

it must be sought for with ardor and

attended to with diligence.

Abigail Adams (1744 - 1818)

Contents

Abstract iii

Preface xi

Acknowledgement xv

List of Acronyms xvii

List of Definitions and Mathematical Operators xxi

1 Introduction 1

1.1 Scope of the Thesis . 3

1.2 Contributions and Thesis Outline 4

2 Digital Hardware Platforms 9

2.1 Programmable Processors . 10

2.2 Application-Specific Integrated Circuits 13

2.3 Reconfigurable Architectures . 13

2.4 A Comment on Power Efficiency 15

3 Digital Baseband Processing 17

3.1 Wireless Communication Technologies 18

3.2 Overview of Digital Baseband Processing 20

3.3 Baseband Processing Properties 24

vii

I The Reconfigurable Cell Array 25
1 Introduction . 27

2 Prior Work and State-of-the-art 28

3 Architecture Overview . 32

3.1 Processing Cell . 34

3.2 Memory Cell . 36

3.3 Network-on-Chip . 38

3.4 Resource Configuration 43

4 Design Flow . 44

5 Summary . 46

II Multi-standard Digital Front-End Processing 47
1 Introduction . 49

2 Algorithm and Implementation Aspects 52

2.1 Time Synchronization and CFO Estimation 52

2.2 Operation Analysis . 54

3 Hardware Development . 55

3.1 Dataflow Processor . 56

3.2 Memory Cell . 59

4 Implementation Results and Discussion 61

4.1 Hardware Flexibility . 64

4.2 Implementation Results 67

4.3 Measurement Results . 71

5 Summary . 75

III Multi-task MIMO Signal Processing 77
1 Introduction . 79

2 MIMO Signal Processing . 81

2.1 Channel Estimation . 82

2.2 Channel Pre-processing 84

2.3 Symbol Detection . 86

3 Algorithm Evaluation and Operation Analysis 94

3.1 Simulation Environment 94

3.2 Performance Evaluation 95

3.3 Operation and Complexity Analysis 101

3.4 Processing Flow and Timing Analysis 102

4 Hardware Development . 104

4.1 Architecture Overview . 105

4.2 Vector Dataflow Processor 105

4.3 Vector Data Memory Tile 116

4.4 Scalar Resource Cells and Accelerators 120

4.5 Concurrent Candidate Evaluation 125

5 Implementation Results and Comparison 127

5.1 Implementation Results 129

5.2 Task Mapping and Timing Analysis 132

5.3 Computation Efficiency 139

5.4 Power and Energy Consumption 139

5.5 Comparison and Discussion 142

6 Adaptive Channel Pre-processor 149

6.1 QR-update Scheme . 150

6.2 Group-sort Algorithm . 152

6.3 Algorithm Evaluation and Operation Analysis 152

6.4 Implementation Results and Discussion 155

7 Summary . 157

Conclusion and Outlook 159

Bibliography 161

Appendix 173

A Dataflow Processor Architecture 177

B Vector Dataflow Processor Architecture 191

Preface

This thesis summarizes my academic work carried out during the period be-
tween April 2009 and May 2014 in the digital circuit design group, at the De-
partment of Electrical and Information Technology, Lund University, Sweden.
The main contributions are derived from the following articles:

Chenxin Zhang, Liang Liu, Dejan Marković, and Viktor Öwall, “A Het-
erogeneous Reconfigurable Cell Array for MIMO Signal Processing,” sub-
mitted to IEEE Transactions on Circuits and Systems-I: Regular Papers.

Contribution The research work has been performed by the first author
in the guidance of the remaining authors.

Isael Diaz, Chenxin Zhang, Lieven Hollevoet, Jim Svensson, Joachim
Neves Rodrigues, Leif Wilhelmsson, Thomas Olssson, Liesbet Van der
Perre, and Viktor Öwall, “A New Digital Front-End for Flexible Re-
ception in Software Defined Radio,” submitted to Microprocessors and
Microsystems: Embedded Hardware Design.

Contribution Hardware development of the cell array used in the design
and the corresponding task mapping have been performed by the author.

Stefan Granlund, Liang Liu, Chenxin Zhang, and Viktor Öwall, “A Low-
Latency High-Throughput Soft-Output Signal Detector for Spatial Mul-
tiplexing MIMO Systems,” submitted to Microprocessors and Microsys-
tems: Embedded Hardware Design.

Contribution The author has developed a baseline algorithm and pro-
vided a simulation testbed for performance evaluations.

Chenxin Zhang, Hemanth Prabhu, Liang Liu, Ove Edfors, and Viktor
Öwall, “Energy Efficient SQRD Processor for LTE-A Using a Group-sort
Update Scheme,” in Proceedings of IEEE International Symposium on
Circuits and Systems, Melbourne, Australia, June 2014.

Contribution The research work has been performed by the first and the
second authors in the guidance of the remaining authors. The first author
has developed a hardware platform used for the proposed algorithm.

xi

Isael Diaz, Chenxin Zhang, Lieven Hollevoet, Jim Svensson, Joachim
Neves Rodrigues, Leif Wilhelmsson, Thomas Olssson, Liesbet Van der
Perre, and Viktor Öwall, “Next Generation Digital Front-End for Multi-
Standard Concurrent Reception,” in Proceedings of NORCHIP, Vilnius,
Lithuania, November 2013.

Contribution Hardware development of the cell array used in the design
and the corresponding task mapping have been performed by the author.

Stefan Granlund, Liang Liu, Chenxin Zhang, and Viktor Öwall, “Imple-
mentation of a Highly-Parallel Soft-Output MIMO Detector with Fast
Node Enumeration,” in Proceedings of NORCHIP, Vilnius, Lithuania,
November 2013.

Contribution The author has developed a baseline algorithm and pro-
vided a simulation testbed for performance evaluations.

Chenxin Zhang, Liang Liu, Yian Wang, Meifang Zhu, Ove Edfors, and
Viktor Öwall, “A Highly Parallelized MIMO Detector for Vector-Based
Reconfigurable Architectures,” in Proceedings of IEEE Wireless Commu-
nications and Networking Conference, Shanghai, China, April 2013.

Contribution Based on the original idea of the second author, the first
author has developed the algorithm and carried out performance analysis
with the help of the third and the fourth author under the supervision of
the remaining authors.

Chenxin Zhang, Hemanth Prabhu, Liang Liu, Ove Edfors, and Viktor
Öwall, “Energy Efficient MIMO Channel Pre-processor Using a Low
Complexity On-Line Update Scheme,” in Proceedings of NORCHIP, Cop-
enhagen, Denmark, November 2012.

Contribution The research work has been performed by the first and
the second authors in the guidance of the remaining authors. The first au-
thor has formulated the proposed algorithm and carried out performance
analysis.

Chenxin Zhang, Liang Liu, and Viktor Öwall, “Mapping Channel Esti-
mation and MIMO Detection in LTE-Advanced on a Reconfigurable Cell
Array,” in Proceedings of IEEE International Symposium on Circuits and
Systems, Seoul, Korea, May 2012.

Contribution The research work has been performed by the first author
in the guidance of the remaining authors.

Chenxin Zhang, Isael Diaz, Per Andersson, Joachim Neves Rodrigues,
and Viktor Öwall, “Reconfigurable Cell Array for Concurrent Support of
Multiple Radio Standards by Flexible Mapping,” in Proceedings of IEEE
International Symposium on Circuits and Systems, Rio de Janeiro, Brazil,
May 2011.

Contribution The research work has been performed by the first and the
second authors in the guidance of the remaining authors. The first author
has developed a hardware platform and performed the corresponding task
mapping.

Chenxin Zhang, Thomas Lenart, Henrik Svensson, and Viktor Öwall,
“Design of Coarse-Grained Dynamically Reconfigurable Architecture for
DSP Applications,” in Proceedings of International Conference on Re-
configurable Computing and FPGAs, Cancun, Mexico, December 2009.

Contribution The research work has been performed by the first author
in the guidance of the remaining authors.

I have also contributed to the following articles, which are not directly included
in the thesis:

Fengbo Ren, Chenxin Zhang, Liang Liu, Wenyao Xu, Viktor Öwall, and
Dejan Marković, “A Modified Square-Root-Free Matrix Decomposition
Method for Efficient Least Square Computation on Embedded Systems,”
under revision at IEEE Embedded Systems Letters.

Contribution The research work has been performed by the first and
the second authors in the guidance of the remaining authors. The author
has carried out performance analysis of the proposed algorithm.

Per Andersson, Krzysztof Kuchcinski, Chenxin Zhang, and Jörn W. Jan-
neck, “Beyond von Neumann: Weakly Programmable Processor Arrays
and Their Programming,” in Proceedings of First International Software
Technology Exchange Workshop, Stockholm, Sweden, November 2010.

Contribution The author has designed a hardware platform used for
software development carried out by the remaining authors.

The research works included in this thesis have been carried out in the Re-
configurable Computing project sponsored by VINNOVA Industrial Excellence
Center - System Design on Silicon (IXC SoS), the High Performance Embedded
Computing (HiPEC) project sponsored by Swedish Foundation for Strategic

Research (SSF), the Scalable Multi-tasking Baseband for Mobile Communica-
tions (Multibase) project sponsored by Seventh Framework Programme for Re-
search (FP7) European Union, and the Flexible Embedded Platforms for EL-
LIIT Applications project sponsored by Excellence center at Linköping-Lund
in Information Technology (ELLIIT) research center.

Acknowledgement

This five-year PhD journey has been adventurous, challenging and exciting. It
would not have been so fruitful, joyful and rewarding without many people’s
help and support.

First and foremost, I would like to show my deep gratitude to my main su-
pervisor Professor Viktor Öwall, who has guided and encouraged me since I was
a master student. Without his endless support and caring, I would never have
been able to come to this moment. He has not only made invaluable advices on
my studies, but also given me great opportunities to gain international research
experiences. Over the years, his door was always open whenever I had ques-
tions and problems (not only academic ones). I will truly miss your company
in my PhD journey (including the joyful drive in Hollywood and Santa Mon-
ica). I am indebted to Assistant Professor Liang Liu, who is not only a great
supervisor but also a true friend. I will never forget your incredible patience in
reading and commenting my works and teaching me about technical writings,
as well as many joyful beer & whisky evenings. I am also in gratitude to Dr.
Thomas Lenart, who guided me stepping into this fantastic research area six
years ago. Ever since then, he has provided me with all possible supports, from
commenting on my works to guidance on my career development. I would also
like to show my great thanks to Professor Ove Edfors for his tremendous help
in the field of communication. Special appreciation goes to his good sense of
beer during the trip in Shanghai.

Life as a graduate student comprises hard work and joyful moments with
colleagues and friends. I want to thank Assistant Professor Per Andersson, As-
sociate Professor Erik Larsson, Professor Peter Nilsson, and Associate Professor
Joachim Rodrigues, for all the constructive guidance and help throughout my
PhD studies; Dr. Isael Diaz, Stefan Granlund, Hemanth Prabhu, and Meifang
Zhu, for your excellent teamwork; Dr. Deepak Dasalukunte, for taking care of
my plants; Dr. Johan Löfgren, for urging me to “Get back to work!”; Reza
Meraji and Dr. Yasser Sherazi, for many “scientific discussions”; Katarzyna
Burzynska, Mingfa Ding, and Dr. Ping Lu, for supporting and caring as friends.
I have also enjoyed many talks with Dr. Mattias Andersson, Oskar Andersson,
Rakesh Gangarajaiah, Breeta SenGupta, Erik Hertz, Xiaodong Liu, Yangxu-
rui Liu, Steffen Malkowsky, Babak Mohammadi, Christoph Müller, Dimitar
Nikolov, Dejan Radjen, Michal Stala, Xiang Gao, and Farrokh Ghani Zadegan.
All my friends and colleagues besides above mentioned deserve thanks.

xv

My work would have been much more complicated if it were not for the ad-
ministrative and technical staff. I would especially like to thank Anne Ander-
sson, Pia Bruhn, Doris Glöck, Robert Johnsson, Erik Jonsson, Bertil Lindvall,
Stefan Molund, Martin Nilsson, and Josef Wajnblom.

I am in great gratitude to Associate Professor Dejan Marković for hosting
me at the Department of Electrical Engineering, University of California, Los
Angeles (UCLA) from Oct. 2012 to Feb. 2013. I would like to thank him for the
fruitful weekly discussions and for giving me opportunities to gain experience
from industry research. I would like to extend my gratitude to the colleagues
and friends at UCLA, especially Fengbo Ren, Cheng C. Wang, Wenyao Xu,
and Fang-Li Yuan. Special thanks to Fengbo for his great help academically
and in life in general. Thank you for the unforgettable spring festival dinner.

I would like to express gratitudes from the deepest point of my heart to my
parents. Thank you for your unconditional love, endless support and constant
encouragement. I am also grateful to my parents-in-law for their great support
and care.

Last but not the least, to my wife Lu. I am so glad to have you in my life.
Your love has made me what I am today.

Lund, April 22, 2014

Chenxin Zhang

List of Acronyms

ALU Arithmetic Logic Unit

ASIC Application-Specific Integrated Circuit

ASIP Application-Specific Instruction-set Processor

AWGN Additive White Gaussian Noise

BCJR Bahl-Cocke-Jelinek-Raviv

BPSK Binary Phase-Shift Keying

CFO Carrier Frequency Offset

CGRA Coarse-Grained Reconfigurable Architecture

CISC Complex Instruction Set Computing

CMAC Complex-valued Multiply-ACcumulate

CMOS Complementary Metal-Oxide-Semiconductor

CORDIC COordinate Rotation DIgital Computer

CP Cyclic Prefix

CSI Channel State Information

CUDA Compute Unified Device Architecture

CVG Candidate Vector Generation

DFE Digital Front-End

DLP Data-Level Parallelism

DMA Direct Memory Access

DSP Digital Signal Processor

DVB Digital Video Broadcasting

DVB-H Digital Video Broadcasting for Handheld

xvii

ED Euclidean Distance

EPA Extended Pedestrian A

EQD EQually Distributed

ETU Extended Typical Urban

EVA Extended Vehicular A

FEC Forward Error Correction

FER Frame Error Rate

FFT Fast Fourier Transform

FIFO First In First Out

FNE Fast Node Enumeration

FPGA Field-Programmable Gate Array

FSD Fixed-complexity Sphere Decoder

FSM Finite-State Machine

GALS Globally Asynchronous Locally Synchronous

GOPS Giga Operations Per Second

GPGPU General-Purpose computing on Graphics Processing Unit

GPP General Purpose Processor

GPR General Purpose Register

GPS Global Positioning System

GPU Graphics Processing Unit

GR Givens Rotation

GSM Global System for Mobile communications

HDL Hardware Description Language

ICI Inter-Carrier-Interference

i.i.d. Independent and Identically Distributed

ILP Instruction-Level Parallelism

IMD IMbalanced Distributed

IP Intellectual Property

ISA Instruction Set Architecture

ISI Inter-Symbol-Interference

LS Least Square

LSB Least Significant Bit

LTE Long Term Evolution

LTE-A Long Term Evolution-Advanced

LUT Look-Up Table

MAC Multiply-ACcumulate

MGS Modified Gram-Schmidt

MIMO Multiple-Input Multiple-Output

ML Maximum-Likelihood

MMR Matrix Mask Register

MMSE Minimum Mean-Square Error

MSB Most Significant Bit

MSE Mean Squared Error

NFC Near Field Communication

NoC Network-on-Chip

NRE Non-Recurring Engineering

OFDM Orthogonal Frequency Division Multiplexing

PC Program Counter

PDP Power-Delay Profile

QAM Quadrature Amplitude Modulation

QoS Quality of Service

QRD QR Decomposition

RAM Random Access Memory

RC Resource Cell

RISC Reduced Instruction Set Computing

ROM Read-Only Memory

RTL Register Transfer Level

SCENIC SystemC Environment with Interactive Control

SD Sphere Decoder

SDBG Serial DeBuG

SIMD Single Instruction Multiple Data

SNR Signal-to-Noise Ratio

SPE Successive Partial node Expansion

SQRD Sorted QR Decomposition

SRAM Static Random-Access Memory

SSFE Selective Spanning with Fast Enumeration

STS Short Training Symbol

TDM Time Division Multiplexing

TLP Thread-Level Parallelism

UART Universal Asynchronous Receiver/Transmitter

UMTS Universal Mobile Telecommunications System

VDP Vector Dot Product

VHDL Very High Speed Integrated Circuit (VHSIC) HDL

VLIW Very Long Instruction Word

VLSI Very-Large-Scale Integration

VPR Vector Permutation Register

WCDMA Wideband Code Division Multiple Access

ZF Zero-Forcing

List of Definitions and Mathematical Operators

(·)∗ Complex conjugate

(·)T Vector/matrix transpose

(·)H Hermitian transpose

(·)† Matrix pseudo-inverse

(·)i Column vector

(·)i,i (i, i)th matrix element

| · | Euclidean vector length

‖ · ‖2 ℓ2-norm
⊙

Element-wise vector multiplication

∞ Infinity

∝ Proportional

≈ Approximation

O Computational complexity

⌈x⌉ Ceiling function. Rounds x to nearest integer towards ∞

⌊x⌋ Floor function. Rounds x to nearest integer towards −∞

x ∈ A The element x belongs to the set A

Q(x) Slicing function in symbol detection, returning a
constellation point nearest to x

xxi

j Imaginary unit

I Identity matrix

θ OFDM symbol start

ε Fractional carrier frequency offset

Nc Number of OFDM subcarriers

∆f OFDM subcarrier spacing

N Number of antennas

M Constellation size

n i.i.d. complex Gaussian noise vector

σ2
n Variance of n

η Post-detection SNR

s Technology scaling factor

H Complex-valued MIMO channel matrix

Q Unitary matrix in QR decomposition

R Upper triangular matrix in QR decomposition

P Permutation matrix in sorted-QR decomposition

NSW Frequency correlation window in R.MMSE-SW

Ω Node perturbation parameter in MMSE-NP

Chapter 1

Introduction

This thesis discusses an interdisciplinary study in wireless communication and
Very-Large-Scale Integration (VLSI) design, more specifically, implementation
of digital baseband processing using reconfigurable architectures. Development
of such kind of systems, sometimes referred to as baseband processors [1] or
Software Defined Radio (SDR) platforms [2], is an important and challenging
subject, especially for small-scale base stations (e.g., femtocells) and mobile
terminals that must provide reliable services under various operating scenarios
with low power consumption.

The importance of the subject is driven by two facts. First, there is a
huge demand for wireless communication in the world. The number of devices
connected to the Internet in one way or the other is expected to reach 50 billion
by 2020 [3,4]. In other words, every person on earth will have around six devices
on average. Second, the number of radio standards grows increasingly fast in
order to suffice ever-growing user demands such as date rate. For example,
compared to the world’s first hand-held device demonstrated in 1973, today’s
fourth-generation (4G) mobile terminals are able to process not only voice
and text but also data streaming with the speed of up to gigabit-per-second
[5]. Moreover, modern wireless systems need to be backward compatible to
support 2G Global System for Mobile communications (GSM) and 3G Universal
Mobile Telecommunications System (UMTS), as well as to support a range
of different radio standards for improving user experience. Examples of these
standards are bluetooth, IEEE 802.11 series, Global Positioning System (GPS),
and Near Field Communication (NFC). As envisioned in [6], a single 4G mobile
terminal needs to support more than 10 radio standards with tens of operation
modes in each standard (e.g., 63 for 3GPP Long Term Evolution). Using

1

2 CHAPTER 1. INTRODUCTION

traditional implementation strategies, equipping each of these standards with
an Application-Specific Integrated Circuit (ASIC), becomes antiquated and
unaffordable with regard to area consumption and development time. Besides,
it is unlikely that a user will enable all of these standards at the same time in a
single terminal. Thus, there is a need for a flexible hardware platform capable of
sharing resources among multiple standards and tasks and allocating resources
dynamically to suffice current computational demands.

In addition to the multi-standard multi-task support, flexibility is required
to cope with the rapid evolution of baseband processing algorithms and enable
run-time algorithm adaptions to provide better Quality of Service (QoS) and
maintain robust, reliable, and seamless connectivity. Furthermore, benefiting
from the hardware reconfigurability, such architectures have the potential to
perform system updates and bug-fixes while the system is in operation. This
feature will prolong product life-time and ensure benefits in terms of time-to-
market [1,7,8]. Last but not the least, from an algorithm development perspec-
tive, reconfigurable computing provides a more software-centric programming
approach. This allows hardware platforms to be developed on-demand and
potentially in the same language as used for software development. Unified
programming environment enhances productivity by simplifying system inte-
gration and verification.

Besides its importance, the target subject faces many design challenges in
practical implementations, such as requirements of high computational per-
formance and low energy consumption. Primary concerns for contemporary
system designs are shifting from computational performance to energy effi-
ciency [9, 10]. This trend becomes more and more prominent in wireless com-
munication designs. For example, the transition from 3G to 4G wireless com-
munication systems demands 3 orders of magnitude increase in computational
complexity, whereas the total power budget remains approximately constant in
a single mobile terminal [11, 12]. Reconfigurable architectures, since its inven-
tion in 1960 [13], promise to offer great hardware flexibility and computational
performance. They allow run-time hardware reconfigurations to accelerate ar-
bitrary algorithms, and thus extend the application domain and versatility
of the device. However, due to huge routing overhead, they cannot match
power and area efficiency of ASICs, in spite of their tremendous developments
over the past decades. As an example, fine-grained interconnects in commer-
cial Field-Programmable Gate Arrays (FPGAs) consume over 75% of the chip
area [14], and cause 17−54 times area overhead and 5.7−62 times more power
consumption in comparison to ASICs [15]. Moreover, bit-level function blocks
of FPGAs incur additional area and power penalties when implementing word-
level computations. The area and power overhead have restricted the usage of
reconfigurable architectures in cost-sensitive applications such as wireless com-

1.1. SCOPE OF THE THESIS 3

munication in mobile terminals. To address these overhead issues, new types
of reconfigurable architectures with coarse-grained function blocks have gained
increasing attention in recent years in both academia and industry [16–21].

This thesis presents a coarse-grained dynamically reconfigurable cell array
architecture, which is designed and tailored with a primary focus on digital
baseband processing in wireless communication. By exploiting the computa-
tional characteristics of the target application domain, the proposed domain-
specific cell array architecture bridges the gap between ASICs and conventional
reconfigurable platforms. The flexibility, performance, and hardware efficiency
of the cell array are demonstrated through case studies.

1.1 Scope of the Thesis

The goal of the research project is to find efficient reconfigurable architectures
that can provide a balance among computational capability, flexibility, and
hardware efficiency. The driving application for hardware developments and
performance evaluations is digital baseband processing in wireless communi-
cation. The target platform is small-scale base stations and mobile terminals,
which need to provide real-time performance with restricted budgets of physical
size and energy dissipation.

The central part of the thesis is the presentation of a dynamically recon-
figurable cell array architecture which is the main result of the work in this
project. Performance of the cell array is evaluated through two case studies,
which are conducted to address two following questions:

• Can the cell array be used for multi-standard and multi-task processing?
Is the control overhead affordable?

• Can the cell array meet real-time requirements when performing sophis-
ticated baseband processing tasks? Under such a use case, what is the
area and energy efficiency in comparison to ASICs and conventional re-
configurable architectures?

Throughout the work and by conducting algorithm-architecture co-design,
special attention is paid to four distinct areas of the cell array design:

• System architecture design, including various processing elements, mem-
ory sub-systems, Network-on-Chip (NoC), and dynamic reconfiguration.

• Design flow of the cell array.

• Design trade-offs, including selection of processing elements and accelera-
tors, task partitioning between hardware and software as well as between
processing elements and memory sub-systems.

4 CHAPTER 1. INTRODUCTION

• Instruction set and function descriptor design for various processing ele-
ments and memory sub-systems, respectively.

The main focus of the thesis is the architectural design of the cell array
architecture. Thus, system-level explorations, application mapping, and task
scheduling are not addressed. The former subject has been studied in previous
work [7, 8] carried out in the same group of the author. A SystemC-based
exploration environment Scenic was constructed specifically for this purpose.
The latter two subjects are currently carried out in a joint research project
with the Department of Computer Science, Lund University.

Digital baseband processing in wireless communication systems includes
many tasks such as Orthogonal Frequency Division Multiplexing (OFDM) mod-
ulation/demodulation, Multiple-Input Multiple-Output (MIMO) signal pro-
cessing, Forward Error Correction (FEC), interleaving, scrambling, etc. Among
these, this thesis focuses on four crucial blocks in a typical baseband processing
chain at the receiver, i.e., Digital Front-End (DFE), channel estimation, channel
pre-processing, and symbol detection. However, the same design methodology
is applicable for other baseband processing blocks and applications.

1.2 Contributions and Thesis Outline

The thesis is divided into four parts. Chapter 2 and 3, belonging to a back-
ground part, serve to give an overview of the research field. Chapter 2 dis-
cusses reconfigurable architectures and various processing alternatives. Chap-
ter 3 covers typical digital baseband processing tasks in contemporary wireless
communication systems. These two introductory chapters are not intended to
give detailed descriptions on each of the subject. They are presented to give
reference information on terms and concepts used later in the thesis.

Part I introduces the proposed coarse-grained dynamically reconfigurable
cell array architecture, including both system infrastructure and a hardware de-
sign flow. Using the cell array as a baseline architecture, Part II and III present
two case studies to demonstrate the performance of the proposed domain-
specific reconfigurable cell array. The two studies are conducted in accordance
to the processing flow of a typical baseband processing chain at the receiver. In
addition, the two case studies manifest architectural evolution of the cell array,
namely from scalar- to vector-based architecture.

Part I: The Reconfigurable Cell Array

Conventional fine-grained architectures, such as Field-Programmable Gate Ar-
rays (FPGAs), provide great flexibility by allowing bit-level manipulations in
system designs. However, the fine-grained configurability results in long config-

1.2. CONTRIBUTIONS AND THESIS OUTLINE 5

uration time and poor area and power efficiency, and thus restricts the usage of
such architectures in time-critical and area/power-limited applications. To ad-
dress these issues, recent work focuses on coarse-grained architectures, aiming
to provide a balance between flexibility and hardware efficiency by adopting
word-level data processing. In this part, a coarse-grained dynamically reconfig-
urable cell array architecture is proposed. The architecture is constructed from
an array of heterogeneous functional units communicating via hierarchical net-
work interconnects. The strength of the architecture lies in the simplified data
sharing achieved by decoupled processing and memory cells, the substantial
communication cost reduction obtained by a hierarchical network structure,
and the fast context switching enabled by a unique run-time reconfiguration
mechanism.

The content of this part is based on the following publication:

Chenxin Zhang, Thomas Lenart, Henrik Svensson, and Viktor Öwall, “Design

of Coarse-Grained Dynamically Reconfigurable Architecture for DSP Applica-

tions,” in Proceedings of International Conference on Reconfigurable Computing

and FPGAs, Cancun, Mexico, December 2009.

Part II: Multi-standard Digital Front-End Processing

This part aims at demonstrating the flexibility of the reconfigurable cell array
architecture and evaluate the control overhead of hardware reconfigurations,
in terms of clock cycles and area consumption. For this purpose, the cell
array is configured to concurrently process multiple radio standards. Flexibility
of the architecture is demonstrated by performing time synchronization and
Carrier Frequency Offset (CFO) estimation in a digital front-end receiver for
multiple OFDM-based standards. As a proof-of-concept, this work focuses on
three contemporarily widely used radio standards, 3GPP Long Term Evolution
(LTE), IEEE 802.11n, and Digital Video Broadcasting for Handheld (DVB-H).
The employed reconfigurable cell array, containing 2×2 resource cells, supports
all three standards and is capable of processing two concurrent data streams.
Dynamic configuration of the cell array enables run-time switching between
different standards and allows adoption of different algorithms on the same
platform. Thanks to the adopted fast configuration scheme, context switching
between different operation scenarios requires at most 11 clock cycles.

The content of this part is based on the following publications:

Chenxin Zhang, Isael Diaz, Per Andersson, Joachim Neves Rodrigues, and

Viktor Öwall, “Reconfigurable Cell Array for Concurrent Support of Multiple

Radio Standards by Flexible Mapping,” in Proceedings of IEEE International

Symposium on Circuits and Systems, Rio de Janeiro, Brazil, May 2011.

6 CHAPTER 1. INTRODUCTION

Isael Diaz, Chenxin Zhang, Lieven Hollevoet, Jim Svensson, Joachim Neves

Rodrigues, Leif Wilhelmsson, Thomas Olssson, Liesbet Van der Perre, and

Viktor Öwall, “A New Digital Front-End for Flexible Reception in Software

Defined Radio,” submitted to Microprocessors and Microsystems: Embedded

Hardware Design.

Isael Diaz, Chenxin Zhang, Lieven Hollevoet, Jim Svensson, Joachim Neves Ro-

drigues, Leif Wilhelmsson, Thomas Olssson, Liesbet Van der Perre, and Viktor

Öwall, “Next Generation Digital Front-End for Multi-Standard Concurrent Re-

ception,” in Proceedings of NORCHIP, Vilnius, Lithuania, November 2013.

Part III: Multi-task MIMO Signal Processing

This part aims at demonstrating the flexibility and real-time processing capa-
bility of the cell array as well as evaluating the area and energy efficiency when
performing sophisticated baseband processing tasks. The outcome of this work
accounts for a large portion of this thesis.

Driven by the requirement of multi-dimensional computing in contempo-
rary wireless communication technologies, reconfigurable platforms have come
to the era of vector-based architectures. In this part, the reconfigurable cell
array is extended with extensive vector computing capabilities, aiming for high-
throughput baseband processing in MIMO-OFDM systems. Besides the het-
erogeneous and hierarchical resource deployments, a vector-enhanced SIMD
structure and various memory access schemes are employed. These architec-
tural enhancements are designed to suffice stringent computational require-
ments while retaining high flexibility and hardware efficiency. To demonstrate
its performance and flexibility, three computationally intensive blocks, namely
channel estimation, channel pre-processing, and symbol detection, of a 4×4
MIMO processing chain in a 20MHz 64-QAM Long Term Evolution-Advanced
(LTE-A) downlink are mapped and processed in real-time.

The content of this part is based on the following publications:

Chenxin Zhang, Liang Liu, Dejan Marković, and Viktor Öwall, “A Heteroge-

neous Reconfigurable Cell Array for MIMO Signal Processing,” submitted to

IEEE Transactions on Circuits and Systems-I: Regular Papers.

Chenxin Zhang, Liang Liu, Yian Wang, Meifang Zhu, Ove Edfors, and Vik-

tor Öwall, “A Highly Parallelized MIMO Detector for Vector-Based Reconfig-

urable Architectures,” in Proceedings of IEEE Wireless Communications and

Networking Conference, Shanghai, China, April 2013.

Chenxin Zhang, Liang Liu, and Viktor Öwall, “Mapping Channel Estimation

and MIMO Detection in LTE-Advanced on a Reconfigurable Cell Array,” in

Proceedings of IEEE International Symposium on Circuits and Systems, Seoul,

Korea, May 2012.

1.2. CONTRIBUTIONS AND THESIS OUTLINE 7

Stefan Granlund, Liang Liu, Chenxin Zhang, and Viktor Öwall, “A Low-

Latency High-Throughput Soft-Output Signal Detector for Spatial Multiplex-

ing MIMO Systems,” submitted to Microprocessors and Microsystems: Embed-

ded Hardware Design.

Stefan Granlund, Liang Liu, Chenxin Zhang, and Viktor Öwall, “Implemen-

tation of a Highly-Parallel Soft-Output MIMO Detector with Fast Node Enu-

meration,” in Proceedings of NORCHIP, Vilnius, Lithuania, November 2013.

Chenxin Zhang, Hemanth Prabhu, Liang Liu, Ove Edfors, and Viktor Öwall,

“Energy Efficient SQRD Processor for LTE-A Using a Group-sort Update

Scheme,” in Proceedings of IEEE International Symposium on Circuits and

Systems, Melbourne, Australia, June 2014.

Chenxin Zhang, Hemanth Prabhu, Liang Liu, Ove Edfors, and Viktor Öwall,

“Energy Efficient MIMO Channel Pre-processor Using a Low Complexity On-

Line Update Scheme,” in Proceedings of NORCHIP, Copenhagen, Denmark,

November 2012.

Chapter 2

Digital Hardware Platforms

Since the invention of the integrated circuit in the 1950’s, there has been explo-
sive developments of electronic circuits. Over the last decades, the amount of
transistors, which are the fundamental elements of digital and analog circuits,
fitting on a single silicon die has increased exponentially, from a few thousands
to billions to date. This trend was already observed in 1965 [22] by Intel’s
co-founder Gordon E. Moore and later came to be known as “Moore’s law”
coined by Carver Mead. Moore’s law has held true since then and is a driving
force of the advancements of Very-Large-Scale Integration (VLSI) design [23].

Enabled by the technology advancements, various forms of hardware plat-
forms emerged to cater to a variety of applications. Depending on design
trade-offs between flexibility and efficiency, these platforms can be broadly di-
vided into three classes, namely programmable processors, reconfigurable archi-
tectures, and Application-Specific Integrated Circuits (ASICs). Programmable
processors include, for example, General-Purpose Processors (GPPs) and Ap-
plication Specific Instruction Set Processors (ASIPs). Reconfigurable architec-
tures differ from the programmable processors in the way that they expose both
data and control path to the user and are “programmable” through hardware
configurations. Field-Programmable Gate Array (FPGA) is a well-recognized
example of this architecture category. ASICs are customized designs with lim-
ited flexibility. Hardware modifications after chip fabrication for new function
adoption is barely possible for this type of platforms. They are commonly used
in time- and power-critical systems, where flexibility is not a primary concern.
Figure 2.1 illustrates a general view of how these three classes of platforms
fare in the flexibility-efficiency design space. It should be pointed out that

9

10 CHAPTER 2. DIGITAL HARDWARE PLATFORMS

F
le

x
ib

il
it

y

GPP

GPU

DSP

ASIP

FPGA
CGRA

ASIC

Efficiency

Programmable

Reconfigurable This work

Figure 2.1: Comparison of flexibility and efficiency for various forms of
hardware platforms. This work focuses on the design of Coarse-Grained
Reconfigurable Architectures (CGRAs).

comparison of particular architecture instances among these classes has be-
come increasingly obscure because of huge architecture varieties and different
optimization objectives such as application domains and speed grades. Thus,
Figure 2.1 only serves to give an overview of how different platforms trade flex-
ibility for efficiency. Flexibility, including programmability and versatility, is
measured as the ability to adopt a platform into different application domains
and to perform different tasks. For instance, GPPs are highly flexible platforms
since they are designed without having any particular application in mind. Effi-
ciency relates to both computational performance and energy consumption and
is a measure of how well a platform performs in an application. In this con-
text, ASICs reveal the highest efficiency because of hardware customizations.
This work focuses on Coarse-Grained Reconfigurable Architectures (CGRAs),
aiming to bridge the flexibility-efficiency gap between ASICs and the other two
classes of platforms, illustrated in Figure 2.1.

2.1 Programmable Processors

Programmable processors are designed based on instruction sets, which are
specifications of operation codes (opcodes) used to conduct operations of un-
derlying hardware elements. Depending on design objectives, an instruction
set can be optimized with respect to, for example, application domain and
friendliness to high-level programming constructs [24]. Some examples of In-
struction Set Architecture (ISA) categories are Complex Instruction Set Com-
puting (CISC), Reduced Instruction Set Computing (RISC), and Very Long
Instruction Word (VLIW).

2.1. PROGRAMMABLE PROCESSORS 11

Based upon the retargetability of the instruction set, programmable pro-
cessors can be categorized into fixed and configurable ISAs. Compared to the
latter one, fixed ISAs are easy to design and can be optimized for obtaining
high performance such as high clock frequency by deep pipelining [24]. Exam-
ples of fixed ISAs are GPPs, special-purpose processors, and ASIPs. Config-
urable ISAs provide the user flexibilities in selecting appropriate instructions
for target applications. This way, the ISAs can be customized to attain higher
efficiency in comparison to fixed ISAs. However, this instruction set customiz-
ability complicates the design of baseline architecture and software tool chain
(e.g., compiler and emulator).

General-Purpose Processors

GPPs are highly programmable and support any algorithm that can be com-
piled to a computer program. Thus, they are dominantly used in personal
computers. Although GPPs have always been implemented with the latest
semiconductor technology in order to achieve the highest possible processing
speed, they suffer from a performance bottleneck: the sequential nature of
program execution. To address this issue, many design techniques have been
proposed, which range from ISA to microarchitecture design with a goal of
increasing the number of executed instructions per second. Examples of these
techniques are superscalar and VLIW architectures for exploiting Instruction-
Level Parallelism (ILP), Single Instruction Multiple Data (SIMD) architectures
(e.g., Intel’s Pentium MMX and AMD’s 3DNow! ISA) for enabling Data-
Level Parallelism (DLP), and multithreading technology (e.g., Intel’s hyper-
threading [25]) for providing Thread-Level Parallelism (TLP). Furthermore,
GPPs have shifted to a multi-core paradigm due to energy and power constrains
on growth in computing performance [26]. Figure 2.2 shows the slowdown in
processor performance growth, clock speed, and power consumption, as well as
the continued exponential growth in the number of transistors per chip [26].

Special-Purpose Processors

Special-purpose processors are designed to be used for a particular applica-
tion domain. Well-known examples are Digital Signal Processors (DSPs) and
Graphic Processing Units (GPUs). DSPs are designed for performing digital
signal processing tasks such as filtering and transforms. Commonly used oper-
ations in signal processing algorithms are accelerated in DSPs. An example is
multiplication followed by accumulation, widely used in digital filters [27]. This
operation is performed using dedicated Multiply-ACcumulate (MAC) units in
DSPs and usually takes one clock cycle to execute. Other commonly used
operations include various addressing modes such as modulo and ring-buffer.

12 CHAPTER 2. DIGITAL HARDWARE PLATFORMS

Figure 2.2: Transistors, frequency, power, performance, and processor
cores over time [26].

GPUs are specialized computational units dedicated to manipulating com-
puter graphics. Thanks to their highly parallel structure (e.g., containing hun-
dreds of processing cores [28]), they are able to process large blocks of data in
parallel. Taking advantage of the high processing capability, General-Purpose
computing on GPUs (GPGPU) has recently gained in popularity. An exam-
ple is the Compute Unified Device Architecture (CUDA) platform [29] from
Nvidia, which supports C/C++ and Fortan programming on GPUs and can
also be used for Matlab program accelerations [30].

Application-Specific Instruction Set Processors

Compared to DSPs and GPUs, Application-Specific Instruction set Processors
(ASIPs) are optimized for a single application or a small groups of applications
[31]. A general design flow is that a baseline processor, which could be a RISC
processor or DSP, is extended with application-specific instructions. Besides,
infrequently used instructions and function units are pruned, aiming to trade
flexibility for energy and cost efficiency.

2.2. APPLICATION-SPECIFIC INTEGRATED CIRCUITS 13

Configurable Instruction Set Processors

Different from the fixed ISAs, configurable instruction set processors provide
users a collection of instructions and a baseline architecture containing various
hardware features. Depending on target applications, users have the possibil-
ity of selecting appropriate instructions to construct a customized instruction
set at design-time. Meanwhile, the microarchitecture of the processors can be
customized by selecting, for example, different function units and the num-
ber of pipeline stages. Once the instruction set and the microarchitecture are
fine tuned, hardware implementation of the processor is generated. From the
hardware’s point of view, the generated processor is a type of ASIP, however,
with on-demand function customizations. Xtensa configurable cores [32] from
Cadence (previously Tensilica) is an example of the configurable instruction set
processor. Thanks to the instruction set and microarchitecture customizations,
this type of processors provides high processing performance and hardware ef-
ficiency. However, design of the baseline architecture and the corresponding
software support are more complicated than fixed ISAs, since they need to
cover a huge set of configurations.

2.2 Application-Specific Integrated Circuits

Application-Specific Integrated Circuits (ASICs) are designed to perform spe-
cific tasks. Therefore, computational data paths and control circuits can be
optimized for particular use cases. This brings ASICs to the far right of the
design space in Figure 2.1, indicating that they are the most efficient (in terms
of performance and energy consumption) type of platforms among the three
classes. Therefore, ASICs are commonly used to achieve real-time performance
within the budget for physical size and energy dissipation. However, the spe-
cialized hardware architecture limits the capability of adapting system to dif-
ferent applications and operation scenarios. This limitation results in reduced
overall area efficiency in terms of hardware reuse and sharing. Additionally,
this type of platforms requires a rather long hardware redesign time (for bug-
fixes or function updates) and exhaustive testing procedures. Furthermore, the
exploding silicon design cost limits the adoption of ASICs, especially in deep
sub-micro semiconductor technology.

2.3 Reconfigurable Architectures

Reconfigurable architectures are the ones having the capability of making sub-
stantial changes to the data path itself in addition to the control flow. This
means that not only the software that runs on a platform is modified, but also
how the hardware architecture operates [16–21]. With combined control and

14 CHAPTER 2. DIGITAL HARDWARE PLATFORMS

data path manipulations, reconfigurable architectures are able to exploit po-
tential parallelism, enable energy efficient computing, allow extensive hardware
reuse, and reduce system design cycle and cost [7].

Reconfigurable architectures are either homogeneous or heterogeneous. In a
homogeneous architecture, all elements contain the same hardware resources.
This uniform structure simplifies the mapping of user applications, since addi-
tional constraints on function partitions and placements are avoided. However,
homogeneous structures are inefficient in terms of hardware utilization of logic
and routing resources [7]. In contrast, heterogeneous architectures contain ar-
ray elements with different functionality, such as specialized elements for stream
data processing or control-flow handling. Compared to the homogeneous struc-
ture, adoption of various types of array elements reduces hardware overhead
and improves power efficiency at the cost of more complex mapping algorithms.

The size of the hardware elements inside a reconfigurable architecture is
referred to as granularity. Fine-grained architectures and Coarse-Grained Re-
configurable Architectures (CGRAs) are two variants of reconfigurable architec-
tures. Fine-grained architectures, such as FPGAs, are usually built up on small
Look-Up Tables (LUTs). Such architectures have the ability to map any logic
functions at bit-level onto their fine-grained lattice. However, this bit-oriented
architecture results in a large amount of control and routing overhead, for ex-
ample, when performing word-level computations. These overheads also affect
power consumption and system configuration time. In contrast, CGRAs are
constructed from larger building blocks in a size ranging from arithmetic logic
units to full-scale processors. These hardware blocks communicate through a
word-level routing network. The increased granularity in CGRAs reduces rout-
ing area overhead, improves configuration time, and achieves higher power effi-
ciency despite less mapping flexibility. Besides, CGRAs differ from fine-grained
architectures in design methodology. To map functionality into gates, FPGA
designs rely on a hardware-centric approach, which usually requires program-
ming in Hardware Description Language (HDL) such as VHDL. In contrast,
CGRAs provide a more software-centric programming approach to map func-
tionality to, for example, processing cores using a higher level language like C.
Software-centric design approach enhances productivity and simplifies system
integration and verification.

This thesis focuses on the development of CGRA, more specifically, domain-
specific CGRA for baseband processing in wireless communication systems.
Detailed architecture of the proposed CGRA-based dynamically reconfigurable
cell array is presented in Part I with case studies in Part II and III.

2.4. A COMMENT ON POWER EFFICIENCY 15

2.4 A Comment on Power Efficiency

As mentioned in Chapter 1, primary concerns for contemporary system designs
are shifting from computational performance to power efficiency [9,10]. Attain-
ing high power efficiency is especially important for the target applications of
this work, namely small-scale base stations and mobile terminals, since they
are all constrained by stringent power requirements. Thus, it is crucial to have
a better understanding of the composition of power consumption.

The total power consumption for a digital circuit built with Complementary
Metal Oxide Semiconductor (CMOS) transistors may be expressed as [33]

Ptotal ∼ α · (CL + CSC) ·VDD
2 · f︸ ︷︷ ︸

Pdynamic

+(IDC + ILeak) · VDD︸ ︷︷ ︸
Pleakage

, (2.1)

where Ptotal, Pdynamic, and Pleakage represent the total, dynamic, and leakage
power consumption, respectively. α is the switching activity of the circuit,
CL the load capacitance, CSC the short circuit capacitance, VDD the supply
voltage, and f the clock frequency. IDC and ILeak represent the static and
leakage current, respectively.

In the design of reconfigurable architectures, Pdynamic is usually a dom-
inating factor because of high clock frequency and hardware utilization. In
comparison, the leakage power is of less concern for such kind of architectures.
However, it should be pointed out that leakage power is becoming more and
more important with technology scaling and thus needs more attention. One
of the well-known approaches for designing low power circuits is to reduce the
quadratic term V 2

DD in (2.1) at the cost of performance sacrifice such as clock
frequency. To compensate for the performance loss, different techniques can
be used such as pipelining and parallel processing [34] but at the expense of
area consumption. Thus, it can be seen that designing hardware is a trade-off
between various parameters among the design space.

Chapter 3

Digital Baseband Processing

Wireless communication has been experiencing explosive growth since its inven-
tion. The wireless landscape has been broadened by incorporating more than
basic voice services and low data-rate transmissions. Taking cellular systems
as an example, the fourth generation (4G) mobile communication technology
promises to provide broadband Internet access in mobile terminals with up to
gigabit-per-second downlink data-rate [5]. Compared to the 9.6Kbit/s data ser-
vices in its 2G predecessor Global System for Mobile communications (GSM),
4G systems enhances the data-rate by 5 orders of magnitude. This data-rate
boost is a result of innovations in wireless technology, such as Orthogonal Fre-
quency Division Multiplexing (OFDM) and Multiple-Input Multiple-Output
(MIMO). The high speed data links together with advancements in mobile
terminals (e.g., phones, tablet computers, and wearable devices) have opened
up a whole new world for wireless communication and changed everyone’s life.
Besides conventional usage like Internet streaming and multimedia playback,
interdisciplinary applications like mobile health (mHealth) [35] are emerging.
New applications set new demands on wireless services, pushing forward tech-
nology developments.

This chapter aims to give a brief description of some modern wireless com-
munication technologies and standards, introduce basic concepts and termi-
nologies used in the rest of the thesis, and provide an overview of the digital
baseband processing tasks in modern systems. Moreover, computational prop-
erties of baseband processing tasks are extracted in order to guide hardware
developments. Basics of wireless communication, such as symbol modulation
and propagation channels, are not addressed but can be found in [36,37], since

17

18 CHAPTER 3. DIGITAL BASEBAND PROCESSING

the purpose of the present chapter is to highlight design challenges and point
out baseband processing properties that can be exploited to achieve efficient
hardware implementations. Worth mentioning is that this thesis work mainly
focuses on MIMO-OFDM systems because of their importance and popularity
in contemporary wireless communication systems. However, support of other
wireless technologies is a natural extension and can be easily mapped onto the
proposed reconfigurable cell array thanks to its flexible hardware infrastructure.

3.1 Wireless Communication Technologies

To increase the data-rate of a wireless system, a straightforward method is to
allocate larger bandwidth for data communication. A wide frequency band
allows for more data to be transferred at any time. This has been used as one
of the main techniques in the transition from 2G to 3G systems, achieving ∼40
times data-rate speed-up by increasing bandwidth per carrier from 200KHz to
5MHz. This trend continues in 4G systems, which further expand bandwidth
to 100MHz with carrier aggregation. However, larger bandwidth increases im-
plementation complexity. This is because multi-path propagation channels are
by nature frequency selective [37], and thus affect signals at different frequency
bands differently. OFDM technology [38] has been proposed to circumvent the
issue of frequency selectivity. To further increase data-rate without the expan-
sion of bandwidth, since bandwidth is a limited resource, spatial resources are
utilized in addition to time and frequency. MIMO [39] is one such technology
that provides various ways of utilizing spatial resources. In modern systems,
the two aforementioned technologies are often used together, referred to as
MIMO-OFDM systems.

Orthogonal Frequency Division Multiplexing

The key idea of OFDM is to divide a wideband channel into a number of nar-
rowband sub-channels, over which the wideband signal is multiplexed. This
way, the frequency response over each of these narrowband sub-channels is
flattened, thus reducing the complexity of channel equalization. To enable par-
allel transmission over flat-fading sub-channels without interfering one another,
adjacent narrowband sub-carriers need to be separated in frequency (∆f) and
arranged such that they are orthogonal to each other. Figure 3.1 illustrates
such arrangement. Because of the frequency overlapping, OFDM achieves high
spectral efficiency.

In addition to the frequency selectivity, OFDM systems need to cope with
channel effects as other wireless systems do. Wireless channels are character-
ized by multi-path propagation [37]. Signals travelling from one end to the
other are reflected, diffracted and scattered by obstacles, forming multi-path

3.1. WIRELESS COMMUNICATION TECHNOLOGIES 19

∆f

Figure 3.1: Orthogonal subcarriers in OFDM.

components. Depending on the travelled paths, multi-path components may
arrive at the receiver at different time instances. The multi-path propagation
will incur interferences between adjacent OFDM symbols generally referred
to as Inter-Symbol-Interference (ISI). In addition, OFDM systems may suffer
from Inter-Carrier-Interference (ICI), since the orthogonality of the subcarri-
ers may be destroyed by multi-path propagation and imperfections in practical
implementations such as carrier-oscillator mismatch.

To avoid both the ISI and ICI, each OFDM symbol is extended with a guard
time interval designed to allow channel’s impulse response to settle. This guard
time interval is filled with a Cyclic Prefix (CP), which is a copy of the last part
of each OFDM symbol. By discarding CP at the receiver after each symbol
reception, given that the CP is long enough to cover the impulse response of
the channel, the ISI and ICI can be completely avoided.

Multiple-Input Multiple-Output

MIMO is another important technology in modern wireless communication
systems. Compared to single antenna setup, MIMO exploits resources in the
spatial domain and provides significant improvements in system capacity and
link reliability without increasing bandwidth. In MIMO, three main opera-
tion modes exist, namely spatial multiplexing [40], spatial diversity [41], and
space division multiple access (also known as multi-user MIMO) [42]. These
modes, illustrated in Figure 3.2, are designed to increase average user spectral
efficiency, transmission reliability, and cell spectral efficiency, respectively [43].
To suffice ever-increasing user demands in Quality of Service (QoS) while liv-
ing with the limited bandwidth resources, current trend in wireless systems
is to adopt large MIMO dimensions. As an example, the maximum MIMO
configuration in the transition from 3GPP Long Term Evolution (LTE) to its
successor LTE-Advanced (LTE-A) is increasing from 4×4 to 8×8, while keeping
the bandwidth unchanged.

20 CHAPTER 3. DIGITAL BASEBAND PROCESSING

Tx Rx Tx Rx Tx

Rx

Rx

Rx(a) (b) (c)

Figure 3.2: Three operation mode in MIMO, (a) spatial multiplexing, (b)
spatial diversity, (c) space division multiple access (multi-user MIMO).

The benefits of MIMO entail a significant increase in signal processing com-
plexity and power consumption at the receiver, where sophisticated signal pro-
cessing is required, especially in a fading and noisy channel. For example,
Channel State Information (CSI) between each pair of transmit and receive
antennas should be properly estimated and symbol detection is needed to can-
cel inter-antenna interferences. As a result, efficient hardware implementation
of MIMO receivers has become a critical challenge. Moreover, when combining
MIMO with OFDM, it is required to perform the corresponding processing at
every OFDM subcarrier, posing even more stringent computational and energy
requirements.

3.2 Overview of Digital Baseband Processing

This section introduces baseband processing tasks in MIMO-OFDM systems.
Figure 3.3 shows a simplified diagram of a typical MIMO-OFDM transceiver.
Note that only digital baseband processing blocks are shown in the figure,
whereas the RF front-end and Digital-to-Analog/Analog-to-Digital Converters
(DACs/ADCs) are left out.

The receiver (Rx) chain is essentially the reverse processing of tasks per-
formed at the transmitter (Tx). However, the receiver is usually more complex
than the transmitter, since it has to reconstruct original data, which may be
incomplete and distorted during wireless transmission. Some examples of dis-
tortions are noise, multi-path channel fading, and imperfections in the RF
front-end.

Shaded blocks in Figure 3.3 are selected in this work as use cases for driving
the development of the domain-specific reconfigurable cell array. These blocks
are unique to the receiver chain and are key in determining the performance of
the entire MIMO-OFDM system.

3.2. OVERVIEW OF DIGITAL BASEBAND PROCESSING 21

Channel
pre-process

Channel
Estimation

S
y
m

b
o
l

d
et

ec
ti

o
n

Channel

Tx

Rx

D
ig

it
al

 f
ro

n
t

en
d

F
F

T
F

F
T

D
ec

o
d
in

g

IF
F

T
IF

F
T

C
P

C
P

C
P

C
P

Mapping

Mapping

Encoding

Encoding

Source

Source

L
ay

er
 m

ap
p
in

g

&
 p

re
-c

o
d
in

g
Part IIPart III

Figure 3.3: Block diagram of the MIMO-OFDM transceiver. This work
focuses on mapping shaded blocks onto the dynamically reconfigurable
cell array.

Channel Encoding/Decoding

The channel encoding block at the transmitter has two main tasks. First, bi-
nary data are encoded with error correcting code, such as convolutional codes,
which adds redundant information to help receiver detect and correct a limited
number of errors without retransmission. Second, encoded data are interleaved
to make sure that adjacent bits are not transmitted consecutively in frequency.
Interleaving improves transmission robustness with respect to burst errors. Ad-
ditionally, scrambling is often used to turn the bit stream into a pseudo-noise
sequence without long runs of zeros and ones [44].

Opposite to the encoding block, the channel decoder performs data dein-
terleaving, error correction, and descrambling. Among these, error correction,
such as Low-Density Parity-Check (LDPC) code [45], Viterbi [46], and turbo
decoding [47], are compute-intensive.

Symbol Mapping/Demapping

The encoded bit stream is sent for symbol mapping blocks at the transmitter,
which are responsible for two tasks. First, in the symbol mapper, the bit stream

22 CHAPTER 3. DIGITAL BASEBAND PROCESSING

is mapped to a stream of symbols based on the adopted modulation scheme
such as Quadrature Amplitude Modulation (QAM). Meanwhile, pilots are often
added to the symbol stream. Pilots carry known information to both the
transmitter and receiver and are used to perform, for example, synchronization
and channel estimation at the receiver. Second, the layer mapping block maps
the symbol stream onto multiple antennas.

The demapping block (not shown in Figure 3.3) demaps the symbol stream
from multiple antennas, removes pilots, and demaps data-carrying symbols
back to the binary bit stream.

Domain Transformation

Before sending data to the analog front-end at the transmitter, symbols from all
narrowband subcarriers are collected and are simultaneously transformed to a
time domain signal using an Inverse Fast Fourier Transform (IFFT). Thereafter,
CP is added to each OFDM symbol to protect data transmission from being
interfered by ISI and ICI.

At the receiver, CP is removed from each OFDM symbol. Fast Fourier
Transform (FFT) is used to separate received time-domain signal back into
their respective subcarriers.

Digital Front-End Processing

The Digital Front-End (DFE) is the first digital processing block in the receiver
chain and is responsible for two main tasks [48]. The first is to detect an in-
coming signal by monitoring the amplitude of signal reception. Once a signal is
detected, the DFE wakes up the remaining blocks in the baseband processing
chain. Likewise, it puts other blocks into sleep mode when no signal is de-
tected after a pre-defined time interval. The second task is to perform symbol
synchronization to determine the exact timing of incoming OFDM symbols.

In addition to the aforementioned tasks, DFE is sometimes used to estimate
and/or compensate some of radio impairments [48, 49], such as Carrier Fre-
quency Offset (CFO), Signal-to-Noise Ratio (SNR), and IQ imbalance. Part II
presents the mapping of DFE onto the reconfigurable cell array. Target pro-
cessing tasks include OFDM time synchronization and CFO estimation.

Channel Estimation

To be able to recover transmitted data from the distorted signal reception,
it is crucial to have the knowledge on how wireless channel “manipulates”
(e.g., attenuates and rotates) the signal transmission. In fact, the performance
gain of MIMO-OFDM systems heavily depends on the accuracy of CSI. Channel

3.2. OVERVIEW OF DIGITAL BASEBAND PROCESSING 23

estimation is used to estimate CSI based on either known information such as
pilots and preambles or blind estimation algorithms.

Commonly used channel estimation algorithms are Least Squares (LS),
Minimum Mean-Square Error (MMSE) and its derivatives, FFT, and Singular
Value Decomposition (SVD) estimation. Among these, MMSE estimator pro-
vides the highest performance in terms of estimation accuracy, and LS has the
lowest computational complexity. The work presented in Part III adopts an
MMSE-based channel estimation algorithm, which provides a balance between
performance and computational complexity.

Channel Pre-processing

The estimated channel matrix at each subcarrier needs to be further processed
before being sent to the symbol detector. Depending on the adopted symbol
detection algorithm, requirements on channel pre-processing may vary. Com-
monly used pre-processing algorithms include matrix inversion for linear detec-
tors and QR Decomposition (QRD) for tree-search based detectors. Both of
these algorithms are used in Part III.

Symbol Detection

In MIMO systems, detection is a joint processing of symbols from all spatial
streams, since the symbols all contain a bit of the information after transmitting
through the wireless channel. Therefore, the larger the MIMO dimension, the
higher the computational complexity is involved in symbol detection. The basic
task of a detection is to locate the transmitted data in a constellation diagram.
However, since received data are contaminated by channel fading and noise,
much effort needs to be spent in the detection process, especially for system
operating at high-order modulation and large antenna numbers.

From the performance point of view, Maximum-Likelihood (ML) detection
is an optimal detector that solves the closest-point search problem. However,
ML detector is infeasible due to the exhaustive symbol search that is known
to be NP-complete. Popular practical MIMO signal detection algorithms can
generally be categorized into two classes, linear and tree-search based detectors,
which all have certain performance sacrifice. Linear detection algorithms are
preferred for real-time implementations owing to their low computational com-
plexity. Additionally, they are characterized by high Data-Level Parallelism
(DLP), since symbol detection at each spatial stream can be efficiently vec-
torized and performed in parallel. However, linear detection suffers from huge
performance degradation compared to the optimal ML detection, especially
for high dimensional MIMO systems. Alternatively, tree-search algorithms
are getting much attention because of their near-ML performance. A tree-

24 CHAPTER 3. DIGITAL BASEBAND PROCESSING

search detection formulates a minimum-search procedure as a N -depth M -ary
complex-valued tree search problem, where N and M are the antenna number
and constellation size, respectively. Practical sub-optimal tree-search detectors
solve the NP-complete problem of the optimal ML detection by only travers-
ing through a number of branches. Examples of commonly used algorithms
are sphere decoder, K-Best, and their derivatives [50–53]. One fundamental
problem with tree-search algorithms is their intrinsic data dependence between
adjacent layers, namely that symbol detection at the ith layer is based on the
results of (i + 1)th layer. Therefore, the native vector structure of MIMO
systems is destroyed, resulting in low DLP. In Part III, a vector-level closest
point search algorithm in conjunction with linear detectors is proposed, which
is highly vector-parallelized, like linear detectors, and at the same time, has
the performance close to the level of tree-search detectors.

3.3 Baseband Processing Properties

Based on the analysis of aforementioned digital baseband processing tasks,
three computational properties can be observed: vast complex-valued comput-
ing, high data-level parallelism, and predictable control flow. These properties
should be exploited during the design of domain-specific reconfigurable cell
array to ensure its hardware efficiency.

In the digital baseband processing chain shown in Figure 3.3, all blocks,
except channel encoding/decoding, operate on I/Q pairs, which are represented
in complex-valued data format. Thus, it is essential to design an Instruction-
Set Architecture (ISA) that natively supports complex-valued computing, such
as data types, data paths, instruction set, and memory access patterns.

A large portion of computations are performed using vectors, thanks to the
parallel-structured MIMO streams. Such computations take place in process-
ing blocks, namely FFT/IFFT, channel estimation, pre-processing, and symbol
detection. The abundance of vector processing indicates extensive DLP, which
can be utilized to improve processing throughput and reduce control overhead.
Moreover, in view of the large number of subcarriers in OFDM, multi-subcarrier
processing [54] can be carried out. By performing operations simultaneously on
multiple subcarriers, multi-subcarrier processing further exploits DLP in addi-
tion to the ones obtained on the algorithm-level. This technique is extensively
used in work presented in Part III and is proven to be useful and effective.

Observed from baseband processing tasks, there is no or little backward
dependency between one another [1]. This makes control flow predictable and
can therefore simplify the control path to reduce overhead.

Part I

The Reconfigurable Cell Array

Abstract

Emerging as a prominent technology, reconfigurable architectures have the po-
tential of combining high hardware flexibility with high performance data pro-
cessing. Conventional fine-grained architectures, such as Field-Programmable
Gate Arrays (FPGAs), provide great flexibility by allowing bit-level manip-
ulations in system designs. However, the fine-grained configurability results
in long configuration time and poor area and power efficiency, and thus re-
stricts the usage of such architectures in time-critical and area/power-limited
applications. To address these issues, recent work focuses on coarse-grained
architectures, aiming to provide a balance between flexibility and hardware ef-
ficiency by adopting word-level data processing. In this part, a coarse-grained
dynamically reconfigurable cell array architecture is proposed. The architecture
is constructed from an array of heterogeneous functional units communicating
via hierarchical network interconnects. The strength of the architecture lies
in simplified data sharing achieved by decoupled processing and memory cells,
substantial communication cost reduction obtained by a hierarchical network
structure, and fast context switching enabled by a unique run-time reconfigu-
ration mechanism. The proposed reconfigurable cell array serves as a baseline
architecture for two case studies presented in Part II and III.

25

1. INTRODUCTION 27

1 Introduction

The evolution of user applications and increasingly sophisticated algorithms
call for ever increasing performance of data processing. Meanwhile, to prolong
system’s operating time of battery operated devices, contemporary designs re-
quire low power consumption. A typical example is baseband processing in
4G mobile communication, which demands a computational performance of up
to 100 Giga Operations Per Second (GOPS) with a power budget of around
500mW in a single user terminal [6]. In addition to computational capability
and power consumption, flexibility becomes an important design factor, since
system platforms need to cope with various standards and support multiple
tasks simultaneously. Therefore, it is no longer viable to dedicate a traditional
application-specific hardware accelerator to each desired operation, as the ac-
celerators are rather inflexible and costly in system development, validation,
and maintenance (e.g., bug-fixes and function updates).

To achieve a balance among the aforementioned design requirements, recon-
figurable architectures have gained increasing attention from both industry and
academia. These architectures enable hardware reuse among multiple designs
and are able to dynamically allocate a set of processing, memory, and routing
resources to accomplish current computational demands. Moreover, reconfig-
urable architectures allow mapping of future functionality without additional
hardware or manufacturing costs. Therefore, by using platforms containing
reconfigurable architectures it is possible to achieve high hardware flexibility
while sufficing the stringent performance and power demands [19].

Fine-grained and coarse-grained arrays are two main variants of reconfig-
urable architectures. While the former has the ability to map any logic func-
tions at bit-level onto their fine-grained lattice, the latter is constructed from
larger building blocks in a size ranging from arithmetic logic units to full-scale
processors. Compared to fine-grained architectures, the increased granularity
in Coarse-Grained Reconfigurable Architectures (CGRAs) reduces routing area
overhead, improves configuration time, and achieves higher power efficiency de-
spite less mapping flexibility.

This part proposes a coarse-grained dynamically reconfigurable cell array
architecture, which will be used as a design template in the remaining part
of the thesis. The cell array is a heterogeneous CGRA, containing an array
of separated processing and memory cells, both of which are global resources
distributed throughout the entire network. Array elements communicate with
one another via a combination of local interconnects and a hierarchical routing
network. All array elements are parametrizable at system design-time, and
are dynamically reconfigurable to support run-time application mapping. The
following summarizes the distinguished features of the architecture.

28 PART I. THE RECONFIGURABLE CELL ARRAY

• The heterogeneity of the architecture allows integration of various types
of resource cells into the array.

• Separation of processing and memory cells simplifies data sharing among
resource cells.

• A hierarchical Network-on-Chip (NoC) structure combines high-bandwidth
local communication with flexible global data routing.

• In-cell resource reconfigurations conducted by distributed processing cells
enable fast run-time context switching.

It should be pointed out that the proposed cell array is a general architec-
ture, which can be, in principle, used to map any algorithms, tasks, and ap-
plications. However, this work mainly focuses on signal processing in wireless
communication, more specifically, digital baseband processing at the receiver.
By exploiting computational properties of the target application domain, vari-
ous architectural improvements can be carried out on the baseline architecture
to further improve hardware performance and efficiency. Improvements will
be illustrated through case studies in Part II and III. The present part serves
to give an overview of the cell array, which includes the overall architecture,
basic functionality and framework of each resource cell, network infrastructure,
hardware reconfigurability, and design methodology.

The remainder of this part is organized as follows. Section 2 discusses re-
lated work with a focus on architectures designed specifically for digital wireless
communication. Section 3 introduces the reconfigurable cell array architecture,
presents details of each resource cell, and describes different ways of manag-
ing system configurations. Section 4 presents design flow for constructing a
reconfigurable cell array. Section 5 summarizes this part.

2 Prior Work and State-of-the-art

A number of reconfigurable architectures have been proposed in open literature
for a variety of application domains [16,18–21,55]. Presented architectures are
characterized with various design parameters, such as granularity, processing
and memory organization, coupling with a host processor, communication fab-
ric, reconfigurability, and programming methodology. Describing each of the
architectures with respect to those parameters is cumbersome and is in fact
unnecessary because of architectural similarities. Instead, previously proposed
architectures are classified into three broad categories based upon the coupling
between processing and memory units and their interconnects. In addition,
the following discussions are restricted to architectures designed specifically
for digital baseband processing in wireless communication. These systems are

2. PRIOR WORK AND STATE-OF-THE-ART 29

M

P

M

P

M

P

M

P

M

P

M

P

M

P

M

P

M

P

�� �� ���� �� ���� �� ��
Data Memory

� ���� � �	
��� PM

Network-on-Chip

M M
M
P

M
P

(a) (b) (c)

Figure 1: Three classes of reconfigurable architectures, (a) homogeneous
processor array, (b) Function Unit (FU) cluster, (c) heterogeneous re-
source array.

sometimes referred to as baseband processors [1] or Software Defined Radio
(SDR) platforms [2]. The three classes of reconfigurable architectures are illus-
trated in Figure 1.

The first group of architectures (Figure 1(a)), such as the PicoArray [56]
from Picochip, the Signal processing On Demand Architecture (SODA) plat-
form [57, 58] from the University of Michigan, Ann Arbor, Cadence’s ConnX
BaseBand Engine (BBE) [32], and Ninesilica platform [59] are constructed from
an array of homogeneous processors. Each processor has exclusive access to its
own memory. As an example, Figure 2 shows an instance of SODA architec-
ture. It is made up of four cores, each containing asymmetric dual pipelines,
for scalar and Single Instruction Multiple Data (SIMD) execution, and scratch-
pad memories. According to [20, 60], homogeneous architectures are not cost
effective in supporting algorithms in which the workload cannot be balanced
among multiple PEs, or algorithms involving hybrid data computations like
scalar and various length vector processing. In these cases, all PEs cannot be
fully utilized, resulting in reduced hardware efficiency. Additionally, the ap-
proach of integrating data memory inside PE results in difficulties when sharing
data contents between surrounding elements. This is because PEs at both data
source and destination are involved in data transmissions to load and store data
contents from and into their internal memory. Consequently, these inter-core
data transfers may take a significant amount of processing power, and in some
cases may just turn PEs to act as memory access controllers, reducing the
hardware usage. Moreover, storage capacities of data memories inside PEs are
fixed after chip fabrication, which may reduce the flexibility and applicability
of platforms.

30 PART I. THE RECONFIGURABLE CELL ARRAY

Figure 2: Overview of SODA architecture [57].

Architectures in Figure 1(b) are built from atomic functional units (FU),
named as FU cluster. Examples of this group are the Architecture for Dynam-
ically Reconfigurable Embedded Systems (ADRES) [63] from IMEC, NXP’s
EVP16 processor [64], and the eXtreme Processing Platform (XPP) [65] from
PACT Informationstechnologie. Figure 3 illustrates an ADRES instance, which
contains a Coarse Grain Array (CGA) of FUs and three Very Long Instruction
Word (VLIW) FUs. The VLIW FUs and a limited subset of the CGA FUs
are connected to globally shared data Register Files (RFs), which are used to
exchange data between the two sections. For this group of architectures, mem-
ory accesses may suffer from long-path data transfers, since data memories are
accessible only from the border of the cluster. These long-path transfers may
result in high data communication overhead especially for large-size clusters.
Additionally, centralized memory organization may cause memory contention
during concurrent data accesses, which may become a bottleneck for high di-
mensional computations (e.g., vector processing).

Figure 1(c) shows architectures consisting of heterogeneous units intercon-
nected through an on-chip network. Examples are the Single Instruction stream
Multiple Tasks (SIMT) DSP [62] from Coresonic, the FlexCore [66], the Trans-
port Triggered Architecture (TTA) [67], the Dynamically Reconfigurable Re-
source Array (DRRA) [68], and Adaptive Computing Machine (ACM) [69] from

2. PRIOR WORK AND STATE-OF-THE-ART 31

Figure 3: ADRES instance with 16 Coarse Grain Array (CGA) FUs and
three Very Long Instruction Word (VLIW) FUs [61].

Figure 4: Overview of Coresonic SIMT DSP [62].

32 PART I. THE RECONFIGURABLE CELL ARRAY

Quicksilver. The SIMT DSP from Coresonic is shown as an example in Figure 4,
where multiple vector execution units, memory banks, and application specific
accelerators are connected to a restricted cross-bar switch. Because of the het-
erogeneity, this type of architectures can be tailored to specific application do-
mains to achieve efficient computations. However, one potential problem is the
overhead of network interconnects, which increases linearly with the number of
array nodes. This may restrict the usage of architectures in high dimensional
data applications. For instance, the customized network presented in a 16-bit
architecture [67] consumes almost the same area as all its arithmetic parts.
Thereby, extensions to vector processing using many more array nodes may
be unaffordable. Additionally, when considering hybrid computing, various-
width data transfers via shared homogeneous network interconnects are not
cost effective and may require frequent data alignment operations. Moreover,
architectural scaling may require redesign of network interconnects, resulting
in poor scalability.

In view of the high hardware efficiency owing to heterogeneity, the proposed
cell array is built upon the third architectural category, the heterogeneous re-
source array. To tackle the NoC overhead and scalability issue, a hierarchical
network topology is adopted, which contains high-bandwidth local intercon-
nects and flexible global data routing. Additionally, to ease data sharing be-
tween surrounding array elements, processing and memory cells are separated
as two distinct function units which are shared as global resources and dis-
tributed throughout the entire network. The following sections presents the
cell array architecture in detail.

3 Architecture Overview

The reconfigurable cell array is constructed from heterogeneous tiles, contain-
ing any size, type, and combination of resource cells. As an example, a 4-tile
cell array is shown in Figure 5. Besides the cell array, the entire system plat-
form contains a master processor, a Multi-Port Memory Controller (MPMC),
a Stream Data Controller (SDC), a Stream Configuration Controller (SCC),
and a number of peripherals. The master processor schedules tasks to both the
cell array and peripherals at run-time. The MPMC interfaces with external
memories, while the SDC and SCC supply the cell array with data and config-
urations, respectively. Since the focus of this thesis is on the cell array, other
system blocks will not be discussed.

Resource Cell (RC) is a common name for all types of functional units
inside the cell array, including processing, memory, and network routing cells.
Within the cell array, processing and memory cells are separated as two distinct
functional units. This arrangement has following advantages.

3. ARCHITECTURE OVERVIEW 33

P M

M P

R

P

M

P

R

P M

M

R

P M

M

R

R

P

Tile

M

External memory

Data

Control
SCC

SDCMPMC

Processor���������� ���� �� ��
Peripherals

Reconfigurable cell array

Figure 5: Overview of system platform containing a coarse-grained dy-
namically reconfigurable cell array. The separated processing (P) and
memory cells (M) communicate over a hierarchical network using both
local interconnects and global routing with network routing cells (R).

• Easy data sharing: the separation of memory from processing cells
significantly simplifies data sharing, as memory cells can be shared by
multiple processors without physically transferring data. Memory coher-
ence is preserved by allowing direct data transfers between memory cells
without involving processors.

• Flexible memory usage: memory cells can be individually configured
to provide different access patterns, such as First In First Out (FIFO),
stack and random access.

• Advanced data access control: processing cells can be used as Direct
Memory Access (DMA) controller to accomplish irregular or advanced
memory access, e.g., bit-reversal in FFT/IFFT.

• Dynamic memory allocation: when larger memory capacity is re-
quired than a single cell can provide, multiple memory cells can be con-
catenated at system run-time to provide larger data storage.

• Simplified programming model: the separated data processing and
memory access management naturally support dataflow programming
languages like CAL [70] and computation models like Kahn process net-
works [71]. Additionally, changes of execution clock cycles in either pro-
cessing or memory cells have no influence on the control flow of the entire
cell array architecture, since inter-cell communication is self-synchronized
through NoC data transfers.

34 PART I. THE RECONFIGURABLE CELL ARRAY

• Natural support for future technology: the advantage of processing
and memory separation may be more pronounced when using 3D stacking
technology [72]. With this technology support, processing and memory
cells can be placed at different chip layers and interconnected by using
Through-Silicon Vias (TSVs). This approach may further increase mem-
ory access bandwidth, reduce delays of network interconnects, and ease
chip layout and routing process.

To meet the computational and flexibility requirements while keeping a low
control overhead, a variety of functional units are integrated. Communication
between RCs is managed by combing local interconnects for high data rate
and a global routing network for flexibility. Compared to other interconnect
topologies, the hierarchical network provides tighter coupling to heterogeneous
RCs. For instance, connections within each tile can be localized to suffice both
bandwidth and efficiency requirements, while hierarchical links provide flexible
routing paths for inter-tile communication. All RCs in the array are configured
dynamically on a per-clock-cycle basis, in order to efficiently support run-time
application mapping.

3.1 Processing Cell

Processing cells contain computational units to implement algorithms mapped
on the cell array. Additionally, they can be used to control operations and man-
age configurations of other RCs. The heterogeneity of the architecture allows
integration of any type of processors in the array to suffice various computa-
tional demands. For example, processing cells may be built as general purpose
processors or specialized functional units. Each processing cell is composed of
two parts, processing core and shell, illustrated in Figure 6(a). Encapsulated
by the processing shell, the core interfaces with other RCs via network adapters
in the shell. Thanks to this modular structure, processing cell customization
is simplified since only the core needs to be replaced to implement different
computational operations. In addition, integration of customized functional
units, either user-defined Register Transfer Level (RTL) or licensed Intellec-
tual Property (IP) cores, are supported in the cell array without changing the
network interface. The network adapters in the processing shell are mapped
as registers that are directly addressable by the core. The number of adapters
in a processing cell is parametrizable at system design-time. For illustration,
the following presents a generic signal processing cell, named as GPC for short,
which has been used in a flexible FFT core presented in [73].

A GPC is a customized Reduced Instruction Set Computing (RISC) pro-
cessor with enhanced functionality for digital signal processing and support
for fast network port access. An overview of the processor pipeline stages

3. ARCHITECTURE OVERVIEW 35

IF/ID EXE/WB

Operation

controller

G

Local IO ports Global IO port

PC

ID/EXE

... A
L
U

Generic signal processing cell

IO bank

Network adapter

Core

Shell

Register

Branch

L0 L1 ... Lx

(a) (b)

Figure 6: (a) Block diagram of a processing cell, consisting of a core and
a shell. (b) Architecture of a generic signal processing cell (GPC).

and internal building blocks is shown in Figure 6(b). Communication I/O
ports are mapped as registers, directly accessible in the same way as General
Purpose Registers (GPRs). An instruction that access I/O port registers is au-
tomatically stalled until data become available. Hence, additional operations
to move data between GPRs and I/O ports are avoided. The GPC performs
data memory operations by connecting with one or more memory cells via
communication I/O ports. Using direct I/O addressing, load-store and com-
putational operations may be combined into one instruction. Consequently,
clock cycles associated with memory operations are eliminated in contrast to
conventional load-store architectures. Moreover, the implicit load-store opera-
tions lead to a compact code size, and make the memory operations possible in
all instructions. Enhanced functionalities for digital signal processing include
multiply-accumulate, radix-2 butterfly, and data swap. To reduce control over-
head in computationally intensive inner loops, the GPC includes a zero-delay
Inner Loop Controller (ILC). The ILC comprises a special set of registers that
are used to store program loop count and return address. During program exe-
cution, the loop operation is indicated by an end-of-loop flag annotated in the
last loop instruction. The operation mode and status of each processing cell
can be controlled and traced conditionally during run-time. For example, it is
possible to halt instruction execution, step through a program segment, and
load a program partially. Due to the simple pipeline structure and enhanced
data processing operations, the GPC may be used for regular data processing
and control-flow handling, such as linear filter, FFT/IFFT, and DMA control.

36 PART I. THE RECONFIGURABLE CELL ARRAY

Operation

controller

D
S
C
 M

D
S
C
 1

...D
S
C
 0

D
es
cr
ip
to
r
ta
b
le

#
M#
1

#
0

 #0

bank

 #M

bank

Memory array

...

G

Local IO ports Global IO port

L0 L1 ... Lx

Figure 7: Architectural block diagram of a memory cell.

3.2 Memory Cell

The distributed memory cells provide both processing cells and data communi-
cation with shared storage to allow buffering, reordering, and synchronization
of data. Each memory cell contains a memory array, a DeSCriptor (DSC) ta-
ble, and an operation controller, as illustrated in Figure 7. The memory array
can be dynamically configured to emulate one or more memory banks, while
the DSC table is an array of configuration registers containing user-defined
memory operations. All stored DSCs are dynamically configurable, and may
be traced back for debugging. Each DSC is 64-bit long, which defines the
size and operation mode of a memory bank, records memory operation sta-
tus, and specifies I/O ports for stream transfers. The configuration options
of a DSC are listed in Table 1. The 64-bit DSC is composed of two 32-bit
parts that are individually configurable. Specifying memory operations using
DSCs relieves processing cells from memory access managements, resulting in
reduced control overhead and improved processing efficiency. The operation
controller manages and schedules DSC execution, monitors data transactions,
and controls the corresponding memory operations.

Using memory DSCs, each memory bank can be configured to emulate ei-
ther FIFO or Random Access Memory (RAM) behaviour. In the FIFO mode,
the allocated memory bank operates as a circular buffer. Address pointers are
managed by the operation controller and are automatically increased each time
the DSC is executed. Multiple memory cells operating in FIFO mode may be
cascaded to form one large data array. This feature provides flexible memory
usage, and reduces unit capacity requirement as well as hardware footprint in

3. ARCHITECTURE OVERVIEW 37

Table 1: Example of a memory DeSCriptor (DSC).

Field Bits Length Description

P
a
rt

I
dtype 31-30 2 Operation mode select

rd ok/active 29 1 FIFO reading status/

RAM active transfer flag

wr ok/rnw 28 1 FIFO writing status/

RAM read-write select

src/paddr 27-24 4 FIFO data source port/

RAM address port

dst/pdata 23-20 4 FIFO data destination port/

RAM data port

id 19-10 10 Global packet destination ID

base 9-0 10 Start address

P
a
rt

II

high 31-22 10 End address

rptr/ptr 21-12 10 Current FIFO reading pointer/

Current RAM data pointer

wptr/tsize 11-2 10 Current FIFO writing pointer/

Current RAM data transfer size

io bank rst 1 1 I/O port register reset

Reserved 0 1 Reserved

a single memory cell. Additionally, since large storage may lead to an irregular
physical memory layout, slicing it into smaller modules eases hardware place-
ment and routing. When operating memory cell in the RAM mode, a data
service request (read or write) is required to specify the start address and data
transfer size. The operation controller is responsible for keeping track of data
transfers, managing memory address pointers, and updating DSCs. Conditions
to execute a memory DSC are resolved by inspecting both incoming and out-
going packet transfers and current memory status. For example, writing data
to a full FIFO will not be executed until at least one data is read.

The length of the DSC table, the size of the memory array, and the num-
ber of local I/O ports are configurable at system design-time, while memory
descriptors are dynamically reconfigurable.

38 PART I. THE RECONFIGURABLE CELL ARRAY

3.3 Network-on-Chip

To enable communication between any pair of resource cells, most existing
NoCs are based on flexible interconnect topologies, such as 2D-mesh, spider-
gon, and their derivatives [74–77]. Additionally, various routing algorithms
(e.g., static and dynamic) and switching techniques (e.g., wormhole and Time
Division Multiplexing (TDM)) are employed to reduce traffic congestions, pro-
vide service guarantees, and shorten communication latency [78]. Although
most NoC implementations can suffice performance requirements with respect
to latency and bandwidth, they often appear to be area and power consuming.
For instance, NoCs used in [79] and [67] take almost the same area as all their
logic parts and the one in [79] consumes about 25% of total power.

This work aims at developing an area and power efficient NoC by fully
exploiting the property of communication locality in reconfigurable architec-
tures [75]: data traffic is mostly among nearest neighbors (referred to as local
communication), while long distance (global) transfers that require routing su-
pervisions are of a small portion. Therefore, the primary concern of local net-
work design should be on high bandwidth and low cost, while simple routing
and switching techniques are sufficient for global transfers to provide adequate
flexibility support.

In light of the aforementioned property, a hierarchical network architec-
ture is proposed that splits local and global communication into two separate
networks, which are handled independently using different network topology
and switching techniques. Figure 8 illustrates an overview of the proposed
hierarchical NoC deployed in a 4×4 array. Communication between neigh-
boring RCs (local) within each tile is performed using bi-directional dedicated
links, whereas inter-tile global transfers are realized through a hierarchy of
network routers structured in a tree topology using a static routing strategy,
see shaded part in Figure 8. Thanks to the network separation and hierar-
chical arrangement, the proposed NoC can be easily scaled by extending tree
hierarchies of the global network and neighboring local interconnects without
affecting others. Additionally, in conjunction with the tile-based architecture,
the proposed NoC intrinsically supports Globally Asynchronous Locally Syn-
chronous (GALS) network construction. For example, synchronous transfers
are performed within each tile and the global network (together with additional
asynchronous FIFOs) is used to bridge between different clock domains.

To connect RCs to the local and global network, adapters are used as a
bridge between high level communication interfaces employed by RCs and net-
work specific interfaces implemented in the NoC. In this work, AMBA 4 AXI4-
stream protocol [80] is adopted for implementing NoC adapters.

3. ARCHITECTURE OVERVIEW 39

��� !"# $%$&��" '!($)*+��"(!++�(�,)!-$)
network

Tile

RCRC

RCRC

RCRC

RCRC

RCRC

RCRC

RCRC

RCRC

R

RR

RR

Figure 8: An overview of the proposed hierarchical NoC arranged in a
4×4 array. Neighboring RCs are directly communicated via local inter-
connects, while global transfers, shaded in grey, are achieved through
hierarchical routing with tree-structured network router (R).

Global Network

Global network enables non-neighboring nodes to communicate within the ar-
ray and provides an interface to external blocks, e.g., memory and master
processor. Figure 9(a) depicts a simplified view of the global network in a 4×4
cell array, wherein each RC is labelled with a unique network IDentifier (ID)
used as a routing address for global data transfers. Global communication is
based on packet switching and carried out using a hierarchy of tree-structured
network routers. Routers forward data packets based on a static routing lookup
table that is generated at design-time in accordance to physical network con-
nections. For example, the router in the upper-left tile shown in Figure 9(b)
forwards packets to RCs with IDs ranging from 0 to 3. In the tree-structured
global network, each router is denoted as Ri,l, where i is the router index num-
ber and l is the router hierarchical level, illustrated in Figure 9(c). A link
from a router Ri,l to Ri,l+1 is referred to as an uplink. Any packet received
by a router is forwarded to the uplink router if the packet destination ID falls
outside the range of the routing table. Since routing network is static, there is
only one valid path from each source to each destination. This simplifies net-
work traffic scheduling, reduces hardware complexity, and enables each router
instance to be optimized individually during hardware synthesis. However, a

40 PART I. THE RECONFIGURABLE CELL ARRAY

(a) (b) (c)

R0,0 R1,0

R2,0 R3,0

R4,0 R5,0

R6,0 R7,0

R0,1 R1,1

R0,2

0− 3 4− 7

8− 11 12− 15

0− 15

0 1

2 3

4 5

6 7

8 9

10 11

12 13

14 15

Figure 9: A simplified view of the global network in a 4×4 array. (a) Each
RC is labelled with a unique network ID. (b) A range of consecutive IDs
(base-high) are assigned to each static routing table. (c) Hierarchical
router naming as Rindex,level.

drawback is network congestion compared to adaptive routing algorithms. Sys-
tematic analysis on network performance at design-time is therefore crucial to
avoid traffic overload. However, considering the high communication locality,
this congestion issue is of less concern and does not hinder the performance
of the proposed NoC. For network traffic modelling and performance evalua-
tion, a SystemC-based exploration environment Scenic can be used. Details
of Scenic can be found in [7, 8, 81].

Network Routing Cell

Network router forwards data packets over the global routing network. Each
router consists of three main building blocks: a decision unit, a routing struc-
ture, and an output packet queue, implemented as pipelined architecture, see
Figure 10(a). In each clock cycle, the decision unit monitors incoming and out-
going packets, looks up the routing path, handles data transfers, and configures
the routing structure to forward data packets accordingly. The routing struc-
ture is made up of a full-connection switch, capable of handling multiple data
requests in each clock cycle. The output packet queue, operating in a FIFO
basis, buffers data packets travelling through the global network. The depth
of the output queue and FIFO type (either synchronous or asynchronous) are
design-time configurable, used to suffice different NoC requirements.

Figure 10(b) shows an overview of the decision unit inside each network
router. It contains a static routing lookup table, a transaction log table, and a
packet arbiter. Every arriving data packet is checked and recorded in a trans-
action log table, marked with ‘X’s in Figure 10(b). The logged transactions are
prioritized and handled based on different arbitration policies and conditions
of output queues. Two simple arbitration policies are currently supported and

3. ARCHITECTURE OVERVIEW 41

GIO(0)

GIO(1)

GIO(2)

GIO(3)

GIO(0)

GIO(1)

GIO(2)

GIO(3)

QueueRouting

G
IO

_
R
X

G
IO

_
T
X

Decision unit

(a)

Transaction log table
0-3 : GIO(0)

4-7 : GIO(1)

8-11 : GIO(2)

12-15: GIO(3)

…

Routing table

Arbiter

(b)

O(0) O(1) O(2) O(3) O(4)

In(0) O

In(1) O O O

In(2) X

In(3) O

In(def) X

GIO(def)GIO(def)

PipelinePipeline

Figure 10: (a) Block diagram of the network router. (b) Internal building
blocks of a decision unit.

are design-time configurable: the fixed and round-robin scheme. With fixed
arbitration, the arbiter always starts from the first log entry, and traverses
column-wise through the entire table until a candidate transaction is found,
marked with ‘O’s in Figure 10(b). A transaction is considered to be a candidate
when it is recorded in the log table and the corresponding output packet queue
is not full. With this approach, all transactions are assigned with priorities
according to their position in the log table. In contrast, the round-robin algo-
rithm provides a starvation-free arbitration, which assigns time slices to each
entry in equal portions and handles all transactions in order without priority.
After routing arbitration, selected candidate transactions (marked with ‘O’s in
Figure 10(b)) are forwarded to the corresponding output queue in the following
clock cycle. Considering delays caused by input I/O register, pipelined routing

42 PART I. THE RECONFIGURABLE CELL ARRAY

operations, and output FIFO, packet forwarding through each network router
induces 3 Clock Cycles (CCs) transport latency (without Tx I/O register).

Local Network

Local network consists of dedicated interconnects between neighbouring RCs
(Figure 8). Thus, local transfers require no routing supervision and provide
guaranteed throughput and transport latency. Compared to nearest-neighbour
transfers in conventional mesh-based networks, bandwidth overhead due to
redundant traffic headers is completely avoided in the adopted local commu-
nication. For example, considering the illustrated 4×4 array and a simple XY
routing in mesh networks, it is required to have at least 4 bits in the traffic
header to indicate destination coordinates of both X and Y directions. This
overhead is more pronounced when sophisticated routing algorithms are used,
such as source and adaptive routing. Therefore, avoiding such bandwidth over-
head in every neighbouring data transfer contributes to total NoC efficiency.

Communication Flow Control

To assure safe delivery and self-synchronization of each data transfer, flow con-
trol is used in both local and global networks, implemented using a FIFO-like
handshake protocol, illustrated in Figure 11. In addition to conventional valid-
ACKnowledgement (ACK) handshaking, FIFO-like operations are adopted to
reduce communication latency. The basic idea is to use I/O registers as eager
transport buffers, which are writable as long as the buffers are not full. A
communication link is suspended only if all buffers are fully used, transmitter
has more data to send, and receiver has not yet responded previous transfers.
As indicated in Figure 11, the ACK signal in each I/O register has two ac-
knowledgement mechanisms. In the case of empty buffers, data transfers are
automatically acknowledged by the I/O registers. Otherwise, the ACK signal
is driven by the succeeding data receiver. This way, the ACK signal acts as
an empty flag of the transport buffers and reflects the status of the communi-
cation link. Data transmitter can proceed with other operations immediately
the ACK from the succeeding stage is received, without waiting for the final
destination to respond. Compared to conventional end-to-end handshake pro-
tocols, in which the ACK signal is sent all the way from the final destination
and requires multiple clock cycles to propagate through all I/O registers, the
adopted scheme divides long communication path into smaller segments (hops),
each having 1CC transport latency under the case of eager receiver. As for
communication between neighbouring RCs, the FIFO-like handshaking results
in at least 2 times latency reduction in comparison to the end-to-end handshake
scheme.

3. ARCHITECTURE OVERVIEW 43

Data Data Data

Enable Valid Interrupt

ACK

ACK Enable
ACK

I/O

RegisterData

generator

Data

consumer

ACK

I/O

Register

Optional

Tx Rx

Figure 11: Data communication flow control with FIFO-like handshake
protocol. I/O registers at the transmitters are design-time configurable.

Table 2: Summary of the Hierarchical NoC.

Topology Switching Latency Throughput

Local Direct link Circuit (GS) 1CC 1CC

Global Tree Packet (BE) 4CCs/hierarchy 1CC/hop

To sum up, Table 2 lists the characteristics of the proposed NoC. Benefiting
from the dedicated interconnects, local network provides Guaranteed Services
(GS) and has a transport latency and throughput of 1CC. The global network
offers Best-Effort (BE) packet switching and induces additional 3CCs trans-
port latency (without Tx I/O register) every time a network router is used.
However, the throughput of global transfers via routers is still 1CC thanks to
the pipelined architecture.

3.4 Resource Configuration

Dynamic reconfigurations for all RCs are managed in two ways, either by a
master processor via hierarchical network or by any of the processing cells dis-
tributed in the cell array. When configuring RCs through the master processor,
see Figure 8, a Stream Configuration Controller (SCC) is used to assist network
packet transfers. The SCC contains a stream table programmed by the mas-
ter processor, and provides information about where and how network packets
should be transmitted. For each configuration, the SCC loads data from ex-
ternal memory via the MPMC, packs data as network packets, and transfers
the packets to target RC via the hierarchical routing network. The advantages
of configuring RCs from a centralized master processor are twofold. First, as
configurations are loaded from external memories, requirement for the size of
configuration files is reduced. Second, the master processor may utilize hard-

44 PART I. THE RECONFIGURABLE CELL ARRAY

ware resources efficiently on a system level, based on the needs of application
mapping. After receiving a task, the master processor assesses the compu-
tational workload, checks the status of RCs, and assigns the task to achieve
maximum efficiency. For instance, the master may partition and assign the
task to different RCs or time-multiplex a single RC. A drawback of the central-
ized configuration is the communication latency through the global network, as
mentioned in Section 3.3. As a result, the centralized RC configuration scheme
is mainly used for transferring large configuration files to the cell array during,
for example, context switching between different application mappings.

RC configurations and supervisions can also be conducted inside the cell
array by using distributed processing cells. This is achieved by storing RC con-
figurations as special instructions locally inside processing cells, which trans-
mit configuration packets to the corresponding RCs during program execution.
With this approach, run-time configurations are smoothly integrated into the
normal processing flow. For example, configurations are issued immediately the
current task is completed without interrupting and waiting for responses from
an external host. Additionally, configuration packets are transmitted mainly
using local interconnects, avoiding long configuration latency due to global
communication. Because RC configurations are stored as part of the local pro-
grams of processing cells, configuration file size needs to be kept down when
using this approach. Therefore, this in-cell configuration scheme is suitable for
small function configurations in the cell array, such as adapting algorithms for
different standards or operating scenarios.

4 Design Flow

Constructing a reconfigurable cell array generally involves three design phases
(Figure 12), specification, design, and implementation, and three design method-
ologies, algorithm-architecture, hardware-software, and processing-memory co-
design. In the specification phase, target wireless communication standards and
baseband processing tasks need to be defined first. This is to limit the scope
of the development, in order to enable design-space exploration for creating an
efficient architecture. To this end, the target standards and tasks should have
some common computational characteristics to enable hardware sharing and
acceleration, otherwise diverse operation requirements would lead to a generic
architecture with low hardware efficiency. After defining the standards and
tasks to cover as well as performance specifications, algorithm selection and
operation analysis are carried out to provide a good foundation for the follow-
ing hardware development. Examples of selection criteria are computational
parallelism, precision requirement, and regularity of operations. To make use of
essential architectural characteristics, algorithms often need to be tailored for

4. DESIGN FLOW 45.//01234156 7pecification.085914:; 7<0<2
tion=/<934156 3630>71

s

Design specification?37@ /39414156 A 7
chedule

ImplementationB3//168 36C <D3luation

Tile template

Resource cells

E<4F59@ 164<92566<247Instruction set &
memory descriptors

Specification

Design

Implementation

G HIJ KLM L
Figure 12: Data flow to construct a reconfigurable cell array.

the target hardware architecture. This is referred to as algorithm-architecture
co-design, which is usually an iterative process for obtaining an optimum result.
It should be pointed out that the algorithm selection is especially important
when handling multiple standards and tasks, since it has a great influence on
efficient usage of underlying hardware, such as resource sharing over time.

The design phase involves two steps, design specification and task schedul-
ing. After obtaining a rough estimation on computational requirements and
memory usage from the operation analysis, design specifications for construct-
ing the cell array are elaborated. These include design of resource tiles, RC
selections, instruction set and memory descriptors, and NoC interconnects (see
the sub-figure shown on the right side of Figure 12). First, the number of re-
source tiles is determined based on the computational requirements and design
constraints such as area and timing budget. Besides, a rough task scheduling
is performed on the tile-level to partition tasks to resource tiles. Second, RC
selection is carried out for each tile based on the rough task partition. The
number of RCs assigned to each tile is determined again by the computational
requirements and design constraints. Third, instruction set and memory de-
scriptors are specified. The number of instructions and memory descriptors is
a trade-off between the ease of software implementation and hardware com-
plexity [1]. This is referred to as hardware-software co-design. Last, network

46 PART I. THE RECONFIGURABLE CELL ARRAY

interconnects may be refined to further improve hardware efficiency. Examples
include bandwidth enhancements for heavy-traffic links and pruning of unused
network connections. With the elaborated design specifications, detailed task
partition and scheduling can be carried out, requiring detailed operation anal-
ysis to better assign tasks to RCs, namely processing and memory cells. This is
referred to as processing-memory co-design. For example, memory address ma-
nipulations, such as stride access and matrix transpose, are better performed in
memory cells by using descriptor specifications, since no physical memory ac-
cess (read & write) is needed. Moreover, analysis of network traffic is required
to avoid problems like network congestion.

Once the design specifications and the task scheduling are completed, the
cell array is implemented and the target tasks are mapped. Mapping results
are evaluated and fed back to the corresponding design phase for further im-
provements in case the design requirements are not met.

5 Summary

This part introduces the coarse-grained dynamically reconfigurable cell array
architecture, aiming to provide a balance among performance, hardware effi-
ciency, and flexibility. The proposed architecture has three key features. First,
processing and memory cells are separated as two distinct function units for
achieving easy data sharing and flexible memory usage. Second, a hierarchi-
cal NoC structure is adopted for providing high-bandwidth low-latency local
communication and flexible global data routing. Third, in-cell configuration
scheme employed in the cell array enables fast run-time context switching. To
achieve a balanced design, three design methdologies, algorithm-architecture,
hardware-software, and processing-memory co-design, are adoped during the
construction of a reconfigurable cell array. Using the presented cell array as a
baseline architecture, the following parts present further developments and ar-
chitectural improvements of the cell array, especially the processing and mem-
ory cells, through two case studies. Architectural developments are carried
out by exploiting computational properties of the target application domain,
namely digital baseband processing in wireless communication.

Part II

Multi-standard Digital Front-End Processing

Abstract

To demonstrate flexibility and performance of the reconfigurable cell array ar-
chitecture introduced in Part I, this part presents a case study of the platform
configured for concurrent processing of multiple radio standards. Flexibility of
the architecture is demonstrated by performing time synchronization and Car-
rier Frequency Offset (CFO) estimation for multiple OFDM-based standards.
As a proof-of-concept, this work focuses on three contemporarily widely used
radio standards, 3GPP Long Term Evolution (LTE), IEEE 802.11n, and Dig-
ital Video Broadcasting for Handheld (DVB-H). The employed reconfigurable
cell array, containing 2×2 resource cells, supports all three standards and is
capable of processing two concurrent data streams. The cell array is imple-
mented in a 65 nm CMOS technology, resulting in an area of 0.48mm2 and a
maximum clock frequency of 534MHz. Dynamic configuration of the cell array
enables run-time switching between different standards and allows adoption
of different algorithms on the same platform. Taking advantage of the in-cell
configuration scheme (presented in Part I), context switching between different
operation scenarios requires at most 11 clock cycles. The implemented 2×2 cell
array is fabricated as a part of a Digital Front-End Receiver (DFE-Rx) and is
measured as a standalone module via an on-chip serial debugging interface.
Running at 10MHz clock frequency and at 1.2V supply voltage, the array re-
ports a maximum power consumption of 2.19mW during the processing of an
IEEE 802.11n data reception and 2mW during hardware configurations.

47

1. INTRODUCTION 49

1 Introduction

Today, there is an increasing number of radio standards, each having differ-
ent focuses on mobility and data-rate transmission. For example, 3GPP Long
Term Evolution (LTE) [5] aims to offer high mobility with moderate data-
rate; IEEE 802.11n [82] provides a high data-rate alternative for network ser-
vices under stationary conditions; and Digital Video Broadcasting for Handheld
(DVB-H) [83] specifically addresses multimedia broadcast services for portable
devices. The evolution of radio standards continuously drives the development
of underlying computational platforms with increased complexity demands.
Meanwhile, requirements on time-to-market and Non-Recurring Engineering
(NRE) cost force today’s hardware platforms to be able to adopt succeeding
amendments of standards. Doing modifications on dedicated hardware accel-
erators for each standard update is not affordable regarding both time and im-
plementation cost. Furthermore, to obtain a continuous connection or constant
data-rate transmission, contemporary user terminals are expected to support
more than one standard and to be able to switch between different networks
at any time. Therefore, flexibility has become an essential design parameter to
help computational platforms cope with various standards and support multi-
ple tasks concurrently.

It is well identified that simultaneous support of multi-standard data re-
ceptions using flexible hardware platforms is a great challenge. Although some
early attempts have been presented in both academia and industry [84, 85],
experiments so far have been limited to the support of a single data stream.
Switching between different standards is only possible through off-line config-
urations and is conducted by an external host controller. Despite not being
reported, configuration time during context switching is envisioned to be on a
scale of hundreds of clock cycles, since the host controller has to be interrupted
to conduct the loading of appropriate programs/configurations before getting
ready for new data receptions. Evidently, this off-line switching approach is
undesired from users’ experience point of view, as terminals are temporarily
“disconnected” ever time when they enter a new radio environment. To address
this issue, the European Union (EU) project “Scalable Multi-tasking Baseband
for Mobile Communications” [86], or Multibase for short, is initiated. It aims to
support concurrent processing of multiple data streams in a multi-standard en-
vironment and to provide seamless handover between different radio networks.
The support of concurrent data streams improves user experiences, e.g., having
simultaneous voice communication and video streaming. It also ensures contin-
uous connectivity of user terminals, since an existing network connection can
be maintained while a new network service is being established.

50 PART II. MULTI-STANDARD DIGITAL FRONT-END PROCESSING

NOPQRS
FE

NOPQRS
FE

NTUNVVRWXYOZ [Y\]WP^Z _`aaerbcO\deRO]fP^]RO _`g hO^ZVRWXYOZ [Y\]WP^Z _`aaer
_`g hO^ZNTUNV i jklm jno pqrslkk

rqDFE-Rx

Stream-I

Stream-II

Figure 1: Block diagram of the DFE-Rx constructed in the EU Multibase
project. This work focuses on the implementation of the synchronization
block, shaded in the figure, by using the reconfigurable cell array.

This work is carried out as a part of the EU Multibase project. The primary
focus is on data computations in a Digital Front-End Receiver (DFE-Rx). As a
proof-of-concept, three OFDM-based radio standards are selected: 3GPP LTE,
IEEE 802.11n, and DVB-H. Besides, it is required to process two concurrent
data streams from any of the three standards. Among processing tasks in a
DFE-Rx, this work maps time synchronization and Carrier Frequency Offset
(CFO) estimation onto the reconfigurable cell array. Given that these tasks
are performed during the (re)establishment of a data link between transmitter
(Tx) and receiver (Rx), the required computational units are active only for a
small fraction of the time when the receiver is on. This motivates the adoption
of reconfigurable architectures in order to reuse hardware resources for other
processing tasks. Hardware reusing can be exploited in two aspects. Firstly, in
a multi-standard single-stream scenario, the same hardware can be reconfigured
after OFDM synchronization to perform other baseband processing in succeed-
ing stages, such as refined frequency offset estimation and tracking. Secondly,
in a multi-standard multi-stream scenario, underlying hardware resources can
be shared for concurrent processing of multiple data streams. Figure 1 depicts
the block diagram of the complete DFE-Rx and highlights the target processing
block “synchronization”. In the following, each function block of the DFE-Rx
is briefly described. Implementation details can be found in [87] and [49].

Taking digitized signals from the analog front-end, the Automatic Gain and
Resource Activity Controller (AGRAC) and the compensation block adjust the

1. INTRODUCTION 51

Table 1: Sampling frequency of the three target radio standards.

Bandwidth
Subcarriers

Sampling frequency

[MHz] [MHz]

IEEE 802.11n [82] 40 128 40

3GPP LTE [5] 20 2048 30.72

DVB-H [83] 8 8192, 4096, 2048 9.14

gain of incoming signals and perform DC-offset and IQ imbalance compensa-
tions. Besides, the AGRAC is used as a master core in the DFE-Rx to control
the operation of other function blocks. The decimation filter chain contains a
farrow resampler [88] used to adjust the sample-rate of input data to that of
the corresponding radio standards. Data resampling is one of the fundamental
tasks when dealing with multiple radio standards, since the elementary sam-
pling frequency varies between standards and is often not an integer multiple
of one another. Since no pre-knowledge is given on which standard is going
to be processed, the DFE-Rx has to operate at a frequency that is sufficiently
high to capture signals of all standards without aliasing. Among the three
standards under analysis, IEEE 802.11n has the highest sample-rate, see Ta-
ble 1, and is thus set as the master sampling frequency of the DFE-Rx. As a
result, data streams of LTE and DVB-H after the decimation filter chain have
an oversampling factor of ⌊40/30.72⌋ = 1 and ⌊40/9.14⌋ = 4, respectively. The
data reception buffer is used to store data inputs temporarily during front-end
processing, and the bus interface block adapts the DFE-Rx to the following
baseband processor.

The remainder of this part is organized as follows. Section 2 formulates the
problem in more detail. Similarities and differences of the OFDM time synchro-
nization in the target wireless radio standards are analyzed. Computational
operations required by the synchronization process are elaborated. Section 3
presents hardware developments of the reconfigurable cell array with focuses on
processing and memory cells. Section 4 starts by describing the computational
and memory resource allocations during concurrent multi-standard processing.
A software tool developed for generating hardware configurations of the cell
array is presented. Implementation and silicon measurement results are sum-
marized. The flexibility of the proposed solution is demonstrated by mapping
a different algorithm onto the cell array after the chip is fabricated. Benefiting
from the new algorithm mapping, the number of standards supported by the
same cell array is further extended. Finally, Section 5 concludes this part.

52 PART II. MULTI-STANDARD DIGITAL FRONT-END PROCESSING

2 Algorithm and Implementation Aspects

In OFDM, synchronization is needed due to the lack of common time and fre-
quency references between Tx and Rx. An incorrect symbol timing may result
in loss of orthogonality in the narrow-band subcarriers. Moreover, orthogonal-
ity may also be destroyed in the presence of a frequency mismatch between
oscillators in Tx and Rx. OFDM synchronization makes sure of preserving

orthogonality by providing a reliable start1 of the OFDM symbol and Carrier
Frequency Offset (CFO) estimation.

The synchronization process is usually performed in time and frequency
domain, commonly referred to as acquisition and tracking stage, respectively
[89]. The acquisition stage aims to find the start of each OFDM symbol and
to perform a rough estimation of CFO. The tracking stage aims to refine the
parameters obtained from the acquisition stage. This study focuses on the
acquisition stage and assumes that the channel impulse response is shorter
than the length of CP.

2.1 Time Synchronization and CFO Estimation

Maximum Likelihood (ML) estimation [90] is commonly used to perform time
synchronization in OFDM systems. The algorithm can be used on either pi-
lots/preamble or Cyclic Prefix (CP). In the three standards under analysis,
CP is present. Besides, IEEE 802.11n contains a preamble, which has specific
Short Training Symbols (STSs) designed for data detection and time synchro-
nization [82], see Figure 2. Given that all STSs are identical, the first STS can
be considered as the CP of the remaining part in the short training field (t2−t10
in Figure 2). Based on either CP or preamble, the ML estimation algorithm
can be expressed as

θ̂ =

{
argmax

n
{|γ[n]|} if |γ[n]| ≥ T

No symbol start found otherwise
, (1)

where

γ[n] =

n∑

k=n−L+1

r[k]r∗[k −M]. (2)

In (1) and (2), r[n] is the received data vector at sample index n, γ[n] is

the output of moving-sum, θ̂ indicates the estimated symbol start, and (·)∗

1Orthogonality of narrow-band subcarriers is preserved as long as the estimated start lies
within the Cyclic Prefix (CP) of an OFDM symbol.

2. ALGORITHM AND IMPLEMENTATION ASPECTS 53tuvShort training field Long training field

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 T1 T2

Figure 2: IEEE 802.11n short and long training field [91].

Table 2: Comparison for the length of moving-sum L, autocorrelation distance
M , and the number of subcarriers Nc in the ML-based time synchronization.

L M Nc

IEEE 802.11n 16×9 16 64

3GPP LTE 144 2048 2048

DVB-H 64 8192, 4096, 2048 8192, 4096, 2048

denotes the complex conjugate operator. T represents the threshold value,
which is used to find the symbol start by detecting the position of the maxi-
mum correlation value. T is a function of Signal-to-Noise Ratio (SNR) and is
computed off-line and adjusted in accordance to different standards. L is the
length of the moving-sum operation, and M is the autocorrelation distance,
i.e., the number of samples from the start of CP to its corresponding copy
within the OFDM symbol. The values of L and M vary among standards and
also between different synchronization methods, CP-based for LTE and DVB-
H and preamble-based for IEEE 802.11n. Table 2 summarizes the values of
L, M and the number of subcarriers Nc for the three standards. In CP-based
synchronization, the autocorrelation distance M equals to Nc, and the size of
the moving-sum L equals to the length of the CP. LTE and DVB-H fall into
this category. Since better synchronization accuracy is expected when using
preambles, preamble-based approach is used for IEEE 802.11n. In this case, M
corresponds to the size of a STS and L equals to the size of remaining 9 STSs
(L = 16 × 9 in Table 2). This is equivalent to computing correlation between
neighboring STSs and accumulating results over the entire short training field.

A common method to estimate CFO is to divide the offset value into two
components, expressed as

∆fc = α+ ε, (3)

where α and ε represent the integer and fractional part of CFO, respectively.
Both α and ε are normalized with respect to the sub-carrier spacing. ε is
delimited by |ε| ≤ 0.5. This study focuses on the computation of the frac-
tional CFO. An approach to estimate ε is based on a phase computation of the

54 PART II. MULTI-STANDARD DIGITAL FRONT-END PROCESSING

Correlati
wx yzy{|}~�� � � �w�~x����� yzy{|}~�� � � �

����x���
Corr����~on

���� ������ion
�y{ ���~���~wx

r[n] γ[n]

θ̂

arg
{
γ[θ̂]

}

M L

> T< T

Figure 3: Conceptual implementation diagram of the ML-based time
synchronization and CFO estimation. Shaded blocks have various design
parameters required by different radio standards.

autocorrelation result at the estimated symbol start γ[θ̂] [90], i.e.,

ε =
1

2π
arg

{
γ[θ̂]

}
. (4)

This is usually performed by using a COordinate Rotation DIgital Computer
(CORDIC) algorithm operating in circular vectoring mode [92].

2.2 Operation Analysis

Based on the aforementioned algorithms, Figure 3 shows a conceptual imple-
mentation diagram for performing OFDM acquisition. Operations are parti-
tioned into three main processing blocks: data correlation, peak detection, and
CFO estimation. Different design parameters in the three radio standards (Ta-
ble 2) set different hardware requirements for the shaded blocks in Figure 3.
For example, the size of the correlation FIFO (M) changes from 16 to 2048
samples when switching from IEEE 802.11n to DVB-H 2K.

Input samples in this study are 12-bit complex numbers. To reduce memory
requirements during the correlation computation, data samples in single-stream
mode are truncated down to 4 bits. This relies on an assumption that perfor-
mance of the synchronization in the acquisition stage only needs to be suffi-
ciently accurate such that refined estimation algorithms in the tracking stage
will work properly [93]. During concurrent multi-stream processing, memories
are shared between two data streams and the wordlength of data samples is
further reduced by half. As an example, performance analysis of CFO esti-
mation with respect to different input data truncation is shown in Figure 4.
The Mean Squared Error (MSE) of estimated frequency offset is simulated for

3. HARDWARE DEVELOPMENT 55

0 5 10 15 20
10

-5

10
-4

10
-3

10
-2

10
-1

SNR [dB]

M
S
E

 o
f

e
st

im
a

te
d

fr
e

q
u

e
n

cy
 o

ff
se

t
[r

a
d

]

12-bit precision

4-bit truncated

Multi-stream scenario

Single-stream scenario

2-bit truncated

8-bit truncated

Figure 4: Analysis of input data truncation in CFO estimation for
3GPP LTE with a frequency offset of π/8.

an Additive White Gaussian Noise (AWGN) channel on an LTE transmission
with a frequency offset of π/8. Although higher data wordlength attains higher
processing accuracy, larger input truncation reduces both hardware complex-
ity and memory size. For example, reducing input wordlength from 12 to 4
bits results in a performance degradation of around 0.66×10−3 radians at a
Signal-to-Noise Ratio (SNR) of 10 dB. This corresponds to a frequency error
of 0.66 × 10−3/(2π) × ∆f = 1.58Hz. Further truncation to 2 bits results in
more than 80% memory reduction at the cost of 87.26Hz frequency error at the
same SNR. Since a maximum frequency error of 2KHz can be tolerated by the
receiver in LTE [94], this wordlength reduction is motivated. The same analysis
are applied to other radio standards, and the results show that quantization
noise due to wordlength reduction is negligible.

3 Hardware Development

Figure 5 shows a block diagram of the reconfigurable cell array deployed in
the DFE-Rx for performing OFDM time synchronization and CFO estimation.
Based on the operation analysis (Figure 3), the cell array is configured to have
two processing and two memory cells. The processing cells are used to perform
data operations shown in Figure 3, while the memory cells serve as correlation
and moving-sum FIFOs as well as communication buffers between processors.

56 PART II. MULTI-STANDARD DIGITAL FRONT-END PROCESSING���� ����
���� ����R

In
te

rf
ac

e
co

n
tr

o
ll

er

C
el

l
ar

ra
y

Figure 5: Block diagram of the 2×2 cell array and the interface controller
deployed in the synchronization block of DFE-Rx. Solid and dashed lines
depict local and hierarchical network interconnects, respectively.

The interface controller, connected to the cell array via hierarchical network
interconnects, manages external data communication to other system blocks in
the DFE-Rx and is responsible for static configurations of RCs. To cope with
multi-standard concurrent data computations, both processing and memory
cells in the baseline architecture described in Part I are further developed. The
following sections present the detailed architectural improvements.

3.1 Dataflow Processor

In multi-standard multi-stream applications, concurrent processing calls for
a processor design that suffices different computational requirements on each
individual data stream. Processing cells employed in this work, named as
dataflow processors, are Reduced Instruction Set Computing (RISC) cores
with improved dataflow control. In addition to the functions equipped in a
generic processing cell (Part I), the dataflow processor enhances data process-
ing by supporting Single Instruction Multiple Data (SIMD)-like operations.
The processor contains multiple processing lanes capable of performing both
complex- and real-valued operations, illustrated in Figure 6. These operations
are required by, for example, ML estimation and CORDIC computations, re-
spectively. Taking a 16-bit 4-lane processor as an example, the processing
lanes can be grouped into 2 or 4 computation paths, capable of executing 8-bit
complex-valued or 16-bit real-valued operations. Figure 7 depicts detailed ar-
chitecture of the arithmetic part of Arithmetic Logic Unit (ALU) in the 16-bit
processor. Basic operations of the ALU are controlled by two mode specifiers,
“multiplication” and “vector”. While the former one switches between addi-

3. HARDWARE DEVELOPMENT 57

������
shifter������
shifter������
shifter������
shifter

D
at

a
ar

ra
n

g
em

en
t

b
lo

c

 ¡¢

D
at

a
ar

ra
n

g
em

en
t

b
lo

c

 ¡¢¢
+/-

R

+/-

R

+/-

R

+/-

R

D
at

a
ar

ra
n

g
em

en
t

b
lo

c

 ¡¢¢ I

Configuration registers

£¤¥ ¦¦¦¦
Figure 6: Computation path of the dataflow processor. Configurations
of the shaded blocks are stored in registers that are run-time accessible.

tion and multiplication mode, the latter one controls real- or complex-valued
operations. Real-valued output is obtained by concatenating results from ‘O3’
and ‘O4’, while the real and imaginary part of complex-valued output are taken
from ‘O1’ and ‘O4’, respectively.

In addition, computational units are extended to both “instruction decode”
and “write back” stage of the processor. As a result, several consecutive data
manipulations can be accomplished in a single instruction execution without
storing intermediate results. This substantially reduces register accesses. An
example of the consecutive operation execution can be found during the com-
putation of (2), where input data conjugate and result accumulation need to be
performed before and after complex-valued multiplication, respectively. With-
out this extended computation capability, (2) needs to be computed iteratively,
requiring 3 times more execution clock cycles and register accesses. Moreover,
each arithmetic- and logic-type instruction in the dataflow processor is extended
to have two operation codes (opcodes), which are capable of performing two
different operations on the same input data operands in each clock cycle. The
widely used butterfly operation (simultaneous add and subtract [95]) in FFT
is a typical example of the dual-opcode instruction. Another example is input
data forwarding during computations. This can be used to hide the execution
time of data movement operations. For example, input data samples in (2)
can be forwarded to other processing or memory cells while being multiplied
and accumulated. The complete instruction set of the dataflow processor is
included in Appendix A, Figure 1-3 and Table 1-2.

58 PART II. MULTI-STANDARD DIGITAL FRONT-END PROCESSING

x

x

x

x§ ¨
+/-©ª©ª +/-

¨ ¨+/-

+/-

¨

«¬® °̄
mode±²±²

²±³́³́́³́
³

³́́³³́³́
Multiplication mode

µµ ¶µµ ¶
lo

lo

hi

hi ·¸¹º»¼
½¾¼
hi

PSfrag

a

a

b

b c

c

dd

e

e

f

f

g

g

h

h

O1

O2

O3

O4

Figure 7: Arithmetic part of the ALU in the dataflow processor, an
example of 16-bit case. Real-valued output is taken from ‘O3’ and ‘O4’,
while complex-valued output is drawn from ‘O1’ and ‘O4’.

Data Stream Shuffling

For efficient usage of multiple processing lanes, the capability of redirecting in-
put operands into either lane is vital. In the dataflow processor, data operands
in each computation stage can be shuffled before and after each operation.
Internal data shuffling is carried out by deploying data arrangement blocks at
the computation stages, illustrated in Figure 6. In this work, data arrangement
blocks are built from multiplexers. Control bits of the multiplexers are stored in
configuration registers that are transparently accessible by the user. Different
data path configurations can be preloaded into the registers before executing
a program or updated dynamically via a special instruction. The stored data
path configurations can be applied to any type of instructions, which is ac-
complished by indexing the configuration registers in each instruction. As an
example, trivial multiplications required in an FFT may be implicitly executed
using data arrangement blocks, as the operations are equivalent to swapping
two input operands without any data manipulation. Thus, specific operations
to compute trivial multiplications are avoided, resulting in reduced execution
clock cycles and program count. Moreover, with the help of data arrangement
blocks, the same instruction can be used to perform different operations. This
is accomplished by shuffling input operands to form different data patterns.

3. HARDWARE DEVELOPMENT 59

D
at

a
ar

ra
n
g
em

en
t

b
lo

c

¿ ÀÁ
+/-

+/-

a

a

b

b

c

c

d

da+ jb

c+ jd

ac− bd

ad+ bc

(a)
D

at
a

ar
ra

n
g
em

en
t

b
lo

c

Â ÃÄ
+/-

+/-

ÅÅ ÆÅÅ ÇÅÅ Ç +/-

a

a

b

b

c

c

d

dab

cd

ab× cd

(b)

Figure 8: Input data operand arrangements in (a) a 4-bit complex-valued
multiplication, (b) an 8-bit real-valued multiplication. These two oper-
ations use the same instruction and data inputs but operate on different
data sequences, as highlighted in the figure.

As an example, real- and complex-valued multiplications share the same in-
struction but operate on two different data sequences, illustrated in Figure 8.
Detailed architecture of data arrangement blocks and the set of configuration
codewords can be found in Appendix A, Figure 4 and Table 3-6.

3.2 Memory Cell

Under multi-standard multi-stream scenarios, memory descriptors are shared
by the processing of multiple data streams. To cope with various sample-rate
of standards, it is crucial that memory descriptors can be executed in a non-
sequential order. Otherwise, data stream with the slowest sample-rate will
block entire data processing.

60 PART II. MULTI-STANDARD DIGITAL FRONT-END PROCESSING

Descriptor execution s
ÈÉÊÈËÌÈÍÎÏÈÐÑ ÒÍÎÏÈÐÑ ÓDescriptor tableÍÎÏÈÐÑ ÓÍÎÏÈÐÑ Ò ÍÎÏÈÐÑ Ó ÍÎÏÈÐÑ ÓÍÎÏÔÓÕ Ö×ÒØÓÓËÍÎÏÔÒÕ ÙÚÛÍÎÏÔÓÕ Ö×ÒØÓÓËÍÎÏÔÒÕÜÝÞÔß0

1

2

3

0 → 1 → 2 → 3

0 → 2 → 0 → 2 → 1 → 0 → 2 → 0 → 2 → 3

Figure 9: Illustration of descriptor execution program during concurrent
multi-stream processing.

Flexible Descriptor Execution

Based on the aforementioned analysis, memory descriptors are extended in the
way that they can be configured to execute either in non-blocking or blocking
mode. In non-blocking mode, the operation controller of the memory cell se-
quentially starts a descriptor execution in each clock cycle, without waiting for
response from data receiver regarding last memory access. Therefore, subse-
quent descriptors can still be issued and executed even if the current one is
being blocked. Besides used in multi-stream processing, the non-blocking exe-
cution mode is also useful when one memory cell is shared among several hosts
(e.g., processing cells) operating on different stream transfer rates. In contrast,
blocking execution mode guarantees the completion of each specified memory
access before starting a new descriptor execution. This mode can be used to
avoid mixing up stream transfers when an I/O port is shared among multiple
memory descriptors.

To further improve the flexibility of memory cells, the order of the descriptor
execution is run-time programmable. This way, multiple descriptors can be
arranged to reorder or repeat data sequences, or to cope with data streams
that have different transfer rates. Figure 9 illustrates the use of descriptor
execution program during concurrent multi-stream processing. Assuming that
the memory cell has four descriptors, which are configured to serve for two
different streams in an interleaved manner, namely 0 and 2 for “stream 1”
and 1 and 3 for “stream 2”. During the processing of IEEE 802.11n and LTE,
which both have an oversampling rate of 1, the four descriptors are executed
sequentially. However, when dealing with IEEE 802.11n and DVB-H, execution
sequence needs to be programmed such that data stream of IEEE 802.11n is
processed four times before performing one DVB-H data reception. This is
due to the fact that data stream of DVB-H has an oversampling rate of 4, as
mentioned in Section 1.

4. IMPLEMENTATION RESULTS AND DISCUSSION 61

Micro-block Fuction

In addition to the flexible descriptor execution, the data access pattern of a
memory cell can be reshaped by using a micro-block function. This enables
memory access with finer wordlength than that a physical memory provides.
For example, a 32-bit wide memory cell can be configurable to behave as two 16-
bit wide or four 8-bit wide memory cells. This feature is useful when supporting
multi-standard data processing, as different standards may intrinsically require
different processing wordlength. Detailed usage of the micro-block function is
further illustrated in Section 4.

A micro-block operation is defined by a block size, stride, read and write
pointer, and data mask. The block size specifies the wordlength of a micro-
block, used to determine the number of data accesses in each memory read
and write operation. For a 32-bit memory cell, options of the micro-block size
are 1, 2, 4, 8, 16, and 32 bits. Stride is the distance to the next micro-block,
measured in bits. Read/write pointers are physical memory addresses and
are automatically updated after each operation. Data mask enables bitwise
operation on data that is read from or to be written to the memory. Table 3
summarizes configuration fields of the memory descriptor, which is an extended
version of the one adopted in the baseline memory cell (Part 3.2).

4 Implementation Results and Discussion

Given that the cell array is aimed to be deployed in mobile terminals, a mod-
erate clock frequency of around 300MHz is expected. Considering the highest
data sample-rate among the three standards (40MHz in IEEE 802.11n), oper-
ations assigned to each processing cell must be completed within 8 clock cycles
(⌈300MHz/40MHz⌉) in order to suffice real-time constraints. In this work, con-
current processing of two data streams is accomplished by time-multiplexing
two streams on the cell array. As a consequence, the required execution time
is further reduced by half.

Task-level Pipeline

To meet the stringent timing constraint, data computations are partitioned
and mapped onto different processing cells. Specifically, the correlation and
the peak detection in Figure 3 are assigned to PC-0 and PC-1 respectively,
while the CFO estimation is carried out on both processors after determining
the position of the correlation peak. As mentioned in Section 2.1, the phase
computation (4) in the CFO estimation can be performed using a CORDIC
algorithm [92]. The concept of the CORDIC algorithm is to rotate input vector
through a series of micro rotations by applying shift and add operations [73].

62 PART II. MULTI-STANDARD DIGITAL FRONT-END PROCESSING

Table 3: Configuration fields of memory descriptor.

Field Bits Length Description

P
a
rt

I
dtype 31-30 2 Operation mode select

base 29-20 10 Start address

high 19-10 10 End address

rd ok/active 9 1 FIFO reading status/

RAM active transfer flag

wr ok/rnw 8 1 FIFO writing status/

RAM read-write select

io bank rst 7 1 I/O port register reset

id 6-1 6 Global packet destination ID

block opr 0 1 Blocking execution enable

P
a
rt

II

rptr/ptr 31-22 10 Current FIFO reading pointer/

Current RAM data pointer

wptr/tsize 21-12 10 Current FIFO writing pointer/

Current RAM data transfer size

src/paddr 11-8 4 FIFO data source port/

RAM address port

dst/pdata 7-4 4 FIFO data destination port/

RAM data port

blk size 3-1 3 Size of micro-block

blk en 0 1 Micro-block enable

P
a
rt

II
I

blk stride 31-27 5 Micro-block step size

blk rptr 26-22 5 Current micro-block read pointer

blk wptr 21-17 5 Current micro-block write pointer

blk mask 16-1 16 Micro-block data mask

blk mask sign 0 1 Data mask sign extension

These operations can be easily mapped onto processing cells by using barrel
shifters and ALU as well as data arrangement blocks for intermediate result
shuffling. Memory cells interconnected with the two processors are used as
correlation and moving-sum FIFOs. Additionally, MC-1 serves as the CORDIC
coefficient ROM and communication buffers between the processors.

Based on the wordlength analysis in Section 2.2, the two processing cells are
configured as 16-bit cores suitable for handling correlations with 4-bit complex-
valued inputs (see Figure 7). The wordlength of memory macros in both mem-

4. IMPLEMENTATION RESULTS AND DISCUSSION 63

Sign Sign

2(I) 2(Q)

1(I) 1(Q)

3(I) 3(Q)

4(I) 4(Q)

Inphase Quadrature

011162731 19 3

PC-0 → MC-0

3(Q) 1(Q)4(Q) 2(Q)3(I) 1(I)4(I) 2(I)

After 4 iterations

(a)

(b)

(c)Address ‘X’

723

Shift by 0 & mask

Shift by 20 & mask

Shift by 16 & mask

Shift by 4 & maskLogic

OR

(d)133 1244 2133 1244 2Address ‘X’

Stream 2Stream 1

I Q

12 bits → 4 bits

Sign Sign

Figure 10: Interleaved data storage in correlation FIFO, MC-0. (a) Re-
ceived 12 bits data pair in PC-0. Data pairs are truncated down to 4 bits
before being transmitted to MC-0. (b) Exploded view of data storage
in correlation FIFO for single data stream. (c) Final data storage at
address ‘x’ for single data stream. (d) Final data storage at address ‘x’
for two concurrent data streams (2 bits data pair of each).

ory cells is 32 bits wide. Therefore, a pair of 16 bits in-phase and quadrature
data inputs can be stored in the same memory location. Memory capacity of
the correlation and the moving-sum FIFO is configured to suffice the standard
with the largest storage requirement, i.e., DVB-H in this case.

Memory Interleaving

In addition to the task-level pipeline, self-governed FIFO operations in mem-
ory cells relieve processing cells from address manipulations. Moreover, the
micro-block function of memory cells eliminates data alignment operations in
processors, as illustrated in Figure 10. Since the wordlength of memory macros
is 32 bits wide and the complex-valued data inputs are truncated to 4 bits (in
single-stream mode), 4 truncated data pairs need to be stored at one memory
location. With the help of the micro-block function, PC-0 is exempt from data
shifting and masking operations, as shown in Figure 10(b). The received data
pairs are correspondingly left-shifted, masked to set off unused bits, and added

64 PART II. MULTI-STANDARD DIGITAL FRONT-END PROCESSING

(logic OR) to the write buffer. A final view of the interleaved data storage
at a memory location in the correlation FIFO is illustrated in Figure 10(c).
Similarly, when data pairs are truncated to 2 bits in the multi-stream mode,
leading to 8 micro-block operations, truncated data pairs from both streams
are interleaved and stored in the same memory location, see Figure 10(d).

Context Switching

During context switching between different radio standards, both processing
and memory cells need to be reconfigured to update parameters such as the
threshold value T in the ML estimation (1), the length of the correlation (M),
and the moving-sum FIFO (L). When switching from single- to multi-stream
processing or vice versa, additional configurations are required. These include
memory bank allocations, computational precision adjustments (e.g., from 4
bits down to 2 bits), and corresponding program segment updates in processing
cells. Thanks to the adoption of the in-cell configuration scheme presented in
Part I, all the aforementioned context switching tasks are conducted inside the
cell array during system run-time. In the current implementation, PC-0 is used
as a local master core that controls the operation of other RCs and manages
all the required resource configurations.

Configuration Generator

To ease resource configurations of the cell array, a graphical user interface is
developed in-house, shown in Figure 11. This tool visualizes all possible con-
figurations of the processing and the memory cells deployed in the 2×2 cell
array. Additionally, it is able to convert resource configurations into binary
codes and generate a final bit stream based on allocated address space of each
RC. Moreover, this tool has the ability of streaming data and configurations
into the cell array (with the help of peripheral circuits, further discussed in
Section 4.3) using a TCP/IP socket. A detailed view of the tool can be found
in Appendix A, Figure 5-7. Note that the memory cell MC-1 is shown as two
separate units in Figure 11, “MC 1” and “MC 2”, which are used as data mem-
ories (moving-sum FIFO and CORDIC coefficient ROM) and communication
buffers, respectively.

4.1 Hardware Flexibility

With a fixed memory size, concurrent data processing is achieved by sharing
memory resources between multiple data streams. Memory sharing is usu-
ally accomplished by sacrificing computational precision on all data streams,
regardless of running standards and channel condition. Although the rigid
uniform wordlength scheduling is easier to implement, higher computational

4. IMPLEMENTATION RESULTS AND DISCUSSION 65

Figure 11: Overview of the configuration generation tool.

precision is desired whenever possible. The cell array is capable of dynamically
allocating computational resources to achieve better performance and resource
utilization. Hence, computational precision is scheduled adaptively depending
on current operating conditions. For the target radio standards, input sam-
ples are truncated to either 4 or 2 bits. Table 4 lists all the radio standards
supported by the presented 2×2 cell array with the corresponding truncation
wordlengths. Memory utilization, shown in the last column of Table 4, is the
data memory used by the correlation process as a percentage of the total data
storage available in all memory cells. The utilization does not reach 100%, as
parts of the data memories are used as the CORDIC coefficient ROM, as well
as communication buffers between two processors.

In addition to resource sharing among multiple radio standards, system
flexibility is also demonstrated by mapping different algorithms onto the same
platform, without additional hardware cost. The adoption of different algo-
rithms may either extend system compatibility by supporting additional stan-
dards, or improve system performance by enhancing processing throughput and
concurrency. In the conducted experiment, flexibility is illustrated by mapping
a novel sign-bit OFDM synchronization algorithm [93] onto the presented cell
array. This leads to the support of all three OFDM transmission modes (2K,
4K, and 8K subcarriers) in the DVB-H standard. The initial design choice on
memory capacity only supports 4/2-bit synchronization algorithm for DVB-

66 PART II. MULTI-STANDARD DIGITAL FRONT-END PROCESSING

Table 4: Supported radio standards and memory utilization of a 2×2 cell array.

Concurrency Standards
Truncation Memory

wordlength utilization

Single-Stream

802.11n 4 bits 8.48%

LTE 4 bits 65.18%

DVB-H2K 4 bits 85.71%

DVB-H4K 2 or Sign bit 85.71%

DVB-H8K Sign bit 85.71%

Dual-Stream

802.11n & 802.11n 4 bits 16.96%

802.11n & LTE 2 bits 45.09%

802.11n & DVB-H2K 2 bits 65.63%

LTE & LTE 2 bits 73.21%

LTE & DVB-H2K 2 bits 93.75%

0 5 10 15 20
10

-5

10
-4

10
-3

10
-2

10
-1

SNR [dB]

M
S

E
 o

f
e

st
im

a
te

d

fr
e

q
u

e
n

cy
 o

ff
se

t
[r

a
d

]

12-bit precision

4-bit truncated

Sign-bit

2-bit truncated

Single-stream scenario

Multi-stream scenario

Figure 12: Analysis of sign-bit algorithm [93] in CFO estimation for
3GPP LTE with a frequency offset of π/8.

H 2K/4K modes. However, with the adoption of the sign-bit algorithm, which
has dramatic data storage reduction, support for the DVB-H8K mode becomes
possible. Performance analysis of the sign-bit algorithm, see Figure 12, reveals
better computational accuracy than the 2-bit implementation. This is in virtue

4. IMPLEMENTATION RESULTS AND DISCUSSION 67

Table 5: Area breakdown of the DFE-Rx.

DFE Rx Area [µm2] Percentage

I/O Pads 991,569 38.37%

Synchronization block 479,026 18.54%

Rx data path 1 501,894 19.42%

Rx data path 2 501,894 19.42%

Others 109,851 4.25%

Total 2,584,234 100.00%

of specialized arithmetic used in the sign-bit algorithm, which obtains better
immunity to quantization noise [94]. However, sign-bit implementation involves
many bit-level data manipulations, which are difficult to map efficiently to a
coarse-grained reconfigurable architecture without increasing execution time.
Therefore, design complexity in the sign-bit algorithm shifts from memory ca-
pacity to data processing.

Figure 13 and 14 illustrate the layout of data storage in the correlation
FIFO (MC-0) for various use cases studied in this work. The considered use
cases include different standards in signal-stream mode and various standard
combinations in multi-stream mode. Streams marked in red in Figure 13 and
14 indicate the first data stream received by the cell array. Note that the
concurrent reception of IEEE 802.11n data streams can be processed in either
4 or 2 bits, because of the low memory requirements, see Table 2.

4.2 Implementation Results

Fabricated in a 65 nm CMOS technology, the DFE-Rx has a die size of 5mm2

with 144 I/O pads. According to synthesis results, half of the chip area is
taken by memories, logic cells and I/O pads, while the remaining half is used
for power and signal routing as well as clock tree generation. Figure 15 shows
a chip layout. As a prototype, the design is pad-limited due to the large
number of I/O ports required for individual tests of function blocks. Table 5
shows an area breakdown of the DFE-Rx. As can be seen, I/O pads occupy
about 40% of the area and the remaining part is evenly distributed among the
synchronization block and the two receiving data paths. In the following, we
focus on the implementation of the synchronization block, namely the 2×2 cell
array, and present silicon measurement results obtained from a standalone test.

Shown by the synthesis results in Table 6, the cell array is memory domi-
nant, which consumes about 40% of the area. This is mainly due to the large
amount of data required to store. Besides, program memories of processing

68 PART II. MULTI-STANDARD DIGITAL FRONT-END PROCESSING

Table 6: Area breakdown of the 2×2 cell array in the DFE-Rx.

Resource cell Memory Area [µm2] Percentage

PC-0
Logic − − 37,567 7.84%

Memory 384×48b 18Kb 37,009 7.73%

PC-1
Logic − − 37,201 7.77%

Memory 512×48b 24Kb 41,318 8.63%

MC-0
Logic − − 39,167 8.18%

Memory 512×32b 16Kb 66,016 13.78%

MC-1
Logic − − 64,810 13.53%

Memory 384×32b 12Kb 57,657 12.04%

Router cells − − 37,976 7.93%

Interface controller − − 60,306 12.59%

Total 70Kb 479,026 100.00%

cells are deployed such that they are large enough to allow further algorithm
updates and mapping of other tasks. The entire cell array, including the in-
terface controller, occupies 0.48mm2 area and has a maximum clock frequency
of 534MHz. Thanks to the adopted in-cell configuration scheme, switching
between different operation modes, such as from OFDM time synchronization
to CFO estimation, requires only 11 clock cycles.

The high system flexibility offered by the cell array comes at the cost of area
overhead. For comparison, a hardware accelerator only capable of performing
the target tasks (OFDM time synchronization and CFO estimation) is imple-
mented. Synthesis result of the accelerator is shown in Table 7. Even though a
module-by-module comparison is not possible because of the hardware reusing
nature of the reconfigurable architecture, it is evident that both designs are
memory dominant. To be able to process two concurrent data streams, two
accelerators are taken into the comparison. It shows that the accelerator-based
solution uses around 4 times less silicon area and runs at a lower clock frequency
(40MHz) for the same throughput. However, from the entire DFE-Rx point of
view, the adoption of the cell array results in only about 16% area overhead.
In view of the high flexibility provided by the cell array, as demonstrated in
Section 4.1, this overhead is acceptable. Moreover, it should be pointed out
that the potential usage of the cell array is not fully explored when only eval-
uating the mapping of the synchronization algorithms. The architecture has
the ability of being dynamically reconfigured to perform different tasks while
a hard-coded accelerator implements fixed functionality.

4. IMPLEMENTATION RESULTS AND DISCUSSION 69

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9
8

7
6

5
4

3
2

1
0

W
o

rd
le

n
g

th

4
 b

it
s

4
 b

it
s

4
 b

it
s

4
 b

it
s

4
 b

it
s

4
 b

it
s

2
 b

it
s

2
 b

it
s

1
5

1
3

1
1

9
7

5
3

1
1

5
1

3
1

1
9

7
5

3
1

S
ig

n
-b

it

1
6

1
4

1
2

1
0

8
6

4
2

1
6

1
4

1
2

1
0

8
6

4
2

S
ig

n
-b

it

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9
8

7
6

5
4

3
2

1
0

W
o

rd
le

n
g

th

4
 b

it
s

4
 b

it
s

4
 b

it
s

4
 b

it
s

2
 b

it
s

2
 b

it
s

2
 b

it
s

2
 b

it
s

2
 b

it
s

2
 b

it
s

2
 b

it
s

2
 b

it
s

Single-stream mode Multi-stream mode

1

4
4

2
2

S
tr

2
W

L
A

N

3
3

1
1

4
4

2
2

1

4
2

8
6

W
L

A
N

S
tr

1

S
tr

2
W

L
A

N

C
a
s
e
 4

a

L
T

E
S

tr
2

C
a
s
e
 5

C
a
s
e
 4

b

S
tr

1
W

L
A

N

L
T

E
S

tr
1

C
a
s
e
 2

4

S
tr

1
W

L
A

N
C

a
s
e
 1

S
tr

1
W

L
A

N

D
V

B
-2

K
S

tr
2

C
a
s
e
 3

a

C
a
s
e
 3

b
S

tr
2

D
V

B
-4

K

D
V

B
-8

K
S

tr
2

C
a
s
e
 3

c

4

3
3

4
4

2
2

3

1

4
2

4

4

3

4

6

3
3

1

4
2

2

3
3

1 1

2

1

4
4

3

1
3

1
7

5
7

5
31

1

2
4

4
2

2

3
3

1

2
2

3

2

8

1

4
2

7
5

3
1

7
5

3
1

8
6

4
2

8
6

1

2

1

3
3

1

F
ig
u
re

1
3
:
L
ay
o
u
t
o
f
d
a
ta

st
o
ra
g
e
in

th
e
co
rr
el
a
ti
o
n
F
IF
O

(M
C
-0
)
fo
r

d
iff
er
en
t
u
se

ca
se
s.

S
tr
ea
m
s
m
a
rk
ed

in
re
d
in
d
ic
a
te

th
e
fi
rs
t
d
a
ta

st
re
a
m

re
ce
iv
ed

b
y
th
e
ce
ll
a
rr
ay
.

70 PART II. MULTI-STANDARD DIGITAL FRONT-END PROCESSING

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9
8

7
6

5
4

3
2

1
0

W
o

rd
le

n
g

th

2
 b

it
s

2
 b

it
s

2
 b

it
s

2
 b

it
s

2
 b

it
s

2
 b

it
s

2
 b

it
s

2
 b

it
s

2
 b

it
s

2
 b

it
s

2
 b

it
s

2
 b

it
s

2
 b

it
s

2
 b

it
s

2
 b

it
s

2
 b

it
s

2
 b

it
s

2
 b

it
s

2
 b

it
s

2
 b

it
s

2
 b

it
s

2
 b

it
s

2
 b

it
s

2
 b

it
s

Multi-stream mode

8
4

2
8

4
2

8
4

2
8

4
2

3
3

8
6

4
2

8
6

4
2

C
a
s
e
 1

1

S
tr

1
L

T
E

S
tr

2
D

V
B

-2
K

1
1

2

1

2

4
4

2
2

7
5

3
1

7
5

1
7

5
1

S
tr

1
L

T
E

S
tr

2
W

L
A

N

C
a
s
e
 1

0

S
tr

1
W

L
A

N

S
tr

2
D

V
B

-2
K

S
tr

1
L

T
E

S
tr

2
L

T
E

C
a
s
e
 9

S
tr

1
L

T
E

S
tr

2
D

V
B

-2
K

C
a
s
e
 8

C
a
s
e
 7

3
3

4
4

4
4

2

3
1

7
5

3
1

8
6

4
2

8
6

D
V

B
-2

K
S

tr
2

C
a
s
e
 6

W
L

A
N

S
tr

1

3
3

2

3
3

1

7
5

3
3

7

1

4
2

4
2

2

4

1
13

1

8
6

4
2

8
6

4
2

2
2

1

4 8
8

3
3

8
8

1
1

6
6

1
1

6
6

7
5

3
7

5

7
5

3

6
4

2
6

4
2

3
3

7
5

1
7

5

4

6
4

2
6

4
2

7

3

7
5

3

1
1

11

5
3

1
7

5

5
3

F
ig
u
re

1
4
:
L
ay
o
u
t
o
f
d
a
ta

st
o
ra
g
e
in

th
e
co
rr
el
a
ti
o
n
F
IF
O

(M
C
-0
)
fo
r
d
iff
er
en
t
u
se

ca
se
s,
co
n
ti
n
u
ed
.

4. IMPLEMENTATION RESULTS AND DISCUSSION 71

àáà ââ
ã äã åå

Figure 15: Chip layout of the fabricated DFE-Rx.

Table 7: Synthesis result of a hardware accelerator, only capable of performing
time synchronization and CFO estimation for a single data stream.

Area [µm2] Percentage

Correlator 1,296 2.13%

Peak detector 2,305 3.78%

Correlation FIFO 27,232 44.69%

Moving-sum FIFO 25,258 41.45%

CORDIC (time-multiplexed) 3,330 5.46%

Control 1,521 2.5%

Total 60,942 100.00%

4.3 Measurement Results

To verify the functionality of the cell array, a standalone test is carried out
in the debugging mode of the DFE-Rx via an on-chip Serial DeBug (SDBG)
interface. The SDBG interface, developed based on [96], contains a set of light-
weight single-ended serial links capable of operating at 10Mbps when using
ribbon cable connections. Higher speed, up to 40Mbps, can be achieved with
good signal termination and PCB board layout.

72 PART II. MULTI-STANDARD DIGITAL FRONT-END PROCESSING

Debugging Interface

Typical high speed data-recovery circuits require a Phase-Locked Loop (PLL)
module for each serial link to recover data (as well as clock) from an 8b/10b
encoded serial link. However, it has been shown in [96] that data can be re-
covered from a serial link by simply using a 4× clock sampling scheme without
the 8b/10b encoding. Additionally, instead of using PLL, the presented data-
recovery circuit employs two local clock signals: ‘clk’ and its 90-degree phase
shifted counterpart ‘clk90’. These clock signals can be generated from two
independent local oscillators or clock generation circuits. However, it is impor-
tant to maintain the phase-relationship of the two clocks. According to [96],
this scheme can recover data from up to 200Mbps serial links by using the
differential signalling for serial transmission and advanced Delay-Locked Loop
(DLL) circuit to maintain the phase-relationship of clock signals. The current
version of DFE-Rx has no differential I/O pads and DLL circuits equipped.
Thereby, these serial links are implemented with single-ended I/O pads. Both
clock signals (‘clk’ and ‘clk90’) are provided from normal clock pads and are
directly used inside the chip without further phase-adjustment.

The DFE-Rx SDBG consists of three serial links: ASIC Control Input Link
(AIL-C), ASIC Data Input Link (AIL-D), and ASIC Output Link (AOL). The
AIL-C and AIL-D are used to stream configurations and data into the cell array
respectively, while AOL is shared for both data and control outputs.

Standalone Cell Array Test

Through the SDBG interface, the cell array is connected to an FPGA platform,
Xilinx XUPV5-LX110T, which implements the control and data streaming log-
ics for communicating with the cell array. Figure 16 and 17 illustrate the setup
and the measurement testbed for the standalone test, respectively.

For the system running in FPGA, a 32-bit MicroBlaze soft processor core
[97] is used as a master controller. The SDBG interface adaptor is embedded as
a co-processor connected on a shared Processor Local Bus (PLB). An interrupt
controller is used to notify the master controller to receive control/data from
the cell array. Communication to an external host (PC) is achieved through
an Ethernet connection and a Universal Asynchronous Receiver/Transmitter
(UART) interface, which stream data/configuration and issue control com-
mands to the cell array, respectively.

In the standalone test, the embedded system in FPGA operates at 100MHz,
whereas the cell array is clocked at 10MHz due to the data-rate limitations on
ribbon cable connections and single-ended signalling. Data transmission rate
over the Ethernet connection is set to 100Mbps, while the UART line adopts
a baud rate of 460.8Kbps.

4. IMPLEMENTATION RESULTS AND DISCUSSION 73

Interrupt

controller

v2.01.a

UART Lite

v1.01.a

PLB bus 4.6
v1.04.a

MicroBlaze

v7.30.b
F
ro
m
/t
o
 h
o
st

Xilinx XUPV5-LX110T Evaluation Platform

Cell array

P
L
B
 b
u
s
d
ri
v
er MC-0PC-0

R

PC-1MC-1

R

Data

CtrlS
D
B
G

In
te
rf
ac
e

clk

clk90

ail_c

ail_d

aol

debug_sel

reset

status

S
D
B
G
 I
n
te
rf
ac
e

rx_intr_ctrl

rx_intr_data

Ethernet Lite

v4.00.a

DFE Rx

Figure 16: Block diagram of the standalone cell array test.

Figure 17: Measurement testbed for the standalone cell array test.

To provide users with an easy way of controlling the embedded system,
a user interface in UART line is developed. Resource cell configurations and
control and data inputs can be streamed into the cell array by issuing differ-
ent user commands, see Appendix A, Table 7. In addition, a few pre-loaded
configuration scripts are provided for fast system demonstrations. Burst data

74 PART II. MULTI-STANDARD DIGITAL FRONT-END PROCESSING

Table 8: Example of cell array configuration via a UART interface.

≫@g# (Command input) Command ‘g’, destination RC selection.

≫ 0 (Number input) RC hierarchical IO port ID.

≫@i# (Command input) Command ‘i’, instruction downloading.

≫ 2 (Number input) Number of instructions (plus one) to transfer.

≫ $00010002# (String input) Header of instruction downloading.

≫ $A8000001# (String input) Instruction “A8000001”.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
1.7

1.8

1.9

2

2.1

2.2

Time [sample]

P
o

w
e

r
[m

W
]

One frame Idle

Figure 18: Measured power consumption of the cell array in a standalone
test mode when processing an IEEE 802.11n data reception.

transfers are accomplished by sending a user-defined script file. As an example,
commands shown in Table 8 download an instruction into PC-0.

Based on the UART control, a high-level user interface is designed in MAT-
LAB. The MATLAB interface provides a more advanced and flexible way to
control data streams running into and out of the system. For example, input
data sequences can be generated in MATLAB at run-time and data produced
by the cell array can be collected and plotted graphically. Detailed user com-
mands in the MATLAB interface are listed in Appendix A, Table 8.

Figure 18 shows the power consumption of the cell array measured under
the processing of an IEEE 802.11n data stream at nominal supply voltage of
1.2V and at 10MHz clock frequency. During the reception of 802.11n data
frames, the measured minimum and maximum power consumption is 1.75mW
and 2.19mW, respectively. During the loading of hardware configurations (not
shown in Figure 18), the cell array consumes 1.95∼2mW power.

5. SUMMARY 75

5 Summary

This part presents a case study of the reconfigurable cell array suitable to pro-
cess multiple radio standards concurrently. The flexibility and performance of
the architecture are demonstrated by performing time synchronization and car-
rier frequency offset estimation in OFDM systems. Using a 2×2 cell array, three
widely used standards, IEEE 802.11n, 3GPP LTE, and DVB-H, are supported.
Moreover, two independent data streams from the three standards can be pro-
cessed concurrently by allocating and sharing system resources at run-time.
During the reception of a single data stream, the cell array is configured to
achieve high computational accuracy by using all available hardware resources.
When two concurrent data streams are being received, the cell array adjusts
its hardware resources such that data memories are split in two and processing
cells are shared over time. Moreover, the potential of the architecture is further
illustrated by mapping a different algorithm onto the same platform without
any additional hardware cost. Benefiting from the new algorithm mapping,
the coverage of the standards supported by the cell array is extended. The
proposed 2×2 cell array is fabricated as a part of a Digital Front-End Receiver
in the EU Multibase project. Running at 10MHz clock frequency and at 1.2V
supply voltage, measurement results report a maximum power consumption of
2.19mW during the processing of an IEEE 802.11n data reception.

Part III

Multi-task MIMO Signal Processing

Abstract

Driven by the requirement of multi-dimensional computing in contemporary
wireless communication technologies, reconfigurable platforms have come to
the era of vector-based architectures. In this part, the reconfigurable cell array
developed in Part I and Part II is extended with extensive vector computing
capabilities, aiming for high-throughput baseband processing in MIMO-OFDM
systems. Besides the heterogeneous and hierarchical resource deployments, a
vector-enhanced SIMD structure and various memory access schemes are em-
ployed. These architectural enhancements are designed to suffice stringent
computational requirements while retaining high flexibility and hardware ef-
ficiency. Implemented in a 65 nm CMOS technology, the cell array occupies
8.88mm2 core area. To illustrate its performance and flexibility, three compu-
tationally intensive blocks, namely channel estimation, channel pre-processing,
and symbol detection, of a 4×4 MIMO processing chain in a 20MHz 64-QAM
Long Term Evolution-Advanced (LTE-A) downlink are mapped and processed
in real-time. Operating at 500MHz and 1.2V voltage supply, the achieved
throughput is 367.88Mb/s and the average power consumption is 548.78mW.
The corresponding energy consumption for processing one information bit is
1.49 nJ/b. Comparing to state-of-the-art implementations, the proposed solu-
tion outperforms related programmable platforms by up to 6 orders of magni-
tude in energy efficiency, and is 1.7−13.6 and 1.4−15 times less efficient than
ASICs in terms of area and energy, respectively, when performing each indi-
vidual task.

77

1. INTRODUCTION 79

1 Introduction

Given data receptions processed in DFE (Part II) and transformed back to the
frequency domain via FFT [73], this part focuses on succeeding blocks in the
baseband processing chain and considers systems employing MIMO and OFDM
technologies. In addition, 3GPP Long Term Evolution-Advanced (LTE-A) is
used as a case study to illustrate architectural development of the reconfigurable
cell array. Support for other or multiple radio standards can be developed using
the similar approach. However, the focus of this work is on vector enhancements
of the cell array and concurrent processing of multiple tasks.

Compared to single antenna systems, MIMO technology exploits design-of-
freedom in the spatial domain in addition to time and frequency. Therefore, it
provides significant improvements in system capacity and link reliability with-
out increasing bandwidth. However, the price-to-pay is higher complexity and
energy consumption due to increased computational dimensions, i.e., in propor-
tion to the antenna size, and required sophisticated signal processing, such as
symbol detection for inter-antenna interference cancellations. Moreover, when
combining MIMO with OFDM, it is required to perform the corresponding pro-
cessing at every OFDM subcarrier, posing even more stringent computational
and energy requirements. Under such circumstances, building architectures
solely on scalar-based function units requires a large number of resource deploy-
ment. Although the adoption of massive scalar units provides high flexibility,
it reveals poor hardware efficiency in view of the parallel-structured MIMO-
OFDM processing, since a large portion of resource controls (e.g., processor
instructions and memory configurations) are identical and thus redundant. To
achieve efficient computing, it is crucial to extend architectures with vector
processing capabilities by fully utilizing the extensive Data-Level Parallelism
(DLP) available in MIMO-OFDM systems.

In this part, the reconfigurable cell array presented in Part I and Part II
is further developed, aiming at achieving a balance between processing per-
formance, flexibility, and hardware efficiency. Specifically, the architecture
is partitioned into distinct vector and scalar processing domains for efficient
hybrid-format data computing. In the vector domain, processing cells are de-
ployed with vector-enhanced SIMD cores and VLIW-style multi-stage compu-
tation chains to attain low-latency high-throughput vector computing. Mem-
ory cells are equipped with flexible vector access schemes for relieving non-
computational address manipulations from processing cells. For performance
evaluation, three tightly coupled baseband processing blocks, which are unique
and crucial in MIMO for exploiting its full superiorities, are mapped onto the
cell array in a time-multiplexed manner. The three processing blocks are:

80 PART III. MULTI-TASK MIMO SIGNAL PROCESSING

Channel
pre-process

Channel
Estimation

S
y
m

b
o
l

d
et

ec
ti

o
n

Channel

Tx

Rx

D
ig

it
al

 f
ro

n
t

en
d

F
F

T
F

F
T

D
ec

o
d
in

g

IF
F

T
IF

F
T

C
P

C
P

C
P

C
P

Mapping

Mapping

Encoding

Encoding

Source

Source

æçèéêëìí
L

ay
er

 m
ap

p
in

g

&
 p

re
-c

o
d
in

g

x1

xN

(H)

n1

nN

y1

yN

x̂

Figure 1: Block diagram of the MIMO-OFDM transceiver. This work
maps all three shaded blocks onto the reconfigurable cell array.

• Estimation of the channel state information using pilot tones,

• Channel pre-processing that is an indispensable step for all kinds of de-
tection algorithms,

• Symbol detection that recovers the transmitted vector.

Figure 1 shows a simplified diagram of the MIMO-OFDM transceiver and high-
lights the target processing blocks. In addition to the vector extension and task-
level multiplexing, hardware efficiency of the cell array is further improved by
algorithm-level exploitation, in which more than 98% of the total operations
involved in all three tasks are vectorized and unified, enabling extensive parallel
processing and hardware reuse.

In Section 2, algorithm development for the MIMO processing tasks are
presented, including Minimum Mean-Square Error (MMSE) based channel es-
timation, QR Decomposition (QRD) based channel pre-processing, and node-
perturbation-enhanced MMSE symbol detection. In Section 3, performance,
computational complexity, and hardware friendliness of the adopted algorithms
are evaluated and analyzed in comparison to conventional approaches. Based
on the operation profile and the LTE-A specification, data processing flow and
timing analysis are conducted to provide guidance for succeeding hardware de-
velopment. Section 4 describes the detailed array architecture configured for

2. MIMO SIGNAL PROCESSING 81

0 0

P

P

P

Pî ïð ñïïòóôõðöî ïð ñïïòóôõð÷P

P

P

Pilot tone
øùúùûüùý þÿ��� ���ùData tone

P

P

P

P

P
î ïð ñïïòóôõð�î ïð ñïïòóôõð�
P

Time

� õñ��ñï	

Time slot

(tslot = 0.5ms)

Figure 2: Scattered pilot pattern for four antenna ports in one LTE-A
resource block.

MIMO-OFDM signal processing. The focus is on vector extension, including
heterogeneous resource arrangement, processing cell enhancements, and various
vector memory access schemes. Section 5 summarizes implementation results
and compares performance with that of state-of-the-art platforms. Moreover,
the flexibility of the proposed solution is further illustrated in Section 6 through
a mapping of an adaptive channel pre-processor. The mapping makes use of dy-
namic resource allocations to adopt appropriate pre-processing algorithms at
run-time, which provides a wide range of performance-complexity trade-offs.
Section 7 concludes this part.

2 MIMO Signal Processing

This work considers a MIMO-OFDM system with N transmit (Tx) and receive
(Rx) antennas. Without loss of generality, the following discussions are based
on the consideration of 20MHz LTE-A downlink operating in normal Cyclic
Prefix (CP) mode with 4×4 antenna setup and 64-QAM modulation. Similar
to the previous part, the maximum excess delay of the propagation channel is
assumed to be within the CP of each OFDM symbol. Before presenting the
target MIMO processing algorithms, the LTE-A data structure is introduced
and the system model described in Chapter 3 is briefly revisited.

Figure 2 shows the structure of a resource block in LTE-A. Each resource
block contains 12 consecutive subcarriers and 7 OFDM symbols over a time slot
of 0.5ms. To support operations such as synchronization and channel estima-
tion, pilot tones are distributed over a time-frequency grid. Under the common

82 PART III. MULTI-TASK MIMO SIGNAL PROCESSING

assumption of quasi-static1 channel modelling [98], the accuracy of channel es-
timates can be improved by inserting pilot tones in the middle of each time slot
(symbol 4) into the pilot vector at symbol 0 [99]. This way, channel estimation
is performed only once in each time slot, followed by channel pre-processing,
while symbol detection is required on every data-carrying subcarrier.

Assuming perfect synchronization and front-end processing, the received
vector y after CP removal and FFT can be expressed as

y = Hx+ n, (1)

where H denotes the complex-valued channel matrix, x is the transmitted
vector obtained by mapping a set of encoded information bits onto a Gray-
labelled complex constellation, and n is the i.i.d. complex Gaussian noise
vector with zero mean and variance σ2

n. The average transmit power of each
antenna is normalized to one, such that E{xxH} = IN , where IN is an identity
matrix of size N and (·)H denotes a Hermitian transpose.

In the following, algorithms adopted for the three processing tasks are pre-
sented in detail. It should be pointed out that algorithm selections are not the
main scope of this part. They are selected to make use of essential architectural
characteristics and to illustrate the performance of the hardware platform.

2.1 Channel Estimation

Based on the scattered pilot arrangement (Figure 2), pilot-aided comb-type
channel estimation scheme [100] is employed. It consists of two computation
steps. First, channel coefficients at pilot positions are computed by using Least
Square (LS) algorithm,

hp,LS = ypx
−1
p . (2)

Second, channel coefficients at data-carrying subcarriers are estimated by in-
terpolating and extrapolating hp,LS in the frequency domain. This process may
be seen as a linear filtering of the LS estimation

h = Whp,LS, (3)

where the filter function W varies with different algorithms (mentioned in
Chapter 3.2). Among them, Linear MMSE (LMMSE) estimation algorithm
aims to approach the optimal result by using second-order statistics of the
channel conditions and noise power. It is defined as

hMMSE = Whp,LS = Rhdhp

(
Rhphp

+
β

SNR
IN

)−1

hp,LS, (4)

1Channel coefficients of each subcarrier are stationary over time within one time slot,
i.e., 0.5ms in LTE-A.

2. MIMO SIGNAL PROCESSING 83

0 200 400 600 800 1000 1200
0

0.2

0.4

0.6

0.8

1

Frequency subcarrier

C
o

rr
e

la
ti

o
n

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

(a) (b)

Length of CP

0 1 2 3 4 5 6
-20

-15

-10

-5

0

Delay [μS]

P
D

P
 [

d
B

]

3GPP EPA
3GPP EVA
3GPP ETU
Uniform

Figure 3: (a) The uniform PDP used in the R.MMSE estimator. PDPs of
some typical channel scenarios in LTE-A [101] are included for compar-
isons. (b) An illustration of the frequency-domain correlations between
subcarriers in 20MHz LTE-A, under the case of uniform PDP.

where Rhdhp
is the channel cross-correlation between pilot and data-carrying

subcarriers, Rhphp
represents the channel auto-correlation between pilot sub-

carriers, SNR denotes the average signal-to-noise ratio of received signals, and
β is a constellation dependent constant, e.g., 180

67 for 64-QAM.

Robust MMSE Estimator

A major drawback of the LMMSE estimator is its high computational com-
plexity. One reason for this is the need for re-computation of W every time
SNR and/or the correlation matrices change. This is infeasible for practical
implementations, especially when the number of subcarriers is large. Instead,
the Robust MMSE (R.MMSE) algorithm [102] is adopted in this work. The
R.MMSE estimator completely removes the need for run-time W calculations
by employing a static function, designed to safely tolerate various channel sce-
narios and rapid channel variations. The static W is generated by using under-
estimated correlation matrices and an overestimated SNR value. Specifically,
the correlation matrices are pre-computed based on two assumptions. First,
the propagation channel obeys a uniform Power-Delay Profile (PDP). Second,
the maximum excess delay of the channel is equal to the length of CP. This
is illustrated in Figure 3(a). For comparisons, PDPs defined for some typical
channel scenarios in LTE-A are included. As shown, they are all covered by
the envelope of the uniform PDP used in R.MMSE, revealing the underesti-
mated design strategy. Regarding SNR, a high value is preferable. This can
intuitively be explained by considering a high-pass filtering process, where the

84 PART III. MULTI-TASK MIMO SIGNAL PROCESSING

value of SNR acts as the cut-off frequency of the filter. Channel estimation
errors are concealed in noise with low SNR (i.e., being attenuated in the stop-
band region), but tend to be pronounced with high SNR. Hence, it is better to
push SNR towards a high value region to keep the channel estimation error low
for a large SNR range. Using these static parameters, W becomes a constant
scaling matrix that may be prepared off-line. To sum up, compared to LMMSE,
the R.MMSE approach reduces the complexity at the cost of increased estima-
tor error. Nevertheless, it performs better than the LS estimator, due to of the
use of second-order channel statistics and the reduction of noise enhancements.

Modified Robust MMSE Estimator

Although (4) in R.MMSE is reduced to a constant matrix multiplication, it is
still computationally intensive when considering the dimension of hp,LS. For ex-
ample,the vector has a size of 400×1 for 20MHz LTE-A. To further reduce the
complexity, a sliding window approach is applied to the R.MMSE algorithm,
named as R.MMSE-SW for short. The key is to apply low-rank approxima-
tions [102] on Rhdhp

and Rhphp
based on the fact that adjacent subcarriers

generally have dominant contribution to correlation coefficients. Figure 3(b)
illustrates the correlation between the first frequency subcarrier and all re-
maining ones under the case of uniform PDP. As an example, the first 100
subcarriers contribute to more than 95% of the total correlations. Therefore, a
frequency correlation window (NSW) containing only a number of neighboring
pilots is applied to each estimation. As a consequence, the size of the matrix
multiplication in (4) is dramatically reduced compared to the full-window case,
i.e., when the correlation of all subcarriers are considered. In R.MMSE-SW,
the size of NSW is a performance-complexity trade-off parameter, which may
be adjusted depending on the channel condition and performance demand.

2.2 Channel Pre-processing

Each estimated channel matrix Ĥ needs to be further processed before being
sent to the succeeding symbol detector. There are two commonly used channel
pre-processing methods, inversion and QRD of the channel matrix, required in
linear and tree-search based detectors, respectively. For matrices of size 4×4
or larger, it has been shown in [103] that matrix inversion can be efficiently
computed by means of QRD. Hence, the QRD-based channel pre-processing
method is adopted. In addition, sorting is applied to the channel matrix dur-
ing the QRD process, aiming to improve the detection performance. This is
commonly referred to as Sorted QRD (SQRD) [104].

SQRD starts by column-wise permuting Ĥ based on the post-detection
SNR [105] of each spatial stream. Thereafter, Ĥ is decomposed into an uni-

2. MIMO SIGNAL PROCESSING 85

tary matrix Q and an upper triangular matrix R with real-valued non-negative
elements on the main diagonal. With these, the QRD-based channel pre-
processing is expressed as

Ĥ = ĤpP
T = QRP T , (5)

where theN×N -dimensional permutation matrix P contains the corresponding
sorting sequence and the operator (·)T denotes a matrix transpose.

MMSE-SQRD Algorithm

Considering the use of MMSE criterion during the adopted symbol detection,
presented further in Section 2.3, MMSE-SQRD algorithm [106] is employed to
pre-process Ĥ. The basic idea is to reduce the probability of ill-conditioned
channel matrix by taking the additive noise into account. This is equivalent to
performing SQRD of an augmented matrix of size 2N ×N ,

Ĥ =

[
Ĥ

σnIN

]
= ĤpP

T = QRP T =

[
Qa

Qb

]
RP T , (6)

where Qa, Qb, and R have the same size as Ĥ, i.e., N × N . One interesting
property of (6) is that R−1 is obtained as a by-product of the matrix decom-
position process, i.e.,

R−1 =
1

σn
Qb. (7)

Therefore, no explicit matrix inversion is needed when computing Ĥ
†
, where

(·)† denotes a matrix pseudo-inverse. With the augmented matrix Ĥ, the
system model in (1) can be rewritten as

ỹ = Rxp + ñp, (8)

where

ỹ = QH

[
y

0N×1

]
= QH

a y, (9)

xp = P Tx is the row-wise permuted x, and ñp = QH
a n is the noise vector that

has the same statistics as n.
Compared to (5), the decomposition of Ĥ results in an increased compu-

tational complexity, by roughly 50%, because of the doubled matrix dimen-
sion. However, MMSE-SQRD improves the performance of linear detectors
and achieves a significant complexity reduction in tree-search based detection
algorithms [107].

86 PART III. MULTI-TASK MIMO SIGNAL PROCESSING

Iterative Sorting and MGS-QRD Algorithm

The sorting of Ĥ involves a matrix inversion, required for evaluating the post-
detection SNR (ηi) of each spatial stream. Under the assumption of E{xxH} =
IN , ηi is defined as in [105]

ηi =
1

σ2
n

(
Ĥ

H
Ĥ

)−1

i,i

. (10)

For practical implementations, approximation of (10) is commonly used for
reducing the computational complexity, such as the one suggested in [104]

ηi ∼
∥∥∥ĥi

∥∥∥
2

2
, (11)

with ‖ · ‖2 denoting ℓ2-norm. Based on (11), various sorting strategies exist.
Commonly used ones are one-time and iterative sorting [104]. Different from
the former one, the iterative sorting approach keeps track of column changes
in Ĥ during the decomposition process, which leads to a better sorting result.
The iterative sorting steps are shown in Algorithm 1 on lines 3, 5, and 12.

For QRD computations, several well-known methods exist, such as Gram-
Schmidt orthogonalization, Householder transformation, Givens rotation, and
their derivatives [108]. The Gram-Schmidt process obtains the orthogonal basis
spanning the column space of the matrix by the orthogonality principle [109].
The Householder transformation handles column vectors of the matrix by re-
flection operations [108]. Givens rotation operates on one element at a time by
using a sequence of unitary transformations [107]. Considering the accuracy
and numerical stability, computational complexity, and hardware reusability,
Modified Gram-Schmidt (MGS) [108] method is used for implementing the
QRD. The MGS-QRD algorithm iteratively computes the Q and the R matrix
in N steps. Core operations of MGS-QRD per iteration i are summarized in
Algorithm 1 from line 7 to 12.

2.3 Symbol Detection

With the received signal y and pre-processed channel matrix Ĥ, transmit-
ted vector x is recovered by using a MIMO symbol detector. As described in
Chapter 3.2, there are two commonly used detection schemes. Linear detection
algorithms, such as Zero-Forcing (ZF) and MMSE, mainly consist of vector op-
erations and thus are architecture-friendly to vector-based platforms. However,
they suffer from significant performance degradation compared to the optimal
Maximum-Likelihood (ML) detection, especially in frequency-selective fading
channels. On the other hand, near-ML tree-search algorithms, e.g., Sphere

2. MIMO SIGNAL PROCESSING 87

Algorithm 1 MGS-based MMSE-SQRD algorithm

1: Ĥ = [Ĥ, σnIN]T

2: Q = Ĥ; R = 0N×N ; P = IN

3: ξ =
[
‖q

1
‖22, ‖q2

‖22, . . . , ‖qN
‖22
]T

4: for i = 1, 2, . . . , N do

5: j = argminl=i,i+1,...,N ξl % Iterative sorting

6: Exchange columns/elements i and j in Q, R, P , and ξ

7: ri,i =
√
ξi

8: q
i
= q

i
/ri,i

9: for k = i+ 1, i+ 2, . . . , N do

10: ri,k = qH
i
q
k

11: q
k
= q

k
− ri,kqi

12: ξk = ‖q
k
‖22 % Column-norm updating

13: end for

14: end for

Decoder (SD), K-Best, and their derivatives [50, 51], do not map efficiently to
vector-based architectures. This comes from the fact that the tree-search proce-
dure deals with one spatial layer at a time and involves massive sequential scalar
operations, which are frequently switched between node expansion, partial Eu-
clidean distance sorting, and branch pruning. Therefore, the native vector
structure of MIMO data streams is destroyed. To tackle this problem, detec-
tion algorithms, such as Fixed-complexity Sphere Decoder (FSD) and Selective
Spanning with Fast Enumeration (SSFE) [53], are used to bring in vectorized
operations that may be performed independently at each layer. However, they
do not solve the essential problem of tree-structured detection schemes. Data
dependency between spatial layers still restrains the full potential of parallel
architectures.

To bridge the algorithm-architecture gap, illustrated in Figure 4, a highly-
parallelized symbol detection algorithm is developed. It provides near-ML per-
formance, like tree-search algorithms, while retaining the inherent vectorized
operations of linear detection schemes. This is achieved by employing a vector-
level closest point search scheme in conjunction with linear detectors. In this
work, the proposed algorithm is built upon a linear MMSE detector and is
named as Node-Perturbation-enhanced MMSE (MMSE-NP). As a proof-of-
concept, this work focuses on the hard-output symbol detection.

88 PART III. MULTI-TASK MIMO SIGNAL PROCESSING

18 20 22 24 26

10
-2

10
-1

10
0

SNR [dB]

F
ra

m
e

 E
rr

o
r

R
a

te
 (

F
E

R
)

K-Best, K=10

FSD

MMSE

T
re

e
-s

e
a

rc
h

b

a
se

d
 d

e
te

ct
io

n

Linear
detection

Parallelism &
Complexity

Performance

Figure 4: An illustration of the algorithm-architecture gap between linear
and tree-search based detection schemes.

Parallel Node Perturbation

MMSE-NP starts by obtaining an initial result using a linear MMSE detection

xMMSE
p = R−1ỹ =

1

σn
QbQ

H
a y. (12)

Hard-output detection result x̂MMSE
p is generated by slicing xMMSE

p to the

nearest constellation point, i.e., x̂MMSE
p = Q

(
xMMSE
p

)
. Thereafter, a detection

search space is defined by expanding each scalar MMSE symbol with a number
of neighbors. Specifically, for the ith symbol of the N -length MMSE vector
(x̂MMSE

p(i)), a set of (Ωi − 1) locally nearest sibling symbols is found:

xNB
p(i) = [x1

p(i), · · · , xω
p(i), · · · , x

(Ωi−1)
p(i)], (13)

with their distances to x̂MMSE
p(i) sorted in ascending order, as

|x1
p(i) − x̂MMSE

p(i) |2 ≤ · · · ≤ |xω
p(i) − x̂MMSE

p(i) |2 ≤ · · · (14)

Figure 5(a) and (b) illustrate the initial detection and search space delimitation
for a case of 2×2 MIMO and 16-QAM modulation.

Once the search space is delimited, detection search paths are defined by
generating a list S of candidate vectors using symbols drawn from the search

2. MIMO SIGNAL PROCESSING 89

Transmitted
symbol

MMSE output

Initial detection

Neighbor node

Search space

(a) (b)

(c) (d)

Figure 5: An illustration of the MMSE-NP detection for a 2×2 MIMO
setup and 16-QAM modulation. (a) Initial detection by slicing MMSE
symbols to nearest constellation points. (b) Parallel node extension to
include nearest neighbors into a search space. (c) Single-error candidate
vector generation. (d) Full-error candidate vector generation.

space. Two methods exist for Candidate Vector Generations (CVG). First, oc-
currence of only one error is assumed during the initial detection. Accordingly,
candidate vectors are generated by replacing only one symbol in x̂MMSE

p at a

time, while keeping other ones unchanged, i.e., for the expanded xNB
p(i), (Ωi− 1)

candidate vectors are generated as

s1i = [x̂MMSE
p(1) , · · · , x1

p(i), · · · , x̂MMSE
p(N)],

s2i = [x̂MMSE
p(1) , · · · , x2

p(i), · · · , x̂MMSE
p(N)],

...

s
(Ωi−1)
i = [x̂MMSE

p(1) , · · · , x(Ωi−1)
p(i) , · · · , x̂MMSE

p(N)].

(15)

After (15) being applied to all xNB
p(i) (i ∈ [1, N]), L =

∑N
i=1 Ωi candidate vectors

are obtained in the list S including the initial MMSE result x̂MMSE
p . In low-

dimensional MIMO systems, such as 2×2, single-error dominates error events
in the MMSE detection. However, for 4×4 or larger MIMO configurations, con-
sidering only one error in the initial detection is far from sufficient to cover most
of the error events due to the increased degree of spatial selectivity. Hence, the

90 PART III. MULTI-TASK MIMO SIGNAL PROCESSING

12 14 16 18 20 22 24
10

-3

10
-2

10
-1

10
0

SNR [dB]

F
E

R

FE-CVG, EQD =4, 2x2 MIMO

SE-CVG, EQD =4, 2x2 MIMO

FE-CVG, IMD =[5,4,3,2], 4x4 MIMO

FE-CVG, EQD =4, 4x4 MIMO

SE-CVG, EQD =4, 4x4 MIMO

4x4

MIMO

2x2

MIMO

FE- vs. SE-

CVG

IMD vs. EQD

Figure 6: Performance comparisons of different candidate vector genera-
tion (CVG) and symbol expansion schemes.

second method considers a full-error scenario, i.e., assuming all symbols in xp

are erroneously detected. In consequence, all combinations of expended sym-
bols xNB

p(i) in S have to be included, resulting in totally L =
∏N

i=1 Ωi candidate

vectors to be searched. Figure 5(c) and (d) illustrate the Single-Error (SE-
CVG) and Full-Error (FE-CVG) candidate vector generation schemes. Perfor-
mance of symbol detections, in terms of Frame-Error-Rate (FER), using these
two methods are compared in both 2×2 and 4×4 MIMO systems with 64-QAM
modulation, see Figure 6. As expected, performance of the SE-CVG scheme
approaches to its full-error counterpart in the 2×2 system, whereas a large
performance degradation is observed in the 4×4 case. In comparison, the FE-
CVG scheme substantially improves the detection performance, i.e., by ∼2 dB,
as shown in Figure 6. Hence, this work adopts the FE-CVG scheme.

The final detection result is generated by searching within S and finding
the vector with the smallest squared Euclidean Distance (ED), i.e.,

x̂p = arg min
xp∈S

‖ỹ −Rxp‖22 . (16)

The recovered transmitted vector x̂ with its original symbol sequence is ob-
tained by reordering the rows of x̂p with the permutation matrix P , i.e.,

x̂ = Px̂p. (17)

2. MIMO SIGNAL PROCESSING 91

(a) (b)

Low SNR

High SNR

Figure 7: Symbol expansion schemes, (a) equally distributed (EQD) and
(b) imbalanced distributed (IMD).

Compared to conventional tree-search based algorithms, MMSE-NP elimi-
nates scalar and data dependent operations, as symbol expansions, candidate
generations, and evaluations are carried out in parallel on all spatial layers. As a
result, it provides extensive DLP for efficient implementations on vector-based
architectures.

Imbalanced Node Perturbation

The perturbation parameter Ωi in (13) needs to be adjusted to achieve a good
performance-complexity trade-off. Basically there are two strategies to deter-
mine Ωi. The first approach, referred to as EQually Distributed (EQD) expan-
sion, is to consider the same number of neighbors around each scalar symbol
x̂MMSE
p(i) , i.e., Ωi = Ω. However, EQD expansion may not be cost-effective from

a complexity point of view, as channel properties of each antenna port is not
utilized when determining the search space. Consequently, search paths in S
may be over-selected, which increases computational complexity in (16) without
any improvement in performance. Therefore, an IMbalanced Distributed (IMD)
expansion scheme is proposed to treat symbol expansion in x̂MMSE

p(i) differently
and assign Ωi depending on the channel condition. The idea is to include more
neighbors for symbols located in spatial layers with lower post-detection SNRs
(η in (10)), i.e., Ωi > Ωj if ηi < ηj . These two expansion schemes are illustrated
in Figure 7 using the previous 2×2 MIMO setup.

Recall that Ĥ is column-wise permutated during MMSE-SQRD with their
corresponding ηi sorted in ascending order, i.e., η = [ηmin, · · · , ηmax], the
assignments of Ωi is simplified by arranging the vector Ω in descending order,
namely Ω = [Ωmax, · · · ,Ωmin].

Thanks to the use of channel properties, the IMD expansion scheme provides
better performance than EQD while using fewer number of candidate vectors.
As demonstrated in Figure 6, detection using IMD with an expansion vector
Ω = [5, 4, 3, 2] is 0.6 dB better than the case of EQD with Ω = 4 at FER = 10−2,

92 PART III. MULTI-TASK MIMO SIGNAL PROCESSING

even though the latter one uses 2 times more candidate vectors. Hence, the
IMD expansion scheme is employed in this work. The exact Ω assignment is a
design parameter, which should be fine tuned at run-time.

Successive Partial Node Expansion (SPE)

The average error rate in a MIMO system is generally dominated by the spatial
stream that suffers from the worst channel condition. Hence, node expansion
for symbol with the smallest η value, i.e., x̂MMSE

p(1) , needs to be handled with

special care. According to the IMD expansion scheme, x̂MMSE
p(1) needs to be

expanded with more neighbors to mitigate the high error probability. This
strategy results in larger search space, which considerably increases the total
number of candidate vectors, incurring huge computational complexity for the
minimum-search process in (16).

To tackle this issue, a Successive Partial node Expansion (SPE) scheme is
developed. It reduces the search space for x̂MMSE

p(1) without sacrificing detection
performance. The basic idea is to utilize the property of the upper triangular
matrix R and the fact that the symbol with ηmin has been moved to the first
layer after MMSE-SQRD. With rj,1 (j = [2, · · · , N]) being zeros, the detec-
tion of xp(1) is solely dependent on ỹ1. Thereby, an optimal expansion of xp(1)

can be obtained by simply solving a linear equation, given that other symbols
have been expanded prior to xp(1). More specifically, SPE starts by expanding
“stronger” symbols (i.e., [x̂MMSE

p(N) , · · · , x̂MMSE
p(2)]) and then generates partial can-

didate vectors x
[1]
p of size (N − 1). Here, x

[1]
p = [xp(2), · · · , xp(N)]

T denotes the
sub-vector of xp with the 1st symbol xp(1) being omitted. Thereafter, xp(1) is

obtained by substituting x
[1]
p into the 1st row of the system model (8):

ỹ1 =
N∑

j=1

r1,jxp(j) = r1,1xp(1) +
N∑

j=2

r1,jxp(j) = r1,1xp(1) + r
[1]
1 x[1]

p

xp(1) = Q
((

ỹ1 − r
[1]
1 x[1]

p

)/
r1,1

)
, (18)

where r
[1]
1 = [r1,2, · · · , r1,N]. For all L possible x

[1]
p candidates, L number

of xp(1) are found. This way, the search space for x̂MMSE
p(1) is reduced to only

include symbols that, in conjunction with x
[1]
p , generate the most likely search

paths, i.e., symbols that result in the smallest ED for the given x
[1]
p vectors.

Thus, the SPE scheme dramatically reduces the number of candidate vectors
and thus the complexity of (16), while providing an equivalent performance as
if all possible xp(1) symbols were included in the candidate vectors.

2. MIMO SIGNAL PROCESSING 93

...

�� ��� �����
SE detection�� �� ���������

���� ��������� �� ����� !�"� ��#��$��� $�
stance calculation"��� %��#�����"��� %��#�����&� '��$
...

���� ��������� ������ ��������� ��
(12)

� (Ω2) x̂MMSE
p(2)

� (ΩN) x̂MMSE
p(N)

x̂MMSE
p(1)

(for ω=1:Ω2 − 1)

(for ω=1:ΩN − 1)

(18)

ED1 =‖ ỹ −Rxp1
‖2

EDL =‖ ỹ −RxpL
‖2

x̂p with min{ED1,ED2, · · · ,EDL}

(MN×N ·MN×N)
(MN×N + VN×N)
(MN×N · VN×1)

(V1×(N−1) · V(N−1)×1)

(MN×N · VN×1)
(MN×N + VN×1)

Figure 8: Computation procedure of the MMSE-NP algorithm.

Due to the successive expansion of symbol x̂MMSE
p(1) , the SPE scheme partially

breaks the structure of the N -length vector x̂MMSE
p . However, this adverse

effect is substantially outweighed by the reduction of costly ED calculations
and the efficiency of the optimal x̂MMSE

p(1) expansion.

Summary and Discussion

Figure 8 summarizes the computation procedure of the proposed MMSE-NP
algorithm. It contains four main processing stages: initial linear MMSE detec-
tion, IMD symbol expansion, ED calculation, and final detection. In Figure 8,
shaded boxes depict vector operations and layered boxes indicate parallel pro-
cessing. � (l) represents loops with count l, while V and M denotes vector and
matrix operations respectively. As shown, most of the boxes are shaded in the
figure, indicating a highly vectorized algorithm. Besides, the overall dataflow
is regular, even though one loop structure is found in an inner block, i.e., the
symbol expansions of [x̂MMSE

p(2) , · · · , x̂MMSE
p(N)].

94 PART III. MULTI-TASK MIMO SIGNAL PROCESSING

3 Algorithm Evaluation and Operation Analysis

This section evaluates the adopted algorithms in terms of processing perfor-
mance and computational complexity. As a metric for measuring performance,
FER is used to show the effectiveness of the algorithms. Regarding compu-
tational complexity, the number of arithmetic operations is analyzed for data
processing within one LTE-A time slot. Hardware friendliness is evaluated by
analyzing the DLP and operation sharing of the three algorithms. Besides the
operation analysis, task planning is conducted according to the timing specifi-
cation of LTE-A.

3.1 Simulation Environment

Based on the structure of the MIMO-OFDM transceiver (Figure 1), a simplified
system setup is implemented in MATLAB with a special focus on the LTE-A
system. Figure 9 shows the block diagram of the employed simulation environ-
ment. In the current setup, data are transmitted through a baseband spatially-
uncorrelated MIMO channel, where the maximum excess delay is smaller than
the length of CP. Accordingly, domain (time-frequency) transformations and
CP insertion/removing blocks are omitted. In addition, no pre-coding is im-
plemented at the transmitter and MIMO systems are assumed to operate in
a spatial-multiplexing mode. Moreover, the front-end block is omitted under
assumptions of perfect front-end processing at the receiver, e.g., perfect syn-
chronization and IQ-imbalance compensation.

Despite the system-level simplifications, the simulation setup is flexible as
each block in Figure 9 can be configured with various parameters. Based
on the error correcting code specified in [110], a parallel concatenated turbo
code [47] is adopted at the transmitter. Input parameters for this block are
the coding rate and the interleaver block size. The generator polynomials are
g0(D) = 1+D2+D3 and g1(D) = 1+D+D3. The modulation (mapping) block
supports constellation sizes from BPSK to 64-QAM. Before inserting data and
pilot tones into the LTE-A time-frequency grid, the layer mapping block maps
encoded and modulated source data onto multiple antennas. Currently sup-
ported antenna sizes are 2×2 and 4×4. The size of the time-frequency grid is
determined by the allocated bandwidth. All bandwidth configurations specified
in LTE-A are included, varying from 1.4 to 20MHz. The propagation chan-
nel is modelled as a frequency-selective fading channel, in which its multi-path
delay profile complies with the ones defined in the 3GPP specification [101].
Three channel models are supported, Extended Pedestrian A (EPA), Extended
Vehicular A (EVA), and Extended Typical Urban (ETU). Besides, the maxi-
mum Doppler frequency is used for channel generations. Moreover, both time-
invariant (i.e., quasi-static) and variant channel modelling are implemented.

3. ALGORITHM EVALUATION AND OPERATION ANALYSIS 95

C
h
an

n
el

p
re

-p
ro

ce
ss

C
h
an

n
el ()*+ ,-* .

S
y
m

b
o
l

d
et

ec
ti

o
n

Tx Rx

D
ec

o
d
in

gMapping

Mapping

Encoding

Encoding

L
ay

er
 m

ap
p
in

g

M
u
lt

i-
p
at

h
 f

ad
in

g

Channel

n1

nN

Figure 9: Block diagram of the employed simulation environment.

Table 1: Parameters for performance simulations in a LTE-A downlink.

Block Parameter Value

Encode
Coding rate 1/2

Interleaver block size 5376

Mapping Constellation size 64-QAM

Channel

Antenna size 4×4

Bandwidth 20MHz

Multi-path fading propagation 3GPP EVA

Maximum Doppler frequency 70Hz

Time-variant/invariant Quasi-static

Decode Iteration number 6

The former one assumes that channel coefficients remain unchanged within one
LTE-A time slot, whereas the latter one emulates the scenario of constantly-
changing channels. The decoder at the receiver adopts the Bahl-Cocke-Jelinek-
Raviv (BCJR) [111] algorithm with a configurable iteration number.

Detailed parameters used in the following performance simulations are sum-
marized in Table 1. For each simulation, Ns LTE-A subframes (14 OFDM
symbols) are transmitted, where Ns is dynamically adjusted to take account
of different FERs with respect to SNR values. With a target of FER = 10−2

that is a commonly used design criterion, Ns varies from 500 to 6000.

3.2 Performance Evaluation

Using the presented simulation environment, performance of the adopted MIMO
processing algorithms are evaluated. It starts with analyzing the frequency cor-
relation window (NSW) in the R.MMSE-SW estimator and the node perturba-
tion parameter (Ω) in the MMSE-NP detector. Off-line decisions on exactNSW

and Ω values are not required, as they can be fine-tuned at run-time thanks

96 PART III. MULTI-TASK MIMO SIGNAL PROCESSING

10 15 20 25 30
10

-5

10
-4

10
-3

10
-2

10
-1

SNR [dB]

M
e

a
n

 S
q

u
a

re
d

 E
rr

o
r

(M
S

E
)

LMMSE

R.MMSE

LS

(a)

 Correlation wi/012 3456N
o

rm
a

li
ze

d

7 N
R

re
q

u
ir

e
m

e
n

t
@

M

7 E

8 1
0

-

9 [d
B

]

10 15 20 25
:; :<0.5

1

1.5

2

2.5

:
NSW

(b)

Figure 10: Channel estimation without symbol detection, (a) comparison
with LMMSE and LS algorithms, (b) comparison of different correlation
window size (NSW) in R.MMSE-SW.

to the hardware flexibilities (Section 4). Therefore, the focus of the following
analysis is to compare these algorithms to other alternatives. One example is
to see whether the MMSE-NP approach bridges the algorithm-architecture gap
between linear and tree-search based detectors. Additionally, the analysis also
serves to make better design trade-offs, for example, by studying both positive-
and side-effects of parameter variations.

Channel Estimation

To minimize performance impacts from other MIMO processing tasks, the
R.MMSE algorithm is firstly compared with LMMSE and LS estimators with-
out involving channel pre-processing and symbol detection. Figure 10(a) shows
the performance comparison of the three estimation algorithms in terms of
Mean Squared Error (MSE). It demonstrates that R.MMSE achieves a better
estimation result than the LS approach, e.g., by 4.7 dB under this simulation
setup, thanks to the reduction of noise enhancements and the use of second-
order channel statistics. Compared to the LMMSE estimator, some perfor-
mance degradation is observed, mainly due to the use of the underestimated
function W . However, when considering its performance robustness and a huge
complexity gain to the LMMSE method (i.e., more than two orders of magni-
tude as shown further in Section 3.4), the R.MMSE approach is more attractive
to implement in practice, especially for resource- and energy-limited devices.

Using the same simulation setup, Figure 10(b) compares R.MMSE-SW and
R.MMSE with respect to different NSW values. Numbers at the vertical axis
denotes the minimum SNR required to reach the level of MSE = 10−3, nor-

3. ALGORITHM EVALUATION AND OPERATION ANALYSIS 97

0 20
=> ?> @> 100

0

0.2

0.
=0.?0.@11.2

1.
=

0 2
= ? @ 10

0.?0.@11.2

AB
20CD CE FC FB DG DD DE 52BD 120

Normalized HIJ KLMN OPQN
o

rm
a

li
ze

d

R N
R

re
q

u
ir

e
m

e
n

t
@

F
E

R

S 1
0

-2
[d

B
]

W

NSW

Figure 11: Performance versus coefficient ROM size for different NSW

values in the R.MMSE-SW estimator. Metrics are normalized to that
of the full-window case - R.MMSE, which has 100% ROM size and zero
required SNR at FER = 10−2.

malized to the full-window case R.MMSE. Large values of NSW, as expected,
lead to small performance degradation in comparison to the R.MMSE case, but
result in high computational complexity.

Based on these analysis, the adopted R.MMSE-SW estimator is further eval-
uated on a system-level, namely by including succeeding channel pre-processing
and symbol detection and measuring the output FER. Meanwhile, required co-
efficient Read-Only Memory (ROM) sizes are calculated to illustrate (to some
extend) hardware costs with respect to different NSW values. A more detailed
operation analysis is further presented in Section 3.4. To avoid any influence
between R.MMSE-SW and the proposed MMSE-NP detector, the conventional
near-ML FSD algorithm is used. Figure 11 shows the achieved FERs versus
ROM sizes for various NSW values. Both coordinates are normalized to the ref-
erence case R.MMSE. It clearly shows that small values of NSW reduce ROM
size substantially while retaining a good system performance. As an example,
with NSW = 24, the required ROM size is reduced by 99.64% compared to
that of the R.MMSE, at the cost of less than 1 dB FER degradation. These
differences in FER diminish with increasing NSW values. To conclude, NSW

should be fine-tuned at run-time to achieve on-demand performance-complexity
trade-offs.

98 PART III. MULTI-TASK MIMO SIGNAL PROCESSING

17 18 19 20 21 22 23 24 25 26

10
-2

10
-1

10
0

SNR [dB]

F
E

R

K-Best detection, K=10

FSD detection

MMSE-NP =[F,5,4,3]

MMSE-NP =[F,4,4,2]

MMSE-NP =[F,4,3,2]

MMSE-NP =[F,4,2,2]

MMSE-NP =[F,5,3,1]

Linear MMSE detection

Parallelism &
Complexity

Performance

Tree-search
based detection

Linear
detection

MMSE-NP

Figure 12: Comparison between linear, tree-search based, and proposed
detection algorithms.

Symbol Detection

In this section, the node perturbation parameter (Ω) in the MMSE-NP de-
tector is evaluated in comparison to conventional linear and tree-search based
detection algorithms, e.g., the “linear MMSE” and “K-Best and FSD”, respec-
tively. To minimize performance impacts, these detectors are evaluated without
performing other processing tasks. In other words, it is assumed that channel
knowledge is perfectly estimated at the receiver and that channel matrices are
properly processed by performing QRD for the K-Best and FSD cases and
inversion (with the MMSE criterion) for the linear MMSE detector.

Figure 12 shows simulated FERs of these detection algorithms. For the
MMSE-NP detector, the notation Ω = [F, · · ·] represents the employed SPE
scheme (Section 2.3.3). Thanks to the developed techniques in MMSE-NP,
i.e., node perturbation, IMQ, and SPE, the performance of the linear MMSE
detector is enhanced substantially. More importantly, an FER performance
close to that of the K-Best detector and FSD is achieved. For Ω = [F, 5, 4, 3],
performance degradation to both K-Best decoder (withK = 10) and FSD is less
than 1 dB at FER = 10−2. Better performance is obtained by including more
candidate vectors in the symbol expansion at the expense of implementation
complexity. This is similar to the tree-search based detectors with different
number of branch traversals, e.g., K-Best algorithm with different K values.

3. ALGORITHM EVALUATION AND OPERATION ANALYSIS 99

Table 2: Comparison of visited nodes and required SNR at FER = 10−2.

Parameter Nvisited SNR [dB] @FER = 10−2

K-Best K = 10 1984 − (ref.) 19.39 0

FSD P = 1 256 7.75× 19.47 +0.08

MMSE-NP
Ω = [F, 5, 4, 3] 135 14.70× 20.20 +0.81

Ω = [F, 5, 3, 1] 34 58.35× 21.34 +1.95

MMSE N/A N/A N/A 25.48 +6.09

Figure 12 also compares the FER of different Ω assignments. Comparing the
cases Ω = [F, 5, 4, 3] and Ω = [F, 5, 3, 1], the former one is 1 dB better than
the latter case, but with 4 times more candidate vectors involved in detection,
thus demands more computational power.

Using the number of visited nodes as a first-order complexity analysis, Ta-
ble 2 summaries the performance metrics for the four algorithms. Based on
the node perturbation scheme, the node expansion number of the MMSE-NP
detection is formulated as

NMMSE-NP =

N∑

i=1

ΩiNi+1 =

N∑

i=1

Ωi

N∏

j=i+1

Ωj

 , (19)

where Ni is the number of nodes at the ith spatial stream, and N1 = Ω1 = 1
when using the SPE scheme. The total number of visited nodes in the K-Best
algorithm [112] is calculated as

NK-Best = M

N∑

i=1

N i+1
F , (20)

where N i
F = min(K,MN i+1

F) denotes the number of parent nodes at the ith

layer with M being the constellation size. For the FSD [52], the number of
visited nodes is

NFSD =

N∑

i=1

N∏

j=i

pi. (21)

It shows in Table 2 that the number of nodes visited in the MMSE-NP al-
gorithm with Ω = [F, 5, 4, 3] is 15 and 1.9 times fewer than that of the K-
Best detector and FSD respectively, which demonstrates the cost effectiveness
of the MMSE-NP. In summary, the proposed MMSE-NP algorithm bridges
the algorithm-architecture gap between linear and tree-structured detection

100 PART III. MULTI-TASK MIMO SIGNAL PROCESSING

Lower complexity

B
e

tt
e

r
p

e
rf

o
rm

a
n

ce

10
-3

10
-2

10
-1

10
0

0

2

4

6

8

10

Normalized complexity

FSD

MMSE-NP

MMSE

LMMSE
Ch. Est.

C
lo

se
 t

o
F

S
D

 d
e

te
ct

io
n

Performance Gain
vs. LS Ch. Est.

Complexity gain
vs. R.MMSE+FSD

Reference
case

Similar complexity
vs. LS Ch. Est.

N
o

rm
a

li
ze

d
 S

N
R

 r
e

q
u

ir
e

m
e

n
t

@
 F

E
R

=
1

0
-2

 [
d

B
]

R.MMSE-SW
+ MMSE-NP
(This work)

Detection:

Figure 13: Analysis of processing performance and computational
complexity. Metrics are normalized to that of the reference case
“LMMSE+FSD” which has unit computational complexity and zero re-
quired SNR at FER = 10−2.

schemes. In addition, with imbalanced Ω assignments, the algorithm is highly
scalable, since the symbol detection of each spatial stream can be tuned dy-
namically to adapt to instantaneous channel condition or currently available
computational resources.

MIMO Signal Processing

After the analysis of individual algorithms, the MIMO processing tasks are eval-
uated together by using different combinations of algorithms. This is aimed to
compare the proposed processing scheme, “R.MMSE-SW+MMSE-NP”, with
other approaches with respect to performance and computational complexity.
For the following analysis, parameters of NSW = 24 and Ω = [F, 4, 3, 2] are
used for R.MMSE-SW and MMSE-NP, respectively. Figure 13 gives a full pic-
ture of the performance-complexity trade-offs for different algorithm sets. For
better illustration, they are grouped into three clusters based on the involved
channel estimation method. In Figure 13, numbers at the vertical axis denotes
the minimum SNR required to achieve the target 10−2 FER, while the com-
putational complexity measured in the number of operations required in one
LTE-A time slot is shown along the horizontal axis. In addition, both coordi-

3. ALGORITHM EVALUATION AND OPERATION ANALYSIS 101

nates are normalized to a reference case, “LMMSE+FSD”, which provides the
best performance among these algorithms. According to this setup, algorithms
whose coordinates are closed to the bottom-left corner are desired.

It shows in Figure 13 that the adopted scheme “R.MMSE-SW+MMSE-NP”
achieves a good design trade-off between performance and complexity. For
instance, it provides more than 7 dB performance gain to the “LS+MMSE”
method (left-up corner) and achieves more than two orders of magnitude com-
plexity reduction to the “LMMSE+FSD” case (right-bottom corner). It should
be re-emphasized that NSW and Ω are tunable parameters and should be op-
timized at run-time. In the following section, DLP, operation sharing, and
computational complexity of the three tasks are analyzed in detail.

3.3 Operation and Complexity Analysis

With the presented algorithms, primitive operations required by the R.MMSE-
SW estimator, MMSE-SQRD pre-processor, and MMSE-NP detector are char-
acterized. Table 3 summarizes required vector and scalar operations and their
proportion in each task. Two meaningful properties can be observed. First,
most of the operations are at vector level thanks to the development of al-
gorithm vectorization. Specifically, vector operations occupy more than 98%
of the total workload in all three tasks, indicating high DLP. This is an im-
portant design criterion for attaining efficient implementations with respect to
processing throughput and energy consumption. Second, most of the primi-
tive operations are shared among these algorithms, implying the potential of
extensive hardware reuse. Moreover, when considering a vector dot product as
an element-wise vector multiplication followed by a vector addition, all vector
operations are common to all three tasks.

Based on the operation profiling, computational complexity of the algo-
rithms is analyzed. To simplify the analysis, same precision is assumed for all
calculations and a W -bit complex-valued addition is used as a baseline opera-
tion. This way, a W -bit complex-valued multiplication has the complexity of
W ; a W -bit real-valued division and square-root operation has a complexity of
KW with K being a scaling factor, e.g., iteration number in Newton-Raphson
method [113], and is set to 2 in this study.

Given these assumptions, complexity of “R.MMSE-SW+MMSE-NP” is com-
pared with other algorithms in Figure 13. As for the three cases inside the
LMMSE group, the complexity of the LMMSE algorithm is so dominating that
it almost conceals any difference between different channel pre-processing and
symbol detection algorithms. By comparison, the adopted R.MMSE-SW algo-
rithm shows a similar level of complexity to that of the LS estimator, while
providing much better processing performance. In terms of symbol detection,

102 PART III. MULTI-TASK MIMO SIGNAL PROCESSING

Table 3: Algorithm profiling for primitive vector (V) and scalar (s) operations
in the adopted MIMO signal processing.

Primitive Operation dimension & Proportion in each task Total

operation R.MMSE-SW MMSE-SQRD MMSE-NP proportion

V
ec
to
r A

⊙
Ba − − V(N×1) 35% − − 4.30%

A ·B V(Nsw×1) 91% V(N×1) 35% V(N×1) 84% 80.98%

A±B − − V(N×1) 15% V(N×1) 15% 13.36%

S
ca
la
r

xa · xb s(xa · xb) 9% − − − − 0.29%

Sorting − − s(xi) 5% s(xi) ∼0% 0.07%

1/
√
x − − s(x) 10% − − 0.14%

Pert.b − − − − s(Ωi) 1% 0.86%

a Element-wise vector multiplication.
b Node perturbation in symbol detection.

the proposed MMSE-NP algorithm demonstrates 2.7 times complexity reduc-
tion compared to FSD. The combination of R.MMSE-SW and MMSE-NP is
8.6 times less complex than the “R.MMSE+FSD” case, at the price of less than
1 dB performance degradation. In summary, the employed processing scheme
provides a good performance-complexity trade-off and is hardware friendly to
vector-based architectures.

3.4 Processing Flow and Timing Analysis

In this part, dataflow and timing analysis is presented according to the LTE-A
specification. Table 4 summaries resource allocations in the 20MHz LTE-A.
Within one time slot (0.5mS), 7 OFDM symbols are transmitted, including
46.88% of data, 7.81% of pilots, 38.65% of guard-band subcarriers, and 6.67%
of cyclic prefix. Figure 14(a) shows the structure of a 4×4 MIMO LTE-A
data frame and the flow of target baseband processing. As illustrated, the
LS computation in (2) can be initiated as soon as the pilot data has been
received, followed by the frequency domain interpolation (4). However, channel
pre-processing and subsequent symbol detection cannot start until the second
OFDM symbol is received due to pilot receptions for antenna port 2 and 3
(Figure 2). As a consequence of this sequential processing flow, one can see
from Figure 14(a) that processing gaps widely exist in between neighboring
OFDM symbols as well as consecutive time slots. Thus, implementations using
task-dedicated hardware will result in poor resource utilization. Moreover, the
cyclic prefix and guard band interval between adjacent OFDM symbols further
enlarge those processing gaps.

3. ALGORITHM EVALUATION AND OPERATION ANALYSIS 103

Table 4: Resource allocations in one LTE-A time slot.

Time slot (tslot) 0.5mS

Bandwidth 20MHz

Sampling frequency 30.72MHz

Number of subcarriers/symbol 2048

Total number of subcarriers 14336 466.67µS 93.33%

Total length of CP 1024 33.33µS 6.67%

Data-carrying subcarriers 7200 234.38µS 46.88%

Pilot tones 1200 39.06µS 7.81%

Guard band subcarriers 5936 193.23µS 38.65%

TUVWXYZ[\ Y

]^_`Y a W^bcdb efghdijklmfn `mon
Pilot tone

Detection
NextPrevious

Current iteration

LS

Interpolationpqr
Detection

} }

Processing gap

s2tuv wx ywwz{|}x

(a)

(b)

tslot

(titer)

Figure 14: Timing diagram of the MIMO signal processing, (a) an LTE-
A frame structure and data dependency between processing tasks, (b)
adopted task-oriented processing flow.

104 PART III. MULTI-TASK MIMO SIGNAL PROCESSING

To attain efficient hardware usage, this work maps the tasks on one reconfig-
urable platform by utilizing the sequential nature of processing and non-data-
carrying time intervals. Figure 14(b) illustrates a task-oriented processing flow,
which performs one task on all subcarriers before switching to the subsequent
one. This is different from a subcarrier-oriented scheme (i.e., handling one
subcarrier at a time), which requires much more power to carry out frequent
context switching. According to [114], dynamic configurations may take up to
40% of the overall power consumption in reconfigurable platforms. Thereby,
reducing the number of context switching is an efficient way to achieve power
efficient implementation. Note that every processing iteration shown in Fig-
ure 14 starts immediately the last pilot tone in OFDM symbol 1 is received.
This is arranged to prevent processing gaps due to data awaiting by making
sure that all required pilot tones have been buffered.

Baseband processing in LTE-A systems requires data buffering of several
OFDM symbols [6] to, for example, cope with the orthogonal pilot patten and
processing latency of control channels [115]. Thus, additional buffers are not
required in the proposed solution if all the three processing tasks can be handled
within the specified time interval. In this work, processing is scheduled on a
basis of one LTE-A time slot, see Figure 14. Therefore, the computation time
of each iteration (titer) is constrained by tslot, such that titer ≤ tslot = 0.5mS.
This is used as a design constraint for hardware development.

4 Hardware Development

Using the reconfigurable cell array developed in Part I and Part II as baseline
architectures, this section presents a number of hardware enhancements for
attaining efficient implementation of MIMO signal processing. The focus here
is on vector computing using heterogeneous RCs and various memory access
schemes. In addition, a technique for further improving processing throughput
and hardware efficiency is elaborated.

Before presenting the architectural development, three main properties of
MIMO signal processing are extracted from the aforementioned operation anal-
ysis. Correspondingly, hardware requirements are identified with respect to
computation, memory access, and data transfer.

• Massive vector operations: in view of the massive vector operations,
i.e., more than 98% of the total workload in Table 3, efficient vector
computing and high bandwidth memory access are essential. Besides, it
is beneficial to reduce the number of register/memory accesses and data
transfers to keep processing overhead low, since the control (regarded as
a part of control overhead) required for performing those operations may
consume a large portion of time and power [58].

4. HARDWARE DEVELOPMENT 105

• Hybrid data-widths and formats: the coexistence of scalar and vec-
tor operations requires a hybrid computational data-path. Additionally,
efficient communication mechanisms are expected to offload processing
units from non-computational operations, e.g., data alignments, during
data transfers of various data-widths and formats.

• Multi-subcarrier processing: as a scheduling technique for further
exploiting DLP (Chapter 3.3), multi-subcarrier processing requires vari-
ous data access patterns to perform operations simultaneously at multi-
ple subcarriers. Therefore, flexible memory access schemes are required,
e.g., concurrent accesses of vectors from different channel matrices.

These requirements pose design challenges for hardware development and
need to be addressed during the architectural design to ensure implementation
efficiency.

4.1 Architecture Overview

Built upon the baseline architecture (Figure 15(a)), the proposed baseband
processor is composed of four heterogeneous tiles, which are partitioned into
scalar- and vector-processing domains to cope with hybrid data computing, see
Figure 15(b). In the vector domain, Tile-0 handles vector processing while Tile-
1 provides data storages and various forms of vector and matrix accesses. In the
scalar domain, Tile-3 controls other RCs during run-time and handles scalar
and irregular operations with memory supports from Tile-2. Data transfers
between the two domains are bridged by memory cells using the micro-block
function (Part 3.2). This feature efficiently supports hybrid data transfers
without additional controls from processing cells. For example, memory cells
in Tile-1 provide vector data accesses to RCs in Tile-0 while exchanging data
in a scalar form with RCs in Tile-2.

Besides the heterogeneous resource deployments, communication to an ex-
ternal host for both data transfers and off-line configurations are carried out
using the hierarchical network. Run-time configurations for all RCs are issued
on a per-clock-cycle basis, performed hierarchically within the cell array, and
managed jointly by a task manager (i.e., a processing cell in Tile-3) and local
controllers distributed in RCs. Specifically, the task manager tracks the overall
processing flow, controls context switching (e.g., changing from channel esti-
mation to pre-processing), and handles configuration updating (e.g., parameter
updates for Nsw and Ω). Local controllers are responsible for applying configu-
rations onto processing data- and memory access-paths to, for example, switch
between operations listed in Table 3.

106 PART III. MULTI-TASK MIMO SIGNAL PROCESSING

P M

M P

R

P

M

P

R

P M

M

R

P M

M

R

R

P

Tile

M

(a)

~�����

E
x

te
rn

al
h

o
st

S
ca

la
r

p
ro

ce
ss

in
g

� ��� ���������
� ��Tile-2

Router

~�����~����� P

P

P

M
� �� �

P

P M

R

R

R

R�����������
P

(b)

Figure 15: (a) Baseline architecture of the reconfigurable cell array, an
example of four tiles. (b) Block diagram of the proposed heterogeneous
baseband processor. Distributed controllers within RCs are omitted in
the figure for simplicity.

4.2 Vector Dataflow Processor

Figure 16 shows the architecture of Tile-0, a vector dataflow processor, con-
sisting of three processing cells (pre-, core-, and post-processing), one memory
cell (register bank), and a sequencer. The three processing cells, shown on
the upper half of Figure 16, are deployed for vector computations. The register
bank provides data accesses from both internal registers and other tiles through
register-mapped IO ports. The sequencer controls operations of the other cells
via a control bus, drawn in dashed lines in Figure 16.

Atomic operations of Tile-0 are built upon N -length vectors which is the
most common data type of the vector processing in Table 3. Vectors exceed-
ing this length are processed by folding, i.e., they are decomposed into data
segments suitable for atomic operations. Local data transfers within Tile-0 are
carried out on two N ×N matrix and one N × 1 vector bus, arranged both to
suffice computational requirements and to improve processing efficiency. The
two matrix buses are used to support data intensive operations such as data-
tone MMSE interpolation in (4) and Euclidean norm of augmented channel
matrix Ĥ in (Algorithm 1 line 3 and 12), both requiring two N × N matrix
inputs. The vector bus, on the other hand, is used to accelerate three-input
operations such as column vector update in (Algorithm 1 line 11), which oth-

4. HARDWARE DEVELOPMENT 107

�� ¡¢£�¤ ¥¦§¨

Core-processing

© ª««¬ ®¯°± ² ¬«R

Pre-processing ³´µ¶·¸
¹º¢£»¼¤º½�¢¢¡§

GPR

¾¿ÀÁÂÃ ÄÅÂÆÇÈÉ ÊË ÁÌÃ ¾¿ÍÎÏÐ�ÑÒ�§½�¤Ó¦£¦ ¥Ò¢Ôº§£¤ºÕ ¥Ò¢ Ôº§Ö¡ Ò¤¦£¡º§ ×�×º¤Ø

ÙÚÛÜÝÞ ßàáâãäÛåÜßàá
æçè

MMR

N

N

Figure 16: Microarchitecture of the vector dataflow processor (Tile-0). A
VLIW-style multi-stage computation chain consists of three processing
cells: pre-, SIMD vector core-, and post-processing.

erwise require twice of the clock cycles with additional operations for loading
and storing intermediate results.

In the following sections, the adopted configurable Instruction Set Archi-
tecture (ISA) and two vector processing enhancements are presented.

Configurable Instruction Set Architecture

Conventionally, processors are implemented based on fixed ISAs, e.g., the
generic and dataflow processors presented in Part I and II. Depending on
target applications, the ISAs contain different specifications of, for example,
instructions and addressing modes, and cannot be changed once they have
been implemented. As a consequence, tasks outside the set originally intended
may not benefit from the available computing capability, since underlying data-
and control-path are hidden inside the fixed ISAs. Therefore, this design strat-
egy often results in either limited flexibility (the case of application-specific) or
poor performance (the case of general-purpose). In addition, it may require a
deep study of target applications, which may not always be possible, concerning
time-to-market, adoption of new algorithms, etc.

108 PART III. MULTI-TASK MIMO SIGNAL PROCESSING

Register
File

éêëì êíîïðñòíóôõóíöóî÷øíùúòôó ûúòôóüíúúôüò ýøóíþþÿîó ñ��òü��éêë�Control

ûúòôóüíúúôüò õóíö �øúò �ôö � ���ô éêëþ ê	ðñ
ûúþòóùüò�íú� ����� �����
Figure 17: Illustration of a fine-grained centralized control scheme in a
configurable ISA, an example of FlexCore [66].

Some processors adopt configurable ISAs, which can be customized for dif-
ferent use. Configurations can be performed either during the chip synthe-
sis [32] or at run-time using a similar approach to FPGAs [66, 67]. In view
of the run-time configurability, the latter approach is desired. However, it is
commonly implemented using a centralized control scheme, which incurs high
control overhead with regard to configuration time, hardware complexity, and
storage requirements. As an example, Figure 17 shows the configurable ISA
of a FlexCore [66]. The processor exposes its entire data- and control-path
to the user via a long instruction word, 91 bits in this example. A controller
controls dataflow and operations of each hardware unit based on instructions
fetched from a program memory. It is inefficient that configurations of all RCs
are centralized in one instruction, since any change among those configurations
requires loading of a whole new instruction, resulting in unnecessary program
storage and memory access for unchanged parts. Many code size reduction
schemes exist which have reported a maximum compression ratio of about 70%
on a Very Long Instruction Word (VLIW) processor [116]. However, this reduc-
tion comes at an area cost of up to 30% for run-time instruction decompression.

To tackle the aforementioned overhead issue, two control techniques are
proposed in the adopted run-time configurable ISA.

Distributed Micro-code Execution Figure 18 illustrates a distributed control
scheme employed in this work to reduce the overhead of the long instruction
word. The idea is to divide an instruction into a number of smaller ones,
termed as micro-codes, each getting dispatched to an RC. For storing the micro-
codes, each RC is deployed with a configuration memory, which can be accessed
individually without affecting others. The size of these memories can be kept
small, since the number of operations required from each RC in an application is

4. HARDWARE DEVELOPMENT 109

Register
File

Pre-�������� Post-������� �Core-��������������������� !"�
Pre-pr

���
Core-pr

��� #��$%�����&!���%��'� �������� (''����
Micro-codeInstruction Micro-code

P
ro

g
ra

m
m

em
o

ry

)��*!��
memory

Figure 18: Illustration of the employed distributed micro-code execution
scheme in the vector dataflow processor.

often limited. In addition, new micro-codes can be prepared and loaded to the
memories while current instructions are being executed. This further reduces
the storage requirement of the configuration memories. Using this distributed
control scheme, fetching an instruction involves only address managements of
the configuration memories. The required list of memory addresses is referred
to as a micro-code sequence. Compared to the size of a micro-code, a memory
address has much smaller wordlength, thus reducing the control overhead.

To demonstrate the gain of this scheme, a numerical example is given as
follows. Considering a case where each configuration memory in Figure 18
is of size 32 bit×16. The corresponding wordlength required for fetching an
instruction when using the conventional approach is 32 bits × 4 = 128 bits.
With the proposed scheme, a micro-code sequence requires only 4 bits× 4 = 16
bits, reducing the wordlength of the program memory by 8 times. In the case
of storing D = 256 instructions, the reduced wordlength leads to a further
memory reduction of 5.3 times, since only (16 bits×D+(32 bits× 16)× 4) bits
are required instead of (128 bits×D) bits.

Using the distributed micro-code execution scheme, ISA configuration con-
tains two steps. First, micro-codes of individual RCs need to be defined
and loaded to the distributed configuration memories. Second, micro-code se-
quences need to be specified and stored in the program memory. The complete
micro-code set for each processing cell in Tile-0 is presented in Appendix B.
Worth mentioning is that no branching instructions (except loops which are
treated differently, see the following section) are implemented in the vector
dataflow processor, since the processor is intended to be used for data-centric
stream processing that often has exposed data dependences and deterministic
processing structure. Computation tasks mapped onto the processor are per-
formed by invoking a series of kernel functions, such as matrix multiplication

110 PART III. MULTI-TASK MIMO SIGNAL PROCESSING

K
er

n
el

 A

+ ,-.,/0
1 234 564 789 4 :;9 3
<9 s

co
n

d
u

ct
ed

 b
y

 p
ro

ce
ss

2=9 3>9? 5 @A
B =2:5779 3<89 4
;9 3C 5=35? 7 9 7:23D E:4 5DF

G4; 575HE53: er

IJKLJMN NONKJP
Figure 19: Assisted instruction branching in the vector dataflow processor.

and QR decomposition. Switching between these functions are conducted by
the generic processing cell in Tile-3. This way, program branching and the
execution of conditional operations are mimicked. The assisted instruction
branching is illustrated in Figure 19.

Multi-level Zero-delay Inner Loop Control To further reduce control overhead
during loop operations, a multi-level inner loop control scheme is adopted.
Part 3.1 presents an inner loop controller designed to conduct loop operations
with a zero execution latency. However, it supports only one loop level, far from
sufficient for performing baseband processing in MIMO-OFDM systems. Multi-
level loops are widely used to process multiple subcarriers per OFDM symbol,
multiple spatial layers per subcarrier, and multiple iterations per spatial layer.
Hence, the zero-delay one-level loop control scheme is extended to efficiently
process loop operations without limit on the loop hierarchy.

To achieve the multi-level loop control, a stack-based architecture is em-
ployed, illustrated in Figure 20(a). As shown, the loop controller contains a
configuration stack used to store the address of the first instruction in a loop
(link address) and the corresponding loop count. Compared to other memory
structures, the stack has a simple control mechanism. It natively supports the
execution order of multi-level loops. With the help of a Finite-State Machine
(FSM), link addresses of loops are pushed into the stack in a “last-in-first-out”
manner during the execution of a program. Figure 20(b) shows a snapshot
of the stack when the entire loop hierarchy of the enclosed code fragment is
pushed into the stack. Each instruction contains a flag used to indicate end-of-
loop, similar to the one used in the one-level loop controller (Part 3.1). Upon
the completion of a loop iteration, the controller updates the program counter
with the link address drawn from the top of the stack in order to jump back to

4. HARDWARE DEVELOPMENT 111

Config. stack Pop

PushF
S

M

CountLink addr.

Top

(a) (b)

for ii = 1 : Nii

for jj = 1 : Njj

for kk = 1 : Nkk

<Inst. 1>

<Inst. 2>

End

End

End

addr.{for jj = 1 : Njj}
addr.{<Inst. 1>}
addr.{<Inst. 2>}

Nii

Njj

Nkk

Figure 20: (a) Multi-level inner loop control. (b) A snapshot of the
configuration stack and an example of a code fragment.

the start of the loop. Meanwhile, the stored loop count decreases by 1. When
the counter value reaches 0, a loop operation is completed and automatically
popped out, the stack pointer decreases by 1, and the link address stored at
the new stack top is fetched. When the bottom of the stack is reached, loop
controller releases the control of the program counter and the subsequent in-
struction stored in the program memory is fetched for execution. As can be
seen, this enhanced loop control scheme requires no loop management oper-
ations. Therefore, it eases program writing, speeds up loop processing, and
reduces program size and control overhead.

Based on the configurable ISA, the following sections focus on data-path of
Tile-0 and present architectural improvements for attaining efficient processing.

Vector-enhanced SIMD Core

In wireless baseband processing, Single Instruction Multiple Data (SIMD) is
commonly used as a baseline architecture to exploit inherent DLP. Similarly,
an SIMD-based architecture is adopted in the core-processing cell, contain-
ing N×N homogeneous Complex-valued Multiply-ACcumulate (CMAC) units
(Figure 16). The two-dimensional CMAC bank is deployed to handle parallel
MIMO data streams and perform all vector operations in Table 3. Figure 21
shows a detailed architecture of the CMAC unit, containing four data inputs,
three levels of arithmetic elements, and an input operand arrangement unit.
With data inputs {a, b} and {c} coming from the matrix and vector data bus
respectively, arithmetic elements in the first two levels are used to conduct
complex-valued multiplication and addition. Two adders in level-2 sum up
level-1 outputs with different data operands, such as a, c and e, depending on
data-path configurations.

Concerning the execution latency of vector operations, conventional SIMD
architectures (e.g., [58] and [32]) are inefficient, since they are designed to han-

112 PART III. MULTI-TASK MIMO SIGNAL PROCESSING

+/- +/-

+/- +/-QRSTURVTW XTYUZ[YU\Td multiplier

] ^_^` ab
] ^_^` ac] ^_^` adInter-cell

connection

e f^ghij

ar
ra

n
g

em
en

t

Inter-cell
connection

a

b

c

e

ol1

ol2

oe

re(a)

re(a)

re(a)

im(a)

im(a)

im(a)

re(b)

re(b)

im(b)

im(b)

re(c)

re(c)

im(c)

im(c)

re(e) im(e)

re(ol1)
re(ol2)

im(ol1)
im(ol2)

Figure 21: Architectural diagram of a CMAC unit.

dle parallel independent scalar data operands and their function units between
processing lanes cannot operate collaboratively during instruction execution.
For example, the computation of Vector Dot Product (VDP), which takes more
than 80% of entire vector processing in Table 3, requires multiple clock cycles
(depending on vector length), since each efficiently mapped VDP operation is
performed in a folded fashion using at most one CMAC unit. This not only
increases execution latency but also causes a large number of suspended com-
putational resources. Although concurrent operations on multiple data sets
may alleviate the latency issue to some extent, they requires additional data
buffers for storing intermediate results and a more sophisticated sequence con-
trol. Figure 22(a) shows a typical scalar-based SIMD architecture, where data
transfers between processing lanes are only possible through internal registers.

In contrast, this work tackles the latency issue by adopting an effective
low-complexity vectorization technique in the conventional SIMD architecture.
This vector enhancement enables single-clock-cycle execution for all vector op-
erations of length N . Specifically, each processing lane is expanded to have N
CMAC units, each of which is equipped with an inter-cell connection (e-path in
Figure 21) to link up with neighboring CMACs during instruction execution.
For example, the e input in Figure 21 is connected to the level-2 output (Oe)

4. HARDWARE DEVELOPMENT 113

+/-

R

+/- +/-

R

L
an

e

+/- +/- +/-

klmkLane

+
/-

R

Post-processingn
Inter-cell connection

C
o

re
-p

ro
ce

ss
in

g

R

Inter-lane connection
(a)

(b)

Figure 22: (a) Conventional scalar-based SIMD architecture [117]. (b)
Illustration of a processing lane in the vector-enhanced SIMD core.

of the previous CMAC unit. Using this simple connection, level-2 adders of
CMACs in every processing lane can be concatenated to form an adder-tree
capable of computing one N -length vector in every clock cycle, e.g., a VDP
with an atomic operation of ‘ab + e’. Figure 22(b) illustrates the construction
of the adder-tree using the vector-enhanced processing lane. For practical im-
plementations, a balanced tree structure (not shown in Figure 22(b)) is used for
reducing the critical path of the SIMD core. Vectors exceeding the lengthN are
processed by folding. In other words, they are decomposed into data segments
suitable for atomic operations. The net results of this vector enhancement are
significantly reduced execution latency and simplified sequence control.

Besides the efficient VDP computing, numerous vector operations are sup-
ported by the SIMD core, e.g., vector addition/subtraction ‘a ± b’ (16) and
multiply-add ‘a ± bc’ (Algorithm 1 line 11). This is achieved by utilizing
the flexible structure of CMAC units, in which each level of the arithmetic
elements can be used individually or operated with different combinations of
data operands. To further extend the operation set, an operand arrangement
unit is deployed at input of each CMAC unit, see Figure 23. It contains three
main function blocks, capable of swapping, negating, and shuffling the real and

114 PART III. MULTI-TASK MIMO SIGNAL PROCESSINGopqr stuqvwxy Shuffle

a

b

ar

ar
ar

ar

ai

ai
ai

ai

br

br

br

br

br

bi

bi

bi

bi

bi

ar/ai
-ar/-ai

ai/ar
-ai/-ar

br/bi
-br/-bi

bi/br
-bi/-br

(-) ar

(-) ai

(-) br/ar

(-) br/ar

(-) bi/ai

(-) ai/bi

(-) bi/br

(-) br/bi
1

1

1

1

Figure 23: Block diagram of the input operand arrangement unit.

imaginary part of input operands a and b, respectively. Giving this flexibility,
various data sequences are provided to the following CMAC unit for performing
complex- and real-valued operations. Using ar, ai, br, and bi to denote the real
and imaginary part of operands a and b respectively, Table 5 lists some of the
data sequences required by the commonly used operations.

VLIW-style Multi-stage Computing

Another important observation from the algorithm analysis (Section 3) is that
most of the vector processing involve several tightly coupled operations, such
as complex conjugate (Algorithm 1 line 10) and result sorting (16) performed,
respectively, before and after vector computations. Mapping of such “long”
processing solely on the SIMD core requires multiple atomic operations, caus-
ing not only increased execution time but also redundant register file accesses
for intermediate result buffering. Moreover, execution of some operations, such
as complex conjugate, only uses a small part of the function units, resulting
in poor resource utilization. Hence, the SIMD core is extended by adopting a
VLIW-style multi-stage computation chain to accomplish several consecutive
data manipulations in one single instruction. Specifically, two distinct process-
ing cells are arranged around the core-processor to pre- and post-process data
respectively, see Figure 16. Benefiting from this arrangement, more than 60%
of register accesses are avoided, as the combination of pre- and post-processing
takes about two-thirds of the total vector computations. As an example, Ta-
ble 6 summarizes operations required for implementing the MMSE-SQRD al-

4. HARDWARE DEVELOPMENT 115

Table 5: Some commonly used operations and the corresponding data sequences
generated by the input operand arrangement unit.

Operation Expression Data sequence

Complex-MUL (ar + jai)(br + jbi) ar, br, ai, bi, ar, bi, ai, br

Complex-MUL with j ((ar + jai)j) ((br + jbi)j) -ai, -bi, ar, br, -ai, br, ar, -bi

Complex-MUL with -j ((ar + jai)-j) ((br + jbi)-j) ai, bi, -ar, -br, ai, -br, -ar, bi

Complex-Squared norm
(ar + jai)(ar + jai)

H

ar, ar, ai, ai, br, br, bi, bi
(br + jbi)(br + jbi)

H

Real-MUL arbr, aibi ar, br, ai, bi

Real-Square a2r, a
2
i , b

2
r, b

2
i ar, ar, ai, ai, br, br, bi, bi

gorithm. A similar technique named operation chaining for reducing register
accesses can be found in [58].

Implementation of the pre- and post-processing cells depends on the opera-
tion profile of target applications. In the case of MIMO signal processing, the
pre-processing cell consists of two function units that, respectively, work with
matrix and vector data. Data negation and absolute calculation are examples
of the pre-processing operations, which can be applied individually to each part
(real and imaginary) of complex-valued data operands. For matrix inputs, a
matrix data mask function is adopted to ease the run-time generation of regu-
lar and frequently used data access patterns, e.g., construction of the identity
matrix required by Ĥ (6). Matrix data masks are stored in Matrix Mask Reg-
isters (MMR), see Figure 16. Each mask contains a boolean data map, used to
indicate the “existence” of the matrix element at the corresponding position.
The masking operation is realized by logically ANDing the matrix input with
the data mask, real and imaginary part separately, illustrated in Figure 24.
Examples of some commonly used masks are identity-, diagonal-, and upper
triangular-martix, and real/imaginary part addressing. For vector inputs, data
operands can be permuted based on permutation indexes stored in Vector Per-
mutation Registers (VPR). Both the MMR and VPR can be pre-loaded during
resource configurations or dynamically loaded with values taken from the vec-
tor data bus. In addition to the permutation function, vector operands can be
broadcast both horizontally and vertically to the SIMD core to support parallel
computing, e.g., broadcasting q

i
in ‘Algorithm 1 line 10’ to all processing lanes

to compute multiple ri,k in parallel.

The post-processing cell works with level-1, level-2, and accumulated (e-
path) results from the SIMD core. It consists of two function units. With
employed barrel shifters, the first unit is mainly used to dynamically adjust

116 PART III. MULTI-TASK MIMO SIGNAL PROCESSING

Table 6: An example of the multi-stage computing in MIMO channel pre-
processing (MMSE-SQRD, Algorithm 1).

Pre-processing

Pre-1: Complex conjugate

Pre-2: Vector shuffling & broadcast

Pre-3: Matrix data masking

Post-processing
Post-1: Barrel shifting

Post-2: Sorting

Operation Pre-processing Core-processing Post-processing

ξi = ‖q
i
‖22 & sort Pre-3 VDP (ab + e) Post-1, 2

ri,i =
√
ξi − VDP (ab + e) Post-1

q
i
= q

i
/ri,i Pre-2 bc Post-1

ri,k = qH
i
q
k

Pre-1 VDP (ab + e) Post-1

q
k
= q

k
− ri,kqi

Pre-2 a− bc Post-1

R−1 = 1/σnQb Pre-2 bc Post-1

data precisions of core-processing outputs. This is a useful function in vec-
tor processing especially for iterative and cumulative operations. Addition-
ally, e-path output of each processing lane can be accumulated individually,
which is required in supporting over-dimensioned vector operations (e.g., (4)
for NSW > N), where a folding technique performs data accumulations on par-
tial data outputs. The second function unit provides capability of permuting
vector outputs in ascending, descending, or user-defined order. For example,
this feature can be used to perform the sorting operations in MMSE-SQRD
(Section 2.2.2).

4.3 Vector Data Memory Tile

Besides vector enhancements and multi-stage computation, the efficiency of the
vector processor is contingent on memory access with regard to accessing band-
width and flexibility. By inspection of algorithms discussed in Section 2, it is
required that the SIMD core has access to multiple matrices and/or vectors in
each operation, so as to avoid poor resource utilization and low throughput. As
an example, efficient mapping of (Algorithm 1 line 3) requires two N ×N ma-
trix inputs, equivalent to having a 2×(4×4)×(16+16)=1024bits/cycle memory
bandwidth for a 16-bit 4×4 MIMO system. In addition to the bandwidth re-
quirement, various forms of data accesses are needed, such as row- and column-
wise addressing in matrix transposition. Moreover, to exploit additional DLP
from independent data streams, accesses of vectors in different matrices are

4. HARDWARE DEVELOPMENT 117

z{|x}~��� �� �� � ��� �� �� � ��� �� �� � ��� �� �� ��
���� �z{� ���

���z�� �����
����{� ������}} �� ~~0 0 0

0 0 0

0 0 0

0 0 0

z{� � ��� �
0

0� �� � �� � �� � ��� �� � �� � �� � ��� �� � �� � �� � ��� �� � �� � �� � �� ���� | }~� Mask

Figure 24: Illustration of a matrix masking operation, an example of the
diagonal matrix construction.

required by the multi-subcarrier processing. To meet these requirements, a hy-
brid memory organization and a flexible matrix access mechanism are adopted
in the vector data memory tile (Tile-1).

Hybrid Memory Organization

To suffice the high memory accessing bandwidth, Tile-1 consists of vector and
matrix access partitions, allowing simultaneous accesses of both vectors and
matrices, see Figure 25(a). The basic element in both partitions is a dual-port
memory cell, which provides a vector-level data storage and allows simultane-
ous read and write operations to ease memory access and improve processing
throughput at the price of a larger memory footprint. In addition, the matrix
partition provides direct matrix data access, which is realized by concurrently
accessing a group of memory cells using only one set of address control. This ar-
rangement is referred to as a memory page, shown in Figure 25(a). The vector
accessing wordlength and the number of cells in a memory page are designed
to match the processing capacity of the SIMD core in Tile-0, i.e., N scalar
elements and N memory cells, respectively. On the other hand, the number
of memory cells and pages are application dependent and should be optimized
with respect to the bandwidth requirement and hardware cost. To ensure a suf-
ficient memory storage required for the MIMO signal processing, Tile-1 in this
work is deployed with 2 memory cells, for buffering data and storing R.MMSE-
SW coefficients W in (4), and 5 pages, for storing Ĥ (Figure 26(a)) and R.
Details of these memory usages are further discussed in Section 5.

118 PART III. MULTI-TASK MIMO SIGNAL PROCESSING

Memory page

�� ���
¡ ¢¢£¤¤¥ ¦§ £¨©£
ª «

¬ £ª¥ ¤ £©® ¯¦°±²²³´´µ�¶³· ¸³¹º
{

Horizontal�²²³´´»³̧ ¼µ²�½�²²³´´

¾�¼¸µ· ¿�̧ ¼µ¼ µÀ�»³²¼À̧ ¿�̧ ¼ µ¼ µÀ�

Á³´²̧ µ¿¼À̧ ¼��½³
Â³¹º ���

¾³ÃÀ̧ Ä²³½½

Å £¤¢©¥ Æ Ç© ¯®È £
¾³ÃÀ̧ Ä Ã�²̧ ÀÉ Ế

ËÀ�¼¸À½½³̧ D
S

C
 0

0 Ì D
S

C
 1

¾³ÃÀ̧ Ä ²³½½Í¿�¹³
Ë¸À´ �́ �̧

(a)

(b) (c)

N

Figure 25: Block diagram of the vector data memory tile (Tile-1), (a)
a hybrid memory organization, (b) operation and accessing control, (c)
data loading path of a memory page, supporting matrix access indexing
and transposition.

Memory operations and accessing modes of each cell and page are managed
by a local controller with configurations stored in a descriptor (DSC) table,
see Figure 25(b). To communicate with other tiles, memory accesses are mul-
tiplexed using a crossbar network and interfaced through IO ports. For the
array shown in Figure 15(b), Tile-1 contains four IO ports, allowing simulta-
neous accesses of two N × 1 vectors and two N × N matrices for providing
accesses to both Tile-0 and Tile-2. Referring to the aforementioned example,
this corresponds to a memory bandwidth of 1280bits/cycle.

4. HARDWARE DEVELOPMENT 119

P
ro

ce
ss

in
g
 l

an
e Î ÏÎ ÏÐ ÏÑÐ

2Ò ÏÓ ÏÔ ÏÕ ÏÖ Ï× ÏÐÎ
Memory page

ØÙÚÛ
access

ÜÎÝ ÜÐÝ ÜÞÝ ÜÒÝ ÏÞ ÏÒÜÑÝ ÜÓÝ ÜÔÝ ÜÕÝ ÜÖÝ Ü×Ý ÜÐÎÝ ÜÐÐÝ ÜÐÞÝ ÜÐÒÝ ÜÐÑÝ ÜÐÓÝ
{

ß àáâãä åæ ß àáâãä åæ ß àáâãä åæ ß àáâãä åæ Time

(a)

(b)

[0]c1a
[2]c1a
[4]c1a

[0]c1b
[2]c1b
[4]c1b

[1]c1a
[3]c1a
[5]c1a

[1]c1b
[3]c1b
[5]c1bc2a

c2a
c2a

c2a
c2a
c2a

c3a
c3a
c3a

c3a
c3a
c3a

c4a
c4a
c4a

c4a
c4a
c4a

c2b
c2b
c2b

c2b
c2b
c2b

c3b
c3b
c3b

c3b
c3b
c3b

c4b
c4b
c4b

c4b
c4b
c4b

Ĥ at even subcarriers (i) Ĥ at odd subcarriers (i+ 1)

‖Ĥ
i‖

2 2

‖Ĥ
i+

1
‖2 2

‖Ĥ
i+

2
‖2 2

‖Ĥ
i+

3
‖2 2 q

0
r1,2 r1,3 r1,4 q

1 q
2

q
3

q
0

r1,2 r1,3 r1,4 q
1

q
2

q
3

0-70-7 8-158-15 0, 4 1, 51, 5 2, 62, 6 3, 73, 7
8, 12 9, 139, 13 10, 1410, 14 11, 1511, 15

Square-root latency (an example of 2 clock cycles)
for computing r1,1 at subcarrier i and i+ 1

Figure 26: Example of some memory access patterns required for com-
puting MGS-based MMSE-SQRD in a 4×4 MIMO system. (a) Odd
and even indexed Ĥ are stored separately in different memory pages.
(b) Timing diagram of the multi-subcarrier processing in the SIMD core
with N = 4 processing lanes.

Flexible Matrix Data Access

The presented multi-page memory arrangement and the crossbar network al-
low for the flexible data access required by the multi-subcarrier processing.
For instance, by storing matrices of successive subcarriers in different memory
pages, multiple data sets can be concurrently accessed and multiplexed based
on arrangement indexes specified in memory configurations.

To better explain the necessity of the flexible memory access in support-
ing multi-subcarrier processing, the following shows a case study of various
memory access patterns required for computing MMSE-SQRD (Algorithm 1).
Figure 26(a) shows a memory layout of Ĥ storage, where Ĥ at even- and odd-
indexed subcarriers (labelled as [0], [1], etc.) are stored in different memory
pages. Because of the 2N×N dimension, every Ĥ is stored column-wise in two
memory pages. In Figure 26(a), “[0]c1a” denotes column 1 of the upper half
matrix (N × N) of Ĥ at subcarrier 0, and “[0]c1b” represents the lower half.

120 PART III. MULTI-TASK MIMO SIGNAL PROCESSING

Figure 26(b) shows a timing diagram of multi-subcarrier processing in Tile-0
for the computation of the first iteration of MMSE-SQRD. Together with the
operations performed in each time interval, required memory access patterns
are listed. For example, 0-7 indicates concurrent access of memory cells with in-
dex from (0) to (7). During the time interval T0−T3, multiple matrix accesses
are needed for computing the squared Euclidean norm of Ĥ . Multiple vector
readings from different memory pages are required during T4−T10. Supported
by the flexible memory access schemes, multiple subcarriers can be processed
in parallel to efficiently utilize processing gaps caused by data-dependent op-
erations and computation latencies. Without this support, processing lanes
during the time intervals of shaded computations in Figure 26(b) would be
idle. Therefore, flexible memory access schemes are important for achieving
high processing efficiency.

To further improve matrix access flexibility, a data arrangement circuit, il-
lustrated in Figure 25(c), is implemented in each memory page. Specifically,
data loaded from each memory page are buffered in a local register bank and
are capable of being rearranged vector-wise in a vertical direction, based on an
access index associated with each matrix storage. Benefiting from this setup,
vector readouts from a matrix can be accessed freely in any order without phys-
ically exchanging data. This is useful, for example, in supporting sorted matrix
accesses in MMSE-SQRD (Algorithm 1 line 5). The vector access indexes are
stored in special registers that are transparent to the users and are configurable
during every matrix data transfer. In addition to these index manipulations,
the proposed architecture is capable of outputting matrices in a transposed
form (used for example in (12)) by selecting either the row or column output.
As a result, processing cells are relieved from such data arrangement operations,
which otherwise results in enormous underused processing power. Moreover,
physical data exchange and redundant memory accesses (due to read and write
of the same data contents) are completely eliminated.

4.4 Scalar Resource Cells and Accelerators

In the scalar domain, Tile-2 and 3 perform scalar and conditional operations
as well as dynamic configurations of other tiles in the array. Among them,
Tile-2 consists of two scalar memories for storing data and configurations re-
spectively. Tile-3 contains one memory for data buffering and three processing
cells for computations. Figure 27 shows the three scalar processing cells in
Tile-3, which are one generic signal processor and two acceleration units. The
generic processor is a customized RISC with optimized conditional instruc-
tions and specialized functionality for dynamic RC configurations, similar to
the one presented in Part I. The two accelerators behave like co-processors of

4. HARDWARE DEVELOPMENT 121çè éêëì
íîï ðñ òPC óôõö÷øùúû

üýëýþÿ� �þ��ý���þ íî� ��� �ýþ	
þéê	 ÿ�ë����þ��ý���þ�
1/

√
x

Figure 27: Block diagram of the scalar processing cells in Tile-3, contain-
ing one generic RISC-structured processor and two accelerators.

the generic cell for performing irregular operations, i.e., the inverse square-root
in MMSE-SQRD and the node perturbation in MMSE-NP, respectively.

Inverse Square Root Unit

To compute the inversion square root of x, where x ∈ R and x > 0, Newton’s
method is adopted in this work. Newton’s method iteratively computes ap-
proximations to the root of a real-valued function f(y) [113]. In the case of
inversion square root, f(y) is defined as,

f(y) =
1

y2
− x, (22)

where y = 1/
√
x. A general expression of Newton’s method for iteration i is

written as

yi+1 = yi −
f(yi)

f ′(yi)
, (23)

where the whole process starts off with some arbitrary initial value y0. Substi-
tuting (22) into (23), the output of each iteration can be expressed as

yi+1 = 2−1yi
(
3− xy2i

)
. (24)

After K iterations, the value of yi+1 converges to 1/
√
x. The number of itera-

tions required depends on the accuracy requirement of the application and how
close the initial value y0 is to 1/

√
x. Fixed-point simulations show that K = 2

is sufficient in this work to obtain a near floating-point performance in terms of
FER of the presented system setup (Section 3.1). It is worth mentioning that
calculation of the square root can be obtained by multiplying the final result
yK by the input x.

122 PART III. MULTI-TASK MIMO SIGNAL PROCESSING

Pipeline

Initial������
en ready

2nd iteration�st iteration

������ x

x

x y0

yi yi+1

3

√
x

1/
√
x

Figure 28: Block diagram of the inverse square root unit using Newton’
method with 2 iterations.

Figure 28 shows the block diagram of the inverse square root unit, which
is capable of computing both 1/

√
x and

√
x. It consists of three main building

blocks, an initial value approximation block and two function units. Given an
input data x, the first block generates an initial value y0 by looking up in a
coefficient table. To reduce the table size while providing a good initial value,
only three Most Significant Bits (MSBs) of x are used as inputs. The position
of the MSB is dynamically detected for each input x. The basic principle of
the adopted method is to share the same coefficients stored in the table for
different initial value approximations. For example, y0 = 1/4 for x = 16, where
the coefficient 1/4 (“01000000” in a unsigned radix-2 ‘0.8’ format) can be used
to generate the initial value for x = 256 by shifting it 2 bits to the right, that
is, y0 = 1/16 with the radix-2 representation of “00010000”. Benefiting from
the coefficient sharing, only 8 entries are required in the look-up table.

The two function units in Figure 28 are used to compute (24), one per
iteration. Each unit contains three real-valued multipliers, a subtracter, and a
one-bit logical left shifter for realizing the ‘divide by 2’ operation. To increase
the processing throughput, both units and their connections are pipelined,
shown in the bold vertical lines in Figure 28. Besides the square root and its
reciprocal, a flow control signal ‘ready’ is provided on the output for indicating
the computation status.

4. HARDWARE DEVELOPMENT 123

Node Perturbation Unit

In the adopted MIMO symbol detector MMSE-NP, one of the important steps is
to find the nearest sibling symbols to the initial MMSE result xMMSE

p (12) based
on the criterion of (14). The entire perturbation process involves enormous fine-
grained data manipulations, since xp consists of normalized constellation points
that are drawn from a finite set of integers, e.g.,

√
42xp(i) ∈ [±1,±3,±5,±7]

for 64-QAM. Therefore, the node perturbation process is implemented as an
accelerator for attaining high implementation efficiency.

One way to find Ωi closest symbols for each spatial layer is to compute the
distance between all possible M-QAM constellation points to xMMSE

p(i) , sort them
in ascending order, and pick the first Ωi points that have the smallest distance
values. However, this brute-force method has high complexity, requiring 2 mul-
tiplications and 3 additions per constellation point and an M-point exhaustive
search at the end. In contrast, this work adopts a Fast Node Enumeration
(FNE) scheme, aiming to reduce the computational complexity by exploiting
the geometric and symmetric properties of M-QAM. To better explain this,
the following discussion focuses on 64-QAM and assumes max{Ωi} = 5. Other
system configurations can be processed by using the similar concept.

Figure 29 illustrates the basic principle of the proposed FNE scheme. The
horizontal and vertical axis represent distance (δ) between the constellation
points and the initial hard-output MMSE result x̂MMSE

p(i) , for real and imag-

inary part, respectively. With this definition, x̂MMSE
p(i) has the coordinate of

(δre, δim) = (0, 0). In this example, Ne is the closest symbol to xMMSE
p(i) , as-

suming xMMSE
p(i) lies within the dashed box in Figure 29. The distance between

xMMSE
p(i) and Ne is expressed as

δ = xMMSE
p(i) −Ne = a+ jb. (25)

Utilizing the symmetric and equidistant property of M-QAM, a and b in (25)
can be shifted around Ne to reduce the search space to the first quadrant. As
a result, {a, b} ∈ [0, 1]. To find the remaining neighboring symbols, distances
between xMMSE

p(i) and other constellation points in Figure 29 are computed and
sorted in ascending order. By analyzing the resulting order of those symbols
with respect to the position of xMMSE

p(i) , the search space can be divided into six
unique zones that cover all possible symbol sequences. These zones are labelled
with A1 to A6, see Figure 29. The corresponding symbol sequences are listed
in Table 7.

To determine the zone in which xMMSE
p(i) resides, the real and imaginary value

of δ in (25) are compared using the following criteria:

124 PART III. MULTI-TASK MIMO SIGNAL PROCESSING

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
Na Nb Nc

Nd Ne Nf

Ng Nh Nj

A1A2

A3

A4 A5

A6

δre

δ i
m

δre > δim
δim > 1− 2δre
δre > 1− 2δim

Figure 29: Illustration of the fast node enumeration scheme.

Table 7: Symbol sequences with respect to the position of xMMSE
p(i) .

Position of xMMSE
p(i) A1 A2 A3 A4 A5 A6

Symbol sequence

Ne Ne Ne Ne Ne Ne

Nb Nb Nb Nf Nf Nf

Nf Nf Nf Nb Nb Nb

Nc Nd Nd Nh Nh Nc

Nd Nc Nh Nd Nc Nh

1. δre > δim,

2. δim > 1− 2δre,

3. δre > 1− 2δim.

These comparisons correspond to three boundary lines inside the dashed box in
Figure 29. Once xMMSE

p(i) is positioned, all the required nearest sibling symbols
are obtained. This is realized with the help of a look-up table, which stores
all symbol sequences listed in Table 7 with different boundary check. Worth
mentioning is that the adopted FNE scheme can be applied to other cases,
where the search space is not at the center of the constellation map, for example,
at corners or borders.

Figure 30 shows the block diagram of the node perturbation unit. It consists
of N FNE units, one for each spatial layer, and a candidate vector generation
unit for constructing candidate vectors by using the FE-CVG method (2.3.1).

4. HARDWARE DEVELOPMENT 125

��
shift

Slicing

Position
���

�� !"�� !"�� !"

#$%&VG
#'$

�!(�)%�
xMMSE
p(i)

x̂MMSE
p(i)

x1
p(i)

x
(Ωi−1)
p(i)

xMMSE
p

xp

Figure 30: Block diagram of the node perturbation unit.

The FNE process starts by shifting the input xMMSE
p(i) into the first quadrant.

The initial hard-output symbol x̂MMSE
p(i) , the closest symbol, is found by slicing

xMMSE
p(i) to the nearest constellation point. After calculating the distance (δ)

between x̂MMSE
p(i) and xMMSE

p(i) , the position block carries out all comparisons of

δ in parallel to determine the position of xMMSE
p(i) . The resulting zone number,

ranging from A1 to A6, is used as an input to the following look-up table to
obtain the remaining symbols. The FNE process is completed by shifting the
expanded symbols back to the original quadrant, performed by the de-mapping
units.

4.5 Concurrent Candidate Evaluation

In this section, a technique to further improve the implementation efficiency is
presented. Among the MIMO signal processing, the ED calculation in (16) is
the most compute-intensive operation, which needs to be performed at every
data-carrying sub-carrier and for each of the L candidate vectors, e.g., L = 24
for Ω = [F, 4, 3, 2]. A straightforward mapping of this on the SIMD core tends
to incur low hardware utilization, at most 50% when computing Rxp, since
R is an upper triangular matrix with real-valued diagonal elements. This
is impermissible from the hardware efficiency point of view. To tackle this
problem, the property of R is utilized in such a way that two candidate vectors
are concurrently evaluated, with the second Rxp operation mapped to the

126 PART III. MULTI-TASK MIMO SIGNAL PROCESSING

+/- +/-

+/- +/-

+/- +/-

+/- +/-

+/- +/-

+/- +/-

+/- +/-

+/- +/-

L2 outputs

+,

L2 outputs

Core-processing cell

-.
-/01

-.2-/2 012
m

irro
r

mirror

PSfrag

r0,0 r0,1

r1,1
r′0,0

r′0,1

r′1,1
xp0(0)

xp0(1)

xp0(1)

xp1(0)xp1(1)

xp1(1)

xp0
=

[
xp0(0), xp0(1)

]T
xp1

=
[
xp1(1), xp1(0)

]T

e
p
a
th

e
p
a
th

composed R

r 0
,0

r 0
,0r0,1 r0,1

r 1
,1

r 1
,1

r′ 0
,0r′0,1

r′ 1
,1

R

R′

Figure 31: Concurrent candidate evaluation using the SIMD-based core-
processing cell, an example of a 2×2 MIMO system. Internal data multi-
plexers are omitted for simplicity. Shaded blocks and dashed lines illus-
trate the computation of the second Rxp operation, denoted as R′xp1

.

lower triangular part of the SIMD core. In the following, computation of Rxp

in a 2×2 MIMO system using a 2×2 SIMD core is given as an example to better
illustrate the concurrent candidate evaluation.

To fully utilize the N ×N CMAC units in the SIMD core, R is duplicated
to process two different xp vectors at the same time. This matrix duplication is
achieved by mirroring the R matrix in both vertical and horizontal directions,
such that the two matrices (R and its counterpart R′) together compose a
full square matrix, as illustrated at the bottom of Figure 31. The required

5. IMPLEMENTATION RESULTS AND COMPARISON 127

input vectors xp0
and xp1

are fed to the SIMD core via the matrix path MA
and the vector path VC, respectively. Note that reserve-order permutation
is required for the vector input xp1

to match with the matrix orientation of
R′ (flipped upside down). Figure 31 illustrates input data arrangement and
internal data processing flow of the SIMD core. The ones associated with
R′xp1

computation are depicted in shaded blocks and dashed lines. In the
diagonal CMAC units, processing of both xp0

and xp1
co-exist because of

the real-valued diagonal elements in R. Additionally, both level-1 and level-2
adders are bypassed in these CMACs, shaded in light grey in Figure 31, since
only real-valued multiplications are performed. Final vector outputs of both
computations are conveyed to the following processing cell via level-2 outputs.
As a result of this concurrent candidate evaluation, both hardware utilization
and processing throughput are doubled for Rxp computations.

It is worth mentioning that various techniques have been presented in liter-
ature for improving the hardware efficiency of ED computations. For example,
utilizing the property of the candidate vectors xp (i.e., constellation points), [54]
and [43] simplify the computation of Rxp by performing finite alphabet mul-
tiplications. However, applying those accelerator-based design techniques on
vector processors may be infeasible or cost ineffective, as they require either
fine-grained data manipulations (e.g., to realize finite alphabet multiplications)
or increased data-path width (e.g., to hold multiple Rxp outputs). In contrast,
the adopted scheme utilizes the existing structure of the SIMD core and only
requires a few specialized signals for controlling diagonal CMAC units. Thus,
it provides a balance between hardware efficiency and complexity.

5 Implementation Results and Comparison

To cope with different system configurations and design constraints on, for ex-
ample, antenna size and processing throughput, the heterogeneous cell array is
fully parametrizable at system design-time. Figure 32 shows the detailed archi-
tecture of the cell array configured for the target 20MHz 4×4 MIMO LTE-A
downlink. Processing and memory cells in the vector domain are labelled with
‘VPC-X ’ and ‘VMC-X ’ respectively, while counterparts in the scalar domain
are denoted as ‘SPC-X ’ and ‘SMC-X ’. All data computations are performed
in 16 bits fixed-point arithmetic with 8 guard bits for accumulations. In Tile-0,
the core-processing cell is configured to have 4×4 CMAC units. The post-
processing cell contains two 3-bit barrel shifters deployed for handling data
from matrix and vector bus respectively. The register bank consists of 16
general purpose vector registers, 16 VPRs, and 16 MMRs. Each distributed
configuration memory can store up to 16 hardware configurations, and the
program memory is capable of storing 256 micro-code sequences.

128 PART III. MULTI-TASK MIMO SIGNAL PROCESSING

345 6 78
256x32b

Pilot

SMC-0

256x32b
Config

SMC-1

256x32b
Buffer

SMC-2

RISC

SPC-0

S
Q

R
T

S
P

C
-1 N
o

d
e

P
er

t.

R

Pre-
Process

VPC-1

Reg.
Bank

VMC-0

Post-
Process

VPC-3

Core-
Process

VPC-2

R

S
eq

u
en

ce
r

V
P

C
-0

256x32b
Candicate

VMC-1

512x128b
RMMSE

Coeff.

VMC-2

1280x128b

VMC-3

768x128b

VMC-7

R

S2V

MUX

MUX

R

MUX

R

Matrix partitionVector partition

MUX

T
il

e-
0

T
il

e-
2

T
il

e-
3

ZP

Buffer Buffer

S2V

R H

Figure 32: Architecture diagram of the heterogeneous cell array config-
ured for baseband processing in a 20MHz 4×4 MIMO LTE-A downlink.

Table 8: Memory configurations and usages.

Resource cell Memory Reserved Usage

Tile-0

VPC-0 256×32b 8Kb N/Aa Program memory

VPC-1−3
(16×32b)×7 3.5Kb N/Aa Configuration memory

VMC-0

Tile-1

VMC-1 (256×32b)×2 16Kb 43.75% Candidate vector buffer

VMC-2 512×128b 64Kb 43.75% R.MMSE-SW W ROM

VMC-3
(1280×128b)×4 640Kb 6.25% R buffer

1280×8b 10Kb 6.25% Access index

VMC-4−7
(768×128b)×16 1536Kb 8.85% H buffer

(768×8b)×4 24Kb 8.85% Access index

Tile-2
SMC-0 256×32b 8Kb 42.38% Pilot ROM & data buffer

SMC-1 256×32b 8Kb N/Aa Configuration memory

Tile-3

SPC-0 384×48b 18Kb N/Aa Program memory

SPC-1 N/A N/A N/A N/A

SMC-2 256×32b 8Kb N/Aa Data buffer

Network N/A N/A N/A N/A

a Reserved space is not assessed for control and configuration memories.

5. IMPLEMENTATION RESULTS AND COMPARISON 129

The generic processor in Tile-3 is configured to have a 3-bit barrel shifter,
11-bit one-level inner loop controller, 16 general purpose scalar registers, and
a 18Kb program memory. The node perturbation unit in SPC-1 is able to
extend each symbol with up to 5 nearest neighbors and generate one candidate
vector in every clock cycle.

As for memory cells, each is configured to have 4 DSCs. In VMC-2, SMC-0,
and SMC-2, the micro-block function is enabled. Data memories are deployed
mainly to suffice the storage requirement of the target LTE-A setup. In the
current design, the array contains 2.34Mb of memory, in which 88% are data
buffers for keeping data required in one LTE-A time slot (e.g., channel and
decomposed matrices), 2% are control memories for storing instructions and
resource configurations, and 10% are reserved space for facilitating flexible al-
gorithm mappings and future system updates. Detailed memory configurations
of all RCs are summarized in Table 8. Data transfers from vector to scalar RCs
are bridged by memory cells using the micro-block function, whereas the re-
verse paths are handled by dedicated scalar-to-vector adapters, shown as ‘S2V’
in Figure 32. Each adapter contains a vector register and a FSM, capable
of transmitting N scalar data packets in a vector form to the receiving end.
Moreover, it should be mentioned that VMC-1 in Tile-1 is dedicated to storing
candidate vectors xp in symbol detection. Therefore, the wordlength of the
memory is substantially reduced by only storing M-QAM values. For 64-QAM
modulation, each symbol in xp requires 2×4 bits (complex-valued) instead of
2×16, reducing the memory requirements by 4 times. During memory reading,
the M-QAM values are extended to the vector format by padding zeros. This
QAM-to-vector converter is denoted as ‘ZP’ in Figure 32.

5.1 Implementation Results

The cell array is modelled in VHDL, synthesized using Synopsys Design Com-
piler with a 65 nm CMOS standard digital cell library, and routed using Ca-
dence SoC Encounter. Counting a two-input NAND gate as one equivalent
gate, the whole array contains 2.76M gates and has a core area of 8.88mm2 at
74% cell density in chip layout. Data buffers occupy more than 60% of the area,
while the logic blocks, including control memories and the hierarchical network,
share the rest. Excluding those data buffers, it shows in Table 9 that most of
the logic gates are devoted to the vector processing domain (i.e., Tile-0 and
1) and the on-chip network takes less than 5%. At 1.2V nominal core voltage
supply, a maximum clock frequency of 500MHz is obtained from post-layout
simulations with back annotated timing information. At this frequency, the
array is capable of performing 8.5G CMACs per second, considering the 4×4
CMAC bank in Tile-0 and the CMAC unit in the generic processor in Tile-3.

130 PART III. MULTI-TASK MIMO SIGNAL PROCESSING

Table 9: Area and power breakdown of the cell array with data buffers excluded.

Resource cell Gate count [KG] Power [mW]

Tile-0 367 34.77% 164.93 53.75%

Tile-1
Vector partition 96 9.12% 5.99 1.95%

Matrix partition 365 34.60% 68.06 22.18%

Tile-2 47 4.44% 3.20 1.04%

Tile-3
Generic processor 70 6.60% 44.10 14.37%

Others 61 5.83% 16.98 5.53%

Network 49 4.65% 3.56 1.16%

Total 1,055 100.00% 306.84 100.00%

Vector Dataflow Processor

Figure 33(a) shows the area breakdown of Tile-0, the vector dataflow pro-
cessor. The control logic of the processor, including the sequencer and the
program memory, occupy 22% of the total area, while the processing cells take
51% and the register bank consumes 27%. Note that the distributed configu-
ration memories are counted as part of the sequencing control in Figure 33(a).
The relatively low area consumption of the control logic reveals the low control
overhead of the processor, thanks to the adopted distributed micro-code exe-
cution scheme. Among the multi-stage computation path, the core-processing
cell consumes most of the area due to the deployed homogeneous CMAC bank.

Vector Data Memory Tile

Tile-1 consists of two memory cells, VMC-1 to 2, and five memory pages, VMC-
3 to 7. Because of the large storage requirements of the application, e.g., to
store channel matrices H and R for all 1200 subcarriers and coefficients W for
the R.MMSE-SW estimator, most of the area in Tile-1 is consumed by memory
macros, see Figure 33(b). Among the control logic, memory pages consume
80% of the area, due to the employed flexible access schemes such as matrix
data transposition and access indexing. It is worth mentioning that VMC-2 is
configured to have the micro-block function used to interface with RCs in the
scalar processing domain. Therefore, it can be seen from Figure 33(b) that the
control logic of VMC-2 consumes slightly more area than that of the VMC-1.

5. IMPLEMENTATION RESULTS AND COMPARISON 131

Sequencer

16%

Program mem.

6%

Register bank

27%

Pre-process

7%

Core-process

38%

Post-process

6%

(a) Vector dataflow processor (Tile-0)

VMC-4~7 ctrl,

13.66%

VMC-4~7

mem., 55.30%

VMC-3 ctrl,

3.40%

VMC-3 mem.,

20.30%

VMC-2 ctrl,

2.52%

VMC-2 mem.,

2.03%

VMC-1 ctrl,

1.98%

VMC-1 mem.,

0.81%

(b) Vector data memory tile (Tile-1)

SMC-0~2

ctrl, 43.12%

SMC-0~2

mem.,

12.78%

RISC logic,

14.27%

RISC ctrl,

11.83%

RISC reg.

Bank, 8.04%

Accelerator,

9.97%

(c) Tile-2 & 3 in the scalar processing domain

Figure 33: Area breakdown of RCs in the reconfigurable cell array.

132 PART III. MULTI-TASK MIMO SIGNAL PROCESSING

Resource Cells in Scalar Processing Domain

In the scalar processing domain, the generic processor and accelerators occupy
around 45% of the area, see Figure 33(c). Compared to the vector dataflow
processor in Tile-0, the generic processor is equipped with a larger program
memory and a simpler data path, since it is designed to mainly perform control
related operations, such as conditional instruction execution and configuration
of other RCs. This can be seen from the area partition in Figure 33(c), where
the control logic of the processor takes almost the same area as its logic part,
i.e., 11.83% versus 14.27%.

5.2 Task Mapping and Timing Analysis

The MIMO processing tasks, i.e., channel estimation, pre-processing, and sym-
bol detection, are manually mapped onto the cell array with a primary fo-
cus on sufficing the stringent timing constraint and achieving high processing
throughput. To this end, multi-subcarrier processing is adopted in all tasks and
is scheduled based on the LTE-A resource block, i.e., 12 consecutive subcarri-
ers. The number of blocks to process in each computation step is determined
manually based on the computation and communication latency and available
hardware resources. For example, MMSE-SQRD is programmed to operate on
2 LTE-A resource blocks in each step due to its high data dependency and the
long latency involved in obtaining results from the inverse square root unit. In
contrast, the other two tasks work with 1 resource block at a time. In addition
to the multi-subcarrier processing, most of the data transfers are scheduled
to utilize the low-latency high-bandwidth local interconnects, while the hier-
archical network is mainly used for resource configurations and the streaming
of external data such as receiving vector y and decoded x̂. In the following,
detailed mapping of the MIMO processing tasks is described.

Channel Estimation

Recall that channel estimation contains two computation steps, LS estima-
tion at pilot tones and H interpolation for data-carrying subcarriers. In this
work, the LS computation is performed by the generic processor in Tile-3 and
results are stored in an LS buffer (VMC4−7) in Tile-1. The computation
starts immediately data at pilot positions have been received. Data transfers
between SPC-0 and memory pages in Tile-1 are carried out through the hi-
erarchical network. In Tile-1, the received scalar data packets are converted
to the vector format before writing to the memory. This is accomplished by
using the S2V unit deployed in the matrix partition of Tile-1. Steps 1 to 7 in
Figure 34 illustrate the processing flow of the LS computation. Using LS esti-
mated channel coefficients, the data-tone H interpolation is performed by the

5. IMPLEMENTATION RESULTS AND COMPARISON 133

Tile-2
9:;<=>
RISC

SPC-
?

R

9:;<=@ABCDE ABCDF
R

768x128b
Buffer

R

MUXS2V

256x32b
Pilot

SMC-0 512x128b
RMMSE

Coeff.

VMC-2

Tile-0

768x128b
Buffer

yp

x−1
p

hp,LS

hp,LS

W

hMMSE

HH

1

2
2

3

4 5

6

7

889

1 − 7 : LS estimation

8 − 9 : Data-tone H interpolation

Figure 34: Processing flow of the channel estimation, performed by the
generic processor in Tile-3 and the vector dataflow processor (Tile-0).

Table 10: Pseudo-code of the data-tone H interpolation performed in Tile-0.

for i = 1 : 100 do % Loop for 100 LTE-A resource blocks

for j = 1 : 4 do % 4 groups per LTE-A resource blocks

Copy H @ pilot position from “LS buffer” to “H buffer”

for k = 1 : 2 do % 2 data tones per group per resource block

for l = 1 : 6 do % 6 iterations per data tone for NSW = 24

for n = 1 : 4 do % 4 Tx spatial layers, i.e., 4 columns of H

‘VDP(ab+ e)’ to compute hMMSE = Whp,LS

end for

end for

end for

end for

end for

vector dataflow processor. To fully utilize the 4×4 CMAC bank, four Rx spa-
tial layers (i.e., rows of H) are computed in parallel, one per processing lane, in
each clock cycle. For NSW = 24, each interpolation process requires 24/4 = 6
iterations to complete. The intermediate results are accumulated in the post-
processing cell in Tile-0. Since the pilot tones reside in every third subcarrier
in an OFDM symbol (Figure 2), processing of each LTE-A resource block is
divided into 4 groups, each containing one pilot and two data tones. Table 10

134 PART III. MULTI-TASK MIMO SIGNAL PROCESSING

GHIJKL
GHIJKM NOPQR

OST
GHIJKU

768x128b
Buffer

256x32b
Buffer

SMC-2

S
Q

R
T S2V

1280x128b

VMC-3

Buffer

SPC-1
r q Q

√
x

1/
√
x

R H

1

2

3

4
5

5
67

Figure 35: Processing flow of the MMSE-SQRD based channel pre-
processing performed by the vector dataflow processor (Tile-0).

shows the pseudo-code of the data-tone H interpolation. Taking advantage
of the adopted multi-level zero-delay inner loop controller, loop operations are
used whenever possible, aiming to attain a modular program structure and to
ease parameter updates.

Channel Pre-processing

The MMSE-SQRD based channel pre-processing is mainly performed by the
vector dataflow processor, except that 1/

√
x and

√
x operations are outsourced

to the inverse square root unit in Tile-3. Taking the augmented channel matrix
H as an input, the MGS-based MMSE-SQRD performs matrix orthogonaliza-
tion iteratively based on Algorithm 1. The corresponding task mapping on
the vector dataflow processor and the layout of data storage in Tile-1 are il-
lustrated in Figure 26. It should be pointed out that, among numerous task
mapping schemes, the adopted approach focuses on the utilization of hardware
resources in Tile-0 and the modularity of the program structure. Briefly, the
processor works with one subcarrier in each clock cycle during the norm com-
putation of Q, whereas two subcarriers are processed in parallel during other
operations, i.e., column vector updates in Q and the computation of R . Upon

the completion of the matrix orthogonalization process, H−1 = 1/σnQbQ
H
a

is computed as a post-processing, required in the following symbol detection
(12). Considering the latency of the inverse square root operation, i.e., 3 clock
cycles computation latency (Section 4.4.1) plus 4 clock cycles communication

5. IMPLEMENTATION RESULTS AND COMPARISON 135

Table 11: Pseudo-code of MMSE-SQRD, computations performed in Tile-0.

for i = 1 : 50 do % Loop for 50 pairs of LTE-A resource blocks

for j = 1 : 4 do % 4 columns of H

for k = 1 : 2× 12 do % Processing one subcarrier per clock cycle

‘VDP(ab + e)’ to compute ξ =
[
‖q

j+1
‖22, ‖qj+2

‖22, . . . , ‖qN
‖22
]T

Sorting to obtain ξmin

end for

for k = 1 : 12 do % Processing two subcarriers per clock cycle

‘bc’ to compute q
j
= q

j
/rj,j

end for

for k = 1 : 12 do % Processing two subcarriers per clock cycle

for l = j + 1 : 4 do

‘VDP(ab + e)’ to compute rj,l = qH
j
q
l

end for

end for

for k = 1 : 12 do % Processing two subcarriers per clock cycle

for l = j + 1 : 4 do

‘a− bc’ to compute q
l
= q

l
− rj,lqj

end for

end for

end for

for j = 1 : 2× 12 do % Post-processing

‘VDP(ab + e)’ & ‘bc’ to compute H−1 = 1/σnQbQ
H
a

end for

end for

latency illustrated in Figure 35, two resource blocks are processed in each com-
putation step of MMSE-SQRD. Table 11 shows the pseudo-code of the task
mapping. Note that column permutations of matrices Q and R are realized by
manipulating the accessing indexes (Section 4.3.2) of matrix pages in Tile-1,
thus requiring no physical data exchanging.

136 PART III. MULTI-TASK MIMO SIGNAL PROCESSING

VWXYZ[
VWXYZ\]^_`a

^bcVWXYZd
768x128b

Buffer

N
o

d
e

P
er

t.

1280x128b

VMC-3

Buffer

SPC-1

256x32b
Candicate

VMC-1

MUX

ZP

R R

y

x̂

H−1

R |Rxp | ỹ −Rxp

Rxp | ỹ −Rxp

xp
xp

xMMSE
p

R H

1

1

2

3
4 4 | 6 | 8

4 | 6 | 8 :

5 | 7

5 | 7 :

9

Figure 36: Processing flow of the MMSE-NP based symbol detection
performed by the vector dataflow processor (Tile-0).

Symbol Detection

The MMSE-NP based symbol detection contains three main computation steps:
initial MMSE detection, symbol expansion and candidate vector generation,
and candidate evaluation. Among these, the second operation is performed by
the node perturbation unit in Tile-3, while the other two are handled by the
vector dataflow processor. Table 12 shows the pseudo-code of the computations
performed in the vector processor. In view of the latency of communication
between the vector processor and the node perturbation unit in Tile-3, see
Figure 36, 12 adjacent data-carrying subcarriers are processed in each compu-
tation step of MMSE-NP. For the target 20MHz LTE-A, each time slot has
7200 data-carrying subcarriers (Table 4), resulting in 7200/12 = 450 blocks to
be processed. To achieve high utilization of the CMAC bank in Tile-0, each
ED computation (16) during the evaluation of candidate vectors is performed

in three sub-steps: α = Rxp, β = ỹ − α, and vector norm ‖β‖22. In each
clock cycle, the computation of Rxp operates on two candidate vectors by us-
ing the concurrent candidate evaluation scheme (Section 4.5), while the other
two vector-based operations work with four candidates at a time. Upon the
completion of each vector norm computation ‖β‖22, the four candidate vectors
under evaluation are sorted in the post-processing cell in Tile-0. The one with
the smallest ED value is temporarily stored in the register bank for further
comparisons with other candidates. For Ω = [F, 4, 3, 2], there are in total 24
candidate vectors in each symbol detection, implying 24/4 = 6 temporarily
stored candidates at the end of the ED computation. The final detection out-

5. IMPLEMENTATION RESULTS AND COMPARISON 137

Table 12: Pseudo-code of symbol detection, computations performed in Tile-0.

for i = 1 : 7200/12 do % Loop for 7200/12 blocks

for j = 1 : 12 do % Loop for 12 subcarriers

‘VDP(ab + e)’ to compute xMMSE
p = H−1y

end for

for j = 1 : 12 do

‘VDP(ab + e)’ to compute ỹ = QH
a y

end for

for j = 1 : 12 do

for k = 1 : 24/2 do % Processing two Rxp per clock cycle

‘VDP(ab + e)’ to compute Rxp

end for

end for

for j = 1 : 12 do

for k = 1 : 24/4 do % Processing four ỹ −Rxp per clock cycle

‘a− b’ to compute ỹ −Rxp

end for

end for

for j = 1 : 12 do

for k = 1 : 24/4 do % Processing four ‖·‖22 per clock cycle

‘VDP(ab + e)’ to compute ‖ỹ −Rxp‖22 & sorting

end for

end for

for j = 1 : 12 do

for k = 1 : ⌈24/4/4⌉ do % Post-processing

Sorting to find x̂p = arg min
xp∈S

‖ỹ −Rxp‖22
end for

x̂ = Px̂p % Final detection output

end for

end for

put is obtained by comparing these 6 candidates, finding the one with the
smallest value, and loading the corresponding candidate vector from VMC-1
together with the permutation matrix (P in (5)) from VMC4. Finally, the
recovered transmitted vector x̂ with its original symbol sequence is sent out
through the hierarchical network.

138 PART III. MULTI-TASK MIMO SIGNAL PROCESSING

Table 13: Overhead analysis for the computation of MIMO signal processing.

Execution time Control time

[Clock cycle] [Clock cycle] Control overhead

Ch. Estimation 20,801 1,201 5.77%

QRD 22,451 851 3.79%

QRDa 15,101 701 4.64%

Detection 190,201 3,001 1.58%

Total 232,203 5,003 2.16%

a Without post-processing.

Miscellaneous Operations

Besides the aforementioned MIMO processing tasks, various miscellaneous op-
erations are required, e.g., memory initialization for the permutation matrix P

(5) and the augmented channel matrix Ĥ (6). These operations occupy only
a fraction of the total processing time and are performed in the beginning of
each processing iteration (i.e., time slot).

Results and Discussions

To assess the efficiency of the task mapping, control overhead is analyzed for
program executions on the vector dataflow processor. Here the control is de-
fined as non-computational operations, such as loop initializations and run-
time program updates. Table 13 lists the total execution time and the num-
ber of control operations required for accomplishing three MIMO processing
tasks. As can be seen, the total control overhead measured on the vector
dataflow processor is only about 2% of the total execution time, thanks to the
algorithm-architecture co-design. On the algorithm side, benefiting from the
adopted streaming-based processing flow in each individual task, branching
operations are completely eliminated, see Table 10−12. On the architecture
side, with the employed configurable instruction set architecture, the number
of hardware configurations (micro-codes) and program updates is substantially
reduced, since the data-path of the processor can be dynamically configured
to better suit target applications. Additionally, loop operations are assisted
by the deployed multi-level zero-delay inner loop controller, thus requiring no
manual loop manipulations from the user.

Table 14 summaries achieved performance of the three task mappings. Op-
erating at 500MHz, the total processing time for one LTE-A time slot is
469.72µS. This fulfills the real-time requirement of the target LTE-A setup,
i.e., titer ≤ tslot = 0.5mS (see Section 3.4), and results in about 6% spare time

5. IMPLEMENTATION RESULTS AND COMPARISON 139

Table 14: Performance summary of the MIMO signal processing.

Clock Time Powerb

Cycle/Op [µS] Throughput [mW] Energyb

Ch. Estimation 17.33 41.60 28.84MEst/s 276.24 9.58 nJ/Est

QRD 18.71 44.90 26.72MQRD/s 314.05 11.75 nJ/QRD

QRDa 12.63 30.30 39.60MQRD/s 315.36 7.96 nJ/QRD

Detection 26.42 380.40 454.26Mb/s 280.82 0.62 nJ/b

Miscellaneous 2.34 2.82 N/A 269.99 0.81 nJ/op

Total/Average 32.62 469.72 367.88Mb/s 306.84 0.83 nJ/b

a Without post-processing.
b With data buffers excluded.

that can be used to map more advanced algorithms or upgrade system param-
eters such as the Ω assignment in symbol detection. Based on the processing
time and the number of tones/bits required to compute, Table 14 presents the
corresponding throughput achieved in each task. On average, recovering one
transmitted vector x̂, with all three processing tasks involved, requires 32.62
clock cycles, which is equivalent to a throughput of 367.88Mb/s.

5.3 Computation Efficiency

To evaluate the computation efficiency of the array, resource utilization of the
SIMD core in Tile-0 is measured as a representative, since it contributes to
more than 90% of the total computation capacity. Thanks to the vector en-
hanced SIMD structure (Section 4.2.2) and the multi-stage computation chain
(Section 4.2.3), an average utilization of 77% is achieved during the whole
MIMO signal processing. Figure 37 reports a detailed utilization graph dur-
ing the computation of two LTE-A resource blocks. Among those tasks, the
miscellaneous processing shows the lowest utilization value, as the vector pro-
cessor during that time interval only performs simple operations, such as vector
scaling and data masking used for initializing registers and memory cells.

5.4 Power and Energy Consumption

Power consumption of the cell array is obtained from Synopsys PrimeTime
using the post-layout design annotated with switching activities. At 500MHz
with 1.2V supply voltage, the average power consumption for processing one
data-carrying tone is 548.78mW, including 306.84mW from the logic blocks
and 241.94mW from the data buffers. The corresponding energy consumption
for processing one information bit is 0.83 nJ/b and 1.49 nJ/b, without and

140 PART III. MULTI-TASK MIMO SIGNAL PROCESSING

200 400 600 800 1000 1200 1400
0

20

40

60

80

100

Clock cycle

R
e

so
u

rc
e

 u
ti

li
za

ti
o

n
[%

]

Misc.

39.87%

Ch. Est.

92.3%

QRD

78.57%

Detection

75.71%

Figure 37: Utilization of the SIMD core in Tile-0 during MIMO signal
processing of two LTE-A resource blocks (24 subcarriers). Horizontal
lines in the figure show the average utilization of the corresponding task.

with data buffers respectively. Table 14 summaries average power and energy
consumption of different tasks with data buffers excluded. As can be seen,
power consumption of different task mappings is quite balanced because of
the high computation efficiency of the cell array achieved by the algorithm-
architecture co-design.

To acquire a more comprehensive understanding of the power distribution, a
tile-level power breakdown of the array is listed in Table 9 and plotted in a pie-
diagram in Figure 38(a). Among all, Tile-0 is the most power consuming block,
because of the large area occupation and high resource utilization throughout
the whole processing period. Further, the power distribution in Tile-0 is pre-
sented in Figure 38(b). The SIMD core accounts for 50% of the power. The
register bank consumes only 16% thanks to that the developed multi-stage
computation chain substantially reduces intermediate result buffering. More-
over, the hierarchical network of the array consumes only ∼1% of the power
(Figure 38(a)), due to the high allocation of local data transfers. Worth men-
tioning is that no special low power physical design techniques, such as clock
and power gating and multiple power islands, are adopted in the current array.
Therefore, further power savings are possible with a more advanced back-end
design. Additionally, it should be pointed out that simulated power figures
from the post-layout design may be different for chip measurement results.

5. IMPLEMENTATION RESULTS AND COMPARISON 141

Tile-0,

53.75%

Tile-1 Vector,

1.95%

Tile-1

Matrix,

22.18%

Tile-2,

1.04%

Tile-3

Processor,

14.37%

Tile-3

Others,

5.53%

Network,

1.16%

(a)

Sequencer

20.68%

Program mem.

17.93%

Register bank,

15.42%
Pre-process,

2.54%

Core-process,

49.39%

Post-process,

2.93%

(b)

Figure 38: Power breakdown of (a) the reconfigurable cell array and (b)
the vector dataflow processor (Tile-0).

142 PART III. MULTI-TASK MIMO SIGNAL PROCESSING

5.5 Comparison and Discussion

In this section, implementation results and various performance metrics of the
cell array are summarized and compared with previously reported designs in
open literature. In fact, a fair quantitative comparison with related work is not
an easy task due to many different design factors, such as flexibility, algorithm
selection, performance, and operating scenario. Which platform/technology
to choose is highly dependent on design specifications such as system setup,
area and power budget, Quality of Service (QoS), and scalability requirements.
Therefore, the following discussion only serves to give an overview of the de-
sign efficiency for related implementations and aims to position the proposed
cell array with respect to different performance measures. To ease the discus-
sion, related hardware architectures are divided into three broad categories:
task specific accelerators (ASICs), programmable and reconfigurable platforms
(e.g., DSPs, FPGAs, and GPUs), and domain-specific reconfigurable platforms
(e.g., baseband processors).

To ensure a fair enough comparison, technology scaling is considered. Tak-
ing the employed setup “65 nm CMOS technology and 1.2V supply voltage”
as a reference, implementation results of all related work are normalized using
a process scaling factor s [118]. The definition of s and the normalization of
frequency, area, and power consumption are

s =
Techology

65 nm
,

Frequencynorm ≈ Frequency× s,

Areanorm ≈ Area× 1

s2
,

Powernorm ≈ Power× 1

s

(
1.2V

Voltage

)2

.

(26)

In Table 15-17, the cell array is compared with three aforementioned archi-
tecture categories, respectively. Their performances are evaluated by assessing
area and power efficiency as well as hardware flexibility.

5. IMPLEMENTATION RESULTS AND COMPARISON 143

T
a
b
le

1
5
:
C
o
m
p
a
ri
so
n
o
f
th
e
ce
ll
a
rr
ay

w
it
h
re
co
n
fi
g
u
ra
b
le

b
a
se
b
a
n
d
p
ro
ce
ss
o
rs
.

0
9
[6
2
]

1
0
[5
8
]

1
0
[1
1
9
]

0
8
[1
2
0
]

1
1
[6
7
]

1
0
[6
]

0
9
[1
2
1
]

T
h
is
w
o
rk

A
n
te
n
n
a

−
−

4
×
4

2
×
2

4
×
4

4
×
2

2
×
2

4
×
4

M
o
d
u
la
ti
o
n
(Q

A
M
)

6
4

N
/
A

−
6
4

6
4

N
/
A

N
/
A

6
4

M
a
p
p
in
g
(C

E
|Q

R
D
|D

T
)

X
|−

|X
X
|−

|X
−
|X

|−
−
|−

|X
−
|−

|X
X
|X

|X
X
|X

|X
X
|X

|X
T
ec
h
n
o
lo
g
y
[n
m
]

1
2
0

1
3
0

6
5

9
0

1
3
0

6
5

9
0

6
5

A
re
a
[m

m
2
]

1
1

1
1

N
/
A

N
/
A

N
/
A

1
6
.0
6
c

3
2

8
.8
8

G
a
te

co
u
n
t
[K

G
]

2
0
0
a

N
/
A

8
2
4
a

1
2
0
0

7
1
a

5
9
6
9
c

N
/
A

2
7
6
0

1
0
5
5
a

F
re
q
u
en
cy

[M
H
z]

7
0

3
0
0

2
3
4

6
0
0

2
7
7

4
0
0

4
0
0

5
0
0

P
ow

er
b
[m

W
]

3
7
.9
2

8
6
.4
0

1
6
9
a

6
4
2

2
0
.4
8
a

2
1
9
c

2
4
0

5
4
9

3
0
7
a

Throughput
b

C
h
.
E
st
.
[M

E
st
/
s]

N
/
A

N
/
A

−
−

−
N
/
A

N
/
A

2
8
.8
4

Q
R
D

[M
Q
R
D
/
s]

−
−

1
0
.6
4

−
−

3
9
.6
0

D
et
ec
ti
o
n
[M

b
/
s]

N
/
A

N
/
A

−
4
9
.6
0

1
3
4

4
5
4
.2
6

T
o
ta
l
[M

b
/
s]

5
8
.4
7

4
−

−
−

1
0
.8

1
5
0

3
6
7
.8
8

Area.Eff.
b

C
h
.
E
st
.
[K

E
st
/
s/
K
G
]

N
/
A

N
/
A

−
−

−
N
/
A

N
/
A

1
0
.4
5

2
7
.3
4
a

Q
R
D

[K
Q
R
D
/
s/
K
G
]

−
−

1
2
.9
1
a

−
−

1
4
.3
5

3
7
.5
4
a

D
et
ec
ti
o
n
[K

b
/
s/
K
G
]

N
/
A

N
/
A

−
4
1
.3
3

1
8
9
0
a

1
6
5

4
3
1
a

T
o
ta
l
[K

b
/
s/
K
G
]

2
9
2
.3
4
a

N
/
A

−
−

−
1
.8
1

N
/
A

1
3
3

3
4
9
a

Energy
b

C
h
.
E
st
.
[n
J
/
E
st
]

N
/
A

N
/
A

−
−

−
N
/
A

N
/
A

1
2
.7
0

9
.5
8
a

Q
R
D

[n
J
/
Q
R
D
]

−
−

1
5
.8
5
a

−
−

1
5
.2
7

7
.9
6
a

D
et
ec
ti
o
n
[n
J
/
b
]

N
/
A

N
/
A

−
1
.4
9

0
.3

a
0
.9
9

0
.6
2
a

T
o
ta
l
[n
J
/
b
]

1
.2

4
3
.2

−
−

−
N
/
A

2
.2
3

1
.4
9

0
.8
3
a

a
W

it
h
d
a
ta

b
u
ff
er
s
ex
cl
u
d
ed
.

b
N
o
rm

a
li
ze
d
to

6
5
n
m

w
it
h
1
.2
V

co
re

v
o
lt
a
g
e.

c
O
n
ly

co
u
n
te
d
re
le
va
n
t
p
a
rt
s
o
f
th
e
ch
ip
.

144 PART III. MULTI-TASK MIMO SIGNAL PROCESSING

T
a
b
le

1
6
:
C
o
m
p
a
ri
so
n
o
f
th
e
ce
ll
a
rr
ay

w
it
h
p
ro
g
ra
m
m
a
b
le

p
la
tf
o
rm

s.

0
8
[1
2
2
]

1
2
[1
2
3
]

0
9
[1
2
4
]

1
0
[1
2
5
]

1
2
[1
2
6
]

T
h
is

w
o
rk

P
la
tf
o
rm

F
P
G
A

D
S
P

C
P
U

G
P
U

G
P
U

G
P
U

G
P
U

R
ec
o
n
fi
g
.

A
n
te
n
n
a

4
×
4

4
×
4

4
×
4

2
×
2

4
×
4

4
×
4

M
o
d
u
la
ti
o
n
(Q

A
M
)

1
6

6
4

6
4

1
6

6
4

6
4

M
a
p
p
in
g
(C

E
|Q

R
D
|D

T
)

−
|−

|X
−
|−

|X
−
|−

|X
−
|−

|X
−
|X

|X
X
|X

|X
T
ec
h
n
o
lo
g
y
[n
m
]

1
3
0

1
8
0

4
5

4
0

6
5

8
0

4
0

6
5

A
re
a
[m

m
2
]

2
6
c

9
6
c

2
9
6

5
2
9

1
9
6

N
/
A

3
0
6
.8
2
c

8
.8
8

G
a
te

co
u
n
t
[K

G
]

N
/
A

N
/
A

1
.9
4
e5

7
.7
5
e5

1
.2
6
e5

2
.3
9
e5

c
4
.5
e5

c
2
7
6
0

1
0
5
5
a

F
re
q
u
en
cy

[M
H
z]

2
5
1

2
0
0

3
0
7
0

1
1
5
0

1
9
0
0

9
2
0

1
1
5
0

5
0
0

P
ow

er
b
[m

W
]

6
2
4
c

3
1
1
c

1
0
1
e3

5
5
7
e3

1
3
7
e3

9
6
0
0
c

3
2
3
e3

c
5
4
9

3
0
7
a

Throughput
b

C
h
.
E
st
.
[M

E
st
/
s]

−
−

−
−

−
−

−
2
8
.8
4

Q
R
D

[M
Q
R
D
/
s]

−
−

−
−

−
−

N
/
A

3
9
.6
0

D
et
ec
ti
o
n
[M

b
/
s]

1
6
3

1
0
.1
4

0
.1
8

6
6
.0
9

1
2
.6
8

4
4
.3
8

1
0
.5
8

4
5
4
.2
6

T
o
ta
l
[M

b
/
s]

−
−

−
−

−
−

−
3
6
7
.8
8

Area.Eff.
b

C
h
.
E
st
.
[K

E
st
/
s/
K
G
]

−
−

−
−

−
−

−
1
0
.4
5

2
7
.3
4
a

Q
R
D

[K
Q
R
D
/
s/
K
G
]

−
−

−
−

−
−

N
/
A

1
4
.3
5

3
7
.5
4
a

D
et
ec
ti
o
n
[K

b
/
s/
K
G
]

N
/
A

N
/
A

9
.2
9
e-
4

0
.0
8
5
3

0
.1

0
.1
8
6
c

0
.0
2
3
5
c

1
6
5

4
3
1
a

T
o
ta
l
[K

b
/
s/
K
G
]

−
−

−
−

−
−

−
1
3
3

3
4
9
a

Energy
b

C
h
.
E
st
.
[n
J
/
E
st
]

−
−

−
−

−
−

−
1
2
.7
0

9
.5
8
a

Q
R
D

[n
J
/
Q
R
D
]

−
−

−
−

−
−

N
/
A

1
5
.2
7

7
.9
6
a

D
et
ec
ti
o
n
[n
J
/
b
]

1
.3
2
c

9
.1
5
c

3
.8
8
e5

1
.2
4
e5

2
.4
7
e5

2
.1
3
e3

c
3
.7
9
e6

c
0
.9
9

0
.6
2
a

T
o
ta
l
[n
J
/
b
]

−
−

−
−

−
−

−
1
.4
9

0
.8
3
a

a
W

it
h
d
a
ta

b
u
ff
er
s
ex
cl
u
d
ed
.

b
N
o
rm

a
li
ze
d
to

6
5
n
m

w
it
h
1
.2
V

co
re

v
o
lt
a
g
e.

c
O
n
ly

co
u
n
te
d
re
le
va
n
t
p
a
rt
s
o
f
th
e
ch
ip
.

5. IMPLEMENTATION RESULTS AND COMPARISON 145

T
a
b
le

1
7
:
C
o
m
p
a
ri
so
n
o
f
th
e
ce
ll
a
rr
ay

w
it
h
A
S
IC

im
p
le
m
en
ta
ti
o
n
s.

1
1
[1
2
7
]

1
3
[1
2
8
]

1
0
[1
2
9
]

1
3
[1
3
0
]

1
0
[1
1
2
]

1
3
[1
3
1
]

1
1
[1
3
2
]

T
h
is
w
o
rk

P
la
tf
o
rm

A
S
IC

R
ec
o
n
fi
g
.

A
n
te
n
n
a

−
−

4
×
4

4
×
4

4
×
4

4
×
4

4
×
4

4
×
4

M
o
d
u
la
ti
o
n
(Q

A
M
)

−
−

−
−

6
4

6
4

6
4

6
4

M
a
p
p
in
g
(C

E
|Q

R
D
|D

T
)

X
|−

|−
X
|−

|−
−
|X

|−
−
|X

|−
−
|−

|X
−
|−

|X
X
|X

|X
X
|X

|X
T
ec
h
n
o
lo
g
y
[n
m
]

6
5

6
5

1
8
0

1
3
0

1
3
0

1
3
0

9
0

6
5

A
re
a
[m

m
2
]

0
.6
8
a
,c

2
.5
6
a
,c

N
/
A

0
.3

a
3
.9

a
N
/
A

2
.0
2
a

8
.8
8

G
a
te

co
u
n
t
[K

G
]

3
2
5
a
,c

5
6
3
a
,c

1
2
7
.5

a
3
6
a

4
9
1
a

3
4
0
a

5
0
5
a

2
7
6
0

1
0
5
5
a

F
re
q
u
en
cy

[M
H
z]

2
5
0

7
0

4
0
0

2
7
8

1
3
7
.5

4
1
7

1
1
4

5
0
0

P
ow

er
b
[m

W
]

1
5
4
a
,c

7
3
.1
6
a
,c

6
.1

a
1
9
.9
2
a

6
3
.6

a
5
5
a

5
9
.0
7
a

5
4
9

3
0
7
a

Throughput
b

C
h
.
E
st
.
[M

E
st
/
s]

7
8

1
1
.8
8

−
−

−
−

N
/
A

2
8
.8
4

Q
R
D

[M
Q
R
D
/
s]

−
−

7
.9
1

1
3
.9

−
−

3
9
.4
6

3
9
.6
0

D
et
ec
ti
o
n
[M

b
/
s]

−
−

−
−

2
2
0
0

2
0
0
0

N
/
A

4
5
4
.2
6

T
o
ta
l
[M

b
/
s]

−
−

−
−

−
−

9
4
7

3
6
7
.8
8

Area.Eff.
b

C
h
.
E
st
.
[K

E
st
/
s/
K
G
]

2
4
0
a
,c

2
1
.0
9
a
,c

−
−

−
−

N
/
A

1
0
.4
5

2
7
.3
4
a

Q
R
D

[K
Q
R
D
/
s/
K
G
]

−
−

6
2
.0
6
a

3
8
6
a

−
−

7
8
.1
4
a

1
4
.3
5

3
7
.5
4
a

D
et
ec
ti
o
n
[K

b
/
s/
K
G
]

−
−

−
−

4
4
8
0
a

5
8
8
2
a

N
/
A

1
6
5

4
3
1
a

T
o
ta
l
[K

b
/
s/
K
G
]

−
−

−
−

−
−

1
8
7
5
a

1
3
3

3
4
9
a

Energy
b

C
h
.
E
st
.
[n
J
/
E
st
]

1
.9
7
a
,c

6
.8
4
a
,c

−
−

−
−

N
/
A

1
2
.7
0

9
.5
8
a

Q
R
D

[n
J
/
Q
R
D
]

−
−

0
.5
3
a

2
.8
7
a

−
−

N
/
A

1
5
.2
7

7
.9
6
a

D
et
ec
ti
o
n
[n
J
/
b
]

−
−

−
−

0
.0
5
8
a

0
.0
5
5
a

N
/
A

0
.9
9

0
.6
2
a

T
o
ta
l
[n
J
/
b
]

−
−

−
−

−
−

2
.0
7
a

1
.4
9

0
.8
3
a

a
W

it
h
d
a
ta

b
u
ff
er
s
ex
cl
u
d
ed
.

b
N
o
rm

a
li
ze
d
to

6
5
n
m

w
it
h
1
.2
V

co
re

v
o
lt
a
g
e.

c
S
ca
le
d
u
p
to

4
×
4
M
IM

O
co
n
fi
g
u
ra
ti
o
n
:
{a

re
a
,p
ow

er
}
∝

d
,
w
h
er
e
d
=

4
/
#
R
x
-a
n
te
n
n
a.

146 PART III. MULTI-TASK MIMO SIGNAL PROCESSING

Area Efficiency

Area efficiency is calculated by normalizing the throughput of each processing
task to the corresponding hardware consumption. The proposed solution ac-
complishes three tasks within the tight timing constraint of the 20MHz 4×4
MIMO 64-QAM LTE-A downlink, thanks to the algorithm-architecture co-
design, which has more than 98% of the total operations mapped onto the vec-
tor processor for exploiting extensive DLP and attaining high resource sharing.
Compared to other implementations in Table 15, which adopt either lower-
dimensions of MIMO configurations or mapping of a single task, the cell ar-
ray achieves the highest throughput and shows superior area efficiency. Note
that [62] and [58] in Table 15 are employed in single-antenna systems, Dig-
ital Video Broadcasting (DVB) and Wideband Code Division Multiple Ac-
cess (WCDMA), respectively. According to [60], the performance required for
WCDMA is less than 10% of the one needed for 4×2 MIMO 3GPP LTE deliv-
ering 10Mbps. Thereby, their results cannot be directly compared with those
of the baseband processing in MIMO systems. Here, they are included for
references only.

Compared to programmable and reconfigurable platforms in Table 16, the
processing throughput of the cell array is 2.8 and 45 times higher than that
of the FPGA and the DSP solution [122], respectively. Besides, its area effi-
ciency outperforms the GPU and CPU approaches by 3−5 orders of magnitude.
It is interesting to note that GPU implementations only achieve a maximum
of 66Mb/s detection throughput, even though they are equipped with enor-
mous parallel computing capacity. For example, the Nvidia Tesla C2070 GPU
used in [126] consists of 14 stream multiprocessors, each containing 32 CUDA
cores running at 1.15 GHz, and 6GB of global memory. The low throughput
of GPU implementations is mainly caused by the essential difference between
wireless baseband processing and graphic computing. GPUs are competent for
the latter one. In the wireless communication millions of vectors/matrices with
small size have to be handled in parallel, whereas in the graphic computing a
large matrix needs to be processed just once in a single application. According
to [124], [125], and [126], bottlenecks in their design are the limited register
resources and memory access bandwidth for each thread processing. In conse-
quence, it is hard to get even half of the CUDA cores utilized for the mapped
processing tasks. These show the importance of architectural customization
for intended application domains, although algorithm selections and mapping
optimizations may affect the implementation results.

Furthermore, compared to ASIC solutions in Table 17, 1.7−13.6 times
of difference in area efficiency is observed for each individual task mapping.
The result of [128] reveals a slightly lower efficiency value than that of the

5. IMPLEMENTATION RESULTS AND COMPARISON 147

cell array, since it performs data-tone channel estimation in the time-domain
by reconstructing the channel impulse response. Compared to the adopted
frequency-domain H interpolation that relies on the correlation properties be-
tween neighboring subcarriers, the time-domain channel reconstruction leads
to better estimation results especially when the cyclic prefix is long. However,
this performance gain comes at the cost of higher computational complexity
and lower throughput, due to involved time-frequency domain transformations
and iterative processing during channel reconstruction.

Energy Efficiency

Besides the area and throughput evaluation, energy consumption per opera-
tion is another important measure for baseband processing. In comparison
to related implementations in Table 15, similar energy figures are observed.
However, it should be mentioned that the cell array operates in a more com-
plicated system setup (4×4 MIMO vs. 2×2 in [120] and [121] and 4×2 in [6])
and has more tasks assigned at the same time. Compared to ASICs, the cell
array consumes 1.4−15 times more energy for performing each individual task,
whereas a 1.3 and 9 times energy gain is obtained in comparison to the FPGA
and the DSP solution, which support only up to 16-QAM detection. More-
over, its energy efficiency outperforms the GPU and CPU approaches by more
than 5 orders of magnitude. Such high energy efficiency is achieved mainly by
three key hardware developments in the array: the architecture partitioning
for attaining efficient vector and scalar processing without frequent data align-
ments, the vector enhancements in Tile-0 for reducing register accesses, and
the flexible memory access schemes in memory cells for relieving most of the
non-computational operations from processing cores.

To better visualize the position of the cell array in comparison to other
hardware platforms, implementations presented in Table 15-17 are plotted in
an area-energy chart, see Figure 39. It clearly shows that the cell array is
superior to programmable platforms and achieves an ASIC-like area and energy
efficiency. It is worthwhile to re-emphasize here that the proposed solution,
contrasts to other works, is capable of performing all three MIMO processing
tasks in the target 4×4 MIMO 64-QAM 20MHz LTE-A system.

Hardware Flexibility

In addition to the efficiency analysis, this section discusses the flexibility of
the cell array. Among the three architecture categories, programmable plat-
forms offer the greatest flexibility, while ASICs are designed for specific system
setups but reveal the highest hardware efficiency. The baseband processors pro-
vide palatable flexibility-efficiency trade-offs between the two aforementioned

148 PART III. MULTI-TASK MIMO SIGNAL PROCESSING

10
-4

10
-2

10
0

10
2

10
4

10
0

10
5

10
10

Area efficiency [Kb/s/KG]

E
n

e
rg

y
 e

ff
ic

ie
n

cy
 [

p
J/

b
]

CPU

GPU

Baseband processor

ASIC

Cell array

This work

More area efficient

M
o

re
 e

n
e

rg
y

 e
ff

ic
ie

n
t

Figure 39: Area and energy efficiency of the cell array in comparison to
other hardware platforms.

platforms. On one hand, they offer good flexibility as programmable plat-
forms do, but often require more sophisticated software developments, such
as low-level programming in domain-specific languages and manual algorithm
mappings [62, 66, 67]. On the other hand, their hardware efficiency is largely
improved compared to programmable platforms, thanks to their architecture
customization and instruction-level accelerations [61]. In this work, the flexi-
bility is demonstrated by time-multiplexing three different tasks onto one re-
configurable cell array. Additionally, by making use of the dynamic resource
allocations, the platform has the potential to support other system configu-
rations, such as processing of different modulation and antenna setups; sup-
port of different standards; mapping of different algorithms e.g., non-sorted or
iterative-sorted QRD and linear MMSE or SSFE [53] detection; run-time adap-
tion of system performance, e.g., adjusting the frequency of channel estimation
and detection parameters.

In the following section, the flexibility of the cell array is further illus-
trated by mapping a hybrid decomposition scheme for performing channel pre-
processing. It is aimed to provide a wide range of performance-complexity
trade-offs for coping with constantly changing wireless channels. Briefly, the
proposed scheme dynamically switches between the brute-force SQRD (Sec-
tion 2.2) and a low-complexity group-sort QR-update scheme, based on instan-
taneous channel condition.

6. ADAPTIVE CHANNEL PRE-PROCESSOR 149

6 Adaptive Channel Pre-processor

For the discussions in the previous sections, the propagation channels were
assumed to be quasi-static within one LTE-A time slot (0.5ms). However,
Channel State Information (CSI) of real-world radio channels are rarely con-
stant because of Doppler induced channel changes and multi-path propagation.
Outdated CSI introduces additional interferences to the following symbol de-
tection, resulting in drastic degradation of MIMO performance. Thus, frequent
CSI update and the corresponding channel pre-processing are highly desirable
in wireless communication systems to provide symbol detectors with adequate
channel knowledge.

Using the channel’s time correlation, tracking of CSI changes can be achieved
using low-complexity decision-directed algorithms such as Least Mean Square
(LMS), Recursive Least Square (RLS), and Kalman filtering [133,134]. Never-
theless, continuous CSI tracking has not been widely adopted in practical sys-
tems. This is due to the fact that each CSI update requires compute-intensive
channel pre-processing, either QRD or channel matrix inversion, which has
computational complexity of O(N3) for an N × N MIMO system and con-
sumes more energy than that of symbol detectors (see Table 17). To address
the complexity and energy issue, [134] proposed an approximated QRD method
to avoid exact tone-by-tone QRD computations during successive channel ma-
trix updates. The presented method is based on the assumption that 1) the
orthogonality of column vectors in Q remains unchanged during successive CSI
updates; and 2) any change in channel matrix is represented as norm value vari-
ations in R. Although this tracking-R (hold-Q) scheme achieves a substantial
complexity reduction, it results in a huge performance loss due to the out-of-
date Q information, especially in fast-changing channels. Additionally, channel
sorting was not considered in [134].

In this section, an adaptive channel pre-processor using a hybrid decom-
position scheme with group-sort QR-update strategy is presented and mapped
onto the cell array. By fully exploiting the property of the LTE-A pilot pat-
tern, i.e., CSIs of only antenna port 0 and 1 are changed during half-H renewals
(Figure 40), the proposed QR-update scheme computes exact Q and R ma-
trices using only one Givens rotation. Compared to brute-force QRDs, this
update strategy significantly reduces the computational complexity, while pre-
serving the accuracy by avoiding the approximations as in the aforementioned
tracking algorithms. To obtain the low-complexity benefit of the introduced
update scheme in the context of SQRD, an effective group-sort algorithm is
proposed for channel reordering. The underlying idea is to restrict the sorting
into groups of antenna ports, wherein a two-step (intra- and inter-group) sort-
ing is applied to approximate the optimal detection order. Using the group-sort

150 PART III. MULTI-TASK MIMO SIGNAL PROCESSING

0 0

P

P

P

Pe fg hffijklgme fg hffijklgnP

P

P

Pilot tone
opqprspt uvwxy yxzp{|y| yxzp

P

P

P

P

P
e fg hffijklg}e fg hffijklg~
P

�v�p� lh��hf�� ������ �������
Figure 40: Scattered pilot pattern of LTE-A for four antenna ports. Sym-
bol positions of half-H renewals are circled in dashed lines.

method, applicability of the QR-update is significantly expanded with negligi-
ble performance degradation compared to the precise sorting counterpart.

To ease the discussions, the SQRD algorithm is used as a case study in
the following sections. However, the presented methods can be applied to the
MMSE-SQRD case by working with the augmented matrix Ĥ instead of Ĥ .

6.1 QR-update Scheme

If only parts of the matrix columns alter over time, QRD of the new matrix can
be performed in a more efficient way than a brute-force computation (referred to
as Case-I), i.e., starting from scratch using Algorithm 1. Inspired by this, a low-
complexity QR-update scheme is adopted during half-H renewals. Specifically,
the proposed scheme starts with the brute-force SQRD during full-H renewals,
expressed with a subscript “old” as

Ĥp,old = QoldRold, (27)

where Ĥp is the permuted channel matrix (5). During half-H renewals, Ĥp,new

is obtained by updating two columns of Ĥp,old. Although orthogonal vectors in

Qold may no longer triangularize Ĥp,new, it may still have vectors pointing in

the correct directions. As a consequence, the new R matrix, denoted as R̃new,
can be expressed using Ĥp,new and Qold as

R̃new = QH
oldĤp,new. (28)

6. ADAPTIVE CHANNEL PRE-PROCESSOR 151

Due to the outdated Qold, R̃new is no longer an upper-triangular matrix but
may still reveal some upper-triangular properties depending on the positions
of the two renewed columns. Specifically, if column changes take place at the
right-most of Ĥp,new, only one element in the lower triangular part of R̃new

(i.e., r̃new(4,3) for 4×4 MIMO) becomes non-zero. This implies that triangu-

larization of R̃new can be significantly simplified by nulling the single non-zero
element rather than operating on all columns afresh. Defining G as a complex-
valued nulling matrix

G =

1 0 0 0
0 1 0 0
0 0 c s∗

0 0 −s∗ c∗

 , (29)

R̃new can be triangularized by computing GR̃new. In (29), (·)∗ denotes the
complex conjugate. c and s are defined as

c = r̃∗new(3,3)/z,

s = r̃∗new(4,3)/z,

z =
(
|r̃new(3,3)|2 + |r̃new(4,3)|2

)1/2
.

(30)

This nulling process is commonly referred to as Givens rotation [108]. After
triangularizing R̃new, exact Qnew and Rnew are obtained, expressed as

Qnew =
(
GQH

old

)H
,

Rnew = GR̃new = G
(
QH

oldĤp,new

)
.

(31)

It should be pointed out that the lower-right diagonal element of Rnew in (31),
i.e., rnew(4,4), has been transformed from real to complex-valued domain during
the QR updates. This can be easily resolved by performing an additional real-
valued domain-transformation using another nulling matrix G′ [107], if real-
valued diagonal elements are required. The matrix G′ is defined as

G′ =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 c′

 , (32)

where

c′ = r̃∗new(4,4)/|r̃new(4,4)|. (33)

152 PART III. MULTI-TASK MIMO SIGNAL PROCESSING

By combining the traditional brute-force approach and the QR-update
scheme, a hybrid decomposition algorithm is formed. Depending on run-time
conditions of the channel reordering, the two schemes can be dynamically
switched to reduce the computational complexity. Obviously, the complex-
ity reduction depends on the applicability of the QR-update. Intuitively, the
position of antenna port 0 and 1 can be fixed to the right-most part of Ĥp,new in
order to obtain a maximum complexity gain, since it completely avoids brute-
force computation during half-H renewals. However, the advantage of channel
reordering, for improving detection performance, is lost. This approach is re-
ferred to as Case-II. On the other hand (Case-III), the applicability of the
QR-update is dramatically reduced if channel columns are permuted based on
the optimal detection order without considering the position of renewed channel
columns. For example, considering the 4×4 MIMO LTE-A, only (2!2!)/4! = 1/6
of sorting combinations meet the required update condition, thus limiting the
complexity reduction. As a consequence, a smart scheduling strategy is needed
to explore the low-complexity potential of the QR-update, while still retaining
the performance gain of the optimal channel reordering.

6.2 Group-sort Algorithm

To fulfil the aforementioned requirement, an effective group-sort algorithm is
proposed for channel reordering. Instead of operating on individual columns,
sorting of Ĥ is applied on two virtual groups, wherein columns associated with
antenna ports 0 and 1 are tied together. This way, the number of combinations
of “columns” is reduced from 4! to 2!. Consequently, the probability of having
both altered columns at the right-most part of Ĥp,new is increased by 3 times,
from 1/6 to 1/2. To reduce errors caused by sub-optimal sorting sequences, a
two-step sorting scheme is adopted. First, the sorting between groups is based
on the total energy of bundled columns as

I = argmaxi={0,1},{2,3}

∑
i
‖ĥp(i)‖2, (34)

where I contains inter-sorted group indexes, e.g., I = {0, 1} if antenna ports
0 and 1 correspond to the strongest channels. Second, the two columns within
each group, e.g., indexes within I, are intra-sorted based on the energy of
individual columns. To summarize, Table 18 lists applicability of all the four
cases of the hybrid decomposition algorithm. The proposed group-sort method
is denoted by Case-IV.

6.3 Algorithm Evaluation and Operation Analysis

To illustrate the effectiveness of the proposed algorithm, the same simulation
setup as the one presented in Section 3.1 with parameters in Table 1 is em-

6. ADAPTIVE CHANNEL PRE-PROCESSOR 153

Table 18: Case-I−IV of the proposed hybrid decomposition algorithm

Channel reordering Brute-force QR-update

Case-I Optimal ordering with precise sorting 100% 0%

Case-II Fixed order for antenna port 0 and 1 0% 100%

Case-III Optimal ordering with precise sorting 83.33% 16.67%

Case-IV Group-sort 50% 50%

18 20 22 24 26
10

-3

10
-2

10
-1

10
0

SNR [dB]

F
E

R

Case-III (I), precise-sort

Case-IV, group-sort

Case-II, fixed-order

No QR updates

QR-update

during half-H renewal

No QR updates

During half-H renewal

Gain to

fixed-order

Figure 41: Simulated FERs in a 4×4MIMO LTE-A downlink using 3GPP
EVA-70 channel model with 64-QAM modulation.

ployed, but the variant channel modelling is used in this case for emulating
time-variations of radio channels. At 2.6GHz carrier frequency, the maximum
Doppler frequency of 70Hz corresponds to a speed of 29Km/hour. To minimize
performance influences from channel estimation and symbol detection, perfect
channel knowledge is assumed at the receiver and the near-ML FSD algorithm
is used for detecting symbols.

Performance of the proposed group-sort QR-update and aforementioned
cases are shown in Figure 41. Note that Case-III has the same performance as
the brute-force approach and is used as a reference for FER measurements. The
difference in performance is remarkable between Case-III and the case where
no QRDs are performed during half-H renewals (the upper curve in Figure 41),
indicating the importance of performing CSI and QR updates even for channels

154 PART III. MULTI-TASK MIMO SIGNAL PROCESSING

Table 19: Complexity of computations in the hybrid decomposition algorithm

Complexity Computation Multiplication 1/
√
x

C1 QRD (27) N3 + 2N2 N

C2 QH
oldĤp,new (28) 1

2N
3 0

C3 Triangularization (29)−(31) N2 + 2N 1

C4 Sorting (Algorithm 1 line 3 and 12) 6N 0

C5 Sorting (34) 4N 0

Table 20: Complexity and performance comparisons of Case-I−IV

Complexity Complexity reduction SNR degradation

Case-I C1 + C4 − (ref.) − (ref.)

Case-II C2 + C3 53% 1.1 dB

Case-III 5
6C1 + 1

6 (C2 + C3) + C4 6% 0 dB

Case-IV 1
2C1 + 1

2 (C2 + C3) + C5 23% 0.2 dB

with moderate Doppler shifts. Additionally, adoption of channel reordering
during QR decomposition improves on the fixed-order approach in performance,
e.g., 1.1 dB difference between Case-II and III at FER=10−2. Furthermore, the
group-sort approach has only small performance degradation of about 0.2 dB
compared to Case-III, however, with a large complexity reduction as analyzed
in the following.

Table 19 summaries complexity (C) of computations (27)−(31) and (34)
for an N ×N MIMO system. To perform the brute-force decomposition (27),
MGS algorithm (Algorithm 1) is considered which has a complexity of C1.
Computations required for both (28) and (31) have a total complexity of C2+C3,
which is significantly lower than C1, e.g., by about 42% for N = 4. Note that
the product ofQH

oldĤp,new in (28) requires only half of the matrix computations

during QR updates, since only two columns change in Ĥp,new. The complexity
of the precise-iterative-sort and the group-sort approach is denoted as C4 and
C5, respectively. Based on this analysis and in reference to Case-I, Table 20
shows the complexity reduction versus performance degradation of Case-II−IV
for a 4×4 MIMO system. It shows that Case-II reduces the computational
complexity by 53%. Additionally, combining the group-sort and the QR-update
scheme results in more palatable trade-offs, i.e., 23% complexity reduction for
only 0.2 dB performance degradation.

6. ADAPTIVE CHANNEL PRE-PROCESSOR 155

Table 21: Operation profile of the hybrid decomposition algorithm for N = 4

Vector operations
1/

√
x

A ·B A
⊙

B A±B

QRD (27) 17 4 6 4

QH
oldĤp,new (28) 8 0 0 0

Triangularization (29)−(31) 10 0 0 1

Sorting (34) 4 0 0 0

To further evaluate the hardware friendliness of the proposed algorithm and
the possibility of being mapped onto the cell array, operations required in the
four computations (Table 19) are profiled, see Table 21. It clearly shows that
all operations required in the group-sort QR-update algorithm are shared with
that of the brute-force method. This implies that extensive hardware reuse is
possible. Additionally, over 95% of the operations are at vector level, repre-
senting a high degree of DLP that can be exploited to achieve high processing
throughput.

6.4 Implementation Results and Discussion

It is straightforward to implement the adaptive channel pre-processor onto the
cell array using the hybrid decomposition scheme, Case-I−IV in Table 18, since
all the required operations (Table 21) have already been mapped for the SQRD
computation. Similar to the task mapping scheme presented in the previous
section, multi-subcarrier processing is adopted for attaining high throughput
and is scheduled based on the LTE-A resource block. Worth mentioning is
that Givens rotation (31) can be implemented in different ways, such as using
conventional arithmetic or through a series of CORDIC operations [107]. In
Part II, the CORDIC algorithm has been mapped onto the scalar processing
cell for computing the phase value of received symbols. However, each compu-
tation required several clock cycle to complete because of the iterative nature
of the CORDIC. Evidently, adopting the CORDIC approach in the QR-update
computation would make the triangularization process an implementation bot-
tleneck. Hence, the Givens rotation is realized by using conventional arith-
metics, where c and s in (30) are computed by the dedicated inverse square
root unit available in Tile-3.

Table 22 summaries implementation results for the brute-force and the QR-
update computations. Operating at 500MHz, processing throughput of the
QR-update is 2.6 times higher than that of the brute-force approach. Moreover,

156 PART III. MULTI-TASK MIMO SIGNAL PROCESSING

Table 22: Performance summary of the hybrid decomposition scheme.

Clock Throughput Energya

Cycle/Op [MQRD/s] [nJ/QRD]

Brute-force SQRD 12.63 39.60 7.96

Group-sort QR-update 4.83 103.45 4.29

a With data buffers excluded.

M
o

re
 e

n
e

rg
y
 e

ff
ic

ie
n

t

Better performance

0 0.5 1 1.5

0

10

20

30

40

50

SNR degradation [dB] @ FER=10
-2

E
n

e
rg

y
 r

e
d

u
ct

io
n

 [
%

]

Case-I

Case-III

Case-IV

Case-II

Proposed Q
R-update

[E]: 46.07 %

[P]: 1.1 dB

[E]: 23.04 %

[P]: 0.2 dB

[E]: 7.68 %

[P]: 0 dB

Figure 42: Energy (E) and performance (P) trade-off for Case-I−IV of
the hybrid decomposition scheme.

it reduces the energy consumption by 1.9 times. It should be pointed out that
further energy reduction is possible if fine-grained low power design techniques
are employed. For example, the computation of Qnew (31) can be performed
more efficiently if half of the SIMD core in Tile-0 could be clock gated, because
of the zero elements in the nulling matrix G.

Figure 42 presents design trade-offs between energy and performance for
Case-I−IV of the hybrid decomposition scheme. Taking the brute-force QRD
(Case-I) as a reference, numbers on the horizontal axis measures the SNR
degradation for reaching the target 10−2 FER, while the percentage of energy
reduction is shown on the vertical axis. Accordingly, algorithms having their
coordinates towards the bottom-left corner are desired. Figure 42 clearly shows
that the proposed group-sort QR-update scheme (Case-IV) achieves a good

7. SUMMARY 157

compromise, i.e., trading 0.2 dB performance for 23% energy reduction. In
the case of energy-constrained systems, the fixed-order scheme (Case-II) can
be adopted to further reduce the energy consumption, i.e., by 46% in total,
whereas the precise-sort scheme (Case-III) can be used if high performance is
demanded. Benefiting from the flexibility of the cell array, the selection of
the algorithm can be made at system run-time, depending on instantaneous
channel condition, performance requirement, and power budget.

7 Summary

This part presents a reconfigurable baseband processor designed based on the
heterogeneous cell array architecture. The performance and flexibility of the
proposed solution is exhibited by mapping three crucial baseband process-
ing blocks onto the processor, while the capability of real-time processing in
an LTE-A downlink is demonstrated. Such high processing performance is
achieved by algorithm-architecture co-design. On the algorithm side, more than
98% of total operations in all three tasks are unified to a vector-level, enabling
extensive parallel processing and resource sharing for attaining high hardware
efficiency. Further achievements in area and energy efficiency are enabled by
architectural developments, including the heterogeneous resource deployments,
vector enhancements of the processing core, and flexible self-governed memory
data access schemes. Implementation results show that the proposed proces-
sor bridges the gap between conventional platforms. The processor provides
enormous design flexibility and scalability like programmable platforms, while
approaching the area and energy efficiency of task specific ASIC solutions. In
addition to the multi-task MIMO processing, the flexibility of the cell array is
demonstrated by mapping an adaptive channel pre-processor. Taking advan-
tage of dynamic resource allocations, a wide range of performance-complexity
trade-offs are provided, so that an appropriate pre-processing algorithm can be
selected at run-time based on instantaneous channel condition.

Conclusion and Outlook

Coarse-Grained Reconfigurable Architectures (CGRAs) emerge as a new class
of hardware platforms, designed to bridge the gap of computational perfor-
mance, hardware efficiency and flexibility among conventional architectures
such as Application-Specific Integrated Circuits (ASICs), Field-Programmable
Gate Arrays (FPGAs), and Digital Signal Processors (DSPs). The strength of
CGRAs lies in the capability of allocating hardware resources dynamically to
accomplish current computational demands. In addition, hardware efficiency
with respect to area and power consumption is substantially improved in com-
parison to FPGAs, thanks to the word-level data manipulations.

In this thesis, a dynamically reconfigurable cell array architecture is pro-
posed, developed, and verified in silicon with a primary focus on digital base-
band processing in wireless communication. The proposed cell array archi-
tecture is constructed from an array of processing and memory cells intercon-
nected through a hierarchical easily-scalable on-chip network. High hardware
efficiency is attained by conducting algorithm-architecture, hardware-software,
and processing-memory co-design. The performance and flexibility of the cell
array are demonstrated through two case studies.

In the first study, the cell array is designed to process multiple radio stan-
dards concurrently, aiming to demonstrate the flexibility of the architecture and
evaluate the control overhead, in terms of clock cycles and area consumption,
of hardware reconfigurations. With a 2×2 cell array, three contemporary wire-
less communication standards are supported and two independent data streams
from any of the three standards can be processed concurrently. Depending on
the number of receiving data streams, the cell array dynamically adjusts its un-
derlying hardware resources to maximize hardware usage for achieving either
high computational accuracy or processing concurrence. In addition to resource
sharing among multiple radio standards, hardware flexibility is demonstrated
by mapping a different algorithm onto the same platform after chip fabrica-
tion. The adoption of the new algorithm extends the coverage of standards to
be supported. Thanks to the employed in-cell configuration scheme, run-time
context switching between different operation scenarios requires at most 11
clock cycles, which correspond to the configuration time of ∼34nS at 320MHz.
Implementation results show that the adoption of the cell array in a digital
front-end receiver requires only about 16% area overhead in comparison to its
ASIC counterpart.

The second study deals with multi-task processing, aiming to demonstrate
the flexibility and real-time processing capability of the cell array as well as to

159

160 PART III. MULTI-TASK MIMO SIGNAL PROCESSING

evaluate the area and energy efficiency. To this end, three crucial and compute-
intensive baseband processing blocks in 4×4 MIMO-OFDM systems, namely
channel estimation, pre-processing, and symbol detection, are mapped onto the
cell array. Benefiting from algorithm-architecture co-design, the cell array is
capable of processing all the target tasks in real-time for a 20MHz 64-QAM
3GPP LTE-A downlink. On the the algorithm side, most of the operations are
unified to vector-level, which enables extensive parallel processing and resource
sharing for attaining high hardware efficiency. On the architecture side, the
cell array is extended with extensive vector computing capabilities, including
vector-enhanced SIMD cores and VLIW-style multi-stage computation chain.
This is done in order to achieve low-latency high-throughput vector computing
and reduce register/memory access for loading and storing intermediate results.
In addition, flexible memory access schemes are adopted to relieve processing
cores from non-computational address manipulations. Implementation results
show that the proposed cell array outperforms related programmable platforms
by up to 6 orders of magnitude in energy efficiency, and is 1.7−13.6 and 1.4−15
times less efficient than ASICs in terms of area and energy.

In conclusion, the CGRA-based cell array demonstrates a good design trade-
off between the contradictory requirements of flexibility, performance, and
hardware efficiency. Thus, it is a promising and feasible solution to bridge
the huge gap between conventional platforms. Looking forward, adopting the
cell array in a wide range of applications is a natural continuation. However,
this requires a series of system-level exploration tools to model, simulate and
evaluate the use of the platform as well as application mapping tools to au-
tomate task profiling, scheduling, mapping, and compilation process. Despite
the system-level developments to be explored, the future of the reconfigurable
cell array is certainly bright.

Bibliography

[1] A. Nilsson, “Design of Programmable Multi-Standard Baseband Pro-
cessors,” Ph.D. dissertation, Department of Electrical Engineering,
Linköping University, 2007.

[2] M. Dillinger, K. Madani, and N. Alonistioti, Software Defined Radio:
Architectures, Systems and Functions, 1st ed. Wiley, June 2003.

[3] Ericsson, “White Paper: More Than 50 Billion Connected Devices - Tak-
ing Connected Devices to Mass Market and Profitability,” Feb. 2011. [On-
line]. Available: http://www.ericsson.com/res/docs/whitepapers/wp-50-
billions.pdf

[4] Broadcom, “Facts at a Glance,” Apr. 2014. [Online]. Available:
https://www.broadcom.com/docs/company/BroadcomQuickFacts.pdf

[5] E. Dahlman, S. Parkvall, and J. Skold, 4G: LTE/LTE-Advanced for Mo-
bile Broadband, 1st ed. Academic Press, May 2011.

[6] F. Clermidy et al., “A 477mW NoC-Based Digital Baseband for
MIMO 4G SDR,” in IEEE International Solid-State Circuits Conference
(ISSCC), Feb. 2010, pp. 278–279.

[7] T. Lenart, “Design of Reconfigurable Hardware Architectures for Real-
time Applications,” Ph.D. dissertation, Department of Electrical and In-
formation Technology, Lund University, May 2008.

161

162 BIBLIOGRAPHY

[8] H. Svensson, “Reconfigurable Architectures for Embedded Systems,”
Ph.D. dissertation, Department of Electrical and Information Technol-
ogy, Lund University, Oct. 2008.

[9] S. Borkar, “Thousand Core Chips - A Technology Perspective,” in 44th
Annual Design Automation Conference (DAC), 2007, pp. 746–749.

[10] M. B. Taylor, “A Landscape of the New Dark Silicon Design Regime,”
IEEE Micro, vol. 33, no. 5, pp. 8–19, Sep. 2013.

[11] M. Woh, S. Mahlke, T. Mudge, and C. Chakrabarti, “Mobile Supercom-
puters for the Next-Generation Cell Phone,” IEEE Computer, vol. 43,
no. 1, pp. 81–85, Jan. 2010.

[12] G. Miao, N. Himayat, Y. Li, and A. Swami, “Cross-layer Optimization
for Energy-efficientWireless Communications: A Survey,”Wireless Com-
munications & Mobile Computing, vol. 9, no. 4, pp. 529–542, Apr. 2009.

[13] G. Estrin, “Organization of Computer Systems: The Fixed Plus Vari-
able Structure Computer,” in Western Joint IRE-AIEE-ACM Computer
Conference, May 1960, pp. 33–40.

[14] C. C. Wang, F. L. Yuan, H. Chen, and D. Marković, “A 1.1GOPS/mW
FPGA Chip with Hierarchical Interconnect Fabric,” in IEEE Symposium
on VLSI Circuits (VLSIC), Jun. 2011, pp. 136–137.

[15] I. Kuon, R. Tessier, and J. Rose, “FPGA Architecture: Survey and Chal-
lenges,” Foundations and Trends in Electronic Design Automation, vol. 2,
no. 2, pp. 135–253, Feb. 2008.

[16] R. Hartenstein, “A Decade of Reconfigurable Computing: a Visionary
Retrospective,” in Design, Automation Test in Europe Conference Exhi-
bition (DATE), 2001, pp. 642–649.

[17] R. Tessier and W. Burleson, “Reconfigurable Computing for Digital Sig-
nal Processing: A Survey,” Journal of VLSI Signal Processing Systems,
vol. 28, pp. 7–27, May 2001.

[18] K. Compton and S. Hauck, “Reconfigurable Computing: A Survey of
Systems and Software,” ACM Computing Survey, vol. 34, pp. 171–210,
June 2002.

[19] T. J. Todman, G. A. Constantinides, S. J. E. Wilton, O. Mencer, W. Luk,
and P. Y. K. Cheung, “Reconfigurable Computing: Architectures and
Design Methods,” in Computers and Digital Techniques, vol. 152, no. 2,
Mar. 2005, pp. 193–207.

BIBLIOGRAPHY 163

[20] Z. Abdin and B. Svensson, “Evolution in Architectures and Program-
ming Methodologies of Coarse-Grained Reconfigurable Computing,” Mi-
croprocessors and Microsystems: Embedded Hardware Design, vol. 33, pp.
161–178, May 2009.

[21] A. Chattopadhyay, “Ingredients of Adaptability: A Survey of Reconfig-
urable Processors,” VLSI Design, vol. 2013, Jan. 2013.

[22] G. E. Moore, “Cramming More Components onto Integrated Circuits,”
Electronics, vol. 38, no. 8, pp. 114–117, Apr. 1965.

[23] R. W. Keyes, “The Impact of Moore’s Law,” IEEE Solid-State Circuits
Society Newsletter, vol. 11, no. 5, pp. 25–27, Sep. 2006.

[24] J. L. Hennessy and D. A. Patterson, Computer architecture: A Quanti-
tative Approach, 4th ed. Morgan Kaufmann Publishers, 2003.

[25] D. Marr et al., “Hyper-threading Technology Architecture and Microar-
chitecture: a Hypertext History,” Intel Technical Journal, vol. 1, no. 1,
Feb. 2002.

[26] S. H. Fuller and L. I. Millett, “Computing Performance: Game Over or
Next Level?” Computer, vol. 44, no. 1, pp. 31–38, Jan. 2011.

[27] K. K. Parhi, VLSI Digital Signal Processing Systems: Design and Imple-
mentation, 1st ed. Wiley, 1999.

[28] NVIDIA, “Tesla C2050/C2070 GPU Computing Processor,” Jul. 2010.
[Online]. Available: http://www.nvidia.com/docs/IO/43395/
NV DS Tesla C2050 C2070 jul10 lores.pdf

[29] M. Garland et al., “Parallel Computing Experiences with CUDA,” IEEE
Micro, vol. 28, no. 4, pp. 13–27, Jul. 2008.

[30] NVIDIA, “MATLAB Acceleration on NVIDIA Tesla and Quadro
GPUs,” 2014. [Online]. Available: http://www.nvidia.com/object/tesla-
matlab-accelerations.html

[31] D. Liu, Embedded DSP Processor Design: Application Specific Instruction
Set Processors, 1st ed. Morgan Kaufmann, May 2008.

[32] J. Byrne, “Tensilica DSP Targets LTE Advanced,” Mar. 2011. [Online].
Available: http://www.tensilica.com/uploads/pdf/MPR BBE64.pdf

[33] J. Rabaey, Low Power Design Essentials, 1st ed. Springer, May 2009.

164 BIBLIOGRAPHY

[34] A. Chandrakasan, S. Sheng, and R. Brodersen, “Low-Power CMOS Dig-
ital Design,” IEEE Journal of Solid-State Circuits, vol. 27, no. 4, pp.
473–484, Apr. 1992.

[35] United Nations Foundation and The Vodafone Foundation, “mHealth
for Development: The Opportunity of Mobile Technology for
Healthcare in the Developing World,” 2011. [Online]. Available:
http://www.vitalwaveconsulting.com/pdf/2011/mHealth.pdf

[36] P. J. and M. Salehi, Digital Communications, 5th ed. McGraw-Hill
Science, Nov. 2007.

[37] A. F. Molisch, Wireless Communications, 2nd ed. Wiley, Dec. 2010.

[38] R. W. Chang, “Synthesis of Band-Limited Orthogonal Signals for Mul-
tichannel Data Transmission,” Bell System Technical Journal, vol. 45,
no. 10, pp. 1775–1796, 1966.

[39] A. Paulraj, R. Nabar, and D. Gore, Introduction to Space-Time Wireless
Communications, 1st ed. Cambridge University Press, June 2008.

[40] C. Yuen and B. Hochwald, “Achieving Near-Capacity at Low SNR on a
Multiple-Antenna Multiple-User Channel,” IEEE Transactions on Com-
munications, vol. 57, no. 1, pp. 69–74, Jan. 2009.

[41] C. Spiegel, J. Berkmann, Z. Bai, T. Scholand, and C. Drewes, “MIMO
Schemes in UTRA LTE, A Comparison,” in IEEE Vehicular Technology
Conference (VTC), May 2008, pp. 2228–2232.

[42] G. Bauch and G. Dietl, “Multi-User MIMO for Achieving IMT-Advanced
Requirements,” in International Conference on Telecommunications
(ICT), June 2008, pp. 1–7.

[43] L. Liu, J. Löfgren, and P. Nilsson, “Area-Efficient Configurable High-
Throughput Signal Detector Supporting Multiple MIMO Modes,” IEEE
Transactions on Circuits and Systems I: Regular Papers, vol. 59, no. 9,
pp. 2085–2096, Sep. 2012.

[44] E. Tell, “Design of Programmable Baseband Processors,” Ph.D. disserta-
tion, Department of Electrical Engineering, Linköping University, 2005.

[45] R. Gallager, “Low-Density Parity-Check Codes,” IRE Transactions on
Information Theory, vol. 8, no. 1, pp. 21–28, Jan. 1962.

BIBLIOGRAPHY 165

[46] A. Viterbi, “Error Bounds for Convolutional Codes and an Asymptoti-
cally Optimum Decoding Algorithm,” IEEE Transactions on Information
Theory, vol. 13, no. 2, pp. 260–269, Apr. 1967.

[47] C. Berrou and A. Glavieux, “Near Optimum Error Correcting Coding
and Decoding: Turbo-Codes,” IEEE Transactions on Communications,
vol. 44, no. 10, pp. 1261–1271, Oct 1996.

[48] F. Horlin and A. Bourdoux, Digital Compensation for Analog Front-Ends:
A New Approach to Wireless Transceiver Design, 1st ed. Wiley, June
2008.

[49] I. Diaz, “Algorithm-Architecture Co-Design for Digital Front-Ends in
Mobile Receivers,” Ph.D. dissertation, Department of Electrical and In-
formation Technology, Lund University, 2014.

[50] A. Burg et al., “VLSI Implementation of MIMO Detection Using the
Sphere Decoding Algorithm,” IEEE Journal of Solid-State Circuits
(JSSC), vol. 40, no. 7, pp. 1566–1577, July 2005.

[51] Z. Guo and P. Nilsson, “Algorithm and Implementation of the K-best
Sphere Decoding for MIMO Detection,” IEEE Journal on Selected Areas
in Communications, vol. 24, no. 3, pp. 491–503, Mar. 2006.

[52] L. G. Barbero and J. S. Thompson, “Fixing the Complexity of the Sphere
Decoder for MIMO Detection,” IEEE Transactions on Wireless Commu-
nications, vol. 7, no. 6, pp. 2131–2142, June 2008.

[53] M. Li et al., “Optimizing Near-MLMIMO Detector for SDR Baseband on
Parallel Programmable Architectures,” in Design, Automation and Test
in Europe (DATE), Mar. 2008, pp. 444–449.

[54] C. Yang and D. Marković, “A Flexible DSP Architecture for MIMO
Sphere Decoding,” IEEE Transactions on Circuits and Systems I: Regu-
lar Papers, vol. 56, no. 10, pp. 2301–2314, Oct. 2009.

[55] M. Shami and A. Hemani, “Classification of Massively Parallel Computer
Architectures,” in IEEE 26th International Parallel and Distributed Pro-
cessing Symposium Workshops PhD Forum (IPDPSW), May 2012, pp.
344–351.

[56] R. Baines and D. Pulley, “A Total Cost Approach to Evaluating Dif-
ferent Reconfigurable Architectures for Baseband Processing in Wireless
Receivers,” IEEE Communications Magazine, vol. 41, no. 1, pp. 105–113,
Jan. 2003.

166 BIBLIOGRAPHY

[57] Y. Lin et al., “SODA: A Low-power Architecture For Software Radio,”
in International Symposium on Computer Architecture (ISCA), 2006, pp.
89–101.

[58] H. Lee, C. Chakrabarti, and T. Mudge, “A Low-Power DSP for Wireless
Communications,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 18, no. 9, pp. 1310–1322, 2010.

[59] R. Airoldi, F. Garzia, O. Anjum, and J. Nurmi, “Homogeneous MPSoC as
Baseband Signal Processing Engine for OFDM Systems,” in International
Symposium on System on Chip (SoC), Sep. 2010, pp. 26–30.

[60] C. Bernard and F. Clermidy, “A Low-Power VLIW Processor for 3GPP-
LTE Complex Numbers Processing,” in Design, Automation Test in Eu-
rope Conference Exhibition (DATE), Mar. 2011, pp. 1–6.

[61] R. Fasthuber et al., “Exploration of Soft-Output MIMO Detector Imple-
mentations on Massive Parallel Processors,” Journal of Signal Processing
Systems, vol. 64, pp. 75–92, 2011.

[62] A. Nilsson, E. Tell, and D. Liu, “An 11 mm2, 70mW Fully Pro-
grammable Baseband Processor for Mobile WiMAX and DVB-T/H in
0.12µm CMOS,” IEEE Journal of Solid-State Circuits (JSSC), vol. 44,
no. 1, pp. 90–97, Jan. 2009.

[63] B. Bougard, B. De Sutter, D. Verkest, L. Van der Perre, and R. Lauw-
ereins, “A Coarse-Grained Array Accelerator for Software-Defined Radio
Baseband Processing,” IEEE Micro, vol. 28, no. 4, pp. 41–50, July 2008.

[64] K. van Berkel, F. Heinle, P. P. E. Meuwissen, K. Moerman, and M. Weiss,
“Vector Processing As an Enabler for Software-defined Radio in Handheld
Devices,” EURASIP Journal on Applied Signal Processing, vol. 2005, pp.
2613–2625, Jan. 2005.

[65] V. Baumgarte, G. Ehlers, F. May, A. Nückel, M. Vorbach, and M. Wein-
hardt, “PACT XPP-A Self-Reconfigurable Data Processing Architec-
ture,” The Journal of Supercomputing, vol. 26, pp. 167–184, Sep. 2003.

[66] M. Thuresson et al., “FlexCore: Utilizing Exposed Datapath Control
for Efficient Computing,” Journal of Signal Processing Systems, vol. 57,
no. 1, pp. 5–19, 2009.

[67] J. Janhunen, T. Pitkanen, O. Silven, and M. Juntti, “Fixed- and Floating-
Point Processor Comparison for MIMO-OFDM Detector,” IEEE Journal
of Selected Topics in Signal Processing, vol. 5, no. 8, pp. 1588–1598, 2011.

BIBLIOGRAPHY 167

[68] M. Shami and A. Hemani, “Morphable DPU: Smart and Efficient Data
Path for Signal Processing Applications,” in IEEE Workshop on Signal
Processing Systems (SiPS), Oct. 2009, pp. 167–172.

[69] B. Plunkett and J. Watson, Adapt2400 ACM Architecture Overview,
Quicksilver, 2004, a Technology White paper. [Online]. Available:
http://vada.skku.ac.kr/ClassInfo/system level design/sdr slides/
Adapt2400 Whitepaper 0404.pdf

[70] J. Eker and J. W. Janneck, “CAL Language Report: Specification of
the CAL Actor Language,” University of California at Berkeley, Tech.
Rep., Nov. 2003. [Online]. Available:
http://ptolemy.eecs.berkeley.edu/papers/03/Cal/

[71] G. Kahn, “The Semantics of a Simple Language for Parallel Program-
ming,” in Information Processing. North-Holland Publishing Company,
1974, pp. 471–475.

[72] R. S. Patti, “Three-Dimensional Integrated Circuits and the Future of
System-on-Chip Designs,” Proceedings of the IEEE, vol. 94, no. 6, pp.
1214–1224, June 2006.

[73] C. Zhang, T. Lenart, H. Svensson, and V. Öwall, “Design of Coarse-
Grained Dynamically Reconfigurable Architecture for DSP Applica-
tions,” in International Conference on Reconfigurable Computing and
FPGAs (ReConFig), Dec 2009, pp. 338–343.

[74] M. B. Taylor et al., “A 16-Issue Multiple-Program-Counter Microproces-
sor with Point-to-Point Scalar Operand Network,” in IEEE International
Solid-State Circuits Conference, Feb. 2003, pp. 170–171 vol.1.

[75] Z. Yu and B. M. Baas, “A Low-Area Multi-Link Interconnect Architec-
ture for GALS Chip Multiprocessors,” IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, vol. 18, no. 5, pp. 750–762, 2010.

[76] A. Rahimi, I. Loi, M. R. Kakoee, and L. Benini, “A Fully-Synthesizable
Single-Cycle Interconnection Network for Shared-L1 Processor Clusters,”
in Design, Automation Test in Europe Conference Exhibition (DATE),
2011, pp. 1–6.

[77] M. Coppola, R. Locatelli, G. Maruccia, L. Pieralisi, and A. Scandurra,
“Spidergon: A Novel on-chip Communication Network,” in International
Symposium on System-on-Chip, 2004, p. 15.

168 BIBLIOGRAPHY

[78] T. Bjerregaard and S. Mahadevan, “A Survey of Research and Practices
of Network-on-Chip,”ACM Computing Surveys, vol. 38, no. 1, June 2006.

[79] A. Y. Dogan, J. Constantin, M. Ruggiero, A. Burg, and D. Atienza,
“Multi-core Architecture Design for Ultra-Low-Power Wearable Health
Monitoring Systems,” in Design, Automation Test in Europe Conference
Exhibition (DATE), 2012, pp. 988–993.

[80] “AMBA 4 AXI4-Stream Protocol Specification v1.0,” Mar. 2010.
[Online]. Available: http://infocenter.arm.com/help/index.jsp?topic=/
com.arm.doc.ihi0051a/index.html

[81] H. Svensson, T. Lenart, and V. Öwall, “Modelling and Exploration of
a Reconfigurable Array Using SystemC TLM,” in IEEE International
Symposium on Parallel and Distributed Processing, Apr. 2008, pp. 1–8.

[82] X. Yang, “IEEE 802.11n: Enhancements for Higher Throughput in Wire-
less LANs,” IEEE Wireless Communications, vol. 12, no. 6, pp. 82–91,
Dec. 2005.

[83] U. H. Reimers, “DVB-The Family of International Standards for Digital
Video Broadcasting,” Proceedings of the IEEE, vol. 94, no. 1, pp. 173–
182, Jan. 2006.

[84] C. Ebeling, C. Fisher, G. Xing, M. Shen, and H. Liu, “Implementing
an OFDM Receiver on the RaPiD Reconfigurable Architecture,” IEEE
Transactions on Computers, vol. 53, no. 11, pp. 1436–1448, Nov. 2004.

[85] A. Baschirotto et al., “Baseband Analog Front-end and Digital Back-
end for Reconfigurable Multi-standard Terminals,” IEEE Circuits and
Systems Magazine, vol. 6, no. 1, pp. 8–28, Jan. 2006.

[86] “Multi-Base−Scalable Multi-tasking Baseband for Mobile Communica-
tions ,” Feb. 2008. [Online]. Available: ftp://ftp.cordis.europa.eu/pub/
fp7/ict/docs/future-networks/projects-multibase-factsheet-
20080206 en.pdf

[87] L. v. d. Perre et al., “D4.2 Identification and Architectural Development
of Key Building Blocks,” Multibase Consortium, Tech. Rep., Jan. 2009.

[88] C. W. Farrow, “A Continuously Variable Digital Delay Element,” in
IEEE International Symposium on Circuits and Systems, Jun. 1988, pp.
2641–2645 vol.3.

BIBLIOGRAPHY 169

[89] M. Speth, S. Fechtel, G. Fock, and H. Meyr, “Optimum Receiver Design
for OFDM-Based Broadband Transmission − Part II: A Case Study,”
IEEE Transactions on Communications, vol. 49, no. 4, pp. 571–578, Apr.
2001.

[90] J. J. van de Beek, M. Sandell, and P. O. Borjesson, “ML Estimation of
Time and Frequency Offset in OFDM Systems,” IEEE Transactions on
Signal Processing, vol. 45, no. 7, pp. 1800–1805, Jul. 1997.

[91] IEEE, “IEEE P802.11N/D2.00,” IEEE LAN/MAN Standards Commit-
tee, Tech. Rep., Feb. 2007.

[92] B. Parhami, Computer Arithmetic: Algorithm and Hardware Designs.
Oxford University Press, 2000.

[93] I. Diaz, L. Wilhelmsson, J. Rodrigues, J. Lofgren, T. Olsson, and
V. Öwall, “A Sign-bit Auto-correlation Architecture for Fractional Fre-
quency Offset Estimation in OFDM,” in IEEE International Symposium
on Circuits and Systems (ISCAS), May 2010, pp. 3765–3768.

[94] L. Wilhelmsson, I. Diaz, T. Olsson, and V. Öwall, “Performance Analysis
of Sign-Based Pre-FFT Synchronization in OFDM Systems,” in IEEE
71st Vehicular Technology Conference, May 2010, pp. 1–5.

[95] J. W. Cooley and J. W. Tukey, “An Algorithm for the Machine Calcu-
lation of Complex Fourier Series,” IEEE Journal of Solid-State Circuits,
vol. 19, no. 90, pp. 297–301, 1965.

[96] Xilinx, “Application Note XAPP224: Data Recovery,” Jul. 2005.
[Online]. Available: http://www.xilinx.com/support/documentation/
application notes/xapp224.pdf

[97] ——, “MicroBlaze Processor Reference Guide (v14.1),” Apr. 2012.
[Online]. Available: http://www.xilinx.com/support/documentation/
sw manuals/xilinx14 1/mb ref guide.pdf

[98] S. Haene, D. Perels, and A. Burg, “A Real-Time 4-Stream MIMO-OFDM
Transceiver: System Design, FPGA Implementation, and Characteriza-
tion,” IEEE Journal on Selected Areas in Communications, vol. 26, no. 6,
pp. 877–889, 2008.

[99] M. Šimko, D. Wu, C. Mehlfüehrer, J. Eilert, and D. Liu, “Implementation
Aspects of Channel Estimation for 3GPP LTE Terminals,” 11th European
Wireless Conference, pp. 1–5, Apr. 2011.

170 BIBLIOGRAPHY

[100] M. H. Hsieh and C. H. Wei, “Channel Estimation for OFDM Systems
Based on Comb-type Pilot Arrangement in Frequency Selective Fading
Channels,” IEEE Transactions on Consumer Electronics, vol. 44, no. 1,
pp. 217–225, Feb. 1998.

[101] “3GPP TS 36.101 V11.4.0: User Equipment (UE) radio transmis-
sion and reception (Release 11),” Mar. 2013. [Online]. Available:
http://www.3gpp.org/ftp/Specs/archive/36 series/36.101/36101-b40.zip

[102] O. Edfors, M. Sandell, J. J. van de Beek, S. K. Wilson, and P. O.
Börjesson, “OFDM Channel Estimation by Singular Value Decomposi-
tion,” IEEE Transactions on Communications, vol. 46, no. 7, pp. 931–
939, July 1998.

[103] F. Edman and V. Öwall, “A Scalable Pipelined Complex Valued Matrix
Inversion Architecture,” in IEEE International Symposium on Circuits
and Systems (ISCAS), vol. 5, May 2005, pp. 4489–4492.

[104] D. Wübben, J. Rinas, R. Böhnke, V. Kühn, and K. K. D., “Efficient
Algorithm for Detecting Layered Space-Time Codes,” in 4th International
ITG Conference on Source and Channel Coding (SCC), Jan 2002, pp.
399–405.

[105] R. W. Heath and A. Paulraj, “Antenna Selection for Spatial Multiplexing
Systems Based on Minimum Error Rate,” in IEEE International Confer-
ence on Communications (ICC), vol. 7, 2001, pp. 2276–2280 vol.7.

[106] D. Wübben, R. Böhnke, V. Kühn, and K. D. Kammeyer, “MMSE Ex-
tension of V-BLAST Based on Sorted QR Decomposition,” in IEEE 58th
Vehicular Technology Conference (VTC), vol. 1, 2003, pp. 508–512.

[107] P. Luethi, A. Burg, S. Haene, D. Perels, N. Felber, and W. Fichtner,
“VLSI Implementation of a High-Speed Iterative Sorted MMSE QR De-
composition,” in IEEE International Symposium on Circuits and Systems
(ISCAS), 2007, pp. 1421–1424.

[108] G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed. Johns
Hopkins University Press, Feb. 1996.

[109] Z.-Y. Huang and P.-Y. Tsai, “Efficient Implementation of QR Decomposi-
tion for Gigabit MIMO-OFDM Systems,” IEEE Transactions on Circuits
and Systems I: Regular Papers, vol. 58, no. 10, pp. 2531–2542, Oct. 2011.

BIBLIOGRAPHY 171

[110] “3GPP TS 36.212 V11.2.0: Multiplexing and channel coding (Release
11),” Feb. 2013. [Online]. Available: http://www.3gpp.org/ftp/Specs/
archive/36 series/36.212/36212-b20.zip

[111] L. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal Decoding of Lin-
ear Codes for Minimizing Symbol Error Rate,” IEEE Transactions on
Information Theory, vol. 20, no. 2, pp. 284–287, 1974.

[112] L. Liu, F. Ye, X. Ma, T. Zhang, and J. Ren, “A 1.1-Gb/s 115-pJ/bit
Configurable MIMO Detector Using 0.13-µCMOS Technology,” IEEE
Transactions on Circuits and Systems II: Express Briefs, vol. 57, no. 9,
pp. 701–705, Sep. 2010.

[113] M. D. Ercegovac, L. Imbert, D. W. Matula, J. M. Muller, and G. Wei,
“Improving Goldschmidt Division, Square Root, and Square Root Re-
ciprocal,” IEEE Transactions on Computers, vol. 49, no. 7, pp. 759–763,
Jul. 2000.

[114] Y. Kim, R. N. Mahapatra, I. Park, and K. Choi, “Low Power Reconfigu-
ration Technique for Coarse-Grained Reconfigurable Architecture,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 17,
no. 5, pp. 593–603, May 2009.

[115] S. Ye, S. H. Wong, and C. Worrall, “Enhanced Physical Downlink Con-
trol Channel in LTE Advanced Release 11,” IEEE Communications Mag-
azine, vol. 51, no. 2, pp. 82–89, 2013.

[116] Y. Xie, W. Wolf, and H. Lekatsas, “Code Compression for Embedded
VLIW Processors Using Variable-to-fixed Coding,” IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, vol. 14, no. 5, pp. 525–
536, 2006.

[117] C. Kozyrakis and D. Patterson, “Vector vs. Superscalar and VLIW
Architectures for Embedded Multimedia Benchmarks,” in 35th Annual
IEEE/ACM International Symposium on Microarchitecture, 2002, pp.
283–293.

[118] J. M. Rabaey, A. Chandrakasan, and B. Nikolic, Digital Integrated Cir-
cuits - A Design Perspective, 2nd ed. Prentice Hall, 2002.

[119] K. Mohammed and B. Daneshrad, “A MIMO Decoder Accelerator for
Next Generation Wireless Communications,” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 18, no. 11, pp. 1544–1555,
Nov. 2010.

172 BIBLIOGRAPHY

[120] J. Janhunen, O. Silven, M. Juntti, and M. Myllyla, “Software Defined
Radio Implementation of K-Best List Sphere Detector Algorithm,” in In-
ternational Conference on Embedded Computer Systems: Architectures,
Modeling, and Simulation (SAMOS), July 2008, pp. 100–107.

[121] V. Derudder et al., “A 200Mbps+ 2.14nJ/b Digital Baseband Multi Pro-
cessor System-on-Chip for SDRs,” in IEEE Symposium on VLSI Circuits
(VLSIC), 2009, pp. 292–293.

[122] X. Huang, C. Liang, and J. Ma, “System Architecture and Implementa-
tion of MIMO Sphere Decoders on FPGA,” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 16, no. 2, pp. 188–197, 2008.

[123] D. Sui, Y. Li, J. Wang, P. Wang, and B. Zhou, “High Throughput
MIMO-OFDM Detection with Graphics Processing Units,” in IEEE In-
ternational Conference on Computer Science and Automation Engineer-
ing (CSAE), vol. 2, May 2012, pp. 176–179.

[124] M. Wu, S. Gupta, Y. Sun, and J. R. Cavallaro, “A GPU Implementation
of a Real-Time MIMO Detector,” in IEEE Workshop on Signal Process-
ing Systems (SiPS), Oct. 2009, pp. 303–308.

[125] T. Nylanden, J. Janhunen, O. Silven, and M. Juntti, “A GPU Implemen-
tation for Two MIMO-OFDM Detectors,” in International Conference on
Embedded Computer Systems: Architectures, Modeling, and Simulation
(SAMOS), July 2010, pp. 293–300.

[126] S. Roger, C. Ramiro, A. Gonzalez, V. Almenar, and A. M. Vidal, “Fully
Parallel GPU Implementation of a Fixed-Complexity Soft-Output MIMO
Detector,” IEEE Transactions on Vehicular Technology, vol. 61, no. 8,
pp. 3796–3800, 2012.

[127] I. Diaz, B. Sathyanarayanan, A. Malek, F. Foroughi, and J. N. Rodrigues,
“Highly Scalable Implementation of a Robust MMSE Channel Estimator
for OFDM Multi-Standard Environment,” in IEEE Workshop on Signal
Processing Systems (SiPS), 2011, pp. 311–315.

[128] J. Löfgren, L. Liu, O. Edfors, and P. Nilsson, “Improved Matching-
Pursuit Implementation for LTE Channel Estimation,” IEEE Transac-
tions on Circuits and Systems I: Regular Papers, vol. 61, no. 1, pp. 226–
237, Jan. 2014.

BIBLIOGRAPHY 173

[129] R. C. H. Chang, C. H. Lin, K. H. Lin, C. L. Huang, and F. C. Chen,
“Iterative QR Decomposition Architecture Using the Modified GramC-
Schmidt Algorithm for MIMO Systems,” IEEE Transactions on Circuits
and Systems I: Regular Papers, vol. 57, no. 5, pp. 1095–1102, May 2010.

[130] M. Shabany, D. Patel, and P. G. Gulak, “A Low-Latency Low-Power QR-
Decomposition ASIC Implementation in 0.13µm CMOS,” IEEE Trans-
actions on Circuits and Systems I: Regular Papers, vol. 60, no. 2, pp.
327–340, Feb. 2013.

[131] M. Mahdavi and M. Shabany, “Novel MIMO Detection Algorithm for
High-Order Constellations in the Complex Domain,” IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, vol. 21, no. 5, pp. 834–
847, 2013.

[132] P. L. Chiu, L. Z. Huang, L. W. Chai, C. F. Liao, and Y. H. Huang, “A
684Mbps 57mW Joint QR Decomposition and MIMO Processor for 4×4
MIMO-OFDM Systems,” in IEEE Asian Solid State Circuits Conference
(ASSCC), Nov. 2011, pp. 309–312.

[133] S. Gifford, C. Bergstrom, and S. Chuprun, “Adaptive and Linear Pre-
diction Channel Tracking Algorithms for Mobile OFDM-MIMO Applica-
tions,” in IEEE Military Communications Conference (MILCOM), vol. 2,
Oct. 2005, pp. 1298–1302.

[134] L. Gor and M. Faulkner, “Power Reduction Through Upper Triangu-
lar Matrix Tracking in QR Detection MIMO Receivers,” in IEEE 64th
Vehicular Technology Conference (VTC), Sept. 2006, pp. 1–5.

Appendix

175

Appendix A

Dataflow Processor Architecture

This appendix includes some detailed hardware development of the 2×2 cell
array presented in Part II. The cell array consists of two dataflow processors
and two memory cells. The dataflow processors are RISC cores with extended
computational units in both “instruction decode” and “write back” stage. Each
processor contains 16 general-purpose 16-bit registers and uses a 48-bit fixed-
length instruction set. Some of the key features of the processor are:

• SIMD-like operation

• Run-time control and data path configuration

• Conditional instruction execution

• Single-cycle delayed branch

• Zero-delay inner loop control

• Direct I/O port addressing and multi-port data streaming

• In-cell RC supervision and configuration

Figure 1-3 and Table 1-2 present the instruction set of the dataflow pro-
cessor. Figure 4 and Table 3-6 illustrate the data arrangement blocks and list
the configuration set of each pipeline stage. Figure 5-7 present the configura-
tion generation tool developed in-house for the 2×2 cell array. Table 7 and
Table 8 describe user commands in the UART and the MATLAB interface,
respectively, for controlling the cell array at run-time.

177

178 APPENDIX A. DATAFLOW PROCESSOR ARCHITECTURE

4
7

4
6

4
5

4
4

4
3

4
2

4
1

4
0

3
9

3
8

3
7

3
6

3
5

3
4

3
3

3
2

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9
8

7
6

5
4

3
2

1
0

A
I

P

B
I

P

C
I

P

D
I

P

E
I

P

N
O

P
D

N
o
 o

p
e
ra

tio
n
/C

o
n
fi
g
u
ra

tio
n
 u

p
d
a
te

s
--

-
0

0
0

0
0

0
P

G
ID

Im
m

E
G

lo
b
a
l I

O
 T

X
 p

o
rt

 d
e
s
tin

a
tio

n
 I
D

 w
ri
te

$
G

0
.d

s
t
<

-
Im

m
0

0
0

0
1

1
P

E
N

D
Im

m
E

S
to

p
 e

x
e
c
u
tio

n
 a

n
d
 r

e
tu

rn
 e

n
d
in

g
 c

o
d
e

$
E

N
D

_
C

O
D

E
 <

-
Im

m
0

0
0

1
0

1
P

IL
C

S
1
,
D

1
D

In
n
e
r

lo
o
p
 c

o
n
tr

o
l w

ith
 r

e
g
is

te
r

$
IL

P
 <

-
$
P

C
 +

 1
;

D
1
 <

=
 $

IL
C

;

$
IL

C
 <

-
S

1

0
0

0
1

1
0

P

IL
C

I
Im

m
E

In
n
e
r

lo
o
p
 c

o
n
tr

o
l w

ith
 im

m
.

In
fi
n
ite

 lo
o
p
 c

o
n
tr

o
l w

h
e
n
 im

m
.
is

 a
ll

"1
"

$
IL

P
 <

-
$
P

C
 +

 1
;

$
IL

C
 <

-
Im

m
0

0
0

1
1

1
P

L
D

R
D

0
,
D

1
,
S

0
,
S

1
A

D
0
 <

-
S

0
 &

 S
1

0
0

1
0

0
0

0

L
D

R
I

D
0
,
Im

m
C

D
0
 <

-
Im

m
0

0
1

0
0

1
0

S
T

R
D

0
,
D

1
,
S

0
,
S

1
A

D
0
 <

-
S

0
 &

 S
1

0
0

1
0

1
0

0

S
T

R
I

D
0
,
Im

m
C

D
0
 <

-
Im

m
0

0
1

0
1

1
0

C
O

N
F

I
D

0
,
Im

m
C

R
e
s
o
u
rc

e
 c

e
ll

c
o
n
fi
g
u
ra

tio
n

D
0
 <

-
Im

m
0

0
1

1
0

1
0

B
R

D
B

ra
n
c
h
 r

e
g
is

te
r

(p
ro

c
e
d
u
re

 r
e
tu

rn
)

$
P

C
 <

-
$
R

_
lin

k
0

1
0

0
0

0
P

B
S

0
,
S

1
,
Im

m
B

B
ra

n
c
h
 r

e
la

tiv
e
 o

n
 c

o
n
d
iti

o
n

$
P

C
 <

-
$
P

C
 +

 S
X

T
(I

m
m

)
0

1
0

0
1

0
0

U

B
L

S
0
,
S

1
,
Im

m
B

B
ra

n
c
h
 a

n
d
 L

in
k
 (

p
ro

c
e
d
u
re

 c
a
ll)

 o
n

c
o
n
d
iti

o
n

$
P

C
 <

-
$
P

C
 +

 S
X

T
(I

m
m

);

$
R

_
lin

k
 <

-
$
P

C
 +

 1
0

1
0

1
0

0
0

U

M
C

 (
R

A
M

)
d
a
ta

 r
e
a
d
 r

e
q
u
e
s
t

M
C

 (
R

A
M

)
d
a
ta

 w
ri
te

 r
e
q
u
e
s
t

F
ie

ld

S
0

A
d
d
.

A
d
d
.

C
o
n
d
.

C
o
n
d
.

3
2
-b

it
re

a
d
 r

e
q
u
e
s
t

Im
m

.

Im
m

.

In
d
e
x

C
o
n
d
.

A
d
d
.

S
1

D
1

D
0

2
1
-b

it
c
o
n
fi
g
u
ra

tio
n

D
0

3
2
-b

it
w

ri
te

 r
e
q
u
e
s
t

Im
m

.

D
0

S
0

D
0

S
1

S
1

$
R

_
lin

k

2
1
-b

it
c
o
n
fi
g
u
ra

tio
n

2
1
-b

it
c
o
n
fi
g
u
ra

tio
n

2
1
-b

it
c
o
n
fi
g
u
ra

tio
n

Im
m

.
2
1
-b

it
c
o
n
fi
g
u
ra

tio
n

D
1

S
0

2
1
-b

it
c
o
n
fi
g
u
ra

tio
n

S
1

D
1

2
1
-b

it
c
o
n
fi
g
u
ra

tio
n

S
1

Im
m

.

S
1

D
1

In
d
e
x

In
d
e
x

In
d
e
x

A
d
d
.

A
d
d
.

In
d
e
x

In
d
e
x

In
d
e
x

Im
m

.

S
1

C
o
n
d
.

C
o
n
d
.

A
d
d
.

In
d
e
x

A
d
d
.

A
d
d
.

D
0

3
2
-b

it
m

e
m

o
ry

 d
a
ta

 r
e
a
d
/w

ri
te

 r
e
q
u
e
s
t

C
o
n
d
.

D
0

3
2
-b

it
w

ri
te

 r
e
q
u
e
s
t

In
d
e
x

A
d
d
.

In
d
e
x

A
d
d
.

D
1

D
0

S
1

Im
m

.
2
1
-b

it
c
o
n
fi
g
u
ra

tio
n

S
0

M
n

e
m

-

o
n

ic
s

O
p

e
ra

n
d

s
T

y
p

e
D

e
s
c
ri

p
ti

o
n

O
p

e
ra

ti
o

n

C
o
n
d
.

C
o
n
d
.

O
p
C

o
d
e

O
p
C

o
d
e

C
o
n
d
.

C
o
n
d
.

C
o
n
d
.

O
p
C

o
d
e

C
o
n
d
.

C
o
n
d
.

C
o
n
d
.

O
p
C

o
d
e

C
o
n
d
.

O
p
C

o
d
e

C
o
n
d
.

C
o
n
d
.

S
0

S
0

C
o
n
d
.

$
R

_
lin

k

F
ig
u
re

1
:
In
st
ru
ct
io
n
se
t
o
f
th
e
d
a
ta
fl
ow

p
ro
ce
ss
o
r,
co
n
tr
o
l-
re
la
te
d
o
p
er
a
ti
o
n
s.

179

4
7

4
6

4
5

4
4

4
3

4
2

4
1

4
0

3
9

3
8

3
7

3
6

3
5

3
4

3
3

3
2

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9
8

7
6

5
4

3
2

1
0

F
I

U
L

V
0

V
1

A
0

A
1

R
0

R
1

G
I

U
L

V
0

V
1

A
0

A
1

R
0

R
1

A
D

D
D

0
,
D

1
,
S

0
,
S

1
F

D
a
ta

 a
d
d
 b

e
tw

e
e
n
 r

e
g
is

te
rs

D
0
 <

-
S

0
 +

 S
1

1
0

0
0

0
0

U
L

V
0

V
1

A
0

A
1

R
0

R
1

A
D

D
I

D
0
,
S

0
,
Im

m
G

A
d
d
 r

e
g
is

te
r

d
a
ta

 a
n
d
 im

m
.

D
0
 <

-
S

0
 +

 S
X

T
(I

m
m

)
1

0
0

0
0

1
U

L
V

0
V

1
A

0
A

1
R

0
R

1

A
D

C
D

0
,
D

1
,
S

0
,
S

1
F

D
a
ta

 a
d
d
 b

e
tw

e
e
n
 r

e
g
is

te
rs

D
0
 <

-
S

0
 +

 S
1
 +

 C
a
rr

y
1

0
0

0
1

0
U

L
V

0
V

1
A

0
A

1
R

0
R

1

A
D

C
I

D
0
,
S

0
,
Im

m
G

A
d
d
 r

e
g
is

te
r

d
a
ta

 a
n
d
 im

m
.

D
0
 <

-
S

0
 +

 S
X

T
(I

m
m

)
+

 C
a
rr

y
1

0
0

0
1

1
U

L
V

0
V

1
A

0
A

1
R

0
R

1

S
U

B
D

0
,
D

1
,
S

0
,
S

1
F

D
a
ta

 s
u
b
tr

a
c
t
b
e
tw

e
e
n
 r

e
g
is

te
rs

D
0
 <

-
S

0
 -

 S
1

1
0

0
1

0
0

U
L

V
0

V
1

A
0

A
1

R
0

R
1

S
B

C
D

0
,
D

1
,
S

0
,
S

1
F

D
a
ta

 s
u
b
tr

a
c
t
b
e
tw

e
e
n
 r

e
g
is

te
rs

D
0
 <

-
S

0
 -

 S
1
 -

 C
a
rr

y
1

0
0

1
1

0
U

L
V

0
V

1
A

0
A

1
R

0
R

1

A
D

S
D

0
,
D

1
,
S

0
,
S

1
F

D
a
ta

 a
d
d
 a

n
d
 s

u
b
tr

a
c
t
b
e
tw

e
e
n
 r

e
g
is

te
rs

D
0
.lo

 <
-

S
0
.lo

 +
 S

1
.lo

;

D
0
.h

i <
-

S
0
.h

i -
 S

1
.h

i
1

0
1

0
0

0
U

L
1

1
A

0
A

1
R

0
R

1

A
D

S
C

D
0
,
D

1
,
S

0
,
S

1
F

D
a
ta

 a
d
d
 a

n
d
 s

u
b
tr

a
c
t
b
e
tw

e
e
n
 r

e
g
is

te
rs

D
0
.lo

 <
-

S
0
.lo

 +
 S

1
.lo

 +
 C

a
rr

y;

D
0
.h

i <
-

S
0
.h

i -
 S

1
.h

i -
 C

a
rr

y
1

0
1

0
1

0
U

L
1

1
A

0
A

1
R

0
R

1

M
U

L
D

0
,
D

1
,
S

0
,
S

1
F

D
a
ta

 m
u
lti

p
lic

a
tio

n
 b

e
tw

e
e
n
 r

e
g
is

te
rs

D
0
 <

-
S

0
 *

 S
1

1
0

1
1

0
0

0
0

0
0

U
L

V
0

V
1

A
0

A
1

R
0

R
1

M
U

L
I

D
0
,
S

0
,
Im

m
G

M
u
lti

p
ly

 r
e
g
is

te
r

d
a
ta

 a
n
d
 im

m
.

D
0
 <

-
S

0
 *

 S
X

T
(I

m
m

)
1

0
1

1
0

0
0

0
0

1
U

L
V

0
V

1
A

0
A

1
R

0
R

1

C
M

P
D

0
,
D

1
,
S

0
,
S

1
F

C
o
m

p
a
re

 d
a
te

 b
e
tw

e
e
n
 r

e
g
is

te
rs

A
s
 S

U
B

 w
ith

o
u
t
w

ri
tin

g
 r

e
s
u
lt(

s
)

1
1

0
1

0
0

1
L

V
0

V
1

A
0

A
1

R
0

R
1

C
M

P
I

D
0
,
S

0
,
Im

m
G

C
o
m

p
a
re

 r
e
g
is

te
r

d
a
ta

 a
n
d
 im

m
.

A
s
 A

D
D

I
w

ith
o
u
t
w

ri
tin

g
 r

e
s
u
lt

1
1

0
0

0
1

1
L

V
0

V
1

A
0

A
1

R
0

R
1

T
S

T
D

0
,
D

1
,
S

0
,
S

1
F

R
e
g
is

te
r

d
a
ta

 t
e
s
t

A
s
 A

N
D

 w
ith

o
u
t
w

ri
tin

g
 r

e
s
u
lt(

s
)

1
1

0
0

1
0

1
L

V
0

V
1

A
0

A
1

R
0

R
1

T
S

T
I

D
0
,
S

0
,
Im

m
G

Im
m

.
d
a
ta

 t
e
s
t

A
s
 A

N
D

I
w

ith
o
u
t
w

ri
ti
n
g
 r

e
s
u
lt

1
1

0
0

1
1

1
L

T
E

Q
D

0
,
D

1
,
S

0
,
S

1
F

R
e
g
is

te
r

d
a
ta

 e
q
u
a
lit

y
te

s
t

A
s
 X

O
R

 w
ith

o
u
t
w

ri
tin

g
 r

e
s
u
lt(

s
)

1
1

0
1

1
0

1
L

V
0

V
1

A
0

A
1

R
0

R
1

T
E

Q
I

D
0
,
S

0
,
Im

m
G

im
m

.
d
a
ta

 e
q
u
a
lit

y
te

s
t

A
s
 X

O
R

I
w

ith
o
u
t
w

ri
tin

g
 r

e
s
u
lt

1
1

0
1

1
1

1
L

A
N

D
D

0
,
D

1
,
S

0
,
S

1
F

L
o
g
ic

a
l A

N
D

 t
w

o
 r

e
g
is

te
r

d
a
ta

D
0
 <

-
S

0
 &

 S
1

1
1

1
0

0
0

U
L

V
0

V
1

A
0

A
1

R
0

R
1

A
N

D
I

D
0
,
S

0
,
Im

m
G

L
o
g
ic

a
l A

N
D

 r
e
g
is

te
r

d
a
ta

 w
ith

 im
m

.
D

0
 <

-
S

0
 &

 I
m

m
1

1
1

0
0

1
U

L

O
R

D
0
,
D

1
,
S

0
,
S

1
F

L
o
g
ic

a
l O

R
 t
w

o
 r

e
g
is

te
r

d
a
ta

D
0
 <

-
S

0
 |
 S

1
1

1
1

0
1

0
U

L
V

0
V

1
A

0
A

1
R

0
R

1

O
R

I
D

0
,
S

0
,
Im

m
G

L
o
g
ic

a
l O

R
 r

e
g
is

te
r

d
a
ta

 w
ith

 im
m

.
D

0
 <

-
S

0
 |
 I
m

m
1

1
1

0
1

1
U

L

X
O

R
D

0
,
D

1
,
S

0
,
S

1
F

L
o
g
ic

a
l X

O
R

 t
w

o
 r

e
g
is

te
r

d
a
ta

D
0
 <

-
S

0
 ⊕

 S
1

1
1

1
1

1
0

U
L

V
0

V
1

A
0

A
1

R
0

R
1

X
O

R
I

D
0
,
S

0
,
Im

m
G

L
o
g
ic

a
l X

O
R

 r
e
g
is

te
r

d
a
ta

 w
ith

 im
m

.
D

0
 <

-
S

0
 ⊕

 I
m

m
1

1
1

1
1

1
U

L

M
O

V
D

0
,
D

1
,
S

0
,
S

1
F

D
a
ta

 m
o
ve

 b
e
tw

e
e
n
 r

e
g
is

te
rs

D
0
 <

-
S

0
1

1
1

1
0

0
U

L
V

0
V

1
A

0
A

1
R

0
R

1

M
O

V
I

D
0
,
S

0
/D

1
,
Im

m
G

M
o
ve

 im
m

.
to

 a
 r

e
g
is

te
r

D
0
,
D

1
 <

-
Im

m
1

1
1

1
0

1
1

1
0

1
U

L

F
ie

ld E
X

E
W

D

ID
E

X
E

D
0

S
0

S
0

ID
E

X
E

W
D

ID
E

X
E

W
D

W
D

ID
E

X
E

W
D

IDID
E

X
E

W
D

ID
E

X
E

S
1

D
1

D
1

Im
m

.
S

0

ID

D
0

S
0

D
0

D
0

W
D

S
0

ID

D
0

E
X

E
W

D

ID
E

X
E

S
1

S
1

S
0

C
o
n
d
.

ID

O
p
C

o
d
e
1

O
p
C

o
d
e
1

O
p
C

o
d
e
2

O
p
C

o
d
e
2

C
o
n
d
.

E
X

E
ID

E
X

E

E
X

E
ID

W
D

E
X

E
W

D

E
X

E
W

D

W
D

IDID

D
0

S
0

ID
E

X
E

W
D

D
0

D
0

S
0

D
0

ID

S
0

D
0

W
D

D
0

S
0

D
0

D
0

W
D

C
o
n
d
.

C
o
n
d
.

C
o
n
d
.

C
o
n
d
.

C
o
n
d
.

C
o
n
d
.

C
o
n
d
.

C
o
n
d
.

C
o
n
d
.

C
o
n
d
.

C
o
n
d
.

C
o
n
d
.

C
o
n
d
.

C
o
n
d
.

C
o
n
d
.

C
o
n
d
.

C
o
n
d
.

C
o
n
d
.

C
o
n
d
.

C
o
n
d
.

C
o
n
d
.

S
0

M
n

e
m

-

o
n

ic
s

E
X

E
W

D

ID
E

X
E

C
o
n
d
.

E
X

E
W

D

W
D

O
p
C

o
d
e
2

ID

W
D

E
X

E

S
1

S
0

O
p

e
ra

n
d

s
T

y
p

e
D

e
s
c
ri

p
ti

o
n

O
p

e
ra

ti
o

n

O
p
C

o
d
e
2

ID
E

X
E

W
D

ID
E

X
E

W
D

ID

E
X

E
W

D
IDID

E
X

E
W

D
D

0
S

0

E
X

E
W

D

D
0

D
0

D
1

Im
m

.

Im
m

.

S
1

D
1

S
1

D
1

S
1

D
1

S
0

D
0

S
0

D
0

D
0

S
0

S
0

S
0

S
1

D
1

Im
m

.
-

L
o
w

Im
m

.

S
1

D
1

Im
m

.

D
0

S
0

Im
m

.
-

L
o
w

Im
m

.
-

L
o
w

Im
m

.
-

L
o
w

S
1

D
1

D
1

S
1

D
0

S
0

D
0

D
0

S
0

Im
m

.
-

L
o
w

S
1

D
1

Im
m

.
-

L
o
w

D
0

D
1

Im
m

.
-

H
ig

h

Im
m

.
-

H
ig

h

Im
m

.
-

H
ig

h

Im
m

.
-

H
ig

h

Im
m

.
-

H
ig

h

D
0

S
0

S
0

S
1

D
1

S
0

S
1

D
1

S
1

D
1

S
0

E
X

E
W

D

C
o
n
d
.

ID

Im
m

.
-

H
ig

h

D
0

C
o
n
d
.

ID

E
X

E
W

D

F
ig
u
re

2
:
In
st
ru
ct
io
n
se
t
o
f
th
e
d
a
ta
fl
ow

p
ro
ce
ss
o
r,
a
ri
th
m
et
ic

a
n
d
lo
g
ic

o
p
er
a
ti
o
n
s.

180 APPENDIX A. DATAFLOW PROCESSOR ARCHITECTURE

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9
-3

2
1

0

P
ro

g
ra

m
 d

o
w

n
lo

a
d
 H

e
a
d
e
r

P
a
c
k
a
g
e
 h

e
a
d
e
r

fo
r

d
o
w

n
lo

a
d
in

g
 p

ro
g
ra

m
 in

to

P
ro

G
ra

m
 M

e
m

o
ry

 (
P

G
M

).
 A

d
d
re

s
s
 0

 is
 r

e
s
e
rv

e
d
 f

o
r

th
e
 C

o
n
tr

o
l r

e
g
is

te
r,

 t
h
e
re

fo
re

 in
s
tr

u
c
tio

n
s
 s

ta
rt

 f
ro

m

a
d
d
re

s
s
 1

.

H
o
s
t
->

 P
C

C
C

P
W

ri
te

P
ro

g
ra

m
 d

o
w

n
lo

a
d

In
s
tr

u
c
tio

n
 t
o
 b

e
 d

o
w

n
lo

a
d
e
d
 in

to
 P

ro
G

ra
m

 M
e
m

o
ry

.

T
h
is

 is
 a

 c
o
n
s
e
c
u
tiv

e
 o

p
e
ra

tio
n
 o

f
th

e
 "

P
ro

g
ra

m

d
o
w

n
lo

a
d
 h

e
a
d
e
r"

.

H
o
s
t
->

 P
C

P
C

 c
o
u
n
te

r
u
p
d
a
te

U
p
d
a
te

 P
C

 c
o
u
n
te

r
s
ta

rt
in

g
 a

d
d
re

s
s
,
to

 s
e
le

c
t

p
ro

g
ra

m
 s

e
c
tio

n
 in

s
id

e
 P

ro
G

ra
m

 M
e
m

o
ry

 (
P

G
M

).
H

o
s
t
->

 P
C

C
C

P
W

ri
te

C
o
n
tr

o
l r

e
g
is

te
r

u
p
d
a
te

U
p
d
a
te

 C
o
n
tr

o
l r

e
g
is

te
r

to
 c

o
n
tr

o
l t

h
e
 o

p
e
ra

tio
n
s
 o

f
th

e

P
ro

c
e
s
s
o
r

C
e
ll.

H
o
s
t
->

 P
C

S
to

p
R

u
n

to
S

te
p

R
e
s
e
t

P
a
u
s
e

S
ta

rt
C

C
C

W
ri
te

C
o
n
tr

o
l r

e
g
is

te
r

re
a
d
 r

e
q
u
e
s
t

C
o
n
tr

o
l r

e
g
is

te
r

s
ta

tu
s
 r

e
a
d
in

g
 r

e
q
u
e
s
t.

H
o
s
t
->

 P
C

C
C

C
R

e
a
d

C
o
n
tr

o
l r

e
g
is

te
r

re
a
d
 d

a
ta

 1

S
e
n
d
in

g
 b

a
c
k
 C

o
n
tr

o
l r

e
g
is

te
r

s
ta

tu
s
,
d
a
ta

 p
a
c
k
a
g
e
 1

.

T
h
is

 is
 a

 c
o
n
s
e
c
u
tiv

e
 o

p
e
ra

tio
n
 o

f
"C

o
n
tr

o
l r

e
g
is

te
r

re
a
d
 r

e
q
u
e
s
t"

.

P
C

 -
>

 H
o
s
t

S
to

p
R

u
n

to
S

te
p

R
e
s
e
t

P
a
u
s
e

S
ta

rt

C
o
n
tr

o
l r

e
g
is

te
r

re
a
d
 d

a
ta

 2

S
e
n
d
in

g
 b

a
c
k
 C

o
n
tr

o
l r

e
g
is

te
r

s
ta

tu
s
,
d
a
ta

 p
a
c
k
a
g
e
 2

.

T
h
is

 is
 a

 c
o
n
s
e
c
u
tiv

e
 o

p
e
ra

tio
n
 o

f
"C

o
n
tr

o
l r

e
g
is

te
r

re
a
d
 d

a
ta

 1
".

P
C

 -
>

 H
o
s
t

In
s
tr

u
c
tio

n
 E

N
D

 c
o
d
e

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=

E
n
d
in

g
 a

d
d
re

s
s

C
u
rr

e
n
t

P
C

 c
o
u
n
te

r

In
s
tr

u
c
tio

n

0
S

ta
rt

in
g
 a

d
d
re

s
s

C
o
n
d
iti

o
n
a
l

c
o
n
fi
g
u
ra

tio
n
 a

d
d
re

s
s

E
n
d
in

g
 a

d
d
re

s
s

C
o
n
d
iti

o
n
a
l

c
o
n
fi
g
u
ra

tio
n
 a

d
d
re

s
s

O
p

e
ra

ti
o

n
D

e
s
c
ri

p
ti

o
n

D
ir

e
c
ti

o
n

D
a
ta

 p
a
c
k
a
g

e

C
o
u
n
t

S
ta

rt
in

g
 a

d
d
re

s
s

C
o
n
d
iti

o
n
a
l

c
o
n
fi
g
u
ra

tio
n
 a

d
d
re

s
s

F
ig
u
re

3
:
C
o
n
tr
o
l
in
st
ru
ct
io
n
se
t
o
f
th
e
d
a
ta
fl
ow

p
ro
ce
ss
o
r.

181

Table 1: Conditional field of the instruction set.

Opcode ALU-based condition Co-ALU-based condition

0000 Equal Equal

0001 Not equal Not equal

0010 Negative Less than

0011 Non-negative Less than or equal

0100 Carry out Greater than

0101 Non-carry out Greater than or equal

0110 Overflow Positive operand ‘a’

0111 Non-overflow Negative operand ‘a’

1000 Less than Positive operand ‘b’

1001 Less than or equal Negative operand ‘b’

1010 Greater than Positive operand ‘c’

1011 Greater than or equal Negative operand ‘c’

1100 Reserved Positive operand ‘d’

1101 Reserved Negative operand ‘d’

1110 Reserved Branch not taken

1111 Always Always

182 APPENDIX A. DATAFLOW PROCESSOR ARCHITECTURE

Table 2: Summary of register address.

Register Address Register Address

General-purpose registers Special purpose registers

$1 00100 ZERO 00000

$2 00101 PC 00001

$3 00110 Link 00010

$4 00111 Stack 00011

$5 01000

$6 01001 Hierarchical IO registers

$7 01010 G0 10111

$8 01011

$9 01100 Local IO registers

$10 01101 L0 11000

$11 01110 L1 11001

$12 01111 L2 11010

$13 10000 L3 11011

$14 10001 L4 11100

$15 10010 L5 11101

$16 10011 L6 11110

$17 10100 L7 11111

$18 10101

$19 10110

183

a b c d b a d c c d a b d c b a

8 8 8 8

1
6

8
/1
6
1
6

0

81
6

1
6

1
6

1
6

S
0

V
ec
to
r

m
o
d
e

0

a b b a a b b a c d d c c d d c

S
0

S
1

S
2

O
1

O
0

O
3

O
2

O
5

O
4

O
7

O
6

a b c d

8 8 8 88 8 8 8

8 8 8 8

1
6

1
6

1
6

1
6

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

1 0 0 1

1 0 0 1 1 0 0 1

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

a b c d

1 0 0 1 1 0 0 1

MSB MSB

S
1

1
6

1
6

1
6

1
6

1
6

1
6

1
6

S
2

S
3

8 8 MSB

1
6

1
6

0 1 0 1

1 0 1 0

MSB88
0 1

1
6

8 888
0 1

lo h
i

lo h
i

S
0

0
~
1
5

3
~
1
8

0
~
1
5

3
~
1
8

0
~
1
5

3
~
1
8

0
~
1
5

3
~
1
8

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

0 1 0 1 0 1 0 1

0 1 1 0

1
6

0 1 1 0
1
6

1
6

S
1
(0
)

0 1 1 0

S
1
(1
)

8
/1
6

O
1

O
0

O
3

O
2

O
1

O
0

a
1

a
2

b
1

b
2

c
1

c
2

d
1

d
2

(a
)

(b
)

(c
)

F
ig
u
re

4
:
A
rc
h
it
ec
tu
re

o
f
d
a
ta

a
rr
a
n
g
em

en
t
b
lo
ck
s,
(a
)
b
lo
ck
-I
,
(b
)
b
lo
ck
-I
I,
(c
)
b
lo
ck
-I
II
.

184 APPENDIX A. DATAFLOW PROCESSOR ARCHITECTURE

T
a
b
le

3
:
C
o
n
fi
g
u
ra
ti
o
n
se
t
fo
r
fu
n
ct
io
n
u
n
it
s
in

In
st
ru
ct
io
n
D
ec
o
d
in
g
(I
D
)
st
a
g
e.

B
it

F
ie
ld

D
es
cr
ip
ti
o
n

2
0
-1
9

o
p
co
d
e
a

O
p
er
a
ti
o
n
co
d
e
(T

a
b
le

4
)
fo
r
B
a
rr
el

sh
if
ti
n
g
,
o
p
er
a
n
d
A

1
8
-1
7

o
p
co
d
e
b

O
p
er
a
ti
o
n
co
d
e
(T

a
b
le

4
)
fo
r
B
a
rr
el

sh
if
ti
n
g
,
o
p
er
a
n
d
B

1
6

b
s
in
c
en

a
E
n
a
b
le

o
f
a
u
to
m
a
ti
c
sh
if
ti
n
g
in
cr
em

en
t,
o
p
er
a
n
d
A

1
5

b
s
en

a
B
a
rr
el

sh
if
ti
n
g
en
a
b
le

fo
r
o
p
er
a
n
d
A

1
4
-1
2

b
s
im

m
a

S
h
if
ti
n
g
b
it
co
u
n
t
fo
r
o
p
er
a
n
d
A

1
1

b
s
in
c
en

b
E
n
a
b
le

o
f
a
u
to
m
a
ti
c
sh
if
ti
n
g
in
cr
em

en
t,
o
p
er
a
n
d
B

1
0

b
s
en

b
B
a
rr
el

sh
if
ti
n
g
en
a
b
le

fo
r
o
p
er
a
n
d
B

9
-7

b
s
im

m
b

S
h
if
ti
n
g
b
it
co
u
n
t
fo
r
o
p
er
a
n
d
B

6
-3

n
eg

en
E
n
a
b
le

o
f
in
p
u
t
d
a
ta

n
eg
a
ti
o
n
(d
,
c,

b
,
a
)

2
se
l
a
lu

A
L
U

st
a
tu
s
re
g
is
te
r
se
le
ct
io
n
,
0
:
C
o
-A

L
U
;
1
:
A
L
U

1
-0

se
l
la
n
e

P
ro
ce
ss
in
g
la
n
e
se
le
ct
io
n

T
a
b
le

4
:
O
p
er
a
ti
o
n
co
d
e
fo
r
b
a
rr
el

sh
if
te
r.

O
p
co
d
e

O
p
er
a
ti
o
n

0
0

L
o
g
ic
a
l
S
h
if
t
L
ef
t
(L

S
L
)

0
1

L
o
g
ic
a
l
S
h
if
t
R
ig
h
t
(L

S
R
)

1
0

A
ri
th
m
et
ic

S
h
if
t
R
ig
h
t
(A

S
R
)

1
1

R
O
ta
te

R
ig
h
t
(R

O
R
)

185

T
a
b
le

5
:
C
o
n
fi
g
u
ra
ti
o
n
se
t
fo
r
fu
n
ct
io
n
u
n
it
s
in

E
X
E
cu
ti
o
n
(E

X
E
)
st
a
g
e.

B
it

F
ie
ld

D
es
cr
ip
ti
o
n

2
0
-1
3

m
u
x
1
s0

C
o
n
tr
o
l
b
it
s
fo
r
d
a
ta

a
rr
a
n
g
em

en
t
b
lo
ck
-I
,
st
a
g
e
0

1
2

m
u
x
1
s1

C
o
n
tr
o
l
b
it
s
fo
r
d
a
ta

a
rr
a
n
g
em

en
t
b
lo
ck
-I
,
st
a
g
e
1

1
1
-1
0

m
u
x
1
s2

C
o
n
tr
o
l
b
it
s
fo
r
d
a
ta

a
rr
a
n
g
em

en
t
b
lo
ck
-I
,
st
a
g
e
2

9
-2

m
u
x
2
s0

C
o
n
tr
o
l
b
it
s
fo
r
d
a
ta

a
rr
a
n
g
em

en
t
b
lo
ck
-I
I,
st
a
g
e
0

1
-0

m
u
x
2
s1

C
o
n
tr
o
l
b
it
s
fo
r
d
a
ta

a
rr
a
n
g
em

en
t
b
lo
ck
-I
I,
st
a
g
e
1

T
a
b
le

6
:
C
o
n
fi
g
u
ra
ti
o
n
se
t
fo
r
fu
n
ct
io
n
u
n
it
s
in

W
ri
te

B
a
ck

(W
B
)
st
a
g
e.

B
it

F
ie
ld

D
es
cr
ip
ti
o
n

1
4
-1
1

a
d
d
su
b

A
cc
u
m
u
la
to
r
A
D
D
/
S
U
B

se
le
ct

(d
,
c,

b
,
a
),
0
:
a
d
d
it
io
n
;
1
:
su
b
tr
a
ct
io
n

1
0
-7

m
u
x
3
s0

C
o
n
tr
o
l
b
it
s
fo
r
d
a
ta

a
rr
a
n
g
em

en
t
b
lo
ck
-I
II
,
st
a
g
e
0

6
m
u
x
3
s1

C
o
n
tr
o
l
b
it
s
fo
r
d
a
ta

a
rr
a
n
g
em

en
t
b
lo
ck
-I
II
,
st
a
g
e
1

5
-2

m
u
x
3
s2

C
o
n
tr
o
l
b
it
s
fo
r
d
a
ta

a
rr
a
n
g
em

en
t
b
lo
ck
-I
II
,
st
a
g
e
2

1
-0

m
u
x
3
s3

C
o
n
tr
o
l
b
it
s
fo
r
d
a
ta

a
rr
a
n
g
em

en
t
b
lo
ck
-I
II
,
st
a
g
e
3

186 APPENDIX A. DATAFLOW PROCESSOR ARCHITECTURE

(a)

(b)

Figure 5: Configuration generation tool, (a) bit stream generation, (b)
configuration of a processing cell.

187

Figure 6: Configuration generation tool, descriptor configuration of a
memory cell.

188 APPENDIX A. DATAFLOW PROCESSOR ARCHITECTURE

Figure 7: Configuration generation tool, configuration header and de-
scriptor execution program of a memory cell.

189

Table 7: User commands in UART interface.

CMD Description Parameter

g Destination cell ID for hierarchi-
cal I/O communication

Resource cell destination ID
(number input): 0∼4

d Send data inputs via UART to a) Data count (number input)

the selected cell b) Data inputs (string input)

D Send data inputs via Ethernet to
the selected cell

None

i Send inst./config. packages via a) Inst. count (number input)

UART to the selected cell b) Inst./Config. Inputs (string
input)

I Send inst./config. packages via
Ethernet to the selected cell

None

s Send “start” command to the se-
lected processing cell

None

p Send “pause” command to the
selected processing cell

None

r Send “reset” command to the se-
lected processing cell

None

e Send “step” command to the se-
lected processing cell

None

u Send “run to” command to the
selected processing cell

Destination instruction to run to
(number input)

o Send “stop” command to the se-
lected processing cell

None

t Status tracing of the selected cell None

c Send user command to the se-
lected cell

User command (string input)

f Memory data initialization (zero
filling)

Memory cell destination ID
(number input): 1, 2

q Processing cell initialization Processing cell destination ID
(number input): 0, 3

z Test data set input None

0 Demo full config. script None

1 Demo partial config. script None

h Command help printout None

190 APPENDIX A. DATAFLOW PROCESSOR ARCHITECTURE

Table 8: User commands in MATLAB interface.

CMD Description Parameter

cmd User command input in UART interface UART commands

config Send inst./config. packages from a script file None

data Send data inputs from a script file None

demo Run a script demo, IEEE 802.11n Sync. None

rxbuf Flush UART Rx buffer of the host None

help Command help printout None

exit Exit user interface in MATLAB None

Appendix B

Vector Dataflow Processor Architecture

This appendix includes detailed micro-code and instruction set of the vec-
tor dataflow processor (Tile-0) in the reconfigurable cell array presented in
Part III. The processor is composed of three processing cells for data computa-
tions, one memory cell for local data buffering, and a sequencer for control-flow
managements. Figure 1 illustrates seven-stage pipeline of the processor. Note
that operations mapped onto two function units in the pre-processing stage
can be executed concurrently. Table 1-8 presents the micro-code set for each
processing and memory cell and Table 13 describes the instruction set of the
sequencer.

�������� ����
Load

Pre-process-I������� �����
Pre-pr� ���¡¢¢�£� ��� �����

Core-pr� ��� ¤���¡¥�� ���¡¢ ¤���¡¥�� ���¡¢¢ Register bank¦����¡�� �§�¨©�� ��
Pipeline
stage

Figure 1: Microarchitecture of the vector dataflow processor, a view of
pipeline stages.

191

192 APPENDIX B. VECTOR DATAFLOW PROCESSOR ARCHITECTURE

T
a
b
le

1
:
M
ic
ro
-c
o
d
e
se
t
fo
r
th
e
d
a
ta

lo
a
d
in
g
st
a
g
e
o
f
re
g
is
te
r
b
a
n
k
.

B
it

D
iv
is
io
n

F
ie
ld

D
es
cr
ip
ti
o
n

3
1
-2
2

R
es
er
v
ed

2
1

re
g
m
o
p
a
en

I/
O

p
o
rt

en
a
b
le

fo
r
o
p
er
a
n
d
A

re
a
d
in
g
,
0
:
d
is
a
b
le
;
1
:
en
a
b
le

2
0

M
a
tr
ix

re
g
m
o
p
a
sr
c

D
a
ta

so
u
rc
e
fo
r
o
p
er
a
n
d
A

re
a
d
in
g
,
0
:
G
P
R
;
1
:
I/
O

1
9
-1
8

d
a
ta

re
g
m
o
p
a
id
x
a

I/
O

p
o
rt

n
u
m
b
er
/
G
P
R

in
d
ex

fo
r
o
p
er
a
n
d
A

re
a
d
in
g

1
7

o
p
er
a
n
d

re
g
m
o
p
b
en

I/
O

p
o
rt

en
a
b
le

fo
r
o
p
er
a
n
d
B

re
a
d
in
g

1
6

re
g
m
o
p
b
sr
c

D
a
ta

so
u
rc
e
fo
r
o
p
er
a
n
d
B

re
a
d
in
g
,
0
:
G
P
R
;
1
:
I/
O

1
5
-1
4

re
g
m
o
p
b
id
x
a

I/
O

p
o
rt

n
u
m
b
er
/
G
P
R

in
d
ex

fo
r
o
p
er
a
n
d
B

re
a
d
in
g

1
3

V
ec
to
r

re
g
v
o
p
en

I/
O

p
o
rt

en
a
b
le

fo
r
v
ec
to
r
o
p
er
a
n
d
re
a
d
in
g

1
2

d
a
ta

re
g
v
o
p
sr
c

D
a
ta

so
u
rc
e
fo
r
v
ec
to
r
o
p
er
a
n
d
re
a
d
in
g
,
0
:
G
P
R
;
1
:
I/
O

1
1
-8

o
p
er
a
n
d

re
g
v
o
p
id
x

I/
O

p
o
rt

n
u
m
b
er
/
G
P
R

in
d
ex

fo
r
v
ec
to
r
o
p
er
a
n
d
re
a
d
in
g

7
-4

V
P
R

v
p
r
id
x

In
d
ex

o
f
V
ec
to
r
P
er
m
u
ta
ti
o
n
R
eg
is
te
r
(V

P
R
)

3
-0

M
M
R

m
m
r
id
x

In
d
ex

o
f
M
a
tr
ix

M
a
sk

R
eg
is
te
r
(M

M
R
)

a
“
M
u
lt
ip
le
-o
f-
fo
u
r”

a
d
d
re
ss
in
g
(2

L
S
B
s
a
re

d
is
ca
rd
ed
)
fo
r
lo
a
d
in
g
m
a
tr
ix

d
a
ta

fr
o
m

G
P
R
,
e.
g
.,
a
c-

ce
ss
in
g
$
0
,
$
4
,
$
8
,
et
c.

193

T
a
b
le

2
:
M
ic
ro
-c
o
d
e
se
t
fo
r
p
re
-p
ro
ce
ss
in
g
ce
ll
I
(m

a
tr
ix

d
a
ta
).

B
it

D
iv
is
io
n

F
ie
ld

D
es
cr
ip
ti
o
n

3
1
-2
2

R
es
er
v
ed

2
1
-2
0

L
a
n
e
0

sr
c
l0

S
o
u
rc
e
o
p
er
a
n
d
fo
r
p
ro
ce
ss
in
g
la
n
e
0
,
0
:
o
p
er
a
n
d
A
;
1
:
o
p
er
a
n
d
B

1
9
-1
7

o
p
co
d
e
l0

O
p
er
a
ti
o
n
co
d
e
(T

a
b
le

3
)
fo
r
d
a
ta

p
re
-p
ro
ce
ss
in
g
in

la
n
e
0

1
6
-1
5

L
a
n
e
1

sr
c
l1

S
o
u
rc
e
o
p
er
a
n
d
fo
r
p
ro
ce
ss
in
g
la
n
e
1
,
0
:
o
p
er
a
n
d
A
;
1
:
o
p
er
a
n
d
B

1
4
-1
2

o
p
co
d
e
l1

O
p
er
a
ti
o
n
co
d
e
(T

a
b
le

3
)
fo
r
d
a
ta

p
re
-p
ro
ce
ss
in
g
in

la
n
e
1

1
1
-1
0

L
a
n
e
2

sr
c
l2

S
o
u
rc
e
o
p
er
a
n
d
fo
r
p
ro
ce
ss
in
g
la
n
e
2
,
0
:
o
p
er
a
n
d
A
;
1
:
o
p
er
a
n
d
B

9
-7

o
p
co
d
e
l2

O
p
er
a
ti
o
n
co
d
e
(T

a
b
le

3
)
fo
r
d
a
ta

p
re
-p
ro
ce
ss
in
g
in

la
n
e
2

6
-5

L
a
n
e
3

sr
c
l3

S
o
u
rc
e
o
p
er
a
n
d
fo
r
p
ro
ce
ss
in
g
la
n
e
3
,
0
:
o
p
er
a
n
d
A
;
1
:
o
p
er
a
n
d
B

4
-2

o
p
co
d
e
l3

O
p
er
a
ti
o
n
co
d
e
(T

a
b
le

3
)
fo
r
d
a
ta

p
re
-p
ro
ce
ss
in
g
in

la
n
e
3

1
-0

M
a
sk

m
a
sk

sr
c

S
o
u
rc
e
o
p
er
a
n
d
fo
r
d
a
ta

m
a
sk
in
g
,
0
:
o
p
er
a
n
d
A
;
1
:
o
p
er
a
n
d
B

T
a
b
le

3
:
O
p
er
a
ti
o
n
co
d
e
fo
r
m
a
tr
ix

d
a
ta

p
re
-p
ro
ce
ss
in
g
.

O
p
co
d
e

F
u
n
ct
io
n

O
p
er
a
n
d

0
0
0

N
o
n
e

−
0
0
1

th
e
re
a
l
p
a
rt

o
f
th
e
co
m
p
le
x
-v
a
lu
ed

in
p
u
t

0
1
0

N
eg
a
ti
o
n

th
e
im

a
g
in
a
ry

p
a
rt

o
f
th
e
co
m
p
le
x
-v
a
lu
ed

in
p
u
t

0
1
1

b
o
th

re
a
l
a
n
d
im

a
g
in
a
ry

p
a
rt

o
f
th
e
co
m
p
le
x
-v
a
lu
ed

in
p
u
t

1
0
0

R
es
er
v
ed

1
0
1

th
e
re
a
l
p
a
rt

o
f
th
e
co
m
p
le
x
-v
a
lu
ed

in
p
u
t

1
1
0

A
b
so
lu
te

th
e
im

a
g
in
a
ry

p
a
rt

o
f
th
e
co
m
p
le
x
-v
a
lu
ed

in
p
u
t

1
1
1

b
o
th

re
a
l
a
n
d
im

a
g
in
a
ry

p
a
rt

o
f
th
e
co
m
p
le
x
-v
a
lu
ed

in
p
u
t

194 APPENDIX B. VECTOR DATAFLOW PROCESSOR ARCHITECTURE

T
a
b
le

4
:
M
ic
ro
-c
o
d
e
se
t
fo
r
p
re
-p
ro
ce
ss
in
g
ce
ll
II

(v
ec
to
r
d
a
ta
).

B
it

D
iv
is
io
n

F
ie
ld

D
es
cr
ip
ti
o
n

3
1
-1
4

R
es
er
v
ed

1
3

P
er
m
u
ta
ti
o
n

p
er
m

en
P
er
m
u
ta
ti
o
n
en
a
b
le

1
2
-1
1

im
m

l0
Im

m
ed
ia
te

va
lu
e
in
p
u
t
fo
r
p
er
m
u
ta
ti
o
n
se
q
u
en
ce
,
p
ro
ce
ss
in
g
la
n
e
0

1
0
-9

im
m

l1
Im

m
ed
ia
te

va
lu
e
in
p
u
t
fo
r
p
er
m
u
ta
ti
o
n
se
q
u
en
ce
,
p
ro
ce
ss
in
g
la
n
e
1

8
-7

im
m

l2
Im

m
ed
ia
te

va
lu
e
in
p
u
t
fo
r
p
er
m
u
ta
ti
o
n
se
q
u
en
ce
,
p
ro
ce
ss
in
g
la
n
e
2

6
-5

im
m

l3
Im

m
ed
ia
te

va
lu
e
in
p
u
t
fo
r
p
er
m
u
ta
ti
o
n
se
q
u
en
ce
,
p
ro
ce
ss
in
g
la
n
e
3

4
S
w
a
p

sw
a
p
en

E
n
a
b
le

fo
r
sw

a
p
p
in
g
th
e
re
a
l
a
n
d
im

a
g
in
a
ry

p
a
rt

o
f
ea
ch

d
a
ta

o
p
er
a
n
d

3
-1

P
re
-p
ro
ce
ss

o
p
co
d
e

O
p
er
a
ti
o
n
co
d
e
(T

a
b
le

3
)
fo
r
v
ec
to
r
d
a
ta

p
re
-p
ro
ce
ss
in
g

0
M
a
sk

m
a
sk

en
V
ec
to
r
d
a
ta

m
a
sk

en
a
b
le

195

T
a
b
le

5
:
M
ic
ro
-c
o
d
e
se
t
fo
r
co
re
-p
ro
ce
ss
in
g
ce
ll
.

B
it

D
iv
is
io
n

F
ie
ld

D
es
cr
ip
ti
o
n

3
1
-1
7

R
es
er
v
ed

1
6
-1
5

S
h
u
ffl
e

o
p
co
d
e
sh
u
f

O
p
er
a
ti
o
n
co
d
e
(T

a
b
le

9
)
fo
r
in
p
u
t
d
a
ta

sh
u
ffl
in
g

1
4

sw
a
p
en

o
p
a

E
n
a
b
le

fo
r
sw

a
p
p
in
g
th
e
re
a
l
a
n
d
im

a
g
in
a
ry

p
a
rt

o
f
m
a
tr
ix

o
p
er
a
n
d
A

1
3

sw
a
p
en

o
p
b

E
n
a
b
le

fo
r
sw

a
p
p
in
g
th
e
re
a
l
a
n
d
im

a
g
in
a
ry

p
a
rt

o
f
m
a
tr
ix

o
p
er
a
n
d
B

1
2

S
IM

D

m
u
l
en

E
n
a
b
le

fo
r
co
m
p
le
x
-v
a
lu
ed

m
u
lt
ip
li
ca
ti
o
n

1
1

m
u
l
si
g
n

S
ig
n
ed
/
u
n
si
g
n
ed

m
u
lt
ip
li
ca
ti
o
n
,
0
:
si
g
n
ed
;
1
:
u
n
si
g
n
ed

1
0

a
d
d
en

l1
E
n
a
b
le

fo
r
a
d
d
it
io
n
,
le
v
el
-1

a
d
d
er
s

9
a
d
d
en

l2
E
n
a
b
le

fo
r
a
d
d
it
io
n
,
le
v
el
-2

a
d
d
er
s

8
a
d
d
si
g
n
l1

S
ig
n
ed
/
u
n
si
g
n
ed

a
d
d
it
io
n
,
le
v
el
-1

a
d
d
er
s,
0
:
si
g
n
ed
;
1
:
u
n
si
g
n
ed

7
a
d
d
si
g
n
l2

S
ig
n
ed
/
u
n
si
g
n
ed

a
d
d
it
io
n
,
le
v
el
-2

a
d
d
er
s

6
a
d
d
su
b
l1
a

A
d
d
it
io
n
/
su
b
tr
a
ct
io
n
se
le
ct
io
n
,
le
v
el
-1

a
d
d
er

A
,
0
:
a
d
d
it
io
n
;
1
:
su
b
tr
a
ct
io
n

5
a
d
d
su
b
l1
b

A
d
d
it
io
n
/
su
b
tr
a
ct
io
n
se
le
ct
io
n
,
le
v
el
-1

a
d
d
er

B

4
a
d
d
su
b
l2
a

A
d
d
it
io
n
/
su
b
tr
a
ct
io
n
se
le
ct
io
n
,
le
v
el
-2

a
d
d
er

A

3
a
d
d
su
b
l2
b

A
d
d
it
io
n
/
su
b
tr
a
ct
io
n
se
le
ct
io
n
,
le
v
el
-2

a
d
d
er

B

2
-1

o
p
co
d
e
v

O
p
er
a
ti
o
n
co
d
e
(T

a
b
le

1
0
)
fo
r
v
ec
to
r
d
a
ta

o
p
er
a
n
d

0
v
d
u
p
li
ca
te

D
u
p
li
ca
ti
o
n
o
f
v
ec
to
r
d
a
ta

o
p
er
a
n
d
,
0
:
co
lu
m
n
-w

is
e;

1
:
ro
w
-w

is
e

196 APPENDIX B. VECTOR DATAFLOW PROCESSOR ARCHITECTURE

T
a
b
le

6
:
M
ic
ro
-c
o
d
e
se
t
fo
r
p
o
st
-p
ro
ce
ss
in
g
ce
ll
I.

B
it

D
iv
is
io
n

F
ie
ld

D
es
cr
ip
ti
o
n

3
1
-1
8

R
es
er
v
ed

1
7

A
cc
u
m
u
la
ti
o
n

a
cc

en
l3

E
n
a
b
le

fo
r
d
a
ta

a
cc
u
m
u
la
ti
o
n
,
p
ro
ce
ss
in
g
la
n
e
3

1
6

a
cc

en
l2

E
n
a
b
le

fo
r
d
a
ta

a
cc
u
m
u
la
ti
o
n
,
p
ro
ce
ss
in
g
la
n
e
2

1
5

a
cc

en
l1

E
n
a
b
le

fo
r
d
a
ta

a
cc
u
m
u
la
ti
o
n
,
p
ro
ce
ss
in
g
la
n
e
1

1
4

a
cc

en
l0

E
n
a
b
le

fo
r
d
a
ta

a
cc
u
m
u
la
ti
o
n
,
p
ro
ce
ss
in
g
la
n
e
0

1
3

a
cc

in
it

l3
R
eg
is
te
r
in
it
ia
li
za
ti
o
n
,
p
ro
ce
ss
in
g
la
n
e
3
,
0
:
in
it
.;
1
:
a
cc
.

1
2

a
cc

in
it

l2
R
eg
is
te
r
in
it
ia
li
za
ti
o
n
,
p
ro
ce
ss
in
g
la
n
e
2

1
1

a
cc

in
it

l1
R
eg
is
te
r
in
it
ia
li
za
ti
o
n
,
p
ro
ce
ss
in
g
la
n
e
1

1
0

a
cc

in
it

l0
R
eg
is
te
r
in
it
ia
li
za
ti
o
n
,
p
ro
ce
ss
in
g
la
n
e
0

9

S
u
m
m
a
ti
o
n

m
u
x
su
m

in
In
p
u
t
m
u
lt
ip
le
x
in
g
fo
r
la
n
e
3
&

2
,
0
:
st
ra
ig
h
t;
1
:
sw

a
p
p
ed
.

8
m
u
x
su
m

in
In
p
u
t
m
u
lt
ip
le
x
in
g
fo
r
la
n
e
1
&

0

7
m
u
x
su
m

o
u
t

O
u
tp
u
t
m
u
lt
ip
le
x
in
g
fo
r
la
n
e
3
&

2
,
0
:
a
cc
.;
1
:
su
m

6
m
u
x
su
m

o
u
t

O
u
tp
u
t
m
u
lt
ip
le
x
in
g
fo
r
la
n
e
1
&

0

5
-4

B
a
rr
el

b
s
o
p
co
d
e

O
p
er
a
ti
o
n
co
d
e
(T

a
b
le

1
1
)
fo
r
b
a
rr
el

sh
if
ti
n
g

3
-0

sh
if
ti
n
g

b
s
im

m
S
h
if
ti
n
g
b
it
co
u
n
t

197

T
a
b
le

7
:
M
ic
ro
-c
o
d
e
se
t
fo
r
p
o
st
-p
ro
ce
ss
in
g
ce
ll
II
.

B
it

D
iv
is
io
n

F
ie
ld

D
es
cr
ip
ti
o
n

3
1
-1
4

R
es
er
v
ed

1
3

S
o
rt
in
g

so
rt

en
E
n
a
b
le

fo
r
v
ec
to
r
d
a
ta

so
rt
in
g

1
2

so
rt

o
rd
er

S
o
rt
in
g
o
rd
er
,
0
:
a
sc
en
d
in
g
;
1
:
d
es
ce
n
d
in
g

1
1

so
rt

si
g
n

S
ig
n
ed
/
u
n
si
g
n
ed

so
rt
in
g
,
0
:
si
g
n
ed
;
1
:
u
n
si
g
n
ed

1
0
-9

P
er
m
u
ta
ti
o
n

p
er
m

sr
c

P
er
m
u
ta
ti
o
n
se
q
u
en
ce

in
p
u
t,
co
n
tr
o
l
co
d
e
in

T
a
b
le

1
2

8
-7

p
er
m

im
m

l0
Im

m
ed
ia
te

va
lu
e
in
p
u
t
fo
r
p
er
m
u
ta
ti
o
n
se
q
u
en
ce
,
p
ro
ce
ss
in
g
la
n
e
0

6
-5

p
er
m

im
m

l1
Im

m
ed
ia
te

va
lu
e
in
p
u
t
fo
r
p
er
m
u
ta
ti
o
n
se
q
u
en
ce
,
p
ro
ce
ss
in
g
la
n
e
1

4
-3

p
er
m

im
m

l2
Im

m
ed
ia
te

va
lu
e
in
p
u
t
fo
r
p
er
m
u
ta
ti
o
n
se
q
u
en
ce
,
p
ro
ce
ss
in
g
la
n
e
2

2
-1

p
er
m

im
m

l3
Im

m
ed
ia
te

va
lu
e
in
p
u
t
fo
r
p
er
m
u
ta
ti
o
n
se
q
u
en
ce
,
p
ro
ce
ss
in
g
la
n
e
3

0
M
a
sk

m
a
sk

en
E
n
a
b
le

fo
r
v
ec
to
r
d
a
ta

m
a
sk

198 APPENDIX B. VECTOR DATAFLOW PROCESSOR ARCHITECTURE

T
a
b
le

8
:
M
ic
ro
-c
o
d
e
se
t
fo
r
th
e
w
ri
te
-b
a
ck

st
a
g
e
o
f
re
g
is
te
r
b
a
n
k
.

B
it

D
iv
is
io
n

F
ie
ld

D
es
cr
ip
ti
o
n

3
1
-1
9

R
es
er
v
ed

1
8

re
g
m

w
en

E
n
a
b
le

fo
r
m
a
tr
ix

d
a
ta

w
ri
ti
n
g

1
7

M
a
tr
ix

re
g
m

sr
c

D
a
ta

so
u
rc
e
fo
r
re
g
is
te
r
w
ri
ti
n
g
,
0
:
m
a
tr
ix

b
u
s;

1
:
v
ec
to
r
b
u
s

1
6

d
a
ta

re
g
m

v
d
u
p

D
u
p
li
ca
ti
o
n
o
f
v
ec
to
r
d
a
ta

o
u
tp
u
t,

0
:
ro
w
-w

is
e;

1
:
co
lu
m
n
-w

is
e

1
5

w
ri
ti
n
g

re
g
m

d
st

D
es
ti
n
a
ti
o
n
fo
r
m
a
tr
ix

d
a
ta

w
ri
ti
n
g
,
0
:
G
P
R
;
1
:
I/
O

1
4
-1
3

re
g
m

id
x
a

I/
O

p
o
rt

n
u
m
b
er
/
G
P
R

in
d
ex

fo
r
m
a
tr
ix

d
a
ta

w
ri
ti
n
g

1
2

V
ec
to
r

re
g
v
w
en

E
n
a
b
le

fo
r
v
ec
to
r
d
a
ta

w
ri
ti
n
g

1
1

d
a
ta

re
g
v
d
st

D
es
ti
n
a
ti
o
n
fo
r
re
g
is
te
r
w
ri
ti
n
g
,
0
:
G
P
R
;
1
:
I/
O

1
0
-7

w
ri
ti
n
g

re
g
v
id
x

I/
O

p
o
rt

n
u
m
b
er
/
G
P
R

in
d
ex

fo
r
v
ec
to
r
d
a
ta

w
ri
ti
n
g

6
re
g
s
w
en

R
eg
is
te
r
w
ri
te

en
a
b
le

5
V
P
R
/

re
g
s
d
st

D
es
ti
n
a
ti
o
n
fo
r
d
a
ta

w
ri
ti
n
g
,
0
:
V
P
R
;
1
:
M
M
R

4
M
M
R

re
g
s
sr
c

D
a
ta

so
u
rc
e
fo
r
re
g
is
te
r
w
ri
ti
n
g
,
0
:
so
rt
ed

d
a
ta
;
1
:
v
ec
to
r
d
a
ta

3
-0

re
g
s
id
x

R
eg
is
te
r
in
d
ex

a
“
M
u
lt
ip
le
-o
f-
fo
u
r”

a
d
d
re
ss
in
g
(2

L
S
B
s
a
re

d
is
ca
rd
ed
)
fo
r
w
ri
ti
n
g
m
a
tr
ix

d
a
ta

to
G
P
R
,
e.
g
.,
a
c-

ce
ss
in
g
$
0
,
$
4
,
$
8
,
et
c.

199

Table 9: Operation code for input data shuffling in the SIMD core.

Opcode Operation

00 Complex-valued arithmetic

01 Real-valued arithmetic

10 Complex- & real-valued square operation

11 Reserved

Table 10: Operation code for vector data operand in the SIMD core.

Opcode Operation

00 None

01 Constant multiplication

10 Constant addition

11 Reserved

Table 11: Operation code for barrel shifter.

Opcode Operation

00 None

01 Arithmetic Shift Right (ASR)

10 Logical Shift Left (LSL)

11 Logical Shift Right (LSR)

Table 12: Data source for permutation sequence.

Opcode Operation

00 No permutation

01 Using sorting output as a permutation sequence

10 Using sequence loaded from VPR

11 Using an immediate value input as a permutation sequence

200 APPENDIX B. VECTOR DATAFLOW PROCESSOR ARCHITECTURE

T
a
b
le

1
3
:
In
st
ru
ct
io
n
se
t
fo
r
se
q
u
en
ce
r.

3
1
-2
9

2
8

2
7
-2
4

2
3
-2
0

1
9
-1
6

1
5
-1
2

1
1
-8

7
-4

3
-0

In
st
ru
ct
io
n

O
p
co
d
e

F
ie
ld

N
O
P

0
0
0

L
a

−
N
o
rm

a
lb

0
0
1

L
o
ff
se
t
1

o
ff
se
t
2

o
ff
se
t
3

o
ff
se
t
4

o
ff
se
t
5

o
ff
se
t
6

o
ff
se
t
7

L
o
o
p
p
u
sh

c
0
1
0

−
L
o
o
p
co
u
n
t

−
B
a
se

co
n
fi
g
.d

0
1
1

−
b
a
se

1
b
a
se

2
b
a
se

3
b
a
se

4
b
a
se

5
b
a
se

6
b
a
se

7

E
n
d
o
f
p
ro
g
ra
m

1
0
0

−
−

ID

1
0
1

−
R
es
er
v
ed

1
1
0

−
1
1
1

−
a
“
en
d
-o
f-
lo
o
p
”
fl
a
g
.

b
N
o
rm

a
l
in
st
ru
ct
io
n
,
co
n
tr
o
ls

th
e
a
d
d
re
ss

(“
a
d
d
re
ss

=
b
a
se

+
o
ff
se
t”
)
o
f
d
is
tr
ib
u
te
d

co
n
fi
g
u
ra
ti
o
n

m
em

o
ri
es
.

c
P
u
sh
in
g
a
lo
o
p
in
to

th
e
st
a
ck

o
f
th
e
in
n
er

lo
o
p
co
n
tr
o
ll
er
,
in
cl
u
d
in
g
li
n
k
a
d
d
re
ss

a
n
d
lo
o
p
co
u
n
t.

d
B
a
se

a
d
d
re
ss

co
n
fi
g
u
ra
ti
o
n
fo
r
th
e
d
is
tr
ib
u
te
d
co
n
fi
g
u
ra
ti
o
n
m
em

o
ri
es
.

