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Figure 1: The two coordinate systems S and S ′.

1 Introduction and the Lorentz' transformation

An event in spacetime is characterized by the coordinates (t, x, y, z) and (t′, x′, y′, z′)
as seen in two di�erent frames of reference S and S ′, respectively. These reference
frames are also named inertial reference frames.1

The coordinates are related by the Lorentz' transformation [1], see Figure 1.2
t′ = (t− vx/c2)γ

x′ = (x− vt)γ

y′ = y

z′ = z

(1.1)

where

γ =
1√

1− v2/c2

Introduce the contravariant coordinate vector xµ = (x0, x1, x2, x3), where
x0 = ct

x1 = x

x2 = y

x3 = z

De�ne the metric tensor (matrix)

gµν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


µ = 0
µ = 1
µ = 2
µ = 3

1In an inertial reference frames (or inertial frame of reference) a particle moves along a straight
line in the absence of acting forces.

2This transformation is based on two fundamental postulates, i.e.,

1. All laws of nature should have the same form in all frames of inertia

2. The speed of light in vacuum is �nite and independent of the frame of inertia
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and the covariant coordinate vector, de�ned by

xµ =
3∑

ν=0

gµνx
ν

or xµ = (x0,−x1,−x2,−x3) = (ct,−x,−y,−z).
It is convenient to introduce and use the Einstein's summation rule or convention.

3∑
ν=0

gµνx
ν = gµνx

ν

This means that repeated indices indicate a summation. Note that one index in the
summation is a superscript and one is a subscript.

In particular,

xµxµ = xµgµνx
ν = gµνx

µxν

= (x0)2 − (x1)2 − (x2)2 − (x3)2 = (ct)2 − x2 − y2 − z2 = (ct)2 − r2

We are now in a position to write the Lorentz' transformation in a very compact
form.

x′
µ
= Lµνx

ν (1.2)

where, for a transformation along the x axis (v = vêx), L
µ
ν is

Lµν =


γ −γv/c 0 0

−γv/c γ 0 0
0 0 1 0
0 0 0 1

 (1.3)

since in components the transformation (1.2) becomes
x′0

x′1

x′2

x′3

 =


γ −γv/c 0 0

−γv/c γ 0 0
0 0 1 0
0 0 0 1



x0

x1

x2

x3


or 

ct′ = x′
0
= γx0 − γx1v/c = γ(ct− xv/c)

x′ = x′
1
= −γx0v/c+ γx1 = γ(x− ct)

y′ = x′
2
= x2 = y

z′ = x′
3
= x3 = z

which is identical to (1.1).

Note: If v is not parallel to the x axis, the relation (1.2) still holds, but the tensor
(matrix) (1.3) is more complex. For a general direction of the velocity v, the tensor
Lµν is ��lled�.



3

2 Invariance of interval

We study two di�erent events in the two reference frames S and S ′. Orient the refer-
ence frames such that the �rst event occurs when the two frames of reference coincide
(the origins in the two frames coincide). The �rst event then is xµ = (0, 0, 0, 0) and
x′µ = (0, 0, 0, 0), respectively. The second event, we denote xµ = (x0, x1, x2, x3) and
x′µ = (x′0, x′1, x′2, x′3) in the two frames, respectively. The Lorentz' transforma-
tion (1.2) relates the coordinates of the two events, i.e., x′µ = Lµνx

ν . Moreover, we
notice that3

x′
µ
x′µ = gµνx

′µx′
ν
= gµνL

µ
αx

αLνβx
β = gµνL

µ
αL

ν
βx

αxβ

Compute gµνL
µ
αL

ν
β = LµαgµνL

ν
β. For a translation along the x axis, we get

γ −γv/c 0 0
−γv/c γ 0 0

0 0 1 0
0 0 0 1


t

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1




γ −γv/c 0 0
−γv/c γ 0 0

0 0 1 0
0 0 0 1


where t stands for the transpose of the matrix (rows and columns change places).
Multiplication of the matrices implies:

γ −γv/c 0 0
−γv/c γ 0 0

0 0 1 0
0 0 0 1




γ −γv/c 0 0
γv/c −γ 0 0
0 0 −1 0
0 0 0 −1



=


γ2 − γ2v2/c2 −γ2v/c+ γ2v/c 0 0

−γ2v/c+ γ2v/c γ2v2/c2 − γ2 0 0
0 0 −1 0
0 0 0 −1

 =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


We get

x′
µ
x′µ = gµνL

µ
αL

ν
β︸ ︷︷ ︸

gαβ

xαxβ = gαβx
αxβ = xαxα = xµxµ

De�nition: The interval (�distance� in space-time) between two events is de�nes
as s2 = xµxµ.

The interval s2 between two events is independent of which frame of refer-
ence it is evaluated in. The interval is invariant.

Note: Compare the distance between two points in three dimensions. This dis-
tance is independent of which frame of reference it is evaluated in, i.e., r · r, where
r is the relative vector between the points.

3It is really the di�erence between the two events that is used, but since the �rst event is at the
origin, the di�erence coincide with xµ and x′µ, respectively.
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Figure 2: The light cone.

3 Light cone

The interval s2 = xµxµ acts like a scalar product in the four dimensional spacetime.
We can use s2 = xµxµ to classify two events separated by the four-vector xµ.

I) s2 = 0, the interval in a lightlike separation

II) s2 > 0, the interval in a timelike separation

III) s2 < 0, the interval in a spacelike separation

In general

xµxµ = (x0)2 − (x1)2 − (x2)2 − (x3)2 = (ct)2 − x2 − y2 − z2 = (ct)2 − r2

Space-time is divided in three di�erent areas, see Figure 2. A lightlike interval (I)
de�nes the light cone.

1. Two events that are separated by a lightlike interval can be connected by a
light signal

2. Two events that are separated by a timelike interval can be connected by a
signal with a speed v < c

3. Two events that are separated by a spacelike interval cannot be connected by
a signal with a speed v < c

Events in the last category are not causal (the e�ect precedes the cause i some frame
of reference S). Events in the backward cone, see Figure 3, a�ect an event at the
origin causally. Similarly, an event at the origin a�ects an event in the forward cone
causally.
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Figure 3: The light cone.

A �nal question in this section: What is the speed u of the signal that connects
two events that are related causally? The interval is

s2 = (x0)2 − (x1)2 − (x2)2 − (x3)2 = (ct)2 − r2

= (ct)2(1− r2/(ct)2) = (ct)2(1− u2/c2) > 0

since u = r/t.
De�ne the proper time τ = t

√
1− u2/c2 for a particle. The proper time is the

time an observer in the rest system (frame of reference where the particle is at rest)
measures s2 = c2τ 2.

4 Covariant formulation of linear momentum and

energy

The relativistic momentum p and the energy E are de�ned as
p = mu =

m0u√
1− u2/c2

E = mc2 =
m0c

2√
1− u2/c2

where u is the velocity of the particle and its rest mass is m0. We have also have

p2 − E2/c2 = −m0c
2 = constant, independent of the frame of reference (4.1)
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We de�ne the contravariant momentum (4-vector) pµ = (p0, p1, p2, p3) where

p0 = m/c =
m0c√

1− u2/c2

p1 = mux =
m0ux√
1− u2/c2

p2 = muy =
m0uy√
1− u2/c2

p3 = muz =
m0uz√
1− u2/c2

In analogy to s2 = xµxµ, we calculate

pµpµ = gµνp
νpµ = (p0)2 − (p1)2 − (p2)2 − (p3)2 = E2/c2 − p2 = m2

0c
2

where we also used (4.1). Again, we see that pµpµ acts as a scalar product in the
four dimensional space-time, in complete analogy with what we found for the vector
xµxµ = s2.

This indicates that the 4-vector, pµ, transforms between two frames of reference
S and S ′, the same way as xµ, i.e.,{

x′
µ
= Lµνx

ν

p′
µ
= Lµνp

ν

Explicitly, with v = vêx 
p′

0
= γp0 − γp1v/c

p′
1
= −γp0v/c+ γp1

p′
2
= p2

p′
3
= p3

or 
E ′/c = γ(E/c− pxv/c)

p′x = γ(px − vE/c2)

p′y = p2

p′3 = p3

Note: The momentum p and the energy E are now covariantly connected in the
4-vector pµ in the same way as space-time is connected in the vector xµ.

The importance of a covariant formulation is now obvious:

If energy and linear momentum are conserved quantities for one observer in
S, then another observer in S ′ � connected by a Lorentz's transformation
� also �nds these quantities conserved.
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5 The 4-force F µ

We also have the possibility to de�ne a relativistic force concept by de�ning a 4-
vector F µ by

F µ =
dpµ

dτ

Notice that in this de�nition the derivative is taken w.r.t. the proper time τ and not
the local time t. The reason for this is that the proper time τ = t

√
1− u2/c2 is an

invariant quantity (same value τ = s/c in all inertial systems). In component form
the force is 

F 0 =
dp0

dτ
=

d

dτ
(E/c) =

dE

dt

1

c
√

1− u2/c2

F 1 =
dp1

dτ
=

dpx
dt

1√
1− u2/c2

F 2 =
dp2

dτ
=

dpy
dt

1√
1− u2/c2

F 3 =
dp3

dτ
=

dpz
dt

1√
1− u2/c2

If we introduce the force f = dp
dt

and dE
dt

= f · u, we get

F µ = (f · u/c, fx, fy, fz)
1√

1− u2/c2

and the 4-vector transforms in the same way as pµ and xµ under a Lorentz trans-
formation, i.e.,

F ′µ = LµνF
ν (5.1)

5.1 Action reaction

In non-relativistic mechanics we have learned that two bodies attract each other
with equally large and oppositely directed forces. This the Newton's third law and
it is a consequence of the conservation of momentum. We now investigate this case
in a relativistic setting.

Assume two particles 1 and 2 in the unprimed frame of reference, with force and
velocities, see also Figure 4{

f 1 = (0, 0, f)

f 2 = (0, 0,−f)

{
u1 = (0, 0, 0f)

u2 = (0, 0, u2)

The 4-vectors in S are
F µ
1 = (0, 0, 0, f)

F µ
2 = (−fu2/c, 0, 0,−f)

1√
1− u22/c

2
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Figure 4: The forces and velocities of the two particles.

In another frame of reference (frame of inertia) S ′ (v = vêx) the 4-force is F
′µ.

Use (1.3) and (5.1) 
F ′0 = γF 0 − γF 1v/c

F ′1 = −γF 0v/c+ γF 1

F ′2 = p2

F ′3 = p3

where γ = 1/
√
1− v2/c2. We get

F ′µ
1 = (0, 0, 0, f)

F ′µ
2 = (−γfu2/c, γvu2f/c2, 0,−f)

1√
1− u22/c

2

The velocities u1 = 0 and u2 transform to the primed frame of reference [1, (11.31)]{
u′

1 = (−v, 0, 0)
u′

2 = (−v, 0, u2
√

1− v2/c2)

which implies the magnitudesu′1 = v

u′2 =
√
(v2 + u22(1− v2/c2))

and

1− u′2
2
/c2 = 1− (v2 + u22(1− v2/c2))/c2 = 1− u22/c

2 − v2/c2(1− u22/c
2)

= (1− u22/c
2)(1− v2/c2)
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The force in S ′ is obtained from F ′µ

F ′µ = (f ′ · u′/c, f ′
x, f

′
y, f

′
z)

1√
1− u′2/c2

Explicitly, we get
f ′

1 = (0, 0, f)

√
1− u′1

2/c2 = (0, 0, f
√

1− v2/c2)

f ′
2 = (γvu2f/c

2, 0,−f)

√
1− u′2

2/c2√
1− u22/c

2
= (vu2f/c

2, 0,−f
√

1− v2/c2)

An additional component of the force in the x direction appears in the primed frame
of reference. The forces f ′

1 and f ′
2 are no longer equal and oppositely directed in S ′.

We conclude that the law of conservation of momentum is more fundamental than
the Newton�s third law.

6 Electromagnetic �eld

The electric �eld E and the magnetic �ux density B do not transform as 4-vectors.
Instead they transform as a second-rank, antisymmetric tensor F µν � the
�eld-strength tensor, see [1]. This tensor is de�ned as

F µν =


0 −Ex −Ey −Ez
Ex 0 −Bz By

Ey Bz 0 −Bx

Ez −By Bx 0


and the �elds transform as, cf., the transformation of xµ in (1.2)

F ′µν = LµαL
ν
βF

αβ

In terms of their components (v = vêx) we get
γ −γv/c 0 0

−γv/c γ 0 0
0 0 1 0
0 0 0 1




0 −Ex −Ey −Ez
Ex 0 −Bz By

Ey Bz 0 −Bx

Ez −By Bx 0




γ −γv/c 0 0
−γv/c γ 0 0

0 0 1 0
0 0 0 1


t

=


0 −γ2Ex(1− v2/c2) −γEy + γBzv/c −γEz − γByv/c

γ2Ex(1− v2/c2) 0 −γBz + γEyv/c γBy + γEzv/c
γEy − γBzv/c γBz − γEyv/c 0 −Bx

γEz + γByv/c −γBy − γEzv/c Bx 0


from which we identity the components{

E′ = (Ex, γEy − γBzv/c, γEz + γByv/c)

B′ = (Bx, γBy + γEzv/c, γBz − γEyv/c)
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