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Vector operations with ∇
(1) ∇(ϕ+ ψ) = ∇ϕ+∇ψ
(2) ∇(ϕψ) = ψ∇ϕ+ ϕ∇ψ
(3) ∇(a · b) = (a · ∇)b+ (b · ∇)a+ a× (∇× b) + b× (∇× a)

(4) ∇(a · b) = −∇× (a× b) + 2(b · ∇)a+ a× (∇× b) + b× (∇× a) + a(∇ · b)− b(∇ · a)

(5) ∇ · (a+ b) = ∇ · a+∇ · b
(6) ∇ · (ϕa) = ϕ(∇ · a) + (∇ϕ) · a
(7) ∇ · (a× b) = b · (∇× a)− a · (∇× b)

(8) ∇× (a+ b) = ∇× a+∇× b
(9) ∇× (ϕa) = ϕ(∇× a) + (∇ϕ)× a

(10) ∇× (a× b) = a(∇ · b)− b(∇ · a) + (b · ∇)a− (a · ∇)b

(11) ∇× (a× b) = −∇(a · b) + 2(b · ∇)a+ a× (∇× b) + b× (∇× a) + a(∇ · b)− b(∇ · a)

(12) ∇ · ∇ϕ = ∇2ϕ = ∆ϕ

(13) ∇× (∇× a) = ∇(∇ · a)−∇2a

(14) ∇× (∇ϕ) = 0

(15) ∇ · (∇× a) = 0

(16) ∇2(ϕψ) = ϕ∇2ψ + ψ∇2ϕ+ 2∇ϕ · ∇ψ

(17) ∇r = r̂

(18) ∇× r = 0

(19) ∇× r̂ = 0

(20) ∇ · r = 3

(21) ∇ · r̂ =
2

r

(22) ∇(a · r) = a, a constant vector

(23) (a · ∇)r = a

(24) (a · ∇)r̂ =
1

r
(a− r̂(a · r̂)) =

a⊥
r

(25) ∇2(r · a) = 2∇ · a+ r · (∇2a)

(26) ∇u(f) = (∇f)
du

df

(27) ∇ · F (f) = (∇f) · dF
df

(28) ∇× F (f) = (∇f)× dF

df

(29) ∇ = r̂(r̂ · ∇)− r̂ × (r̂ ×∇)
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Preface

T
his text is an introduction to the most important properties of electromag-
netic fields and their interaction with passive materials. The main purpose
of the text is to describe the theoretical principles of the modeling of these

interaction phenomena. Chapter 2 gives a description of this interaction by employ-
ing the constitutive relations. The treatment is made in the time domain to avoid
several pitfalls, e.g., lack of causality.

The course requires a certain knowledge of basic electromagnetic field theory, for
instance the basic course in electromagnetic field theory at an undergraduate level.
We expect the Maxwell field equations to be known, as well as basic vector analysis,
and calculations with the nabla operator ∇.

Exercises or problem are gathered at the end of each chapter. Advanced exercises
are marked with a star (∗). Answers to the exercises are found at the end of the
book.

iii
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Chapter 1
The Maxwell equations

T
he foundation of the electromagnetics stands on the shoulders of the scientific
giants of the 19th century. Stars like André Marie Ampère1, Michael Faraday2,
and James Clerk Maxwell3 shine brightly, see Figure 1.1. Many other scientist

have contributed to the theory. A few of these giants are shown in Figure 1.2.
The physics of electromagnetic phenomena takes place in space and time. There-

fore, a time dependent description is a natural starting point of modeling the elec-
tromagnetic interaction with matter. In fact, this approach is the guiding principle
throughout the first part of this chapter, which is devoted to modeling of electromag-
netic interaction with matter. By taking this viewpoint, we avoid some of the pitfalls
that might occur if you start with a frequency domain formulation. In particular,
causality is naturally included in the modeling.

The Maxwell equations are the fundamental mathematical model for all theo-
retical analysis of macroscopic electromagnetic phenomena. James Clerk Maxwell
realized that light is an electromagnetic disturbance, and he published this result in
1864 in a paper entitled: A dynamical theory of the electromagnetic field [18]. His
famous equations were published almost a decade later in 1873 in his textbook: A
Treatise on Electricity and Magnetism [19, 20].

All experimental tests performed since then have confirmed this model, and,
through the years, an impressive amount of evidences for the validity of these equa-
tions have been gathered in different fields of applications. However, microscopic
phenomena require a more refined model including also quantum effects, but these
effects are out of the scope of this book.

The Maxwell equations are the cornerstone in the analysis of macroscopic elec-
tromagnetic wave propagation phenomena.4 The Maxwell equations in SI-units

1André Marie Ampère (1775–1836), French physicist.
2Michael Faraday (1791–1867), English chemist and physicist.
3James Clerk Maxwell (1831–1879), Scottish physicist and mathematician.
4It is out of the scope of this textbook to present a derivation of these equations. Several

excellent derivations of these macroscopic equations from a microscopic formulation are found in
the literature, see e.g., [5, 10, 22].

1



2 The Maxwell equations Chapter 1

Figure 1.1: The pioneers of electromagnetic theory. From left to right: André
Marie Ampère (1775–1836), French physicist. Michael Faraday (1791–1867), English
chemist and physicist. James Clerk Maxwell (1831–1879), Scottish physicist and
mathematician.

(MKSA) are:

∇×E(r, t) = −∂B(r, t)

∂t
(1.1)

∇×H(r, t) = J(r, t) +
∂D(r, t)

∂t
(1.2)

The equation (1.1) (or the corresponding integral formulation) is used to called
Faraday’s law of induction , and the equation (1.2) is often called Ampère-Maxwell
law. The different vector fields in the Maxwell equations are5:

E(r, t) Electric field [V/m]
H(r, t) Magnetic field [A/m]
D(r, t) Electric flux density [As/m2]
B(r, t) Magnetic flux density or magnetic induction [Vs/m2]
J(r, t) Current density [A/m2]

All these fields are functions of space and time, i.e., space coordinates r and
time t. Often these arguments are suppressed. Only when the equations and the
expression can be misinterpreted, we make sure the arguments are explicitly written
out.

The electric field E(r, t) and the magnetic flux density B(r, t) are defined by
the force, F (t), on a charged particle by Lorentz’ force.6

F (t) = q {E(r, t) + v(t)×B(r, t)} (1.3)

5Sometimes we will for simplicity use the names E-field, D-field, B-field, and H-field.
6Hendrik Antoon Lorentz (1853–1928), Dutch physicist.
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Figure 1.2: Immortal scientists of electromagnetic theory. From left to right:
Jean-Baptiste Biot (1774–1862), French physicist, astronomer, and mathematician.
Heinrich Rudolf Hertz (1857–1894), German physicist. Hendrik Antoon Lorentz
(1853–1928), Dutch physicist. Nikola Tesla (1856–1943), Serbian inventor, mechan-
ical engineer, and electrical engineer.

where q is the electric charge of the particle located at r(t), and v(t) is its velocity.
The free charges in the material, e.g., the conduction electrons, are described by

the current density J(r, t). The field contributions from bounded charges, e.g., the
electrons bound to the kernel of the atom, are included in the electric flux density
D(r, t). In Section 2 we address the differences between the electric flux density
D(r, t) and the electric field E(r, t), as well as the differences between the magnetic
field H(r, t) and the magnetic flux density B(r, t), and models for the interrelations
between these fields are presented.

One of the fundamental assumptions in physics is that electric charges are inde-
structible, i.e., the sum of the charges is always constant. This invariance principle
is very carefulness tested. One way of expressing the conservation of charges in
mathematical terms is through the continuity law of charges

∇ · J(r, t) +
∂ρ(r, t)

∂t
= 0 (1.4)

Here ρ(r, t) is the charge density (charge/unit volume) that is associated with the
current density J(r, t). The charge density ρ(r, t) therefore models the free charges
of the problem. As alluded to above, the contributions from bounded charges are
included in the electric flux density D(r, t) and the magnetic field H(r, t).

Two additional equations are usually associated with the Maxwell equations.

∇ ·B(r, t) = 0 (1.5)

∇ ·D(r, t) = ρ(r, t) (1.6)

Equation (1.5) tells us that no magnetic charges exist, and it implies that the mag-
netic flux is conserved. The equation (1.6) is usually called Gauss’ law7. Under

7Johann Carl Friedrich Gauss (1777–1855). German mathematician.
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suitable assumptions, both these equations can be derived from the equations (1.1),
(1.2) and (1.4). To see this, take the divergence of (1.1) and (1.2). This implies

∇ · ∂B(r, t)

∂t
= 0

∇ · J(r, t) +∇ · ∂D(r, t)

∂t
= 0

since ∇ · (∇ ×A) = 0 for an arbitrary vector field A. Interchanging the order of
differentiation and using (1.4) give

∂(∇ ·B(r, t))

∂t
= 0

∂(∇ ·D(r, t)− ρ(r, t))

∂t
= 0

These equations imply {
∇ ·B(r, t) = f1(r)

∇ ·D(r, t)− ρ(r, t) = f2(r)

where f1(r) and f2(r) are two functions that do not depend on time t, but can
depend on the spatial coordinates r. If the fields B(r, t), D(r, t) and ρ(r, t) are
identically zero before a fixed time, τ , i.e.,

B(r, t) = 0

D(r, t) = 0

ρ(r, t) = 0

t < τ

then the equations (1.5) and (1.6) follow. Of course, static or time-harmonic fields
do not satisfy this assumption, since there is no time, τ , before which all fields are
zero.8 However, under the assumption that fields and charges do not have existed
for ever, it is sufficient to use the equations (1.1), (1.2) and (1.4).

Equations (1.1) and (1.2) contain 6 different equations — one for each vector
component. Provided the current density J(r, t) is given, the Maxwell equations
contain 12 unknowns — the four vector fields E(r, t), B(r, t), D(r, t) and H(r, t).
The result is that we lack 6 equations in order to have as many equations as un-
knowns. The lacking 6 equations are called the constitutive relations and they are
addressed in Section 2.

In vacuum the electric field E(r, t) and the electric flux density D(r, t) are
parallel — the difference is in unit they are measured. The same holds for the
magnetic flux density B(r, t) and the magnetic field H(r, t). We have{

D(r, t) = ε0E(r, t)

B(r, t) = µ0H(r, t)
(1.7)

8We will return to the derivation of equations (1.5) and (1.6) for time-harmonic fields in
Section 3 on page 46.
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where ε0 and µ0 are the permittivity and the permeability of vacuum. Numerical
values of these constants are: ε0 ≈ 8.854 ·10−12 As/Vm and µ0 = 4π ·10−7 Vs/Am ≈
1.257 · 10−6 Vs/Am.

Inside the material, the difference between the electric field E(r, t) and the
electric flux density D(r, t) and between the magnetic flux density B(r, t) and the
magnetic field H(r, t) are usually more complex. These differences are a measure of
the interaction between the charges in the material and the fields. Often, two new
vector fields, the polarization P (r, t), and the magnetizationM(r, t), of the material
are introduced to describe the differences between these fields. The definitions of
these fields are 

P (r, t) = D(r, t)− ε0E(r, t)

M (r, t) =
1

µ0

B(r, t)−H(r, t)
(1.8)

The vector field P (r, t) is a measure of how much the bounded charges in the
material are displaced relative their unaffected positions. These phenomena include
both permanent and induced polarization. The largest contributions come from
displacements of the center of charge for the positive and the negative charges in
the material, but also other higher order effects contribute. In an analogous manner,
the magnetization M (r, t) is a measure of the bounded currents in the material.
The origin of this field can also be both permanent or induced.

The modeling of the polarization and the magnetization effects of the material
is equivalent to specify the constitutive relations of the material, and it implies that
6 additional equations characterizing the material are given. In Section 2, we analyze
several different models for the polarization and the magnetization of the material
in detail. In the next two subsections, we investigate additional consequences of the
Maxwell equations, namely the boundary conditions and energy conservation.

1.1 Boundary conditions at interfaces

At an interface between two different materials some components of the electromag-
netic field are discontinuous. The way they vary is a consequence of the Maxwell
equations, and in this section we give a simple derivation of the boundary conditions
the fields must satisfy. Only surfaces that are fixed in time (no moving surfaces) are
treated here.

The Maxwell equations, as they were presented in (1.1) and (1.2), assume that
all field quantities are differentiable functions of space and time. At an interface be-
tween two media, the fields, as already mentioned above, are discontinuous functions
of the spatial variables. Therefore, we need to reformulate the Maxwell equations in
such a way that the equations can be interpreted in a weaker, more general, sense.
The aim is to obtain equations that are also valid for fields that are not differentiable
at all points in space.

Let V be an arbitrary (simply connected) volume with bounding surface S and
unit outward normal vector ν̂, see Figure 1.3. We start by assuming the fields
E, B, D, and H are continuously differentiable in V , and then we see how the
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V

S

ν̂

Figure 1.3: Geometry of integration.

differentiability property can be relaxed. Integrate the Maxwell equations, (1.1),
(1.2), (1.5), and (1.6), over the volume V . We get∫∫∫

V

∇×E dv = −
∫∫∫
V

∂B

∂t
dv

∫∫∫
V

∇×H dv =

∫∫∫
V

J dv +

∫∫∫
V

∂D

∂t
dv

∫∫∫
V

∇ ·B dv = 0

∫∫∫
V

∇ ·D dv =

∫∫∫
V

ρ dv

where dv is the volume measure (dv = dx dy dz).
The following two integration theorems for vector fields are now useful:∫∫∫

V

∇ ·A dv =

∫∫
S

A · ν̂ dS

∫∫∫
V

∇×A dv =

∫∫
S

ν̂ ×A dS

where A is a continuously differentiable vector field in V , and dS is the surface
element of S. The first theorem is usually called the divergence theorem or the
Gauss theorem9 and the other Gauss’ analogous theorem, see Problem 1.1.

The result after interchanging the derivation w.r.t. time t and integration (volume

9Distinguish between the Gauss law, (1.6), and the Gauss theorem.
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1

2

h

S

ν̂

Figure 1.4: Interface between two different media 1 and 2.

V is fixed in time and we assume all field to be sufficiently regular) is

∫∫
S

ν̂ ×E dS = − d

dt

∫∫∫
V

B dv

∫∫
S

ν̂ ×H dS =

∫∫∫
V

J dv +
d

dt

∫∫∫
V

D dv

∫∫
S

B · ν̂ dS = 0

∫∫
S

D · ν̂ dS =

∫∫∫
V

ρ dv

(1.9)

In a domain V , where the fields E, B, D, and H are continuously differentiable,
these integral expressions are equivalent to the differential equations in (1.1), (1.2),
(1.5), and (1.6). We have proved this equivalence one way and in the other direction
we do the analysis in a reversed direction and use the fact that the volume V is
simply connected and arbitrary.

The integral formulation, (1.9), has, however, the advantage that the fields do
not have to be differentiable in the spatial variables to make sense. In this respect,
the integral formulation is more general than the differential formulation in (1.1),
(1.2), (1.5), and (1.6). The fields E, B, D andH , that satisfy the equations in (1.9)
are called weak solutions to the Maxwell equations, in the case the fields are not
continuously differentiable, and (1.1), (1.2), (1.5), and (1.6) lack meaning.

The integral expressions (1.9) are now employed to a special volume, Vh, that
intersects the interface, S, between two different media, see Figure 1.4. The unit
normal, ν̂, of the interface, S, is directed from medium 2 into medium 1. We assume
all electromagnetic fields E, B, D and H , and their time derivatives, to have finite
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limit values in the limit from both sides of the interface. For the electric field, these
limit values in medium 1 and 2 are denoted E1 and E2, respectively, and similar
notation, with index 1 and 2, is adopted for the other fields. The current density
J and the charge density ρ, however, can assume infinite values at the interface
for perfectly conducting surfaces.10 It is convenient to introduce a surface current
density JS and surface charge density ρS as a limit process{

JS = hJ

ρS = hρ

where h is the thickness of the layer that contains the charges close to the surface.
We assume that this thickness approaches zero, and that J and ρ approach infinity
in such a way that JS and ρS have well defined limits in this process. The surface
current density JS is assumed to be a tangential field to the surface S. We let
the height of the volume Vh be h, and the area on the upper and lower part of the
bounding surface of Vh be a, which is small compared to the variations of the fields
and the curvature of the surface S.

The two terms containing time derivatives in (1.9), i.e.,

d

dt

∫∫∫
Vh

B dv,
d

dt

∫∫∫
Vh

D dv

both approach zero as h → 0, since the fields B and D and their time derivatives
are assumed to be finite at the interface. Moreover, the contributions from all lateral
sides (areas ∼ h) of the surface integrals on the left-hand side in (1.9) approach zero
as h→ 0. The contribution from the upper part (unit normal ν̂) and lower part (unit
normal −ν̂) are proportional to the area a, provided the area is chosen sufficiently
small, and the mean value theorem for integrals is used. The contributions from the
upper and the lower parts of the surface integrals in the limit h→ 0 are

a [ν̂ × (E1 −E2)] = 0

a [ν̂ × (H1 −H2)] = ahJ = aJS

a [ν̂ · (B1 −B2)] = 0

a [ν̂ · (D1 −D2)] = ahρ = aρS

Simplify these expressions by dividing with the area a. The result is
ν̂ × (E1 −E2) = 0

ν̂ × (H1 −H2) = JS

ν̂ · (B1 −B2) = 0

ν̂ · (D1 −D2) = ρS

(1.10)

These boundary conditions prescribe how the electromagnetic fields are related
to each other on each side of the interface (the unit normal ν̂ is directed from
medium 2 into medium 1). We formulate these boundary conditions in words.

10This is of course an idealization of a situation where the density assumes very high values in
a macroscopically thin layer.
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• The tangential components of the electric field E are continuous across the
interface S.

• The tangential components of the magnetic field H are discontinuous over
the interface S. The size of the discontinuity is JS. If the surface current
density is zero, e.g., if the material has finite conductivity,11,12 the tangential
components of the magnetic field are continuous across the interface S.

• The normal component of the magnetic flux density B is continuous across
the interface S.

• The normal component of the electric flux density D is discontinuous across
the interface S. The size of the discontinuity is ρS. If the surface charge
density is zero, the normal component of the electric flux density is continuous
across the interface.

In Figure 1.5 we illustrate the typical variations in the normal components of
the electric and the magnetic flux densities as a function of the distance across the
interface between two media.

A special case of (1.10) is the case where medium 2 is a perfectly conducting
material, which is a model of a material with freely moving charges, e.g., many
metals. In material 2, the fields are zero, and we get from (1.10)

ν̂ ×E1 = 0

ν̂ ×H1 = JS

ν̂ ·B1 = 0

ν̂ ·D1 = ρS

(1.11)

where JS and ρS are the surface current density and surface charge density on the
surface S, respectively.

1.2 Energy conservation and Poynting’s theorem

Energy conservation is shown from the Maxwell equations (1.1) and (1.2).
∇×E = −∂B

∂t

∇×H = J +
∂D

∂t

Make a scalar multiplication of the first equation withH and the second equation
with E and subtract. The result is

H · (∇×E)−E · (∇×H) +H · ∂B
∂t

+E · ∂D
∂t

+E · J = 0

11The conductivity of a material is introduced below.
12This is an implication of the assumption that the electric field E is finite close to the interface.

We have JS = hJ = hσE → 0, as h→ 0.
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Field

D · ν̂

B · ν̂

ρS

{

Material 1Material 2

Distance ⊥ to surface

Figure 1.5: The variation of B · ν̂ and D · ν̂ at the interface between two different
material 1 and 2.

We rewrite this expression with the use of the differential rule of the nabla-operator
∇ · (a× b) = b · (∇× a)− a · (∇× b). We have

∇ · (E ×H) +H · ∂B
∂t

+E · ∂D
∂t

+E · J = 0

The vector product of the electric and the magnetic field plays a special role,
and we introduce Poynting’s vector,13 S = E ×H . We get Poynting’s theorem.

∇ · S +H · ∂B
∂t

+E · ∂D
∂t

+E · J = 0 (1.12)

Poynting’s vector S gives the power per unit area of the electromagnetic field
or the power flow in the direction of the vector S. This becomes clearer if we
integrate (1.12) over a simply connected volume V , bounded by the surface S and
with unit outward normal vector ν̂, see Figure 1.3, and use the divergence theorem.
We get∫∫

S

S · ν̂ dS =

∫∫∫
V

∇ · S dv

= −
∫∫∫
V

[
H · ∂B

∂t
+E · ∂D

∂t

]
dv −

∫∫∫
V

E · J dv

(1.13)

The terms are interpreted in the following way:

The left-hand side: ∫∫
S

S · ν̂ dS

This is the total power radiated out of the bounding surface S, i.e., the energy per
time unit, carried by the electromagnetic field.

13John Henry Poynting (1852–1914), English physicist.
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The right-hand side: The power flow through the surface S is compensated by
two different contributions. The first volume integral on the right-hand side∫∫∫

V

[
H · ∂B

∂t
+E · ∂D

∂t

]
dv

gives the power stored in the electromagnetic field in the volume V . Included in this
contribution is the power needed to polarize and magnetize the material in V . The
second volume integral in (1.13) ∫∫∫

V

E · J dv

gives the work per unit time, i.e., the power, that the electric field does on the
charges in V .

This interpretation implies that (1.13) expresses power balance in the volume V ,
i.e.,

Through S radiated power + power consumption in V

= − power bounded to the electromagnetic field in V

In the derivation above, we assumed that the volume V did not cut any surface
where the fields vary discontinuously, e.g., an interface between two media. We
now prove that this assumption is no severe restriction, and the assumption can
easily be relaxed. If the surface S is an interface between two media, see Figure 1.4,
Poynting’s vector in medium 1 close to the interface is

S1 = E1 ×H1

and Poynting’s vector close to the interface in medium 2 is

S2 = E2 ×H2

The boundary conditions at the interface given by (1.10) read{
ν̂ ×E1 = ν̂ ×E2

ν̂ ×H1 = ν̂ ×H2 + JS

A cyclic permutation of the vectors and the use of the boundary conditions imply

ν̂ · S1 = ν̂ · (E1 ×H1) = H1 · (ν̂ ×E1) = H1 · (ν̂ ×E2)

= −E2 · (ν̂ ×H1) = −E2 · (ν̂ ×H2 + JS)

= ν̂ · (E2 ×H2)−E2 · JS = ν̂ · S2 −E2 · JS
By integration of this expression over the interface S we obtain power conservation
over the surface S as expressed as∫∫

S

S1 · ν̂ dS =

∫∫
S

S2 · ν̂ dS −
∫∫
S

E2 · JS dS (1.14)
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where the surface S is an arbitrary part of the interface. Note that the unit normal
ν̂ is directed from medium 2 into medium 1.

The last surface integral in (1.14) gives the work per unit time the electric field
does on the charge at the interface. If there are no surface currents at the interface,
the normal component of Poynting’s vector is continuous across the interface. It
is irrelevant which electric field we use in the last surface integral in (1.14) since
the surface current density JS is parallel to the interface S and the tangential
components of the electric field are continuous across the interface, i.e.,∫∫

S

E1 · JS dS =

∫∫
S

E2 · JS dS

Problems for Chapter 1

1.1 Show the following analogous theorem of Gauss’ theorem:∫∫∫
V

∇×A dv =

∫∫
S

ν̂ ×A dS

by the use of Gauss’ theorem∫∫∫
V

∇ ·A dv =

∫∫
S

A · ν̂ dS

1.2 A finite volume contains a magnetic material with magnetization M . In the absence
of current density (free charges), J = 0, show that the static magnetic field, H, and
the magnetic flux density, B, satisfy∫∫∫

R3

B ·H dv = 0

where the integration is over all space.

1.3 An infinitely long, straight conductor of circular cross section (radius a) consists of
a material with finite conductivity σ. In the conductor a static current I is flowing.
The current density J is assumed to be homogeneous over the cross section of the
conductor. Compute the terms in Poynting’s theorem and show that power balance
holds for a volume V , which consists of a finite portion l of the conductor, see
Figure 1.6.

∗1.4 A capacitor is modeled by two circular plates (radius a, distance d between the
plates), see Figure 1.7. A time harmonic current is applied to the capacitor. The
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J

z

l

σa

Figure 1.6: The geometry of the Problem 1.3. The figure shows a finite portion
(length l) of the conductor with circular cross section (radius a). The conductor
consists of a material with finite conductivity σ.

d

a

z

Figure 1.7: The geometry of the Problem 1.4.

medium between the plates is vacuous and we neglect all effects from the edges.
Determine by the Ansatz

E(r, t) = ẑE(ρ, ω) cos (ωt+ α)

H(r, t) = φ̂H(ρ, ω) cos (ωt+ β)

the electric and the magnetic field, respectively, between the plates of the capacitor,
i.e., determine E(ρ, ω) and H(ρ, ω) and the phase β (expressed in α). Show that
Poynting’s theorem holds for the volume V between the plates.

Hint: Show that the electric field E(ρ, ω) satisfies

1

ρ

∂

∂ρ

(
ρ
∂E(ρ, ω)

∂ρ

)
+
ω2

c20
E(ρ, ω) = 0

where c0 is the speed of light in vacuum.

∗1.5 Using the results of Problem 1.4 show that the capacitance C and the inductance L
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of the capacitor are 
L =

dµ0

8π

(
1 +

ξ2

12
+O(ξ4)

)
C =

πa2ε0
d

(
1 +O(ξ4)

)
where ξ = ωa/c0 is the dimensionless (frequency) parameter. Moreover, find an
expression of the resonance frequency ωr of the “circuit”. What is the explicit
resonance frequency for a capacitor with a = 1 cm?



Chapter 2
Constitutive relations

As already mentioned in Section 1, the Maxwell equations (1.1) and (1.2) are not
complete. The equations contain twelve field quantities (E, B, D, and H), but
there are only six equations. The remaining six equations, the so called constitu-
tive relations will be treated in this section. This section deals with general time
dependent fields in the same way as in Section 1. The special conditions that hold
for time harmonic fields are addressed in Section 3.

The Maxwell equations contains the fields E, B, D, and H and their sources.
These equations model the dynamics of the fields, but how the fields are related to
each other is independent information. This information is, crudely speaking, the
dynamics of the charges in the material. In general, the constitutive relations is a
relation between two pairs of fields, e.g., {D,B} and {E,H}.

{D,B} = F ({E,H}) (2.1)

This particular form of the constitutive relations emphasizes the fields E and H ,
and the transformation (2.1) can be used to eliminate the flux densities, D and B,
from the Maxwell equations. The electric and the magnetic fields, E and H , which
define Poynting’s vector, are central in this relation. In wave propagation problems,
this particular form of the constitutive relations is appropriate, since power flow is
an important quantity in these problems.

Other combinations of the fields in the constitutive relations often occur in the
literature. Frequently, a relation between the pairs {D,H} and {E,B} is used.
This relation emphasizes the fields E and B, defined in the Lorentz force, (1.3).
There are also other reasons, based upon the theory of special relativity, that make
this transformation between {D,H} and {E,B} preferable. In this book we use
the constitutive relations given in (2.1), due to the fact that the fields E and H
define Poynting’s vector.

The mapping F in (2.1) has to satisfy certain general requirements or physical
assumptions to be a candidate for a realistic model. These physical assumptions
or requirements are discussed in this section. The special simplifications that oc-
cur for time harmonic fields are analyzed in Section 3. The first subsection deals
with isotropic media with dispersion. In a subsequent subsection, these results are
generalized and models for general linear media are stated.

15
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2.1 Isotropic media with dispersion

As an introduction to the more general constitutive relations that are treated in
Section 2.3, we first analyze the simpler case with an isotropic media.

An isotropic, dispersive material is the most simple example of a constitutive
relation between the fields. The isotropy implies that the material has identical
properties in all directions and as a consequence of this there is no coupling between
different components of the fields.1 Moreover, we assume that there is no coupling
between the electric fields, E and D, and the magnetic fields, H and B. The
mapping in (2.1) then becomes two separate mappings that do not couple. For
simplicity, we also assume that the material is non-magnetic, i.e., the magnetic
fields satisfy the vacuum relations, (1.7). Equation (2.1) then simplifies to{

D = F (E)

B = µ0H

We now state a series of requirements that the mapping F has to satisfy as a
function of time t at every point, r, in the medium. All other dependence of the
macroscopic variables, such as temperature or pressure, are not explicitly indicated
to avoid cumbersome notation. Specifically, no functional dependence, except time
t, is written out, unless it is required for the understanding. To this end, fields and
other quantities do depend on the space variables r, even if this is not written out
explicitly.

The following assumptions on the mapping F are required in this textbook:

1. The mapping F is linear in the field E, i.e., for all real constants α and β and
for all fields E and E′ we have

F (αE + βE′) = αF (E) + βF (E′)

2. The mapping F is causal, i.e., for all τ , and for every field E such that
E(t) = 0, for t < τ we have

F (E) (t) = 0 for t < τ

3. The mapping F is invariant under time translations, i.e., for every pair of fields
E and D, where the fields are related by D(t) = F (E) (t), and every τ and
pair of fields E′ and D′, defined by E′(t) = E(t− τ) and D′(t) = F (E′) (t),
we have

D′(t) = D(t− τ)

1Note that an isotropic material does not imply that the material is homogeneous, i.e., the
material properties are the same at all points in the material. The isotropic properties of the
material is a microscopic property, but the inhomogeneous variation of the material is a variation
on a macroscopic length scale.
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The property 1), of course, exclude all nonlinear phenomena that occur in many
electromagnetic applications, but since most materials show linear behavior at suffi-
ciently weak field strength, this is not a serious limitation. Causality, as it is stated
in item 2), implies that there is no reaction (the electric flux density D or polar-
ization P ) before its cause (the electric field E). The property 3) implies that the
material does not change (age), and the same result is obtained in an experiment
that is repeated at a later time. These assumptions are the foundations to the con-
stitutive relations used this book and all constitutive relations must satisfy these
requirements to be physically sound.2

The starting point to the realization of the mapping F is the following Ansatz
between the polarization of the material P and the electric field E:

P (t) = ε0

∫ ∞
−∞

χ(t, t′)E(t′) dt′

The function χ(t, t′) has the unit frequency. The electric flux density D then is,
see (1.8),

D(t) = ε0

{
E(t) +

∫ ∞
−∞

χ(t, t′)E(t′) dt′
}

This integral is, of course, linear, and, furthermore, it is in agreement with the
assumption that the material is isotropic (no coupling between different vector com-
ponents). The electric field is assumed to be zero before a given fixed time τ , i.e.,
E(t) = 0, t < τ . We now address the requirements stated in items 2) and 3).

Causality, item 2), immediately implies that the function χ(t, t′) have to be zero
when t < t′, i.e.,

χ(t, t′) = 0, t < t′

since D(t) = 0, t < τ . The range of integration therefore is limited to the interval
(−∞, t]. We have

D(t) = ε0

{
E(t) +

∫ t

−∞
χ(t, t′)E(t′) dt′

}
This relation between the electric flux density D and the electric field E implies

that D depends on the entire time history of the electric field — in other words,
the material has a memory or show dispersion. This memory is characterized or
modeled by the function χ(t, t′).

In order to investigate what conditions the time invariance imply, we create two
field pairs {D,E} and {D′,E′}, defined by

D(t) = ε0

{
E(t) +

∫ t

−∞
χ(t, t′)E(t′) dt′

}
D′(t) = ε0

{
E′(t) +

∫ t

−∞
χ(t, t′)E′(t′) dt′

}
2In fact, an additional assumption is also made, but we prefer not to explicitly list this assump-

tion in order to avoid some technical mathematical machinery that is not used in this textbook.
The cause, D, must depend continuously on the electric field E, i.e., a small variation in the
electric field cannot cause arbitrary large variation in the electric flux density. For more details,
see [12].
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where E′(t) = E(t− τ). Time invariance, property 3), implies D′(t) = D(t− τ). If
the first integral is evaluated at time t− τ the two integrals are

D(t− τ) = ε0

{
E(t− τ) +

∫ t−τ

−∞
χ(t− τ, t′)E(t′) dt′

}
D(t− τ) = ε0

{
E(t− τ) +

∫ t

−∞
χ(t, t′)E(t′ − τ) dt′

}
Equating the two expressions implies∫ t−τ

−∞
χ(t− τ, t′)E(t′) dt′ =

∫ t

−∞
χ(t, t′)E(t′ − τ) dt′ =

∫ t−τ

−∞
χ(t, t′ + τ)E(t′) dt′

where we have made a coordinate transformation in the last integral. This implies∫ t−τ

−∞
(χ(t− τ, t′)− χ(t, t′ + τ))E(t′) dt′ = 0

The field E is here arbitrary, which implies

χ(t− τ, t′) = χ(t, t′ + τ)

for all t, τ and t′, or equivalently3

χ(t, t′) = χ(t− t′, 0)

We observe that the function χ(t, t′) is only a function of the difference in time,
t− t′. Therefore, the constitutive relations of the material can be written4D(t) = ε0

{
E(t) +

∫ t

−∞
χ(t− t′)E(t′) dt′

}
B(t) = µ0H(t)

(2.2)

The function χ(t) is not defined for negative times t, but it is natural to extend
the domain of definition to the entire real axis by defining χ(t) = 0 for t < 0. This
is in agreement with the causality property.

The function χ(t) is called the susceptibility function of the material (unit fre-
quency), and it gives the polarization of the medium at a delta function excitation.
To see this, let E(t) = E0δ(t). We then have

D(t) = ε0δ(t)E0︸ ︷︷ ︸
Momentaneous response

+ ε0χ(t)E0︸ ︷︷ ︸
Transient field

The susceptibility function χ(t) is the mathematical model of the memory properties
of the medium and its dispersive effects.

3Take e.g., t′ = 0 and exchange τ → t′.
4We prefer to keep the notion χ even if it formally is not the same function as above.
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χ(t)

Time t

Figure 2.1: The susceptibility function χ(t) divided in two terms which exemplifies
the optical response of the material. The time scale is arbitrary.

2.1.1 Optical response

If there are several physical processes that contribute to the electrical properties of
the material, there are often several different time scales involved. For example,
the interaction of the electric field with electrons, which are light, is a fast process
compared to the more slow processes that occur when the more heavy atoms or
molecules interact with the field. Usually, the polarization of the material contains
a contribution which originates from very fast processes in the material. This con-
tribution is usually called the optical response and can be modeled if we divide the
susceptibility function χ(t) in a sum of two terms χ1(t) and χ2(t), i.e.,

χ(t) = χ1(t) + χ2(t)

where χ1(t) varies with the faster time scale compared to χ2(t), which models the
slower variations in the polarization effects of the material. We visualize this division
in Figure 2.1. If the electric field only varies slowly compared to the variations in
χ1(t) it is convenient to include the effects of χ1(t) as an instant contribution, similar
to the first term in (2.2). The electric field E is then — compared to the variations
in χ1(t) — approximately constant. Therefore, we can take the electric field E
outside the integrations and we obtain:

D(t) = ε0

{
E(t) +

∫ t

−∞
[χ1(t− t′) + χ2(t− t′)]E(t′) dt′

}
= ε0

{
E(t) +

∫ t

−∞
χ1(t− t′) dt′E(t) +

∫ t

−∞
χ2(t− t′)E(t′) dt′

}
= ε0

{
E(t) +

∫ ∞
0

χ1(t′) dt′E(t) +

∫ t

−∞
χ2(t− t′)E(t′) dt′

}
It is convenient to introduce the following notation:

ε = 1 +

∫ ∞
0

χ1(t) dt
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which implies D(t) = ε0

{
εE(t) +

∫ t

−∞
χ(t− t′)E(t′) dt′

}
B(t) = µ0H(t)

(2.3)

where the index 2 on the susceptibility function is dropped for convenience.
Another equivalent way of introducing the optical response is to model the fast

processes as a delta function contribution. To this end, we model the susceptibility
function as

[ε− 1] δ(t) + χ(t)

which in (2.2) also gives (2.3), but more directly. The first term in this expression is
a model of the momentaneous response of the medium to an electric field excitation.
In most situations, the origin of this term is due to charges with small inertia.

Comment 2.1
There is an inherent conflict with the concept of optical response in the sense that all
macroscopic material models break down at the length scale associated with very fast
transients. When the length scale of the fields becomes of the order of the size of the
constitutive part of the material, e.g., nanoscale, the material does not behave as a bulk
material any longer, but the fields see the constitutive parts of the material as individual
scatterers and not as a homogeneous material. Nevertheless, the concept of optical re-
sponse is appropriate when used and employed with care. At higher frequencies still, the
entire classical modeling of materials becomes inaccurate — this is the realm of quantum
phenomena.

2.1.2 Conductivity

The difference between bounded and free charges is apparent for static (time inde-
pendent) fields. Bounded charges polarize the medium, and free charges contributes
to the currents in the medium. This difference is wiped out for general time depen-
dent fields as the analysis in this section shows.

In general, there are two kind of current densities, J inf and J imp — the impressed
current density and the induced current density, respectively. The impressed current
density are supplied by external sources, which are controlled externally and they
are not caused by the existing electromagnetic fields. The induced currents, on the
other hand, are caused by the present electromagnetic fields. It is the latter, the
induced current density, that we now address and model.

Several media, especially many metals, have easily movable charges. Ohm’s law
with conductivity σ

J = σE (2.4)

is often used as a model of charge transport in these media. A somewhat more
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general set of constitutive relations than (2.3) and (2.4) is
D(t) = ε0

{
εE(t) +

∫ t

−∞
χ(t− t′)E(t′) dt′

}
J(t) = σE(t) + ε0

∫ t

−∞
Σ(t− t′)E(t′) dt′

B(t) = µ0µH(t)

(2.5)

In addition to the instantaneous term σ between the current density J and the elec-
tric field E, The extended Ohm’s law contains a term that models memory effects or
dispersion effects. This model has, in addition to the dispersive effects described by
the susceptibility function χ(t) (bounded charges), also dispersive effects of the free
charges in the function Σ(t). The coupling between the B- and the H-fields is also
more general than in (2.3). The real constant µ is a measure of the momentaneous
magnetic properties of the medium.

In this section, we prove that the effect of easily mobile charges, which we model
by the conductivity σ and the function Σ(t), in fact can be included in the sus-
ceptibility function χ(t). Physically, this means that we classify the easily mobile
charges as bound charges. This is of course an arbitrary choice, provided that all
quantities that could be observed physically, such as electric and magnetic fields,
are unaffected by this rearrangement. Conversely, we can prove that all dispersive
effects, that is modeled by the susceptibility function χ(t), can be transferred to
an effective conductivity and a dispersive term. In this case, we classify the bound
charges modeled by the susceptibility χ(t), as easily mobile charges with Ohm’s law.
This is also possible, provided that the physical quantities are unaffected by this re-
arrangement. To see this, we prove that there is non-uniqueness in the constitutive
relations as they are formulated in (2.5).

The constitutive relations in (2.5) are not uniquely determined, but every choice
of the constitutive relations on the form

D(t) = ε0

{
εE(t) +

∫ t

−∞
(χ(t− t′) + f(t− t′))E(t′) dt′

}
J(t) =

(
σ − ε0f(0+)

)
E(t) + ε0

∫ t

−∞

(
Σ(t− t′)− ∂f(t− t′)

∂t

)
E(t′) dt′

B(t) = µ0µH(t)

where f(t) is an arbitrary (differentiable) function (f(t) = 0, t < 0 and f(0+) =
limt→0,t>0 f(t)), gives the same right-hand side in Ampère’s law. We see this imme-
diately by insertion in Ampère’s law.

∇×H(t) = J +
∂D(t)

∂t

=
(
σ − ε0f(0+)

)
E(t) + ε0

∫ t

−∞

(
Σ(t− t′)− ∂f(t− t′)

∂t

)
E(t′) dt′

+ ε0

{
ε
∂E(t)

∂t
+
∂

∂t

∫ t

−∞
(χ(t− t′) + f(t− t′))E(t′) dt′

}
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Differentiation of the integral leads to

∇×H(t) =
(
σ − ε0f(0+)

)
E(t) + ε0

∫ t

−∞

(
Σ(t− t′)− ∂f(t− t′)

∂t

)
E(t′) dt′

+ ε0

{
ε
∂E(t)

∂t
+
∂

∂t

∫ t

−∞
χ(t− t′)E(t′) dt′

}
+ ε0f(0+)E(t) + ε0

∫ t

−∞

∂f(t− t′)
∂t

E(t′) dt′

= σE(t) + ε0

∫ t

−∞
Σ(t− t′)E(t′) dt′

+ ε0

{
ε
∂E(t)

∂t
+
∂

∂t

∫ t

−∞
χ(t− t′)E(t′) dt′

}
The function f(t) does not affect Ampère’s law. Every choice of f(t) gives the same
right-hand side in Ampère’s law.

Each choice of f(t) is a reclassification of bound charges (modeled by the electric
flux densityD) and the free charges (modeled by the charge density J). To illustrate
this reclassification and the non-uniqueness in the constitutive relations, we show
two special cases in the next two examples.

Example 2.1
The dispersion model: In this example we show that the constitutive relations given

by (2.5) can be transformed such that J = 0, i.e., the whole contribution from the charge
density J is included in the electric flux density D. The obtain this, choose the function
f(t) as

f(t) = H(t)

[
σ

ε0
+

∫ t

0
Σ(t′) dt′

]
where H(t) is the Heaviside step function. This implies f(0+) =

σ

ε0
f ′(t) = Σ(t), t > 0

The constitutive relations then become
D(t) = ε0

{
εE(t) +

∫ t

−∞

(
χ(t− t′) + f(t− t′)

)
E(t′) dt′

}
J(t) = 0

B(t) = µ0µH(t)

This set of constitutive relations are called the dispersion model, since the contribution
from the current density J is zero. These constitutive relations are equivalent to the ones
in (2.5), in that they give the same right-hand side expression in Ampère’s law.

Therefore, there is no loss of generality to let the contribution of the free charges, i.e.,
Ohm’s law, (2.4), be included in the susceptibility function χnew(t)

χnew(t) = H(t)
σ

ε0
+ χ(t)
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and the effects of the easily mobile charges have been absorbed in the susceptibility func-
tion. This new susceptibility function is a rearrangement of the free charges such that
they are now included in the contribution of the bound charges.

Example 2.2
The conductivity model: We can also choose the function f(t) such that another

extreme is obtained, the conductivity model. Choose the function f(t) as

f(t) = −χ(t)

We get the following constitutive relations
D(t) =ε0εE(t)

J(t) =
(
σ + ε0χ(0+)

)
E(t) + ε0

∫ t

−∞

(
Σ(t− t′) +

∂χ(t− t′)
∂t

)
E(t′) dt′

B(t) =µ0µH(t)

(2.6)

In this particular set of constitutive relations, we have a susceptibility function χ(t) that
is zero. All effects of dispersion is here collected into the current density J . These
constitutive relations are equivalent with the ones given in (2.5).

Of course, other choices of the function f(t) are possible, which are a mixture of
these two extreme cases. In this book, the dispersion model is usually used.

We end the analysis of isotropic materials by inverting the relation between the
electric flux density D(r, t) and the electric field E(r, t). The relation (2.3), i.e.,

D(t) = ε0

{
εE(t) +

∫ t

−∞
χ(t− t′)E(t′) dt′

}
can be inverted by applying the resolvent of the susceptibility function χ(t). The
resolvent kernel Υ(t) satisfies the resolvent equation

1

ε
χ(t) + εΥ(t) +

∫ t

0

χ(t− t′)Υ(t′) dt′ = 0 (2.7)

This solution is uniquely soluble for t > 0, and for t < 0, Υ(t) = 0. In terms of the
resolvent kernel, the inverse is

E(t) =
1

ε0

{
1

ε
D(t) +

∫ t

−∞
Υ(t− t′)D(t′) dt′

}
(2.8)

This relation is easily verified by inserting the constitutive relation into (2.8) and
using the resolvent equation, (2.7).

2.2 Examples

We exemplify the constitutive relations in this subsection. For convenience, the
dispersion model is used. In a first example, we describe Debye’s model, or the
relaxation model, which is used to model interaction of the electromagnetic field in
polar liquids, i.e., liquids with molecules with permanent electric dipole moment. In
a second example Lorentz’ model, or the resonance model, is described. This model
is often used for electromagnetic interaction in solids.
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2.2.1 Debye’s model

The first example is Debye’s model5 for a dispersive material. This model is adequate
for polar liquids, which have molecules with permanent electric dipole moment.

We assume the molecules (or the atoms if that is appropriate) have a permanent
electric dipole moment p, which normally is arbitrarily oriented due to thermal
fluctuations, see Figure 2.2 (left figure). The polarization of the material P is
defined as the total electric dipole moment per unit volume, i.e.,

P = lim
∆V→0

∑
i pi

∆V

where the sum over the index i is over all molecules located inside the volume ∆V .
In an undisturbed state without electric field we have P = 0. The polarization P
changes due to two competing processes.6

1. One process striving to align the polarization P parallel to the applied electric
field E.7 We assume that the rate of changes in P due to this process is
proportional to ε0αE. The frequency α > 0 is a measure of this change.

2. The second competing process trying to disorient the polarization. If τ > 0 is
the relaxation time for this process, the rate of changes in P are assumed to
be proportional to −P /τ .

Debye’s model for molecules with permanent electric dipole moment is illustrated
in Figure 2.2.

In total the rate of changes in the polarization P is then

dP (t)

dt
= ε0αE(t)− P (t)

τ (2.9)

This equation models the interaction of the electromagnetic field with the charges
of the material, in this case the permanent electric dipoles of the material. We also
call this equation the dynamics of the charges in the material.

From the previous section we know that the dispersive effects of the material can
be written as, see (2.3) and (1.8) (notice that we are using the dispersion model)

P (t) = D(t)− ε0E(t) = ε0

{
(ε− 1)E(t) +

∫ t

−∞
χ(t− t′)E(t′) dt′

}
5Peter Joseph William Debye (1884–1966), Dutch physicist and physical chemist.
6The intensity of these processes depend strongly on many exterior parameters, e.g., the tem-

perature T . In this treatment we assume that these exterior parameters are fixed. The temperature
dependence is investigated in Example 2.2 on page 54.

7Strictly speaking, the electric field E, which affects the dipoles, is usually not identical to
the exterior field, but it is modified due to the presence of the media. Suitable corrections for the
difference between this local field and the exterior field can be made, i.e., the Clausius-Mossotti
(Lorenz-Lorentz) law.
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E = 0 E

p p

Without external electric field With external electric field

Figure 2.2: Molecules with permanent electric dipole moment with and without
an aligning exterior electric field E.

The time derivative of this expression is

1

ε0

dP (t)

dt
= (ε− 1)

dE(t)

dt
+ χ(0+)E(t) +

∫ t

−∞
χ′(t− t′)E(t′) dt′

where χ′(t) is the time derivative of χ(t) and χ(0+) = limt→0,t>0 χ(t), which might
be non-zero, i.e., χ(t) is discontinuous at zero. Insert in (2.9) and collect terms. We
get

(ε− 1)
dE(t)

dt
+

(
χ(0+)− α +

1

τ
(ε− 1)

)
E(t)

+

∫ t

−∞

(
χ′(t− t′) +

1

τ
χ(t− t′)

)
E(t′) dt′ = 0

The field E is arbitrary, which implies that the coefficient in front of each term
must be zero, i.e., 

ε− 1 = 0

χ(0+)− α +
1

τ
(ε− 1) = 0

χ′(t) +
1

τ
χ(t) = 0

If we simplify, we get 
ε = 1

χ(0+) = α

χ′(t) +
1

τ
χ(t) = 0
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The first condition, ε = 1, implies that there is no optical response,8 and from the
last two conditions on χ(t) we easily get

χ(t) = αe−t/τ t ≥ 0

The final expressions for Debye’s model isD(t) = ε0

{
E(t) +

∫ t

−∞
χ(t− t′)E(t′) dt′

}
χ(t) = H(t)αe−t/τ

(2.10)

The susceptibility function χ(t) for this model is an exponentially decreasing func-
tion.

Example 2.3
The constitutive relations in equation (2.10) are given in the dispersion model, see Exam-
ple 2.1, i.e., D(t) =ε0

{
E(t) +

∫ t

−∞
e−(t−t′)/τE(t′) dt′

}
J(t) =0

In Example 2.2 we showed that with a special choice of the function f(t) all effects on
the charges in the material could be included in Ohm’s law. The rewrite the constitutive
relations (2.10) in the conductivity model, we choose f(t) = −χ(t). In this case we get

f(t) = −H(t)αe−t/τ

and 
f(0+) = −α
∂f(t)

∂t
=
α

τ
e−t/τ , t > 0

Example 2.2 now gives the constitutive relations for a Debye material in the conductivity
model, see (2.6) 

D(t) =ε0E(t)

J(t) =ε0αE(t)− ε0
α

τ

∫ t

−∞
e−(t−t′)/τE(t′) dt′

2.2.2 Lorentz’ model

We assume the material has bound charges (usually electrons), which interact with
the nucleus of the atom. The atoms are usually arranged in a lattice structure, but
they do not necessarily have to be that. Amorphous materials are also possible.

The charges have charge q and mass m and are assumed to be affected by three
different forces:

8This is expected, since we have not assumed any other processes, and therefore all interaction
is resolved.
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1. An electric force F 1 = qE from the applied electric field E.9

2. A restoring force proportional to the displacement of the charge from its equi-
librium, i.e., a harmonic force, F 2 = −mω2

0r, where ω0 ≥ 0 is the harmonic
frequency, and r is the displacement of the charge from its equilibrium.

3. A frictional force proportional to the velocity of the charge r′(t), F 3 = −mνr′(t),
where ν ≥ 0 is the collision frequency.

We assume that the dynamics of the charges is described by the laws of classic
mechanic. Newton’s acceleration law gives

m
d2r

dt2
= F 1 + F 2 + F 3 = qE −mω2

0r −mν
dr

dt

or
d2r

dt2
+ ν

dr

dt
+ ω2

0r =
q

m
E

Introduce the polarization P of the material defined by

P = Nqr

where N is the number charges per unit volume.10 Rewrite the dynamics in the
polarization vector as

d2P (t)

dt2
+ ν

dP (t)

dt
+ ω2

0P (t) =
Nq2

m
E(t)

(2.11)

In the same way as for Debye’s model, we introduce the dispersion of the material
as (2.3) and (1.8).

P (t) = D(t)− ε0E(t) = ε0

{
(ε− 1)E(t) +

∫ t

−∞
χ(t− t′)E(t′) dt′

}
The first and second derivative of this expression is

1

ε0

dP (t)

dt
= (ε− 1)

dE(t)

dt
+ χ(0+)E(t) +

∫ t

−∞
χ′(t− t′)E(t′) dt′

1

ε0

d2P (t)

dt2
= (ε− 1)

d2E(t)

dt2
+ χ(0+)

dE(t)

dt
+ χ′(0+)E(t)

+

∫ t

−∞
χ′′(t− t′)E(t′) dt′

where χ′(t) and χ′′(t) are the first and second derivative of χ(t) w.r.t. time, respec-
tively, and χ(0+) = limt→0,t>0 χ(t) and χ′(0+) = limt→0,t>0 χ

′(t), which might be

9See comment under Footnote 7 on page 24. If the medium is not dense, e.g., a gas, the
difference is small.

10We assume this quantity is constant in time, which is an approximation.
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non-zero. Enter these expressions in the dynamics, (2.11), and collect terms. We
get

(ε− 1)
d2E(t)

dt2
+
(
χ(0+) + ν (ε− 1)

) dE(t)

dt

+

(
χ′(0+) + νχ(0+) + ω2

0 (ε− 1)− Nq2

mε0

)
E(t)

+

∫ t

−∞

(
χ′′(t− t′) + νχ′(t− t′) + ω2

0χ(t− t′)
)
E(t′) dt′ = 0

The field E is arbitrary, and therefore the coefficients in front of every term must
be identically zero, i.e.,

ε− 1 = 0

χ(0+) + ν (ε− 1) = 0

χ′(0+) + νχ(0+) + ω2
0 (ε− 1)− ω2

p = 0

χ′′(t) + νχ′(t) + ω2
0χ(t) = 0

where

ωp =

√
Nq2

mε0

is the plasma frequency of the material. We get
ε = 1

χ(0+) = 0

χ′(0+) = ω2
p

χ′′(t) + νχ′(t) + ω2
0χ(t) = 0

The first expression, ε = 1, indicates that we have no optical response, which is ex-
pected since there are no unresolved processes in the material. The other conditions
on χ(t) is a initial value problem for a second order ordinary differential equation in
time with the unique solution

χ(t) =
ω2

p

ν0

e−
νt
2 sin ν0t t ≥ 0

where ν2
0 = ω2

0 − ν2/4.
The final expression of the constitutive relations for Lorentz’ model is

D(t) = ε0

{
E(t) +

∫ t

−∞
χ(t− t′)E(t′) dt′

}
χ(t) = H(t)

ω2
p

ν0

e−
νt
2 sin ν0t

(2.12)

where we explicitly have set χ(t) = 0, t < 0 by introducing the Heaviside function
H(t). An example of the the susceptibility function for Lorentz’ model is given in
Figure 2.3.
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2 4 6 8 10

0χ(t)

t

Figure 2.3: An example of a susceptibility function χ(t) for Lorentz’ model. The
time scale is in arbitrary units.

2 4 6 8 10

0

χ(t)

t

Figure 2.4: An example of a susceptibility function χ(t) for Lorentz’ model with
three resonance frequencies. The time scale is in arbitrary units.

In a more general situation, several different processes contribute to the suscep-
tibility function, where each contribution is a resonance model derived above. The
processes have different frequencies ωpi, ω0i and νi. The susceptibility function for
the general resonance model is a sum of all these contributions.

χ(t) = H(t)
M∑
i=1

ω2
pi√

ω2
0 i − ν2

i /4
e−

νit

2 sin
√
ω2

0 i − ν2
i /4t

An example on a susceptibility function for Lorentz’ model with several frequencies
is depicted in Figure 2.4.

If the friction on the charges can be neglected, i.e., ν → 0, then ν0 = ω0 and
(2.12) is simplified into

χ(t) = H(t)
ω2

p

ω0

sinω0t
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In this case χ(t) is an undamped sinusoidal function.
On the other hand, if the restoring force can be neglected11, i.e., ω0 → 0, then

ν0 = iν/2 and (2.12) becomes

χ(t) = H(t)
ω2

p

ν

(
1− e−νt

)
Without the restoring force the electron12 is a free conducting electron, which is
not bounded to any nucleus. In this case it is possible to identify a conductivity σ
of the material as in Ohm’s law, see (2.4) or more generally (2.6). We start with
σ = Σ(t) = 0 in our conductivity model, i.e.,

D(t) =ε0εE(t)

J(t) =ε0χ(0+)E(t) + ε0

∫ t

−∞

∂χ(t− t′)
∂t

E(t′) dt′

and we wish to identify the susceptibility function χ(t) with an conductivity in this
equation. In our case ε = 1, χ(0+) = 0 and χ′(t) = H(t)ω2

pe−νt and we get

J(t) = ε0ω
2
p

∫ t

−∞
e−ν(t−t′)E(t′) dt′

If the field E(t′) varies slowly on a time scale 1/ν, we can approximate the integral
by evaluating the field E(t′) at the time t and move the field outside the integral.13

We get

J(t) = ε0ω
2
pE(t)

∫ t

−∞
e−ν(t−t′) dt′ =

ε0ω
2
p

ν
E(t)

A direct comparison in this special case gives the conductivity of the material

σ =
ε0ω

2
p

ν

We immediately see that if the friction of the electrons increases (ν increases) this
implies that the conductivity decreases (resistivity = 1/σ increases), and vice versa.
This observation is intuitively well motivated.

Example 2.4
Suppose a medium is described by the Lorentz model with negligible losses (collision
frequency ν ≈ 0). The susceptibility function, which is a model of the dispersive effects in
the medium, is then

χ(t) = H(t)
ω2
p

ω0
sinω0t

11This special case is often denoted Drude’s model, and it was an early model for conduction
of charges in metals.

12We assume that the charges in the material are electrons.
13This very analogous to the argument used in Section 2.1.1 where we identified the optical

response of the material.
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In many practical situations it is more convenient to work with constitutive relations that
do not contain any convolution integrals, but only contain the field evaluated at the time t.

Integration by parts of the electric flux density D(t) can be expressed as (provided the
series converges):

D(t) =ε0

{
E(t) +

∫ t

−∞
χ(t− t′)E(t′) dt′

}
=ε0

{
E(t) +

ω2
p

ω0

∫ t

−∞
sinω0(t− t′)E(t′) dt′

}
= ε0

∞∑
n=0

AnE
(n)(t)

where

An =


0, if n is odd

δn,0 + (−1)n/2
ω2

p

ωn+2
0

, if n is even

The first term A0 = 1 + ω2
p/ω

2
0 = ε acts as an optical response. To estimate the error

that we use if we replace the entire series by just the optical response, assume the electric
field E(t) oscillates harmonically, say E(t) = E0 cos(ωt + α), with angular frequency
ω = 1 · 1010 rad/s and that the resonance frequency and the plasma frequency of the
Lorentz material are ω0 = 1 ·1014 rad/s, and ωp = 3 ·1014 rad/s, respectively. The relative
error in the D(t)-field if D(t) = ε0εE(t) is used instead of the complete expression is∣∣∣A0E(t)−∑∞n=0AnE

(n)(t)
∣∣∣∣∣∣∑∞n=0AnE

(n)(t)
∣∣∣ =

ω2
p

ω2
0

∑∞
n=1

ω2n

ω2n
0

1 +
ω2
p

ω2
0

+
ω2
p

ω2
0

∑∞
n=1

ω2n

ω2n
0

=
9 10−8

1−10−8

10 + 9 10−8

1−10−8

≈ 9 · 10−9

The error that is made by approximating the convolution integral by an optical response
ε = 10 is negligible for this frequency ω. For a higher frequency the error becomes much
larger. Compare the result of this example with the definition and analysis of the optical
response on page 19.

2.3 General linear media with dispersion

So far, we have neglected the magnetic effects and any coupling between electric
and magnetic phenomena. If these effects are essential, we follow the same line of
analysis as in Section 2.1. We don’t give the details of this analysis here, but refer
to the literature [12].

A general set of linear constitutive relations, which allows for coupling between
the electric and the magnetic fields, is the following Ansatz:

D(t) = ε0

{
ε ·E(t) +

∫ t

−∞
χee(t− t′) ·E(t′) dt′

+ η0

∫ t

−∞
χem(t− t′) ·H(t′) dt′

}
B(t) =

1

c0

{∫ t

−∞
χme(t− t′) ·E(t′) dt′

+ η0µ ·H(t) + η0

∫ t

−∞
χmm(t− t′) ·H(t′) dt′

}
(2.13)
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or in Cartesian components (i = 1, 2, 3):

Di(t) = ε0

3∑
j=1

{
εijEj(t) +

∫ t

−∞
χeeij(t− t′)Ej(t′) dt′

+ η0

∫ t

−∞
χemij(t− t′)Hj(t

′) dt′
}

Bi(t) =
1

c0

3∑
j=1

{∫ t

−∞
χmeij(t− t′)Ej(t′) dt′

+ η0µijHj(t) + η0

∫ t

−∞
χmmij(t− t′)Hj(t

′) dt′
}

We have here introduced the wave impedance and the wave front velocity in vacuum
η0 =

√
µ0/ε0, and c0 =

√
1/ε0µ0, respectively. In this way all fields have the same

unit (V/m).
At this stage, it is convenient to employ a six-dimensional notation, as an al-

ternative to the more commonly used three-dimensional formulation. This notation
makes the expressions very compact. To this end, define14

e(r, t) =

(
E(r, t)
η0H(r, t)

)
, d(r, t) = c0

(
η0D(r, t)
B(r, t)

)
(2.14)

In this notation, Maxwell equations, (1.1) and (1.2) have the form

D · e(r, t) =
1

c0

∂

∂t
d(r, t)

where the Maxwell operator D is defined as15

D · e(r, t) =

(
0 ∇× I3

−∇× I3 0

)(
E(r, t)
η0H(r, t)

)
=

(
0 η0∇×H(r, t)

−∇×E(r, t) 0

)
We also define two six-dimensional dyadics or matrices

A =

(
ε 0
0 µ

)
, M(r, t) =

(
χee(r, t) χem(r, t)
χme(r, t) χmm(r, t)

)
(2.15)

where A is the six-dimensional optical response.
The constitutive relations in (2.13) now read at each fixed point r in space

d(t) = A · e(t) +

∫ t

−∞
M(t− t′) · e(t′) dt′ = A · e(t) +

∫ ∞
0

M(t′) · e(t− t′) dt′ (2.16)

14Six-dimensional vectors and dyadics are written in sans serif bold face to distinguish them
from the ordinary three-dimensional vectors.

15The identity dyadic in three dimensions is denoted I3, and in two dimensions (the x-y-plane)
it is denoted I2. The concept of a dyadic is summarized in Appendix A.
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Type ε,χee,µ,χmm χem,χme

Isotropic All ∼ I3 Both 0
Anisotropic Some not ∼ I3 Both 0
Biisotropic All ∼ I3 Both ∼ I3

Bianisotropic All other cases

Table 2.1: Classification of media w.r.t. their response to electromagnetic fields
and their constitutive relations.

General media (including non-linear)

Linear media (bianisotropic)

Biisotropic

media

Anisotropic

media

Isotropic

media

Figure 2.5: Schematic classification of media w.r.t. their constitutive relations.
The area of each class is not proportional to the size of the class.

The Ansatz in (2.13) is very well motivated by the analysis for isotropic media
in Section 2.1. We are referring to this general Ansatz as the constitutive relations
for dispersive bianisotropic media. The dispersion of the material is modeled by
four (generalized) dyadic-valued susceptibility functions, χkk′(t), k,k’= e,m, each, in
general, having nine independent components. The susceptibility functions all have
the unit frequency. The optical response of the material is modeled by ε and µ,
which both are dimensionless dyadics. Notice that there are no optical response
between the D and H and between B and E.

A material is classified w.r.t. its constitutive relations as in Table 2.1, see also
Figure 2.5. Media for which χem(t) = χme(t) = 0 are called dispersive anisotropic
material, and media where all quantities are proportional to the unit dyadic I3 are
called dispersive isotropic or dispersive biisotropic material.

In an bianisotropic material, (2.13), the electric and magnetic effects are coupled
in a way that is more general than in an anisotropic material. This coupling between
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the electric and magnetic effects is modeled by the dyadic-valued functions χem(t)
and χme(t). In way a magnetic field H gives rise to an electric flux density D
or equivalently an electric polarization P in the material. Conversely, an electric
field E gives rise to a magnetization M in the material. This is not possible in an
anisotropic material.

Already during the 19th century, optical active media were known for optical
frequencies. The properties of these media can be explained with bianisotropic or bi-
isotropic constitutive relations.16 There are several examples of optical active media,
e.g., quarts and different sugar solutions. About 1960 Russian scientists discovered
that several magnetic crystals, e.g., Cr2O3, have similar properties. These materials
are referred to as magneto-electric material. Similar properties are desirable in the
microwave regime, but then they have to be manufactured.

Example 2.5
An important, non-trivial, example of a more general constitutive relation is the cold

plasma that is developed in Problem 2.6, under the influence of a static magnetic flux
density B = B0ẑ. The result is

χ(t) =
ω2

p

ν2 + ω2
g

H(t)

{
I2

(
ωge
−νt sinωgt+ ν

(
1− e−νt cosωgt

))
− J

(
ωg
(
1− e−νt cosωgt

)
− νe−νt sinωgt

)
+ ẑẑ

ν2 + ω2
g

ν

(
1− e−νt

)}
where ν is the collision frequency, I2 the identity operator in the x-y-plane, and J = ẑ×I2,
which is a rotation of π/2 along the z-axis, and the gyrotropic frequency, ωg, and, ωp, the
plasma frequency of the material, are defined by

ωg =
qB0

m
, ωp =

√
Nq2

mε0

and N is the number of charges per unit of volume in the plasma, and m and q are the
mass and the charge of the charges, respectively.

In the limit of vanishing collision frequency, ν → 0, these expressions become

χ(t) =
ω2

p

ωg
H(t) {I2 sinωgt− J (1− cosωgt) + ẑẑωgt}

On the other hand, vanishing gyrotropic frequency, ωg → 0, leads to a recovery of Lorentz’
model with vanishing restoring force, i.e.,

χ(t) =
ω2

p

ν
H(t)

(
1− e−νt

)
I3

16Media, which constitutive components are not identical to their mirror image, show bian-
isotropic effects. In nature, materials that are not invariant under mirror reflection occur both on
microscopic (molecular) and macroscopic level. Interestingly, there is a dominance of right-handed
oriented natural material. On the microscopic level, we find such examples in e.g., the chromo-
somes, and on the macroscopic level in e.g., shells and vines. The reason for this asymmetry
between right-handed and left-handed oriented media can be traced to the nucleus of the atoms
and the weak interaction and its symmetry breaking properties at mirror reflection.
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Example 2.6
In 1937 Condon17 suggested a constitutive relation that models biisotropic (chiral or

optical activity) effects [4]. In this textbook, the constitutive relations for a biisotropic
medium are

D(t) = ε0

{
εE(t) +

∫ t

−∞
χee(t− t′)E(t′) dt′ + η0

∫ t

−∞
χem(t− t′)H(t′) dt′

}
B(t) =

1

c0

{∫ t

−∞
χme(t− t′)E(t′) dt′ + η0µH(t) + η0

∫ t

−∞
χmm(t− t′)H(t′) dt′

}
Condon generalized Lorentz’ model by adding a force proportional to the time deriva-

tive of the magnetic field H. Using the notation in Section 2.2.2, the equation of the
polarization P is

d2

dt2
P + ν

d

dt
P + ω2

0P = ε0

(
ω2

pE + ωcη0
∂H

∂t

)
(2.17)

where ωp =
√

Nq2

mε0
and ωc are the plasma frequency and a frequency modeling the optical

activity of the material, respectively.
Proceed as in Section 2.2.2 by differentiating the polarization P . We get

1

ε0

dP (t)

dt
= (ε− 1)

dE(t)

dt
+ χee(0

+)E(t) +

∫ t

−∞
χ′ee(t− t′)E(t′) dt′

+ η0χem(0+)H(t) + η0

∫ t

−∞
χ′em(t− t′)H(t′) dt′

1

ε0

d2P (t)

dt2
= (ε− 1)

d2E(t)

dt2
+ χee(0

+)
dE(t)

dt
+ χ′ee(0

+)E(t) +

∫ t

−∞
χ′′ee(t− t′)E(t′) dt′

+ η0χem(0+)
dH(t)

dt
+ η0χ

′
em(0+)H(t) + η0

∫ t

−∞
χ′′em(t− t′)H(t′) dt′

Insert into the equation of dynamics, (2.17), and collect terms

(ε− 1)
d2E(t)

dt2
+
(
χee(0

+) + ν (ε− 1)
) dE(t)

dt
+
(
χ′ee(0

+) + νχee(0
+) + ω2

0 (ε− 1)− ω2
p

)
E(t)

+

∫ t

−∞

(
χ′′ee(t− t′) + νχ′ee(t− t′) + ω2

0χee(t− t′)
)
E(t′) dt′

+ η0

(
χem(0+)− ωc

) dH(t)

dt
+ η0

(
χ′em(0+) + νχem(0+) + ω2

0

)
H(t)

+ η0

∫ t

−∞

(
χ′′em(t− t′) + νχ′em(t− t′) + ω2

0χem(t− t′)
)
H(t′) dt′ = 0

17Edward Uhler Condon (1902–1974), American physicist.
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Treating the fields E and H as independent fields lead to
ε− 1 = 0

χee(0
+) + ν (ε− 1) = 0

χ′ee(0
+) + νχee(0

+) + ω2
0 (ε− 1)− ω2

p = 0

χ′′ee(t) + νχ′ee(t) + ω2
0χee(t) = 0


χem(0+)− ωc = 0

χ′em(0+) + νχem(0+) = 0

χ′′em(t) + νχ′em(t) + ω2
0χem(t) = 0

The solutions to these problems are
χee(t) = H(t)

ω2
p

ν0
e−

νt
2 sin ν0t

χem(t) = H(t)ωce
− νt

2

(
cos ν0t−

ν

2ν0
sin ν0t

)
where ν2

0 = ω2
0 − ν2/4. This analysis determines the susceptibility functions χee(t) and

χem(t). If the material is non-magnetic χmm(t) = 0, and if the material satisfy additional
conditions, such as the reciprocity condition developed and analyzed in Section 3.5 on
page 73, we have also χme(t) = −χem(t).

We end the analysis on constitutive relations by inverting the relation between
the electric flux density D(t) and the electric field E(t) for an anisotropic material.
The constitutive relations, (2.13), for an anisotropic material is

D(t) = ε0

{
ε ·E(t) +

∫ t

−∞
χ(t− t′) ·E(t′) dt′

}
This relation can be inverted by applying the resolvent of the susceptibility dyadic
χ(t). The resolvent kernel Υ(t) satisfies the resolvent equation

ε−1 · χ(t) + Υ(t) · ε+

∫ t

0

(Υ(t− t′) · ε) ·
(
ε−1 · χ(t′)

)
dt′ = 0 (2.18)

This solution is uniquely soluble for t > 0, and for t < 0, Υ(t) = 0. In terms of the
resolvent kernel, the inverse is

E(t) =
1

ε0

{
ε−1 ·D(t) +

∫ t

−∞
Υ(t− t′) ·D(t′) dt′

}
(2.19)

This relation is easily verified by inserting the constitutive relation into (2.19) and
using the resolvent equation, (2.18).

2.4 Energy and passivity

The classification of a passive material in this section follow closely Karlsson and
Kristensson [11, 12].

In Section 1.2 we identified the power bounded in the electromagnetic field in
the volume V as, see (1.12)∫∫∫

V

[
H · ∂B

∂t
+E · ∂D

∂t

]
dv



Section 2.4 Energy and passivity 37

The integrand defines the power density of the material, and the total energy stored
per volume therefore is

w(r, t) =

∫ t

−∞

[
H(t′) · ∂B(t′)

∂t′
+E(t′) · ∂D(t′)

∂t′

]
dt′

To proceed, it is convenient to employ the six-dimensional notation in (2.14),
(2.15), and (2.16). In this notation, the Poynting theorem (without sources, disper-
sive model) reads

∇ · S(r, t) +
1

η0

e(r, t) · ∂d(r, t)

∂t
= 0

and the total energy stored per volume at a point r is

w(t) =
1

η0

∫ t

−∞
e(t′) · d′(t′) dt′ = wem(t) + wd(t)

where the instantaneous part of the total energy stored is

wem(t) =
1

η0

∫ t

−∞
e(t′) · (A · e′(t′)) dt′

=
1

4η0

e(t) ·
((
A + At

)
· e(t)

)
+

1

2η0

∫ t

−∞
e(t′) ·

((
A− At

)
· e′(t′)

)
dt′

(2.20)

and the dispersive part of the total energy stored is

wd(t) =
1

η0

∫ t

−∞
e(t′) ·

∫ ∞
0

M(t′′) · e′(t′ − t′′) dt′′ dt′

=
1

η0

∫ t

−∞
e(t′) · ∂

∂t′

(∫ t′

−∞
M(t′ − t′′) · e(t′′) dt′′

)
dt′

=
1

η0

∫ t

−∞
e(t′) ·

(
M(0) · e(t′) +

∫ t′

−∞
M′(t′ − t′′) · e(t′′) dt′′

)
dt′

(2.21)

The medium is classified as a passive material at the fixed point r, if

w(t) = wem(t) + wd(t) ≥ 0

for every continuously differentiable, compactly supported vector e(t).
The motivation behind this definition is clear from the Poynting theorem, which

implies that a passive material satisfies

−
∫ t

−∞

∫∫
Sr

S(r, t′) · ν̂ dS dt′ ≥ 0

for all electromagnetic fields e(t). Here Sr is the bounding surface of an arbitrary,
open neighborhood Vr of the point r. This integral states that the power is always
consumed inside Sr for all excitations.
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We apply this definition to a continuously differentiable field e, which satisfies
e(t) = 0, and, moreover, each component assumes non-zero values only in a neigh-
borhood of τ < t, more precisely, e(t) = 0, t /∈ [τ − ε, τ + ε], where ε is sufficiently
small. From (2.20) and (2.21), the total energy stored per volume is

w(t) =
1

2η0

∫ τ+ε

τ−ε
e(t′) ·

((
A− At

)
· e′(t′)

)
dt′

+
1

η0

∫ τ+ε

τ−ε
e(t′) ·

∫ t′−τ+ε

t′−τ−ε
M(t′′) · e′(t′ − t′′) dt′′ dt′ ≥ 0

The first integral is of the order O(ε) and the second integral is of order O(ε2) as
τ → 0. Therefore, the first integral dominates, and in the limit ε→ 0 we get

1

2

∫ τ+ε

τ−ε
e(t′) ·

((
A− At

)
· e′(t′)

)
dt′ ≥ 0

for all fields e. Now e and e′ can be chosen independently, which implies that

A = At

and A has to be symmetric for a passive material, i.e.,

wem(t) =
1

2η0

e(t) · (A · e(t)) =
1

2η0

e(t) · A · e(t)

Since this quantity always is positive, we conclude that the optical response A, in
addition of being symmetric, also is a positive definite dyadic.

The total power stored becomes

w(t) =
1

2η0

e(t) · A · e(t) +
1

η0

∫ t

−∞
e(t′) ·

∫ ∞
0

M(t′′) · e′(t′ − t′′) dt′′ dt′

Again, for a continuously differentiable field e, which satisfies e(t) = 0, and which
assumes non-zero values only in a neighborhood of τ < t we have

w(t) =
1

η0

∫ τ+ε

τ−ε
e(t′) ·

∫ ∞
0

M(t′′) · e′(t′ − t′′) dt′′ dt′ ≥ 0

which we rewrite as

w(t) =
1

η0

∫ τ+ε

τ−ε
e(t′) ·

(
M(0) · e(t) +

∫ ∞
0

M′(t′′) · e(t′ − t′′) dt′′
)

dt′ ≥ 0

Again, the first integral is of the order O(ε) and the second integral is of order O(ε2)
as τ → 0. The same argument as above implies that

a · (M(0) · a) ≥ 0

for all a ∈ R6, i.e., M(0) is a non-negative definite matrix.
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If the early time behavior of the dispersion effects satisfy M(0) = 0 (e.g., a
Lorentz model), then (e(t) = 0)

w(t) =
1

η0

∫ t

−∞
e(t′) ·

∫ t′

−∞
M′(t′ − t′′) · e(t′′) dt′′ dt′

=
1

2η0

∫ t

−∞
e(t′) ·

∫ t

−∞

(
M′(t′ − t′′) + M′

t
(t′′ − t′)

)
· e(t′′) dt′′ dt′ ≥ 0

and we see that the function K(t) = a·
(
(M′(t) + M′t(−t)) · a

)
is a function of positive

type for all vectors a ∈ R6, see Appendix B.4.

Example 2.7
We illustrate the theory in this section with the Lorentz model which has a susceptibility
function, see (2.12)

χ(t) = H(t)
ω2

p

ν0
e−

νt
2 sin ν0t

Consequently{
ε∞ = I3

χ(0) = 0

χ
′(t) = H(t)

ω2
p

ν0
e−

νt
2 I3

(
ν0 cos ν0t−

ν

2
sin ν0t

)
χ′(0) = ω2

pI3

We conclude that χ′(0) is a positive definite dyadic. Moreover, for each a ∈ R3, the
function

f(t) = a ·
(
(χ′(t) + χt(−t)) · a

)
=
ω2

p

ν0
e−

ν|t|
2 |a|2I3

(
ν0 cos ν0|t| −

ν

2
sin ν0|t|

)
is a function of positive type, see Appendix B.4. To see this, engage Bochner’s theorem,
Theorem B.4 on page 117, and prove that f(t) has a positive Fourier transform. In fact,∫ ∞

−∞
f(t)eiωt dt = 2|a|2

ω2
pω

2ν(
ω2 − ω2

0

)2
+ ω2ν2

> 0

Example 2.8
A more complex example is the model of the plasma in Example 2.5 on page 34. The
constitutive relations satisfy{

ε∞ = I3

χ(0) = 0

{
χ′(t) = ω2

pe−νtH(t) (I2 cosωgt+ ẑẑ − J sinωgt)

χ′(0) = ω2
pI3

Note that χ′(0) is a positive definite dyadic, and that for a ∈ R3, the function

f(t) = a ·
(
(χ′(t) + χt(−t)) · a

)
= ω2

pe−ν|t|
(
(a2

1 + a2
2) cosωg|t|+ a2

3

)
is a function of positive type, due to Bochner’s theorem, Theorem B.4 on page 117, since
the Fourier transform of f(t) is positive, i.e., In fact,∫ ∞

−∞
f(t)eiωt dt = 2ω2

p

(
ν(a2

1 + a2
2)

ω2 + ω2
g + ν2

(ω2 − ω2
g − ν2)2 + 4ν2ω2

+ a2
3

1

ν

)
> 0
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Problems for Chapter 2

2.1 A Debye medium with susceptibility function χ(t) = α exp{−t/τ} is excited by an
electric field E = E0[H(t)−H(t− T )] (abrupt on and off excitation), where E0 is
a vector that is constant in time and T > 0. Determine the polarization P (t) in the
material as a function of time t.

2.2 In an isotropic, weakly magnetic material an electromagnetic shock wave is propa-
gating. The magnetic field of the wave is

H(z, t) = x̂H0H(t− z/c0)

where H(t) is Heaviside’s step function and H0 is a real constant. The susceptibility
function of the material is χmm(t) = H(t)αe−βt and its magnetic optical response is
µ = 1. Determine the magnetization M(z, t) in the material.

2.3 A plane interface separates vacuum from an homogeneous Lorentz material with
negligible losses. The susceptibility function of the material is χ(t) = α sinβt. At
the interface there are no free charges. Close to the interface, the electric field in
the Lorentz material is (E constant)

E2(t) =

{
ν̂E 0 < t < T

0 otherwise

Determine the electric field in vacuum close to the interface, i.e., determine E1(t)?
Explain why E1(t) and E2(t) differ.

2.4 A plane interface (z = 0) separates vacuum and an homogeneous Lorentz material
with negligible losses. The susceptibility function of the material is χ(t) = α sinβt
and the optical response is ε = 1. There are no free charges at the interface. A
transient wave propagates parallel to the interface. The electric field of this wave is
(E is a real constant and ω0 > 0)

E(y, t) = x̂EH(t− y/c0) cosω0(t− y/c0)

where H(t) is Heaviside’s stepfunction. Determine the polarization P (y, t) at the
interface in the Lorentz material.

2.5 Denote the charge and the mass of the charge in a cold plasma by q, and m, respec-
tively. The charges move freely in a static magnetic flux density B, oriented along
the z-axis, i.e., B = B0ẑ, under the presence of a collision frequency ν. Make the
following Ansatz of the constitutive relations:

J(t) = σE(t) + ε0

∫ t

−∞
Σ(t− t′) ·E(t′) dt′

or in Cartesian components

Ji(t) = σEi(t) + ε0

3∑
j=1

∫ t

−∞
Σij(t− t′)Ej(t′) dt′ i = 1, 2, 3
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Determine the constitutive relations of the plasma under the assumption that the
static flux density is much stronger than the magnetic flux density generated by the
charges.

Hint: Show that the current density J satisfies the following equation of motion (Lorentz’
force):

dJ

dt
+ νJ + ωgẑ × J = ε0ω

2
pE

where ωg, the gyrotropic frequency, and ωp, the plasma frequency of the material, are defined
by

ωg =
qB0

m
, ωp =

√
Nq2

mε0

and N is the number of charges per unit of volume in the plasma. Then show that σ and
Σ(t) satisfy the following system of differential equations:

σ = 0

Σ(0) = ω2
pI3

dΣ(t)

dt
+ νΣ(t) + ωgẑ ×Σ(t) = 0

2.6 Use the result of Problem 2.5 to write the constitutive relations of the plasma in the
following form:

D(t) = ε0

{
E(t) +

∫ t

−∞
χ(t− t′) ·E(t′) dt′

}
This gives the transformation from the conductivity model, given in Problem 2.5,
to the dispersion model.
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Chapter 3
Time harmonic fields and Fourier
transform

Several important applications use time harmonic fields. In this section, we analyze
the special simplifications time harmonic fields introduce.

Time dependence e−iωt vs eiωt (ejωt)

The are two sign conventions for the tempo-
ral (inverse) Fourier transform. There is the
one we use in this textbook, i.e., e−iωt, which
is used mostly by physicists. Electrical engi-
neers often prefer the opposite sign in the ex-
ponential, i.e., eiωt or ejωt. The choice of sign
is, of course, irrelevant in the computation of
all physical quantities, but it leads to different
signs in many of the complex quantities that
are used in the calculations.
The choice of the electrical engineers is most ap-
propriate when dealing with circuit applications
where the dependence of the space variables
is suppressed. However, using the eiωt time
convention in wave propagation problems, like
the scattering problems we are dealing within
this textbook, leads to an extra minus signs in
front of the spatial dependence, e.g., an outgo-
ing spherical wave would be e−ikr/kr with this
time convention.

We obtain the time harmonic case
from the general results in the previ-
ous section by a Fourier1 transform in
the time variable of all fields (dyadic-
valued, vector-valued, and scalar-valued
fields). We investigate the consequences
time harmonic fields have on the con-
stitutive relations and we introduce the
concept of active, passive and lossless
media. Moreover, the concept of reci-
procity is introduced, and we investi-
gate the polarization state of a time har-
monic field, which leads to concept of
the polarization ellipse.

The Fourier transform in the time
variable of a vector field, e.g., the elec-
tric field E(r, t), is defined as

E(r, ω) =

∫ ∞
−∞
E(r, t) eiωt dt

with its inverse transform

E(r, t) =
1

2π

∫ ∞
−∞
E(r, ω) e−iωt dω

Similarly, the Fourier transform for all other time dependent fields, dyadics, and
scalars are defined. To avoid heavy notation, we use the same symbol for the physical

1Jean Baptiste Joseph Fourier (1768–1830), French mathematician and physicist.

43
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field E(r, t), as for the Fourier transformed field E(r, ω) — only the argument
differs. Moreover, note that the Fourier transformed field no longer has the same
unit as the time domain field, e.g., the physical electric field E(r, t) has the unit
V/m, but the Fourier transformed fieldE(r, ω) has the unit Vs/m. In most cases the
context suggests whether it is the physical field or the Fourier transformed field that
is intended. When there is doubts which field that is intended, the time argument
t or the angular frequency ω = 2πf , where f is the frequency, is explicitly written
out to distinguish the fields.

All physical quantities are real-valued, which imply constraints on the Fourier
transform. The negative values of ω are related to the positive values of ω by a
complex conjugate. To see this, we write down the criterion for the field E to be
real ∫ ∞

−∞
E(r, ω)e−iωt dω =

{∫ ∞
−∞
E(r, ω)e−iωt dω

}∗
where the star ( ∗) denotes the complex conjugate. For real ω, we have∫ ∞

−∞
E(r, ω)e−iωt dω =

∫ ∞
−∞
E∗(r, ω)eiωt dω =

∫ ∞
−∞
E∗(r,−ω)e−iωt dω

where we in the last integral has made a change of variable ω → −ω. Therefore, for
real ω we have

E(r, ω) = E∗(r,−ω) (3.1)

This shows that when the physical field is constructed from its Fourier transform, it
suffices to integrate over the non-negative frequencies only. By a change of variable,
ω → −ω, and the use of the condition (3.1), we have

E(r, t) =
1

2π

∫ ∞
−∞
E(r, ω) e−iωt dω

=
1

2π

∫ ∞
0

(
E(r, ω)e−iωt +E(r,−ω)eiωt

)
dω

=
1

2π

∫ ∞
0

(
E(r, ω)e−iωt +E∗(r, ω)eiωt

)
dω =

1

π
Re

∫ ∞
0

E(r, ω)e−iωt dω

(3.2)
where Re z denotes the real part of the complex number z. A similar result holds
for all other Fourier transformed fields that we are using. We also conclude that the
real part of E(r, ω) is an even function of ω and the imaginary part of E(r, ω) is
an odd function of ω.

Fields that are purely time harmonic are of special interests in many applications,
see Table 3.1. If we concentrate on the time dependence, a purely time harmonic
fields have time dependence of the form

cos(ω0t− α)
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Band Frequency Wave length Application

ELF < 3 KHz > 100 km
VLF 3–30 KHz 100–10 km Navigation
LV 30–300 KHz 10–1 km Navigation
MV 300–3000 KHz 1000–100 m Radio
KV (HF) 3–30 MHz 100–10 m Radio
VHF 30–300 MHz 10–1 m FM, TV
UHF 300–1000 MHz 100–30 cm Radar, TV, mobile communication
†a 1–30 GHz 30–1 cm Radar, satellite communication
†a 30–300 GHz 10–1 mm Radar

4.2–7.9 · 1014 Hz 0.38–0.72 µm Visible light

aSee also Table 3.2.

Table 3.1: The spectrum of the electromagnetic waves.

Such fields are generated by the following Fourier transform:

E(r, ω) = π

{
δ(ω − ω0) (x̂Ex(r) + ŷEy(r) + ẑEz(r))

+ δ(ω + ω0)
(
x̂E∗x(r) + ŷE∗y(r) + ẑE∗z (r)

)}
= π

{
δ(ω − ω0)

(
x̂|Ex(r)|eiα(r) + ŷ|Ey(r)|eiβ(r) + ẑ|Ez(r)|eiγ(r)

)
+ δ(ω + ω0)

(
x̂|Ex(r)|e−iα(r) + ŷ|Ey(r)|e−iβ(r) + ẑ|Ez(r)|e−iγ(r)

)}
where α(r), β(r) and γ(r) are the complex phase of the components, ω0 ≥ 0, and
where δ(ω) denotes the delta function. Note that this Fourier transform satisfies
E(r, ω) = E∗(r,−ω), which is the criterion for a real-valued field. The inverse
Fourier transform then gives

E(r, t) =
1

2π

∫ ∞
−∞
E(r, ω) e−iωt dω

=
{
x̂|Ex(r)| cos(ω0t− α(r)) + ŷ|Ey(r)| cos(ω0t− β(r))

+ ẑ|Ez(r)| cos(ω0t− γ(r))
}

A simple way of obtaining purely time harmonic waves is to employ the following
expression:

E(r, t) = Re
{
E(r, ω)e−iωt

}
(3.3)

where E(r, ω) is a complex-valued vector. If we write E(r, ω) as

E(r, ω) = x̂Ex(r, ω) + ŷEy(r, ω) + ẑEz(r, ω)

= x̂|Ex(r, ω)|eiα(r) + ŷ|Ey(r, ω)|eiβ(r) + ẑ|Ez(r, ω)|eiγ(r)

we obtain the same result as in the expression above (without the index 0 on ω).
This way of constructing purely time harmonic waves are convenient and often used.
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Band Frequency (GHz)
L 1–2
S 2–4
C 4–8
X 8–12
Ku 12–18
K 18–27
Ka 27–40

Millimeter band 40–300

Table 3.2: Table of radar band frequencies.

Note that the field E(r, ω) has the same unit as the field E(r, t). This is in contrast
to the Fourier transformation of the field above, but this difference seldom causes
problems.

3.1 The Maxwell equations

As a first step in our analysis of time harmonic fields, we Fourier transform the
Maxwell equations (1.1) and (1.2) ( ∂

∂t
→ −iω)

∇×E(r, ω) = iωB(r, ω) (3.4)

∇×H(r, ω) = J(r, ω)− iωD(r, ω) (3.5)

The explicit harmonic time dependence e−iωt has been suppressed from both sides
of these equations, i.e., the physical fields are

E(r, t) = Re
{
E(r, ω)e−iωt

}
This convention is applied to all purely time harmonic fields. Note that the elec-
tromagnetic fields E(r, ω), B(r, ω), D(r, ω) and H(r, ω), and the current density
J(r, ω) in general are complex-valued vector fields.

The continuity equation (1.4) is transformed in a similar way and we have

∇ · J(r, ω)− iωρ(r, ω) = 0 (3.6)

The remaining two equations from Section 1, (1.5) and (1.6), are transformed
into

∇ ·B(r, ω) = 0 (3.7)

∇ ·D(r, ω) = ρ(r, ω) (3.8)

These equations are consequences of (3.4) and (3.5), and the continuity equa-
tion (3.6) (cf. Section 1 on page 4). In fact, take the divergence of the Maxwell
equations (3.4) and (3.5) and use (3.6), which gives (∇ · (∇×A) = 0)

iω∇ ·B(r, ω) = 0

iω∇ ·D(r, ω) = ∇ · J(r, ω) = iωρ(r, ω)
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Division by iω (provided ω 6= 0) then gives (3.7) and (3.8).
To summarize, in a source-free region the time-harmonic Maxwell equations are{

∇×E(r, ω) = ik0 (c0B(r, ω))

∇× (η0H(r, ω)) = −ik0 (c0η0D(r, ω))
(3.9)

where η0 =
√
µ0/ε0 is the intrinsic wave impedance of vacuum, c0 = 1/

√
ε0µ0 the

speed of light in vacuum, and k0 = ω/c0 is the wave number2 in vacuum. In equation
(3.9) all field quantities in parenthesis have the same units, i.e., that of the electric
field. This form is the standard form of the Maxwell equations that we use in this
textbook.

3.2 Constitutive relations

The constitutive relations introduced in Section 2 for general time dependent fields
contain temporal convolutions. In this section, we Fourier transform these relations
and arrive at constitutive relations that hold for time harmonic fields.

In Section 2.3, the general Ansatz on the constitutive relations in bianisotropic
media is, (2.13)

D(t) = ε0

{
ε ·E(t) +

∫ t

−∞
χee(t− t′) ·E(t′) dt′

+ η0

∫ t

−∞
χem(t− t′) ·H(t′) dt′

}
B(t) =

1

c0

{∫ t

−∞
χme(t− t′) ·E(t′) dt′

+ η0µ ·H(t) + η0

∫ t

−∞
χmm(t− t′) ·H(t′) dt′

}
or in a six-vector notation of (2.16)

d(t) = A · e(t) +

∫ t

−∞
M(t− t′) · e(t′) dt′

Since the Fourier transform of a convolution between two fields is a product of
their Fourier transforms we get

D(ω) = ε0

{(
ε+

∫ ∞
0

χee(t)e
iωt dt

)
·E(ω) + η0

∫ ∞
0

χem(t)eiωt dt ·H(ω)

}
B(ω) =

1

c0

{∫ ∞
0

χme(t)e
iωt dt ·E(ω) + η0

(
µ+

∫ ∞
0

χmm(t)eiωt dt

)
·H(ω)

}
2More correctly, k0 is the angular wave number in vacuum, and f/c0 is the wave number in

vacuum.
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It is convenient to introduce the following notation:
ε(ω) = ε+

∫ ∞
0

χee(t)e
iωt dt

µ(ω) = µ+

∫ ∞
0

χmm(t)eiωt dt


ξ(ω) =

∫ ∞
0

χem(t)eiωt dt

ζ(ω) =

∫ ∞
0

χme(t)e
iωt dt

(3.10)

with inverses
χee(t) =

1

2π

∫ ∞
−∞

[ε(ω)− ε] e−iωt dω

χmm(t) =
1

2π

∫ ∞
−∞

[µ(ω)− µ] e−iωt dω


χem(t) =

1

2π

∫ ∞
−∞
ξ(ω) e−iωt dω

χme(t) =
1

2π

∫ ∞
−∞
ζ(ω) e−iωt dω

Note the difference between the optical responses ε and µ, which are constant, real-
valued dyadics, and the Fourier transform of the generalized, frequency dependent,
dyadic-valued susceptibility ε(ω) and µ(ω). Normally, the context reveals which of
the quantities that is intended. In cases where misinterpretation might appear, we
explicitly write out the argument.

The generalized susceptibility functions χkk′(t), k,k’= e,m, are real-valued, which
imply that the complex-valued dyadics ε(ω), ξ(ω), ζ(ω) and µ(ω) satisfy{

ε(ω) = ε∗(−ω)

µ(ω) = µ∗(−ω)

{
ξ(ω) = ξ∗(−ω)

ζ(ω) = ζ∗(−ω)
(3.11)

The (angular) frequency ω in the Fourier transforms in (3.10) is assumed to be
real. Nothing prevents us from extending the variable ω into the upper half plane
of the complex ω-plane. This is possible due to the fact that χkk′(t) are causal
quantities, see also Appendix B.2. We adopt η = ω+iς, where ω and ς are real, and
ς ≥ 0. We extend the domain of definition in the Fourier transform to the upper
half plane in the complex variable η, i.e., the entries of the permittivity dyadic are

εij(η) = εij +

∫ ∞
0

χeeij(t)e
iωt−ςt dt, ς ≥ 0

and similarly for the other dyadics in (3.10). In fact, the Fourier transform contains
an extra exponentially decreasing function which ensures convergence. We have the
identity (−η∗ = −ω + iς)

εij(−η∗) = εij +

∫ ∞
0

χeeij(t)e
−iωt−ςt dt = εij(η)∗, ς ≥ 0 (3.12)

This relation generalizes (3.11), which holds for real frequencies ω, to complex values
of the frequency in the upper half plane. As a consequence

εij(iς) = εij +

∫ ∞
0

χeeij(t)e
−ςt dt = ε∗ij(iς)

is real.
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The notation in (3.10) simplifies the constitutive relations for time harmonic
fields (or the Fourier transformed fields). We have

D = ε0

{
ε(ω) ·E(ω) + η0ξ(ω) ·H(ω)

}
B =

1

c0

{
ζ(ω) ·E(ω) + η0µ(ω) ·H(ω)

} (3.13)

or in their Cartesian components
Di(ω) = ε0

3∑
j=1

{
εij(ω)Ej(ω) + η0ξij(ω)Hj(ω)

}
Bi(ω) =

1

c0

3∑
j=1

{
ζij(ω)Ej(ω) + η0µij(ω)Hj(ω)

}
In the six-vector notation we write the same relations in a more compact form as

d(ω) =

(
A +

∫ ∞
0

M(t)eiωt dt

)
· e(ω) = M(ω) · e(ω)

where

e(ω) =

(
E(ω)
η0H(ω)

)
, d(ω) = c0

(
η0D(ω)
B(ω)

)
(3.14)

and

M(ω) = A +

∫ ∞
0

M(t)eiωt dt =

(
ε(ω) ξ(ω)
ζ(ω) µ(ω)

)
(3.15)

satisfying M(ω) = M∗(−ω).
The dyadics (or the corresponding matrix representations) ε, ξ, ζ and µ are all

dimensionless dyadics as a consequence of the normalization in (3.13). The dyadics
ε and µ have separate names; they are called the permittivity dyadic, and the
permeability dyadic, respectively.

The four dyadics ε(r, ω), ξ(r, ω), ζ(r, ω), and µ(r, ω) depend in general of
the spatial variables r. For a homogeneous material, the constitutive dyadics are
independent of r. Notice that ε, ξ, ζ, and µ are generally still functions of the
angular frequency ω due to (material) temporal dispersion.

3.2.1 Classifications

The classification of different material is made as in Table 3.3. This classification is
analogous to the one we introduced for general time dependent fields, see Table 2.1.

Anisotropic materials, characterized by the dyadics ε(r, ω) and µ(r, ω), which in
general contain nine independent parameters each. In an isotropic medium, ε(r, ω)
and µ(r, ω) are proportional to the identity dyadic I3. In a biisotropic medium,
which is the simplest complex material involving the cross-coupling terms ξ and ζ,
all the constitutive dyadics are proportional to the identity dyadic I3.
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Type ε,µ ξ, ζ
Isotropic Both ∼ I3 Both 0
Anisotropic Some not ∼ I3 Both 0
Biisotropic Both ∼ I3 Both ∼ I3

Bianisotropic All other cases

Table 3.3: Table of classification of materials w.r.t. their constitutive relations for
time harmonic fields. The dyadic I3 denotes the unit dyadic in three dimensions.

Uniaxial ε1 = ε2 6= ε3
Biaxial ε1 6= ε2 6= ε3

Table 3.4: Table of classification of anisotropic media.

The most complex material are modeled by (3.13), and the most simple material
in this classification is the isotropic medium, which we analyzed in Section 2.1, in
a general time dependent formulation. The constitutive relations for an isotropic
medium in the frequency domain are{

D = ε0εE

B = µ0µH
(3.16)

The parameters ε and µ are the (relative) permittivity and permeability of the
medium, respectively. The isotropic model is used frequently and is a good model
for many insulation materials, e.g., glass, china, and many plastic materials.

We also note that a material with a conductivity that satisfies Ohm’s law, (2.4)
on page 20, always can be included in the constitutive relations by redefining the
permittivity3 in (3.13).

εnew = εold + i
σ

ωε0

The right-hand side in Ampère’s law (3.5) is

J − iωD = σE − iωε0

{
εold ·E + η0ξ ·H

}
= −iωε0

{
εnew ·E + η0ξ ·H

}
The anisotropic media can be classified further. The permittivity dyadic ε is

usually hermitian, i.e.,
ε = ε†

which in the entries of the dyadic means ε†ij = ε∗ji. Furthermore, if the permittivity
dyadic ε is real, then there is a basis of real-valued orthonormal vectors such that
the permittivity dyadic representation, [ε], in this basis system is diagonal.

[ε] =

ε1 0 0
0 ε2 0
0 0 ε3

 (3.17)

3This treatment is analogous to the one presented in Section 2 where the conductivity σ was
included in a new susceptibility function χnew(t), see page 22.
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Type Diagonal elements Crystal symmetry
Isotropic ε1 = ε2 = ε3 Cubic
Uniaxial ε1 = ε2 6= ε3 Tetragonal, Hexagonal

Trigonal
Biaxial ε1 6= ε2 6= ε3 Orthorhombic, Hexagonal

Monoclinic, Triclinic

Table 3.5: Table of crystal symmetries and the values of εi.

χ = 0 χ 6= 0
κ = 0 Isotropic Chiral, reciprocal
κ 6= 0 Non-chiral, non-reciprocal Chiral, non-reciprocal

Table 3.6: Classification of biisotropic materials. The parameters κ and χ are:
ξ = κ+ iχ and ζ = κ− iχ, i.e., κ = (ξ + ζ)/2 and χ = (ξ − ζ)/2i.

Anisotropic media with a diagonal representation [ε] can be classified as in Ta-
ble 3.4. For uniaxial media the z-axis is a symmetry axis, which usually is called
the optical axis of the material due to many applications at optical frequencies.
Moreover, the uniaxial medium is positive (negative) uniaxial if ε3 > ε1 = ε2
(ε3 < ε1 = ε2).

In a medium that has a lattice structure, the symmetry of the crystal determines
the values of ε1, ε2 and ε3. The most important cases are summarized in Table 3.5.

Biisotropic media are classified w.r.t. their symmetry properties.4 We classify
these materials with the help of Table 3.6. From this table, we see that a reciprocal,5

biisotropic material has the following constitutive relations
D = ε0

{
ε(ω)E(ω) + iη0χ(ω)H(ω)

}
B =

1

c0

{
−iχ(ω)E(ω) + η0µ(ω)H(ω)

} (3.18)

These constitutive relations are often referred to as a chiral material.

4In the literature, the Fedorov model{
D = εF · {E +α · (∇×E)}
B = µF · {H + β · (∇×H)}

is often used, which is related to our material parameters by

ε0ε = εF ·
(
I3 − ω2α · µF · β · εF

)−1
c−10 ξ = iωεF ·α ·

(
I3 − ω2µF · β · εF ·α

)−1 · µF

c−10 ζ = −iω
(
I3 − ω2µF · β · εF ·α

)−1 · µF · β · εF
µ0µ =

(
I3 − ω2µF · β · εF ·α

)−1 · µF

5The concept of reciprocity is introduced in Section 3.5.
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Figure 3.1: The permittivity ε(ω) as a function of the angular frequency ω for
Debye’s model. The frequency scale is scaled by 1/τ (α = 2/τ).

3.2.2 Examples

Two important examples of constitutive relations were introduced in Section 2 —
Debye’s and Lorentz’ models. We are now prepared to transform these models by
(3.10).

Debye’s model: Debye’s model has a susceptibility function, see (2.10)

χ(t) = H(t)αe−t/τ ε = 1

This susceptibility function is easily transformed to the frequency domain. The
result is the permittivity dyadic, ε(ω) = ε(ω)I3, where

ε(ω) = ε+

∫ ∞
0

χ(t)eiωt dt = 1 +
ατ

1− iωτ
(3.19)

with real and imaginary parts
Re ε(ω) = 1 +

ατ

1 + ω2τ 2
=

1 + ω2τ 2 + ατ

1 + ω2τ 2

Im ε(ω) =
ωατ 2

1 + ω2τ 2

We note that ε(ω = 0) = 1 + ατ and ε(ω) = 1 as ω → ∞. The typical behavior is
depicted in Figure 3.1.

In Figure 3.2 experimental data of the permittivity for water are shown, and
a fit to a Debye model is presented. The fit to Debye’s model is augmented with
an extra term of optical response to account for fast electronic processes in water.
Debye’s model is most conveniently written as

ε(ω) = ε∞ +
εs − ε∞
1− iωτ
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Figure 3.2: Experimental data of the permittivity ε(ω) as a function of the angular
frequency ω for water at 20◦ C and frequencies up to 50 GHz. (Data are obtained
from [3, 7, 17].)

where ε∞ is the permittivity for high frequencies and εs is the static value, ω = 0.
The real and imaginary parts of the permittivity with this notation are

Re ε(ω) = ε∞ +
εs − ε∞

1 + ω2τ 2
=
ε∞ω2τ 2 + εs

1 + ω2τ 2

Im ε(ω) =
ωτ (εs − ε∞)

1 + ω2τ 2

(3.20)

Experimental values of the parameters ε∞, εs and τ for water and ethanol are listed
in Table 3.7.

In metals and water with salt contents, the permittivity is modified by an extra
term of conductivity σ.

ε(ω) = ε∞ +
εs − ε∞
1− iωτ

+ i
σ

ωε0 (3.21)

Experimental values of the parameters ε∞, εs, τ , and σ for salt and fresh water at
microwave frequencies and some metals at optical frequencies are listed in Table 3.7.

At higher frequencies the permittivity for water has a more complex behavior
than modeled by Debye’s model, due to other dominant more processes. The fre-
quency behavior of the permittivity of water at higher frequencies are shown in
Figure 3.3.

Example 3.1
From (3.20) we easily see that the real and the imaginary parts in Debye’s model satisfy(

Re ε(ω)− εs + ε∞
2

)2

+ (Im ε(ω))2 = (εs − ε∞)2

{(
1

1 + ω2τ2
− 1

2

)2

+

(
ωτ

1 + ω2τ2

)2
}

=
(εs − ε∞)2

4
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Material εs ε∞ τ (s) σ (S/m) Range
Water (20◦) 80.0 5.27 1.0 · 10−11 0–50 GHz
Ethanol 25.1 4.4 1.2 · 10−10

Salt water (20◦) 80.0 5.27 1.0 · 10−11 3–5 0–50 GHz
Fresh water (20◦) 80.0 5.27 1.0 · 10−11 10−3 0–50 GHz

Gold −15789 11.575 8.71 · 10−15 1.6062 · 107 700–1200 nm
Silver −9530.5 3.8344 7.35 · 10−15 1.1486 · 107 450–1200 nm
Copper −6672.7 12.076 5.63 · 10−15 1.0513 · 107 550–850 nm
Platinum −30.005 5.3741 3.28 · 10−16 9.5505 · 105 400–1200 nm
Aluminum −656.21 1.8614 1.07 · 10−15 5.4455 · 106 200–700 nm

Table 3.7: Experimental values of the material parameters in Debye’s model (and
modified Debye’s model) for water [3, 7, 17] and ethanol in the microwave domain.
Data for some metals [9] in the optical domain are also presented. The range of
validity is either given in frequency f or in wavelength λ = c0/f .

which implies that as the angular frequency ω varies, a circle, centered at (εs + ε∞)/2
and radius6 (εs − ε∞)/2, is traced out in the complex ε-plane, see Figure 3.4. The curve
starts at ε = εs for ω = 0 and ends at ε = ε∞ as ω → ∞. The maximum imaginary part
ε = (εs + ε∞)/2+i(εs− ε∞)/2 is obtained at ω = 1/τ . This circle in the complex ε-plane is
the Cole-Cole plot. This feature can be used experimentally to verify that the constitutive
relations is modeled by a Debye model, and the relevant parameters ε∞, εs, and τ can be
extracted from the plot.

Example 3.2
In this example we investigate the temperature behavior of the permittivity7 in a polar

liquid, where we assume the dipoles are weakly interacting. The potential energy of the
dipole in an electric field E depends on the orientation of the dipole. Provided the electric
dipole moment of the constitutive parts of the material is p, the potential energy U of
each constitutive part of the material is

U = −p ·E = −pE cos θ

where the angle between the (permanent) electric dipole moment p and the electric field
E, directed along ẑ, is denoted θ, and p = |p| and E = |E|. The polarization P then is

P = Npẑ <cos θ>

where N is the number of dipoles per unit volume, and the ensemble average is defined as

<f(U)>=

∫
f(U)e−βU dU∫

e−βU dU

where the integration is over all possible energies, and β = 1/(kBT ) (kB = 1.38062 ·
10−23 J/K is the Boltzmann constant, and T is the absolute temperature). In our case,

6At end of Section 3.3, we prove that the quantity εs − ε∞ always is positive.
7More precisely, we investigate the temperature behavior of the static value of the permittivity,

εs = ε(ω = 0).
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Figure 3.3: Real and imaginary parts of the permittivity for water as a function
of frequency (electron volts). 1 eV corresponds to a frequency of 2.42 · 1014 Hz or
a wavelength of 1.24 µm. The frequency behavior at lower frequencies is shown in
Figure 3.2. Note the low imaginary part of the permittivity at the optical window,
1.7–3.3 eV, which is marked with a yellow box. (Data are obtained from Hale
and Querry, Appl. Optics 12(3), 555 (1973) and Irvine and Pollack, Icarus 8, 324
(1968).)

we get

<cos θ>=

∫ 1
−1 cos θeβpE cos θ dcos θ∫ 1
−1 eβpE cos θ dcos θ

Introduce the dimensionless constant x = pEβ = pE/kBT , and we get

<cos θ>=

∫ 1
−1 te

xt dt∫ 1
−1 ext dt

=
d

dx
ln

∫ 1

−1
ext dt =

d

dx
ln
(
ex − e−x

)
− d

dx
lnx ≡ L(x)

where we have introduced the Langevin8 function L(x)

L(x) = cothx− 1

x

which is depicted in Figure 3.5. For small arguments x� 1 we have

L(x) ≈ x

3
+O(x2)

Finally, we get the average polarization

P = NpẑL(pE/kBT )

This relation shows that the polarization of the material, in general, depends nonlinearly
on the electric field. However, for large temperatures T � kBpE, which is the most
interesting case experimentally, we have a linear relation, i.e.,

P =
Np2E

3kBT

8Paul Langevin (1872–1946), French physicist.
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Figure 3.4: The Cole-Cole plot of the permittivity in Example 3.1 in Debye’s
model.

which implies that the static value of the permittivity εs, as a function of temperature T ,
is9

εs = 1 +
Np2

3ε0kBT

Lorentz’ model Lorentz’ model, given by the susceptibility function, see (2.12)

χ(t) = H(t)
ω2

p

ν0

e−
νt
2 sin ν0t ε = 1

is transformed to the frequency domain by a Fourier transform, see (3.10). The
result is the permittivity dyadic, ε(ω) = ε(ω)I3, where

ε(ω) = ε+

∫ ∞
0

χ(t)eiωt dt = 1− ω2
p

ω2 − ω2
0 + iων

(3.22)

9More precisely, E is the local field at the dipole, and we conclude that the electric polarizability
α is

α =
p2

3ε0kBT

where the static permeability εs and the α are related by Clausius-Mossotti’s (Lorenz-Lorentz’)
law

εs − 1

εs + 2
=
Nα

3
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Figure 3.5: The Langevin function L(x) (solid line), and the approximation x/3.

with real and imaginary parts
Re ε(ω) = 1− ω2

p(ω2 − ω2
0)

(ω2 − ω2
0)

2
+ ω2ν2

=
(ω2 − ω2

0)
2

+ ω2ν2 − ω2
p(ω2 − ω2

0)

(ω2 − ω2
0)

2
+ ω2ν2

Im ε(ω) =
ω2

pων

(ω2 − ω2
0)

2
+ ω2ν2

Notice that the real part can take negative values for certain combinations of the
material parameters. The scalar function ε(ω) as a function of frequency for a
Lorentz’ model is illustrated in Figure 3.6. From the expression above, we note that
ε(ω = 0) = 1 + ω2

p/ω
2
0 and ε(ω) = 1 as ω →∞.

Drude’s model Drude’s model10, corresponds to the case of vanishing restoring
force, i.e., ω0 → 0. The explicit form is

ε(ω) = 1− ω2
p

ω2 + iων
= 1− ω2

p

ω(ω + iν)
(3.23)

with real and imaginary parts
Re ε(ω) = 1− ω2

p

ω2 + ν2
=
ω2 + ν2 − ω2

p

ω2 + ν2
= −ω

2
p − ν2 − ω2

ω2 + ν2

Im ε(ω) =
ω2

pν

ω(ω2 + ν2)

Notice that the real part of the permittivity assumes negative values for all fre-
quencies ω <

√
ω2

p − ν2, and that the imaginary part has a pole at ω = 0. The

10Paul Karl Ludwig Drude (1863–1906), German physicist.
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Figure 3.6: The permittivity ε(ω) as a function of the angular frequency ω for
Lorentz’ model. The frequency scale is scaled by ω0 (ωp =

√
0.1ω0 and ν = 0.1ω0).

scalar function ε(ω) as a function of frequency for Drude’s model is illustrated in
Figure 3.7.

Drude’s model is closely related to the modified Debye model in (3.21). To see
this, write (3.23) as (we have added an optical response ε∞ to Drude’s model)

ε(ω) = ε∞ −
ω2

p/ν
2

1− iω/ν
+ i

ω2
p/ν

ω

and we see that Drude’s model is a special case of the modified Debye model with
a conductivity term σ = ε0ω

2
p/ν and

εs = ε∞ − ω2
p/ν

2

τ = 1/ν

σ = ε0ω
2
p/ν

Note that the modified Debye model has four free parameters (ε∞, εs, τ , and σ),
but Drude’s model only has three (ε∞, ωp, and ν). The parameters in the modified
Debye model therefore have to satisfy a constraint in order to be a Drude model.
This constraint is

εs − ε∞ +
στ

ε0
= 0

This constraint is satisfied for the metal data in Table 3.7. Both the modified Debye
model and Drude’s model have as a special case the standard conductivity model,
i.e.,

ε(ω) = ε̃(ω) + i
σ

ωε0
(3.24)

where ε̃(ω) is regular at the origin.
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Figure 3.7: The permittivity ε(ω) as a function of the angular frequency ω for
Drude’s model. The frequency scale is scaled by ω0 (ωp = ω0 and ν = 0.01ω0).

Example 3.3
The plasma is an example of a gyrotropic material. The constitutive relations of a cold

plasma are analyzed in Problem 3.5. The result is

ε(ω) = εI2 − iJεg + ẑẑεz

where 

ε = 1−
ω2

p(ω + iν)

ω
(
ω2 − ω2

g − ν2 + 2iνω
)

εg = −
ω2

pωg

ω
(
ω2 − ω2

g − ν2 + 2iνω
)

εz = 1−
ω2

p

ω(ω + iν)

and where ν is the collision frequency, I2 the identity operator in the x-y-plane, and
J = ẑ × I2, which is a rotation of π/2 along the z-axis, and the gyrotropic frequency, ωg,
and, ωp, the plasma frequency of the material, are defined by

ωg =
qB0

m
, ωp =

√
Nq2

mε0

and N is the number of charges per unit of volume in the plasma, and m and q are the
mass and the charge of the charges, respectively.

In the limit of vanishing collision frequency, ν → 0, these expressions become

ε = 1−
ω2

p

ω2 − ω2
g

εg = −
ω2

pωg

ω(ω2 − ω2
g)

εz = 1−
ω2

p

ω2
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The other limiting case, with vanishing gyrotropic frequency, ωg → 0, leads to a recovery
of Drude’ model, (3.23), i.e.,  ε = εz = 1−

ω2
p

ω(ω + iν)

εg = 0

Example 3.4
Related to the Lorentz model is the Condon model for optical activity in Example 2.6 on

page 35, where we derived the constitutive relations
χee(t) = H(t)

ω2
p

ν0
e−

νt
2 sin ν0t

χem(t) = H(t)ωce
− νt

2

(
cos ν0t−

ν

2ν0
sin ν0t

)
with Fourier transforms ∫ ∞

0
χee(t)e

iωt dt = −
ω2

p

ω2 − ω2
0 + iων

and ∫ ∞
0

χem(t)eiωt dt =
iωωc

ω2 − ω2
0 + iων

and we can identify
ε(ω) = 1 +

∫ ∞
0

χee(t)e
iωt dt = 1−

ω2
p

ω2 − ω2
0 + iων

ξ(ω) =

∫ ∞
0

χem(t)eiωt dt =
iωωc

ω2 − ω2
0 + iων

This analysis determines ε(ω) and ξ(ω). If the material is non-magnetic µ = 1, and if the
material also is reciprocal, see Section 3.5 on page 73 and Table 3.6 on page 51, we have
also ζ(ω) = −ξ(ω). Notice that ξ(ω)→ 0 as ω → 0, and no biisotropic effects remain for
static fields.

3.3 Poynting’s theorem, active, passive and loss-

less media

In Section 1 we derived Poynting’s theorem, see (1.12) on page 10.

∇ · S(t) +H(t) · ∂B(t)

∂t
+E(t) · ∂D(t)

∂t
+E(t) · J(t) = 0

The equation describes conservation of power and contains products of two fields.
For a product of time harmonic fields, the most pertinent quantity is the time average
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over one period.11 We denote the time average as <·> and for Poynting’s theorem
we obtain

<∇ · S(t)> + <H(t) · ∂B(t)

∂t
> + <E(t) · ∂D(t)

∂t
> + <E(t) · J(t)>= 0

The different terms in this quantity after a time average are

<S(t)>=
1

2
Re {E(ω)×H∗(ω)} (3.25)

and

<H(t) · ∂B(t)

∂t
>=

1

2
Re {iωH(ω) ·B∗(ω)}

<E(t) · ∂D(t)

∂t
>=

1

2
Re {iωE(ω) ·D∗(ω)}

<E(t) · J(t)>=
1

2
Re {E(ω) · J∗(ω)}

Poynting’s theorem (balance of power) for time harmonic fields, averaged over a
period, becomes (Notice that the time average and the differentiation w.r.t. space
commute, i.e., <∇ · S(t)>= ∇· <S(t)>):

∇· <S(t)>+
1

2
Re {iω [H(ω) ·B∗(ω) +E(ω) ·D∗(ω)]}

+
1

2
Re {E(ω) · J∗(ω)} = 0

(3.26)

Of special interest is the case without currents12 J = 0. Poynting’s theorem is
then simplified to

∇· <S(t)> = −1

2
Re {iω [H(ω) ·B∗(ω) +E(ω) ·D∗(ω)]}

= − iω

4

{
H(ω) ·B∗(ω)−H∗(ω) ·B(ω)

+E(ω) ·D∗(ω)−E(ω)∗ ·D(ω)
}

where we used Re z = (z + z∗)/2.

11The time average of a product of two time harmonic fields f1(t) and f2(t) is easily obtained
by an average over one period T = 2π/ω.

<f1(t)f2(t)> =
1

T

∫ T

0

f1(t)f2(t) dt =
1

T

∫ T

0

Re
{
f1(ω)e−iωt

}
Re
{
f2(ω)e−iωt

}
dt

=
1

4T

∫ T

0

{
f1(ω)f2(ω)e−2iωt + f∗1 (ω)f∗2 (ω)e2iωt + f1(ω)f∗2 (ω) + f∗1 (ω)f2(ω)

}
dt

=
1

4
{f1(ω)f∗2 (ω) + f∗1 (ω)f2(ω)} =

1

2
Re {f1(ω)f∗2 (ω)}

12Conducting currents can, as we have seen, be included in the permittivity dyadic ε.
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Enter the constitutive relations from equation (3.13). The divergence of Poynt-
ing’s vector is then expressed in the fields E and H .

∇· <S(t)> = − iωε0
4

{
η0H ·

(
ζ∗ ·E∗ + η0µ

∗ ·H∗
)
− η0H

∗ ·
(
ζ ·E + η0µ ·H

)
+E ·

(
ε∗ ·E∗ + η0ξ

∗ ·H∗
)
−E∗ ·

(
ε ·E + η0ξ ·H

)}
=

iωε0
4

{
E∗ ·

(
ε− ε†

)
·E + η2

0H
∗ ·
(
µ− µ†

)
·H

+ η0E
∗ ·
(
ξ − ζ†

)
·H + η0H

∗ ·
(
ζ − ξ†

)
·E
}

where the dagger † denotes the Hermitian transpose of the dyadic, see Appendix C,
and we have also used

a ·A∗ · b∗ = b∗ ·A† · a
It is often convenient to use a combined matrix and dyadic notation. The divergence
of Poynting’s vector can then be written in the following compact form:

∇· <S(t)>=
iωε0

4

(
E
η0H

)†
·
(
ε− ε† ξ − ζ†
ζ − ξ† µ− µ†

)
·
(
E
η0H

)
(3.27)

In the six-dimensional formulation of (3.14) and (3.15), we have

∇· <S(t)>=
iωε0

4
e†(ω) ·

(
M(ω)−M†(ω)

)
· e(ω) = −ωε0

2
e†(ω) · ImM(ω) · e(ω)

where the imaginary part of the dyadic M is defined as

ImM = Mi =
1

2i

(
M−M†

)
Note that the imaginary part Mi is an Hermitian dyadic, see also Appendix A.2.

The quantity −∇· <S(t)> gives a measure of the average power the electro-
magnetic field delivers to the material per unit volume. This quantity can be used
to classify the material as active, passive, or lossless depending on the sign of this
quantity. The following definitions are introduced for a fixed (angular) frequency
ω 6= 0:

Passive material if ∇· <S(t)> < 0

Active material if ∇· <S(t)> > 0

Lossless material if ∇· <S(t)> = 0

for all fields {E,H} 6= {0,0}

These definitions have the following physical implications. Integrate∇· < S(t)>
over a volume V bounded by S (outward directed normal ν̂). The divergence theo-



Section 3.3 Poynting’s theorem, active, passive and lossless media 63

rem gives

Passive material

∫∫
S

<S(t)> ·ν̂ dS < 0

Active material

∫∫
S

<S(t)> ·ν̂ dS > 0

Lossless material

∫∫
S

<S(t)> ·ν̂ dS = 0

These definitions imply that for a passive material in V , the outward radiated power
is always negative,

∫∫
S
<S(t)> ·ν̂ dS < 0, but for an active material this is posi-

tive, due to creation of electromagnetic energy (by non-electromagnetic sources in
V ). In a lossless material the outward radiated power averaged over a period is
always balanced by the power radiated inward through the surface during one pe-
riod. Notice that this classification holds for a fixed frequency. A material can be
passive for one frequency, active or lossless for another. However, a material cannot
be lossless for all frequencies.

3.3.1 Lossless material

In a lossless material, the dyadics ε, ξ, ζ, and µ in (3.13) have to satisfy some
conditions. From (3.27) we see that 

ε = ε†

µ = µ†

ξ = ζ†
(3.28)

since the fields E and H can be chosen arbitrary. In an isotropic material we
immediately see that ε and µ in (3.16) have to be real for a lossless material.13

Moreover, for lossless, anisotropic material with real permittivity matrix

εij = εji

i.e., [ε] is a symmetric matrix, which can be diagonalized (with real coordinate axes)
and a classification as in Table 3.4.

In the six-dimensional formulation of (3.14) and (3.15), the lossless materials
satisfy

ImM = 0
13An isotropic material with dispersion cannot be lossless for all frequencies, since then,

see (3.10)

0 =

∫ ∞
0

χ(t) sinωt dt =
1

2i

{∫ ∞
0

χ(t)eiωt dt−
∫ 0

−∞
χ(−t)eiωt dt

}
for all ω

which implies that the function H(t)χ(t)−H(−t)χ(−t) = 0, and χ(t) is identically zero, which is
a contradiction.
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3.3.2 Passive material

We now proceed by investigating the consequences on the the constitutive relations
for a passive material.

In a passive material the constitutive relations satisfy, see (3.27)(
E
η0H

)†
·
(

iω
(
ε− ε†

)
iω
(
ξ − ζ†

)
iω
(
ζ − ξ†

)
iω
(
µ− µ†

)) · ( E
η0H

)
< 0

for all (non-static) fields {E,H} 6= {0,0}, i.e., the Hermitian dyadic

2ω ImM =

(
α β
γ δ

)
=

(
−iω

(
ε− ε†

)
−iω

(
ξ − ζ†

)
−iω

(
ζ − ξ†

)
−iω

(
µ− µ†

)) > 0

is a positive definite six-dimensional dyadic.14 Here, we have employed the six-
dimensional formulation of (3.14) and (3.15), and we for convenience have introduced
the notations{

α = −iω
(
ε− ε†

)
= 2ω Im ε

β = −iω
(
ξ − ζ†

) {
γ = −iω

(
ζ − ξ†

)
δ = −iω

(
µ− µ†

)
= 2ω Imµ

Note that the α and δ are Hermitian dyadics, and γ and δ are related, i.e.,{
α = α†

δ = δ†

{
β = γ†

γ = β†

In a passive material, we thus have

E∗ ·α ·E +E∗ · β · η0H + η0H
∗ · γ ·E + η0H

∗ · δ · η0H > 0 (3.29)

for all (non-static) fields {E,H} 6= {0,0}. Applied to the fields {E,0} and {0,H}
implies

α > 0, δ > 0

i.e., the three-dimensional dyadics α = −iω
(
ε− ε†

)
and δ = −iω

(
µ− µ†

)
are

positive definite dyadics. Specifically, the diagonal entries are positive for all fre-
quencies.

Introduce the square root
√
α of the positive definite dyadic α, i.e.,

α =
√
α ·
√
α

where
√
α is a Hermitian dyadic. This dyadic is also positive definite. From the

identity and β† = γ∣∣∣√α ·E +
√
α
−1 · β · η0H

∣∣∣2
=
(
E∗ ·
√
α+ η0H

∗ · γ ·
√
α
−1
)
·
(√
α ·E +

√
α
−1 · β · η0H

)
=E∗ ·α ·E +E∗ · β · η0H + η0H

∗ · γ ·E + η0H
∗ · γ ·α−1 · β · η0H

14As a consequence, all eigenvalues of the dyadic are positive.
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we rewrite the condition (3.29) as∣∣∣√α ·E +
√
α
−1 · β · η0H

∣∣∣2 + η0H
∗ ·
(
δ − γ ·α−1 · β

)
· η0H > 0

This inequality implies that

δ − γ ·α−1 · β > 0

i.e., the dyadic δ− γ ·α−1 ·β is positive definite for all frequencies. In terms of the
material dyadics ε, µ, ξ, and ζ, this condition becomes

δ − γ ·α−1 · β = 2ω Imµ+
1

2
ω
(
ζ − ξ†

)
· (Im ε)−1 ·

(
ξ − ζ†

)
> 0

In summary, the condition for a passive material for a bianisotropic material is
ω Im ε > 0

ω Imµ > 0

ω
{

4 Imµ−
(
ξ − ζ†

)† · (Im ε)−1 ·
(
ξ − ζ†

)}
> 0

(3.30)

Example 3.5
In an isotropic material, i.e., {

ε = εI

µ = µI

{
ξ = 0

ζ = 0

the passive condition in (3.30)implies {
ω Im ε > 0

ω Imµ > 0

This condition is true for the models by Debye and Lorentz.

Example 3.6
In a biisotropic material, the constitutive relations are{

ε = εI

µ = µI

{
ξ = ξI = (κ+ iχ)I

ζ = ζI = (κ− iχ)I

where we for convenience have introduced two new, complex-valued parameters, κ and
χ, the reciprocity and the chirality parameters, respectively. These are expressed in the
previous ones as {

ξ = κ+ iχ

ζ = κ− iχ


κ =

ζ + ξ

2

χ = i
ζ − ξ

2
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The specific condition on the material parameters in a biisotropic material to be passive
is, see (3.30) (ω > 0) 

Im ε > 0

Imµ > 0

|ξ − ζ∗|2 < 4 Im ε Imµ

Specifically, if the material is reciprocal (ξ = −ζ) we have

|Re ξ| = |Re ζ| <
√

Im ε Imµ

An immediate consequence of this is that passive, reciprocal, biisotropic material cannot
have vanishing imaginary parts of µ or ε. In particular, adopting the Condon model in
Example 3.4, and Lorentz models for ε and µ, i.e.,

ε(ω) = 1−
ω2

pe

ω2 − ω2
0e + iωνe

µ(ω) = 1−
ω2

pm

ω2 − ω2
0m + iωνm

ξ(ω) = −ζ(ω) =
iωωc

ω2 − ω2
0ce + iωνc



Im ε(ω) =
ωνeω

2
pe(

ω2 − ω2
0e

)2
+ ω2ν2

e

Imµ(ω) =
ωνmω

2
pm(

ω2 − ω2
0m

)2
+ ω2ν2

m

Re ξ(ω) =
ω2νcωc(

ω2 − ω2
0c

)2
+ ω2ν2

c

We see that this model always becomes active at high frequencies, and, therefore, Condon’s
model has its main potential as a model of chiral material and optic activity at low
frequencies. There are many ways to remedy this deficiency. A slight modification of the
model above, e.g., 

ε(ω) = 1−
ω2

pe

ω2 − ω2
0 + iωνe

+
ατ

1− iωτ

µ(ω) = 1−
ω2

pm

ω2 − ω2
0 + iωνm

ξ(ω) = −ζ(ω) =
iωωc

ω2 − ω2
0 + iωνc

makes the model passive again, since

Im ε(ω) =
ωνeω

2
pe(

ω2 − ω2
0

)2
+ ω2ν2

e

+
ωατ2

1 + ω2τ2

Imµ(ω) =
ωνmω

2
pm(

ω2 − ω2
0

)2
+ ω2ν2

m

Re ξ(ω) =
ω2ωcνc(

ω2 − ω2
0

)2
+ ω2ν2

c

and to leading power in ω, Im ε Imµ− (Re ξ)2 behaves as ω →∞

α

ω

νmω
2
pm

ω3
− ω2

cν
2
c

ω4

which is positive provided ανmω
2
pm > ω2

cν
2
c .
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Example 3.7
The plasma model in Example 3.3 shows that

ε(ω) = εI2 − iJεg + ẑẑεz

where 

ε = 1−
ω2

p(ω + iν)

ω
(
ω2 − ω2

g − ν2 + 2iνω
)

εg = −
ω2

pωg

ω
(
ω2 − ω2

g − ν2 + 2iνω
)

εz = 1−
ω2

p

ω(ω + iν)

To investigate whether this model is passive or not, form

ω Im ε = I2ω Im ε− iJω Im εg + ẑẑω Im εz

The eigenvalues of ω Im ε(ω) are λ = ω Im(ε ± εg), ω Im εz. Therefore, the plasma model
is a passive material, since

ω Im εz =
ω2

pν

ω2 + ν2
> 0

and

ω Im(ε± εg) = − Im
ω2

p(ω ± ωg + iν)

ω2 − ω2
g − ν2 + 2iνω

=
ω2

p((ω ± ωg)2νω − ν(ω2 − ω2
g − ν2))

(ω2 − ω2
g − ν2)2 + 4ν2ω2

or

ω Im(ε± εg) = ω2
pν

(ω ± ωg)2 + ν2

(ω2 − ω2
g − ν2)2 + 4ν2ω2

> 0

3.4 Sum rules for the constitutive relations

The Hilbert transform, see Appendix B, can be used to relate specific frequency
values of the material dyadics ε, µ, ξ, and ζ to their values along the entire frequency
band. In particular, the static behavior is related to an integral over all frequencies.
In this section, we exploit these integral relations — sum rules — in more detail. In
particular, we prove that the eigenvalues of the static permittivity ε(ω) in a passive
material without a static conductivity σ(ω) are real, and that they always exceed
the eigenvalues of the optical response ε∞ of the material, i.e., ε(0)− ε∞ > 0. This
result, for an isotropic material, is also given in [16, p. 59] and in Example ??.??,
Footnote ?? on page ??.

The Fourier transform of any real-valued, which vanishes for negative arguments
(causal quantity) and which is square-integrable on the positive real line, satisfies
Plemelj’s formulas, see Titchmash’s theorem B.1 in Appendix B.2. From (B.3) on
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page 111, we have 
Re f(ω) =

2

π
P

∫ ∞
0

ω′ Im f(ω′)

ω′2 − ω2
dω′

Im f(ω) = −2ω

π
P

∫ ∞
0

Re f(ω′)

ω′2 − ω2
dω′

Moreover, the extended function f(η = f(ω+iς) is analytic in the upper half η-plane,
ς > 0, and satisfies it f(η) = (f(−η∗))∗.

We apply this result to the entries of the permittivity dyadic ε(ω) as a function
of ω. Specifically, from Section 3.2 we have that each Cartesian component of the
permittivity dyadic εij(ω) = êi · ε(ω) · êj, i, j = 1, 2, 3, is the Fourier transform of
a causal quantity, so one of the prerequisite for Titchmash’s theorem is satisfied,
and, moreover, from (3.12) we have that εij(−η∗) = εij(η)∗. We assume that the
permittivity at high frequencies approaches the optical response,15 ε∞, i.e., ε(η)→
ε∞ as η → ∞ in the upper complex plane of η. Plemelj’s formulas applied to the
scalar function f(η) = êi · (ε(η)− ε∞) · êj, i, j = 1, 2, 3 imply

Re (êi · (ε(ω)− ε∞) · êj) =
2

π
P

∫ ∞
0

ω′ Im (êi · ε(ω′) · êj)
ω′2 − ω2

dω′

Im (êi · ε(ω) · êj) = −2ω

π
P

∫ ∞
0

Re (êi · (ε(ω′)− ε∞) · êj)
ω′2 − ω2

dω′

where we have assumed that f(ω) is square integrable. These are the famous
Kramers-Kronig relations. In particular, all components Im (êi · ε(0) · êj) = 0, as
seen by the second identity, so ε(0) is a real-valued dyadic. A more compact form
of these relations is

Re ε(ω) = ε∞ +
2

π
P

∫ ∞
0

ω′ Im ε(ω′)

ω′2 − ω2
dω′

Im ε(ω) = −2ω

π
P

∫ ∞
0

Re ε(ω′)− ε∞
ω′2 − ω2

dω′
(3.31)

Example 3.8
For an isotropic material, ε(ω) = ε(ω)I3, the result in (3.31) is more well known [16].

Re ε(ω) = ε∞ +
2

π
P

∫ ∞
0

ω′ Im ε(ω′)

ω′2 − ω2
dω′

Im ε(ω) = −2ω

π
P

∫ ∞
0

Re ε(ω′)− ε∞
ω′2 − ω2

dω′

Take the limit ω → 0 in the first relation in (3.31), and we get

ε(0) = Re ε(0) = ε∞ +
2

π
P

∫ ∞
0

Im ε(ω)

ω
dω (3.32)

15For a passive material, this dyadic is a real-valued, symmetric, positive definite dyadic, see
Section 2.4, and in most models simply ε∞ = I.
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For a passive material, we get from (3.30) on page 65 that

x∗ · (ε(0)− ε∞) · x+
2

π
P

∫ ∞
0

x∗ · Im ε(ω) · x
ω

dω > 0, for all x ∈ C3

and we conclude that ε(0) − ε∞ is a positive definite dyadic. In particular, the
diagonal elements are

εii(0) > êi · ε∞ · êi, i = 1, 2, 3

i.e., the diagonal entries are larger than the diagonal entries of the optical response.
More generally, the same statement holds for the eigenvalues of ε(0)− ε∞.

We obtain a more systematic analysis of the sum rules if we assume the permit-
tivity dyadic to have the following explicit expansions at high and low frequencies:

ε(ω) =

{
ε∞ + iω−1ε−1 + ω−2ε−2 + . . . , |ω| → ∞
ε0 + iωε1 + ω2ε2 + . . . , ω → 0

The dyadics in this expansion all are real-valued, i.e., Im εi = 0, i = 0,±1,±2, . . .,
independent of ω due to ε(−η∗) = ε(η)∗. This assumption is consistent with all
models of the permittivity presented in this chapter. Provided the integrals converge,
we get the following sum rules:

ε0 = ε∞ +
2

π
P

∫ ∞
0

Im ε(ω)

ω
dω

ε−1 =
2

π
P

∫ ∞
0

Re ε(ω)− ε∞ dω

ε−2 = − 2

π
P

∫ ∞
0

ω Im ε(ω) dω

(3.33)

The first sum rule is identical to (3.32), and the second and second are obtained
from (3.31) after multiplication of ω and ω2, respectively, and then taking the limit
ω →∞.

Example 3.9
We illustrate the sum rules by the model of Debye, see (3.19). The real and imaginary

parts of the permittivity in this model are
Re ε(ω)− 1 =

ατ

1 + ω2τ2

Im ε(ω) =
ωατ2

1 + ω2τ2

with ε∞ = I, ε0 = (1 + ατ)I, ε−1 = αI, ε−2 = α/τI. The first two sum rules in (3.33) are
equivalent to the integral identity (principal value integral not necessary)∫ ∞

0

τ

1 + ω2τ2
dω =

π

2
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Example 3.10
For an isotropic material (3.32) simplifies to

ε(0) = ε∞ +
2

π
P

∫ ∞
0

Im ε(ω)

ω
dω

If we apply this identity to the Lorentz model in (3.22), we obtain a relation between the
quotient ωp/ω0 and the losses of the material, i.e.,

ω2
p

ω2
0

=
2

π
P

∫ ∞
0

Im ε(ω)

ω
dω

So, the knowledge of the losses in the material gives information of the oscillator strength.
If there are several processes present, the generalization is

M∑
i=1

ω2
pi

ω2
0 i

=
2

π
P

∫ ∞
0

Im ε(ω)

ω
dω

If the material has a static conductivity σ, we have to modify the analysis above.
The permittivity is now

ε(ω) = εreg(ω) + i
σ

ωε0

where εreg(ω) has no singularity at ω = 0. We use Plemelj’s formulas on the function
f(η) = êi · (ε(η)− ε∞ − iσ/ηε0) · êj = êi · (εreg(η) − ε∞) · êj, i, j = 1, 2, 3, where
we as above assume that f(ω) is square integrable. In a dyadic-valued notation, the
result is 

Re εreg(ω) = ε∞ +
2

π
P

∫ ∞
0

ω′ Im εreg(ω′)

ω′2 − ω2
dω′

Im εreg(ω) = −2ω

π
P

∫ ∞
0

Re (εreg(ω)− ε∞)

ω′2 − ω2
dω′

(3.34)

Note that with a conductivity term, the passive material condition does not, in
general, imply that ω Im εreg(ω) > 0 for all ω, only that ω Im ε(ω) = ω Im εreg(ω) +
Reσ/ε0 > 0, see the analysis in Section 3.3, and e.g., Example 3.11. Therefore, we
cannot any longer make the conclusion that εreg(0) has diagonal entries larger than
the diagonal entries of the optical response.

Example 3.11
The model by Drude, see (3.23), illustrates the theory presented in this section. The real

and imaginary parts of the permittivity in this model are
Re ε(ω)− 1 = −

ω2
p

ω2 + ν2

Im ε(ω)−
ω2

p

ων
= −

ω2
pω

(ω2 + ν2)ν
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The identities in (3.34) for this model are the integral identities
ν

ω2 + ν2
=

2

π
P

∫ ∞
0

ω′2

(ω′2 − ω2)(ω′2 + ν2)
dω′

− 1

ω2 + ν2
=

2

π
P

∫ ∞
0

ν

(ω′2 − ω2)(ω′2 + ν2)
dω′

or equivalently 
P

∫ ∞
0

t2

(t2 − x2)(1 + t2)
dt =

π

2

1

1 + x2

P

∫ ∞
0

1

(t2 − x2)(1 + t2)
dt = −π

2

1

1 + x2

which is a generalization to the integral in Example 3.9.

Example 3.12
The plasma model in Example 3.3 on page 59 illustrates a more complex situation. The
constitutive relations of the plasma are

ε(ω) = εI2 − iJεg + ẑẑεz

where 

ε = 1−
ω2

p(ω + iν)

ω
(
ω2 − ω2

g − ν2 + 2iνω
)

εg = −
ω2

pωg

ω
(
ω2 − ω2

g − ν2 + 2iνω
)

εz = 1−
ω2

p

ω(ω + iν)

The real and imaginary parts of these components are:

Re ε = 1− ω2
p

ω2 − ω2
g + ν2

(ω2 − ω2
g − ν2)2 + 4ν2ω2

Im ε = ω2
pν

ω2 + ω2
g + ν2

ω
(
(ω2 − ω2

g − ν2)2 + 4ν2ω2
)

=
ω2

pν

ω
(
ω2
g + ν2

) + ω2
pνω

3ω2
g − ν2 − ω2(

ω2
g + ν2

) (
(ω2 − ω2

g − ν2)2 + 4ν2ω2
)



Re εg = −ω2
pωg

ω2 − ω2
g − ν2

ω
(
(ω2 − ω2

g − ν2)2 + 4ν2ω2
)

=
ω2

pωg

ω
(
ω2
g + ν2

) + ω2
pωgω

ω2
g − 3ν2 − ω2(

ω2
g + ν2

) (
(ω2 − ω2

g − ν2)2 + 4ν2ω2
)

Im εg = ω2
pν

2ωg
(ω2 − ω2

g − ν2)2 + 4ν2ω2

and 
Re εz = 1−

ω2
p

ω2 + ν2

Im εz =
ω2

pν

ω(ω2 + ν2)
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From (3.34), we get
−

ω2 − ω2
g + ν2

(ω2 − ω2
g − ν2)2 + 4ν2ω2

=
2

π
P

∫ ∞
0

νω′2
3ω2
g−ν2−ω′2

(ω2
g+ν2)((ω′2−ω2

g−ν2)2+4ν2ω′2)

ω′2 − ω2
dω′

ν
3ω2

g − ν2 − ω2(
ω2
g + ν2

) (
(ω2 − ω2

g − ν2)2 + 4ν2ω2
) = − 2

π
P

∫ ∞
0

ω′2−ω2
g+ν2

(ω′2−ω2
g−ν2)2+4ν2ω2

ω′2 − ω2
dω′

and 
− ν 2

(ω2 − ω2
g − ν2)2 + 4ν2ω2

=
2

π
P

∫ ∞
0

ω′2
ω2
g−3ν2−ω′2

(ω2
g+ν2)((ω′2−ω2

g−ν2)2+4ν2ω2)

ω′2 − ω2
dω′

ω2
g − 3ν2 − ω2(

ω2
g + ν2

) (
(ω2 − ω2

g − ν2)2 + 4ν2ω2
) =

2

π
P

∫ ∞
0

ν 2
(ω′2−ω2

g−ν2)2+4ν2ω′2

ω′2 − ω2
dω′

The z-component leads to the same result as in Example 3.11.

The analysis above, was explicitly performed for the permittivity ε(ω), i.e., uti-
lizing Plemelj’s formula on f(η) = êi ·(ε(η)−ε∞) · êj, i, j = 1, 2, 3. Several identities
were obtained, see (3.33). Similar identities can be obtained for the other material
dyadic µ(ω), and combinations of ξ(ω), and ζ(ω).

Example 3.13
We exemplify the more general sum rules by a simple identity for chiral materials, see
also [6]. The relevant constitutive relations are, see (3.18) on page 51

D = ε0

{
ε(ω)E(ω) + iη0χ(ω)H(ω)

}
B =

1

c0

{
−iχ(ω)E(ω) + η0µ(ω)H(ω)

}
and the chirality parameter satisfy

Imχ(ω) = − 2

π
P

∫ ∞
0

ω′Reχ(ω′)

ω′2 − ω2
dω′

Reχ(ω) =
2ω

π
P

∫ ∞
0

Imχ(ω′)

ω′2 − ω2
dω′

where we assumed the chirality parameter lacks optical response.

Moreover, since due to (2.19), the inverse of ε(ω), ε−1(ω), is the Fourier transform
of a causal quantity. Therefore, utilizing Plemelj’s formula on f(η) = êi · (ε−1(η)−
ε−1
∞ ) · êj, i, j = 1, 2, 3, we get, cf. (3.31)

Re ε−1(ω) = ε−1
∞ +

2

π
P

∫ ∞
0

ω′ Im ε−1(ω′)

ω′2 − ω2
dω′

Im ε−1(ω) = −2ω

π
P

∫ ∞
0

Re ε−1(ω′)− ε−1
∞

ω′2 − ω2
dω′
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with the following explicit expansions at high and low frequencies in terms of the
expansion dyadics εi, i = 0,±1,±2, . . . above:

ε−1(ω) =

{
ε−1
∞ · {ε∞ − iω−1ε−1 − ω−2 (ε−1 · ε−1

∞ · ε−1 + ε−2) + . . .} · ε−1
∞

ε−1
0 ·

{
ε0 − iωε1 − ω2

(
ε1 · ε−1

0 · ε1 + ε2

)
+ . . .

}
· ε−1

0

Provided the integrals converge, we get the following analogous sum rules:

ε−1
0 = ε−1

∞ +
2

π
P

∫ ∞
0

Im ε−1(ω)

ω
dω

ε−1
∞ · ε−1 · ε−1

∞ = − 2

π
P

∫ ∞
0

Re ε−1(ω)− ε−1
∞ dω

ε−1
∞ ·

(
ε−1 · ε−1

∞ · ε−1 + ε−2

)
· ε−1
∞ =

2

π
P

∫ ∞
0

ω Im ε−1(ω) dω

(3.35)

Example 3.14
Again, we illustrate these sum rules by the model of Debye. The real and imaginary parts
of the permittivity in this model are

1

ε(ω)
=

1− iωτ

ατ + 1− iωτ
= 1− ατ

ατ + 1− iωτ

with real and imaginary parts
Re

1

ε(ω)
− 1 = − ατ(1 + ατ)

(1 + ατ)2 + ω2τ2

Im
1

ε(ω)
= − ωατ2

(1 + ατ)2 + ω2τ2

This implies with, as in Example 3.9, ε∞ = I, ε0 = (1 +ατ)I, ε−1 = αI, ε−2 = α/τI. The
first two sum rules in (3.35) are equivalent to the integral identity (principal value integral
not necessary) ∫ ∞

0

τ

(1 + ατ)2 + ω2τ2
dω =

π

2

1

1 + ατ

3.5 Reciprocity

In Section 3.3 we studied the power dissipation in a material. Specifically, we found
that the quantity ∇· <S(r, t)> was useful in classifying different materials. We
introduced the notion of active, passive and lossless materials, depending on whether
this quantity was positive, negative or zero, respectively. This notion was local in
space, i.e., it holds in a specific point in space.

In this section we introduce a new concept for classifying materials — the reci-
procity property. The reciprocity concept compares the effects on the material from
two different source configurations. The first set of sources, denoted Ja, give rise to
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V

Ja

J b

VR

SR

Figure 3.8: The material in the volume V is excited by two different sources Ja

and Jb, respectively.

an electromagnetic field, which we denote by the superscript a, i.e., the fields are Ea,
Ha, Da and Ba. The second set of sources, which we denote by the superscript b,
has sources and fields Jb, Eb, Hb, Db and Bb. All sources are assumed to be
located in a finite region of space outside or inside the material, which is confined
to the volume V . Outside these sources and the volume V we assume vacuum. The
geometry is illustrated in Figure 3.8.

In analogy with the dissipation concept in Section 3.3, we make the definition of
reciprocity as a local property of the material. To this end, the medium is reciprocal
r if

Ea ·Db −Eb ·Da = Ha ·Bb −Hb ·Ba (3.36)

for all accessible fields at this point. Equivalently, in a reciprocal material the
quantity Ea ·Db +Ba ·Hb is invariant under the change a↔ b.

Before investigating the consequences of this definition on the constitutive rela-
tions, we analyze the physical background to this definition. We assume the material
in V is reciprocal and the surrounding region is vacuous, and integrate (3.36) over
the a volume VR, a large ball of radius R, containing the material V and the sources
Ja and Jb, see Figure 3.8. We get

iω

∫∫∫
VR

{
Ea ·Db −Eb ·Da −Ha ·Bb +Hb ·Ba

}
dv = 0

Now use the Maxwell equation iωD = J −∇×H and iωB = ∇×E and the
differentiation rule ∇ · (a× b) = (∇× a) · b − a · (∇× b) to rewrite the volume
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integral as

0 = iω

∫∫∫
VR

{
Ea ·Db −Eb ·Da −Ha ·Bb +Hb ·Ba

}
dv

=

∫∫∫
VR

{
Ea ·

(
Jb −∇×Hb

)
− {a↔ b} −Ha ·

(
∇×Eb

)
+ {a↔ b}

}
dv

=

∫∫∫
VR

{
Ea · Jb −Eb · Ja

}
dv +

∫∫∫
VR

∇ ·
(
Ea ×Hb −Eb ×Ha

)
dv

The domain of integration in first integral in the last equality is only over the finite
region of the sources. This integral is therefore independent of the radius R of the
volume VR. The divergence theorem converts the last integral to a surface integral
over the bounding surface SR of the volume VR. Since the first integral is independent
of the radius of the volume VR, the surface integral is also independent of R. In the
limit as this radius goes to infinity, i.e., VR → R3, it is possible to show that the
surface integral is zero.16 For a reciprocal material, we have proved∫∫∫

Ea · Jb dv =

∫∫∫
Eb · Ja dv

If this condition is not satisfied for a set of sources or fields we have a non-reciprocal
material somewhere inside V . This condition is a measure of the difference between
the sources in “a” (Ja) and measuring at “b” (Eb) and vice versa. Very simpli-
fied, the reciprocity concept implies that if sources and receivers change places, the
integral above remains the same.

We now continue to investigate the effects of reciprocity on the constitutive
relations. Introduce the constitutive relations (3.13) in the definition of reciprocity,
(3.36). We get

Ea ·
(
ε ·Eb + η0ξ ·Hb

)
−Eb ·

(
ε ·Ea + η0ξ ·Ha

)
− η0H

a ·
(
ζ ·Eb + η0µ ·Hb

)
+ η0H

b ·
(
ζ ·Ea + η0µ ·Ha

)
= 0

Using
a ·A · b = b ·At · a

where t denotes the transposed dyadic, we can simplify the reciprocity definition.

Ea ·
(
ε− εt

)
·Eb − η2

0H
a ·
(
µ− µt

)
·Hb

+ η0E
a ·
(
ξ + ζt

)
·Hb − η0H

a ·
(
ζ + ξt

)
·Eb = 0

16We have assumed that the region outside the material in the volume V is vacuum. At large
distances the fields satisfy the radiation condition (r̂ = r/|r|, η0 =

√
µ0/ε0, k0 = ω/c0)

(r̂ ×E(r))− η0ηH(r) = o((k0r)
−1) or η0η (r̂ ×H(r)) +E(r) = o((k0r)

−1) as r →∞

These conditions are discussed and analyzed further in Section ??, and they imply the statement.
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Since the fields are arbitrary, we obtain the following conditions on the constitutive
relations for a reciprocal material: 

ε = εt

µ = µt

ξ = −ζt
(3.37)

An immediate consequence of this result is that all isotropic materials are reciprocal.
If the dielectric dyadic is real, there are a set of (real) coordinate axes that diag-
onalizes the dyadic and the classification in the Table 3.4 on page 50 holds. This
situation for e.g., a lossless, reciprocal material.

3.6 Ellipse of polarization

A time harmonic field can be described in geometrical terms. All time harmonic
fields oscillate in a fixed plane and the field follows the trace of an ellipse in this
plane. The presentation in this section is coordinate-free, which is advantageous
since the analysis can be made without referring to any specific coordinate system.

We consider the time harmonic field E(t) (all dependence on the space coordi-
nates r is suppressed in this section) at a fixed point in space. The time dependence
of the field is

E(t) = Re
{
E0e−iωt

}
(3.38)

where E0 is a constant complex vector (can depend on, e.g., ω and r), which Carte-
sian components are

E0 = x̂E0x + ŷE0y + ẑE0z = x̂|E0x|eiα + ŷ|E0y|eiβ + ẑ|E0z|eiγ

and α, β and γ are the phase of the components, respectively.
First we observe that the vector E(t) in (3.38) for all times lies in a fixed plane

in space. To see this, we express the complex vector E0 in its real and imaginary
parts, E0r and E0i, respectively.

E0 = E0r + iE0i

The real vectors E0r and E0i are fixes in time, and their explicit Cartesian compo-
nents are

E0r = x̂|E0x| cosα + ŷ|E0y| cos β + ẑ|E0z| cos γ

E0i = x̂|E0x| sinα + ŷ|E0y| sin β + ẑ|E0z| sin γ
The vector E(t) in (3.38) is now rewritten as

E(t) = Re
{

(E0r + iE0i) e−iωt
}

= E0r cosωt+E0i sinωt (3.39)

from which we conclude that the vector E(t) lies in the plane spanned by the real
vectors E0r and E0i for all times t. The normal to this plane is

ν̂ = ± E0r ×E0i

|E0r ×E0i|
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provided that E0r ×E0i 6= 0. In the case E0r ×E0i = 0, i.e., the two real vectors
E0r and E0i are parallel, the field E oscillates along a fixed line in space, and no
plane can be defined.

In general, the real vectorsE0r andE0i, which span the plane in which the vector
E(t) oscillates, are not orthogonal. However, it is convenient to use orthogonal
vectors. To this end, we introduce two new orthogonal vectors, a and b, which are
linear combinations of the vectors E0r and E0i. Let{

a = E0r cosϑ+E0i sinϑ

b = −E0r sinϑ+E0i cosϑ
(3.40)

where the angle ϑ ∈ [−π/4, π/4] is defined as

tan 2ϑ =
2E0r ·E0i

|E0r|2 − |E0i|2

By this construction a and b are orthogonal, since

a · b = (E0r cosϑ+E0i sinϑ) · (−E0r sinϑ+E0i cosϑ)

= −
(
|E0r|2 − |E0i|2

)
sinϑ cosϑ+E0r ·E0i

(
cos2 ϑ− sin2 ϑ

)
= −1

2

(
|E0r|2 − |E0i|2

)
sin 2ϑ+E0r ·E0i cos 2ϑ = 0

by the definition of the angle ϑ.
The vectors E0r and E0i can be expressed in the vectors a and b. The result is{

E0r = a cosϑ− b sinϑ

E0i = a sinϑ+ b cosϑ

i.e.,

E0 = E0r + iE0i = (a cosϑ− b sinϑ) + i (a sinϑ+ b cosϑ) = eiϑ(a+ ib) (3.41)

This representation also implies a simple form of the magnitude of the complex
vector E0, i.e.,

|E0|2 = E0 ·E∗0 = (a+ ib) · (a− ib) = a2 + b2

Inserting in (3.39) we get the physical field, i.e.,

E(t) = E0r cosωt+E0i sinωt

= (a cosϑ− b sinϑ) cosωt+ (a sinϑ+ b cosϑ) sinωt

= a cos(ωt− ϑ) + b sin(ωt− ϑ)

(3.42)

The vectors a and b can be used as a basis in an orthogonal coordinate system in
the plane where the field E oscillates. From a comparison with the equation of the
ellipse in the xy-planet (half axes a and b along the x- and the y-axes, respectively){

x = a cosφ

y = b sinφ
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E(t)
a

b

Figure 3.9: The ellipse of polarization and its half axes a and b.

and (3.42), we conclude that the field E traces an ellipse in the plane spanned by
the vectors a and b and that these vectors are the half axes (both the direction
and size) of the ellipse, see Figure 3.9. From (3.42) we also see that the field E is
directed along the half axis a when ωt = ϑ + 2nπ, and that the field E is directed
along the other half axis b when ωt = ϑ+ π/2 + 2nπ. The angle ϑ is the parameter
that marks where on the ellipse the field E is directed at t = 0, i.e.,

E(t = 0) = a cosϑ− b sinϑ

and the vector E moves along the ellipse in a direction from a to b (shortest way).
The vectors a and b describes the polarization state17 of the field E completely,
except for the phase angle ϑ.

We are now classifying the polarization state of the time harmonic field E(t).
This field can either be rotating along the elliptic curve in a clockwise or a counter-
clockwise direction. Without a preferred direction in space, the direction of rotation
is a relative concept — depending on which side of the plane we observe the os-
cillations. From the direction of the power flow of the electromagnetic field at the
point of observation, <S(t)>, we define a preferred direction in space. Let ê be
the normal to the plane of polarization, such that <S(t)>·ê > 0. We use this unit
vector ê as a reference direction.

The polarization of the field is now classified according to the sign of the com-
ponent of iE0 × E∗0 = 2E0r × E0i = 2a × b on ê, see Table 3.8. The field vector
either rotates counterclockwise (right-handed elliptic polarization) or clockwise (left-
handed elliptic polarization) in the a-b-plane, see Figure 3.10, if we assume that the
unit vector ê is directed towards the observer, and that the vectors a and b have

17Do not mix the concept of polarization of the material, P , with the polarization of a vector
field.
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iê · (E0 ×E∗0) Polarization
= 0 Linear polarization
> 0 Right-handed elliptic polarization
< 0 Left-handed elliptic polarization

Table 3.8: Table of the state of polarization of a time harmonic field.

E ( t ) 

Right 
Left 

^ e 

 

Figure 3.10: The ellipse of polarization and the definition of right- and left-handed
polarization. The unit vector ê perpendicular to the plane in which the field vector
E(t) oscillates and satisfies <S(t)>·ê > 0. It is assumed that the vectors a and b
have the position depicted in Figure 3.9.

the position depicted in Figure 3.9.18

The degenerated case, when the vectors E0r and E0i are parallel, implies that
the field vector moves along a line through the origin — therefore the notion linear
polarization. The linear polarization is characterized by E0×E∗0 = 0. The case of a
linear polarization can be viewed as a special case of an elliptic polarization, where
one of the half axes is zero.

One special case of elliptic polarization is particularly important. This occurs
when the half axes of the ellipse, a and b, have the same length, and the ellipse is
a circle. We then have circular polarization. Whether the polarization is circular
or not is decided by testing if E0 · E0 = 0. To see this, we use (3.41) and the
orthogonality between the vectors a and b, and we get

E0 ·E0 = e2iϑ (a+ ib) · (a+ ib) = e2iϑ
(
|a|2 − |b|2

)
The ellipse of polarization is therefore a circle, a = |a| = |b| = b, if and only if

18In the literature there are also occur the opposite definition of right- and left-handed elliptic
polarization. Examples with the opposite definition are: [10], [23], and [25]. In this book, we are
using the same definition as, e.g., [2], [5], [13], and [14]. Our definition also coincides with the
IEEE-standard.
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Π Polarization χ ê · (a× b)
−1 Circular polarization LCP π/4 −1
< 0 Left-handed elliptic polarization (0, π/2) −1
0 Linear polarization LP 0, π/2 ±1
< 0 Right-handed elliptic polarization (0, π/2) 1
1 Circular polarization RCP π/4 1

Table 3.9: Table of the polarization state Π of a time harmonic field.

E0 · E0 = 0. The direction of rotation is determined by the sign of the quantity
iê · (E0 ×E∗0). Right (left) circular polarization is abbreviated RCP (LCP).

Another, more convenient, way of determining whether the polarization is circu-
lar or not is to study the quantity, use (3.41)

iê · (p̂e × p̂∗e) =
2ê · (a× b)
|a|2 + |b|2

=
±2ab

a2 + b2
= ±

(
1− (a− b)2

a2 + b2

)
(3.43)

where p̂e = E0/ |E0|. If this quantity is ±1, we have RCP (upper sign) or LCP
(lower sign). It is therefore convenient to define a polarization state quantity Π as

Π = iê · (p̂e × p̂∗e)

This quantity is always in the interval [−1, 1]. Π = −1 corresponds to LCP, Π = 0
corresponds to LP, and Π = 1 corresponds to RCP. We summarize these observations
in Table 3.9.

In terms of the notation above, a general polarization state is given by

p̂e = eiϑ (a+ ib)√
a2 + b2

Define the angle χ by

tanχ =
b

a
, χ ∈ [0, π/2] ⇒


cosχ =

a√
a2 + b2

sinχ =
b√

a2 + b2

and in terms of the natural orthonormal basis {â, b̂} aligned along the two half axis
of the polarization ellipse, we get

p̂e = eiϑ (a+ ib)√
a2 + b2

= eiϑ
(
â cosχ+ ib̂ sinχ

)
(3.44)

and also the polarization state

Π = iê · (p̂e × p̂∗e) = 2ê · (â× b̂) sinχ cosχ = ê · (â× b̂) sin 2χ

The canonical form of a RCP field is

E0 = E0

(
â+ ib̂

)
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and the canonical form of a LCP field is

E0 = E0

(
â− ib̂

)
if {â, b̂, ê} forms a right-handed orthonormal basis.

Example 3.15
The most general harmonic field in the ê1-ê2-plane has the form (we assume {ê1, ê2, ê}

forms a right-handed orthonormal basis)

E(t) = ê1A cos(ωt− α) + ê2B cos(ωt− β)

where A ≥ 0, B ≥ 0, and α and β are real angles. The corresponding complex vector E0

is {
E(t) = Re

{
E0e−iωt

}
E0 = Aeiαê1 +Beiβ ê2

(3.45)

which implies

iE0 ×E∗0 = iABei(α−β)ê3 − iABe−i(α−β)ê3 = −2ABê3 sin(α− β)

From this we conclude that the field is

Left-handed polarization if 0 < α− β < π

Right-handed polarization if π < α− β < 2π

Linear polarization if α = β or α = β + π

where the inequalities are interpreted mod 2π.
The real and imaginary part of E0 are{

E0r = ê1A cosα+ ê2B cosβ

E0i = ê1A sinα+ ê2B sinβ

From equation (3.40) we have{
a = (ê1A cosα+ ê2B cosβ) cosϑ+ (ê1A sinα+ ê2B sinβ) sinϑ

b = − (ê1A cosα+ ê2B cosβ) sinϑ+ (ê1A sinα+ ê2B sinβ) cosϑ

where the angle ϑ is determined by

tan 2ϑ =
A2 sin 2α+B2 sin 2β

A2 cos 2α+B2 cos 2β
(3.46)

which implies that the half axes of the ellipse are{
a = Aê1 cos (ϑ− α) +Bê2 cos (ϑ− β)

b = −Aê1 sin (ϑ− α)−Bê2 sin (ϑ− β)

The length of the half axes are a =
√
A2 cos2 (ϑ− α) +B2 cos2 (ϑ− β)

b =

√
A2 sin2 (ϑ− α) +B2 sin2 (ϑ− β)

(3.47)
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E(t=0)

a

b

ê1

ê2

Figure 3.11: Ellipse of polarization in Example 3.16.

and the angles φa and φb between the ê1-axis and the half axes a and b are determined
by 

tanφa =
B cos (ϑ− β)

A cos (ϑ− α)

tan (φb − π) =
B sin (ϑ− β)

A sin (ϑ− α)

(3.48)

respectively.

Example 3.16
Construct the harmonic field, oscillating in the ê1-ê2-plane, satisfying the following spec-

ification (see also Figure 3.11):

• The field is at time t = 0 polarized along the ê1-axis and strength E (a given real
constant), i.e., E(t = 0) = ê1E.

• The quotient between the axes of the ellipse is ε = b/a. The axis a, with the length
a, is located in the first quadrant, and the angle between a and the ê1-axis is φ.

• The field has right-handed elliptic polarization (<S(t)> is assumed to be directed
along ê3 = ê1 × ê2).

We assume {ê1, ê2, ê} forms a right-handed orthonormal basis. Determine the real con-
stants E1, E2, α, and β in the expression

E(t) = ê1E1 cos(ωt− α) + ê2E2 cos(ωt− β)

i.e., determine the amplitude and the phase of the ê1- and ê2-components.
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Solution: Introduce the half axes of the ellipse.
a =

a√
1 + tan2 φ

(ê1 + ê2 tanφ)

b =
aε√

1 + tan2 φ
(−ê1 tanφ+ ê2)

which implies that the length of the vectors a and b are a and b, respectively, and,
moreover, this choice gives a right-handed elliptic polarization of the field since

(a× b) · ê3 = a2ε > 0

Now determine the angle ϑ in the expression E0 = eiϑ(a+ ib).

E(t) = E0r cosωt+E0i sinωt = a cos(ωt− ϑ) + b sin(ωt− ϑ)

At time t = 0 we have

E(0) = E0r = a cosϑ− b sinϑ = Eê1

i.e., the components satisfy
a√

1 + tan2 φ
(cosϑ+ ε tanφ sinϑ) = E

a√
1 + tan2 φ

(tanφ cosϑ− ε sinϑ) = 0

with solution 
a√

1 + tan2 φ
cosϑ =

E

1 + tan2 φ

a√
1 + tan2 φ

sinϑ =
E tanφ

ε (1 + tan2 φ)

and we have
a√

1 + tan2 φ
eiϑ =

E (ε+ i tanφ)

ε (1 + tan2 φ)

We get

E0 = eiϑ (a+ ib) =
E (ε+ i tanφ)

ε (1 + tan2 φ)
{(ê1 + ê2 tanφ) + iε (−ê1 tanφ+ ê2)}

= E

{
ê1

(
1 + i

tanφ

1 + tan2 φ

1− ε2

ε

)
+ iê2

ε2 + tan2 φ

ε (1 + tan2 φ)

}
= E

{
ê1

(
1 + i

1− ε2

2ε
sin 2φ

)
+ iê2

(
ε cos2 φ+

1

ε
sin2 φ

)}
From this expression of E0 we can identify the amplitudes A andB and the phases α and
β in

E(t) = ê1A cos(ωt− α) + ê2B cos(ωt− β)

by rewriting the complex vector E0 in polar form

E0 = ê1Aeiα + ê2Beiβ
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i.e., 
A =

√
1 +

(1− ε2)2

4ε2
sin2 2φ

B = ε cos2 φ+
1

ε
sin2 φ


α = arctan

(
1− ε2

2ε
sin 2φ

)
β =

π

2

Problems for Chapter 3

3.1 Find two complex vectors, A and B, such that A ·B = 0 and

A′ ·B′ 6= 0

A′′ ·B′′ 6= 0

where A′ and B′ are the real parts of the vectors, respectively, and where the
imaginary parts are denoted A′′ and B′′, respectively.

3.2 For real vectors A and B we have

B · (B ×A) = 0

Prove that this equality also holds for arbitrary complex vectors A and B.

3.3 In some applications a generalized Debye’s model is used. The susceptibility function
is

χ(t) = (1 + βt)e−αt

The real constant α is assumed to be positive. What conditions must the real
constant β satisfy such that χ(t) is a model of a passive material?

3.4 Consider the susceptibility function

χ(t) = e−αt cosβt

The real constant α is assumed to be positive. For what values of the real constant
β is χ(t) a model of a passive material?

3.5 Determine the constitutive relations in the frequency domain for a plasma. Use the
result in Problem 2.6 to find the permittivity.

3.6 In a ferrite the magnetization M is determined by

d

dt
M = gµ0M ×H

where g is the gyromagnetic quotient, which for electrons is g = −e/m ≈ −1.7588 ·
1011 C/kg. Let 

H = ẑH0 +H1

M = ẑM0 +M1

B = ẑB0 +B1
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where B = µ0(H +M), B0 = µ0(H0 +M0), and where
|H1| � H0

|M1| �M0

|B1| � B0

Determine, using the linearized equations in H1, M1 and B1, the constitutive
relations in the frequency domain, i.e., find µ in

B1 = µ0µ ·H1

3.7 A simple model for a superconducting material is the “two-fluid-model”. In this
model we assume that the conduction electrons are in a state of superconduction
where they can move freely without friction, and, moreover, assume that the re-
maining part of the electron are “normal” conduction electrons that are affected by
a friction term. The density of the charges for the two different states are denoted
Ns and Nn, respectively. The equations of dynamics of the velocities of the charges
in the superconducting and the “normal” state, vs and vn, respectively, are assumed
to be 

m
dvs
dt

= −eE

m
dvn
dt

+mνvn = −eE

where m and −e are the mass and the charge, respectively, of the electron and ν is
the collision frequency in the “normal” state. Determine the permittivity ε(ω) for
this model.

3.8 Determine the state of polarization in the following cases (a and b are real, positive
constants, and α is a real constant):

a) E(t) = ê1a cos(ωt+ α) + ê2b cos(ωt+ α)

b) E(t) = a (ê1 cos(ωt+ α) + ê2 sin(ωt+ α))

c) E(t) = a (ê1 cos(ωt+ α)− ê2 sin(ωt+ α))

d) E(t) = ê1a cosωt+ ê2b sinωt

e) E(t) = a (ê1 cosωt+ ê2 cos(ωt− π/4))

<S(t)> is assumed directed along ê3 = ê1 × ê2, and ê1⊥ê2.

3.9 a) Show that an arbitrary elliptic polarized wave can be decomposed in a super-
position of a LCP and a RCP wave.

b) Let E0 be a superposition of a LCP and a RCP wave, i.e.,

E0 = aE+ + bE−

where E± = ê1± iê2. What conditions do the complex numbers a and b satisfy
in order to the wave to be linearly polarized (<S(t)> is assumed directed
along ê3 = ê1 × ê2).
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3.10 Show that a circular polarized wave satisfies

E0 = ±iê×E0

where the upper (lower) sign holds for RCP (LCP).

3.11 A plane interface, z = 0, separates vacuum from an homogeneous ferrite. At the
interface there are no surface currents and the ferrite is assumed to have a static
magnetizationM = ẑM0. The magnetic flux density in vacuum close to the interface
is linearly polarized (B0 real constant, B komplex constant)

B1(t) = ẑB0 +Bv(t) = ẑB0 + Re
{
x̂Be−iωt

}
and the fields in the ferrite, close to the interface, are{

H2(t) = ẑH0 +Hf (t)

B2(t) = ẑB0 +Bf (t)

The time harmonic fieldsBv(t),Bf (t), andHf (t) are assumed to be small compared
to the corresponding static fields. The constants H0 and M0 are assumed positive
and related to B0 by

B0 = µ0(H0 +M0)

such that {
ω0 = −gµ0H0

ωm = −gµ0M0

are positive frequencies for electrons (g ≈ −1.7588 ·1011 C/kg). Use the constitutive
relations in Problem 3.6 and determine at what frequency ω > 0 the magnetic flux
density Bf (t) close to the interface in the ferrite is left circular polarized (<S(t)>
is assumed directed along the ẑ-direction), i.e.,

Bf (ω) = Bf (x̂− iŷ)/
√

2



Chapter 4
Coherence and degree of polarization

In Chapters 1 and 2 the focus was on general time varying fields, and in Section 3
we investigated the special case of time harmonic variations, i.e., fields oscillating
with a fixed angular frequency ω. The time harmonic wave has infinite extent in
both space and time. Moreover, in Section 3.6 we showed that all time harmonic
fields oscillate in a fixed plane and that the field traces an elliptic curve in this
plane, i.e., the ellipse of polarization. However, all physical fields have a finite
extent in time, and therefore they are not strictly monochromatic, but a mixture of
different frequencies. Moreover, different states of polarization are often occurring in
applications. This situation is particularly frequently occurring in natural sources,
e.g., sources of radio astronomer waves from the sun. In this section analyze fields
of this kind.

A general transient field is a superposition of time harmonic fields of different
frequencies, see (3.2) on page 44.

E(r, t) =
1

π
Re

∫ ∞
0

E(r, ω)e−iωt dω

The fields in this section are assumed to be almost time harmonic, which implies that
the temporal spectrum of the field, E(r, ω), has a well defined average frequency
ω̄ > 0 and half width ∆ω > 0, and the bandwidth is small. As a consequence, we
assume that the spectrum satisfies

E(r, ω) ≈ 0, for |ω − ω̄| ≥ ∆ω

2

and that ∆ω/ω̄ � 1. An example of a wave and its corresponding frequency spec-
trum is depicted in Figure 4.1. The width of frequency, ∆ω > 0, introduces two
new concepts, time of coherence τ and length of coherence l, defined by

τ =
2π

∆ω
, l =

2πc0

∆ω
= c0τ

The length of coherence, l, is of the the same order of magnitude as the length of
the wave.

87
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E(t)

t

|E(ω)|

Δω

ω

ω̄

Figure 4.1: An example of a wave and the corresponding frequency spectrum and
half width ∆ω.

We make a model of non-monochromatic waves, and introduce a field defined
by,1 cf. (3.2) and (3.3)

E(t) = Re
{
E0(t)e−iω̄t

}
where the complex-valued, time dependent vector E0(t) is defined by

E0(t) = eiω̄t 1

π

∫ ∞
0

E(ω)e−iωt dω

We call this field a quasi-monochromatic field provided the assumptions for E(ω)
above hold. If the vector E0(t) is independent of time, we have the previous case
and a completely time harmonic field, see Section 3.

The time variations of the complex-valued field E0(t) are slow compared to an
time interval of the order of 2π/ω̄. To see this, we make a Fourier transform of the
vector E0(t). We have∫ ∞

−∞
E0(t)eiωt dt =

1

π

∫ ∞
−∞

∫ ∞
0

E(ω′)ei(ω+ω̄−ω′)t dω′ dt = 2E(ω + ω̄)

The assumptions on the spectrum of the field imply that the Fourier transform of
E0(t) is negligible outside a frequency interval [−∆ω/2,∆ω/2], and since ∆ω/ω̄ � 1
then E0(t) is slowly varying compared to the time interval 2π/ω̄.

In Cartesian components, ê1 and ê2, the field E0(t) is

E0(t) = ê1E01(t) + ê2E02(t) = ê1|E01(t)|eiα(t) + ê2|E02(t)|eiβ(t)

and α(t) and β(t) are the phases of the components, which can be functions of time.
We assume that the quasi-monochromatic field oscillates in a fixed plane, ê1-ê2-
plane. This is correct if the field is completely monochromatic (E0 independent of
time) as in Section 3. For a quasi-monochromatic field this is an assumption.

1The field is analyzed at a field point in space, and the dependence of the spatial variables is
suppressed in this section.
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θ

ê1

ê2

Figure 4.2: A measurement of the intensity along a fixed direction θ.

A quasi-monochromatic field is conveniently examined by investigating its prop-
erties along a fixed direction. The projection along a fixed direction ê is

ê ·E0(t)

We parameterize the direction ê by the angle θ, see Figure 4.2. Explicitly, the
representation is

ê = ê1 cos θ + ê2eiδ sin θ (4.1)

where we have introduced a phase factor δ, which gives the difference in phase be-
tween the ê2-component and the ê1-component of the field. Experimentally, the
projection along a fixed direction is implemented by, e.g., a polarizer, and the re-
tardation of the phase is implemented by e.g., a plate of retardation. Note that ê
is a complex vector, but that ê · ê∗ = 1. Only if δ = 0, ê is a real vector.

The intensity of the field with a polarizer, oriented along the direction ê defined
by (4.1), is proportional to the real quantity I(θ, δ) defined by2

I(θ, δ) =<(ê ·E0(t))(ê ·E0(t))∗>=<|ê ·E0(t)|2> (4.2)

The temporal average of two complex quantities f1(t) and f2(t) over the time interval
T ′ is given by

<f1(t)f2(t)>=
1

2T ′

∫ T ′

−T ′
f1(t)f2(t) dt

The time T ′ is assumed to be long compared to the time over which the field varies.

2In Section 3.3 we showed that in an isotropic material the intensity of the electromagnetic
wave is proportional to the square of the electric field.
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Define a 2× 2-matrix of coherence, [J], by

[J] =

(
J11 J12

J21 J22

)
=

(
<E01(t)E0

∗
1(t)> <E01(t)E0

∗
2(t)>

<E02(t)E0
∗
1(t)> <E02(t)E0

∗
2(t)>

)
(4.3)

By the use of row and column vectors, we rewrite the matrix of coherence as (the
“dagger” (†) denotes the Hermitian)

[J] =<

(
E01(t)
E02(t)

)(
E01(t)∗ E02(t)∗

)
>=<

(
E01(t)
E02(t)

)(
E01(t)
E02(t)

)†
>

where the temporal average of a matrix [A] has entries that are temporal averages of
the entries of the matrix [A]. The matrix of coherence quantifies the time correlation
between the Cartesian components of the electric field. The diagonal elements J11

and J22 are real, positive quantities, but J12 and J21 are complex numbers. Note
that the matrix [J] is Hermitian, [J] = [J]∗, since

J∗12 =<E01(t)E0
∗
2(t)>∗=<E02(t)E0

∗
1(t)>= J21

Schwartz’ inequality for integrals on the off diagonal elements of the matrix of co-
herence implies

|J12| = |<E01(t)E0
∗
2(t)>| ≤

√
<|E01(t)|2>

√
<|E02(t)|2> =

√
J11J22

and, consequently, the matrix [J] has a non-negative determinant.

det [J] = J11J22 − J12J21 = J11J22 − |J12|2 ≥ 0

The intensity of the total field in an isotropic material is proportional to the sum
of the diagonal elements of the matrix of coherence, i.e., the trace of the matrix of
coherence

Tr [J] = J11 + J22 =<|E01(t)|2> + <|E02(t)|2>=<|E0(t)|2>
The intensity along a fixed direction ê, see (4.1), is given by (4.2), and we rewrite
this expression by the use of the matrix of coherence [J]. The result is

I(θ, δ) = J11 cos2 θ + J22 sin2 θ + J12e−iδ cos θ sin θ + J21eiδ cos θ sin θ

= J11 cos2 θ + J22 sin2 θ + 2 Re(J12e−iδ) cos θ sin θ

since J12 = J∗21. To see how this quantity varies as a function of the angle θ, we
rewrite the expression. We get, see Problem 4.1

I(θ, δ) =
1

2
(J11 + J22)︸ ︷︷ ︸
<|E0(t)|2>

+R cos(2θ − α) (4.4)

where 
R =

1

2

√
(J11 − J22)2 + (2 Re(J12e−iδ))2

tanα =
2 Re(J12e−iδ)

J11 − J22
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From these expressions we see that the intensity I(θ, δ) varies, as a function of the
angles θ and δ, between3

Imin =
1

2
(J11 + J22)−Rmax ≤ I(θ, δ) ≤ 1

2
(J11 + J22) +Rmax = Imax

where

Rmax =
1

2

√
(J11 − J22)2 + 4|J12|2 =

1

2
(J11 + J22)

√
1− 4 det [J]

(J11 + J22)2

The quantity Rmax is a measure of the variation of the intensity as the angles θ
and δ vary. This quantity is most conveniently measured by the degree of polariza-
tion P , which is a dimension-less quantity, defined by

P =
Imax − Imin

Imax + Imin

=
2Rmax

J11 + J22

=

√
1− 4 det [J]

(J11 + J22)2 =

√
1− 4 det [J](

<|E0(t)|2>
)2

This quantity varies between 0 and 1, since it assumes its smallest values when
Imax = Imin and is maximal when Imin = 0. Therefore, we have

P ∈ [0, 1]

4.1 Unpolarized field

The electromagnetic field from many natural sources are unpolarized or natural,
which implies that the intensity I(θ, δ) is the same in all directions ê, i.e., it is
independent of the angle θ and the retardation δ. This implies that the quantity
Rmax is identically zero for all angles δ, which gives{

J11 = J22

J12 = J21 = 0

The matrix of coherence for an unpolarized field then becomes:

[J] =

(
J11 0
0 J22

)
=
<|E0(t)|2>

2

(
1 0
0 1

)
(4.5)

since <|E0(t)|2>= J11 + J22 = 2J11.

3This result can also be obtained by interpreting the intensity I(θ, δ) as a matrix product. To
see this, use

I(θ, δ) =
(
cos θ sin θ

)( J11 J12e−iδ

J21eiδ J22

)(
cos θ
sin θ

)
The two eigenvalues of the matrix, λ = 1

2 (J11 + J22) ± Rmax, give the largest and the smallest
values of the intensity.
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The determinant of the matrix of coherence for an unpolarized field is

det [J] = J11J22 − J12J21 = |J11|2 =
<|E0(t)|2>2

4
> 0

and the degree of polarization for an unpolarized field is

P =

√
1− 4 det [J]

(J11 + J22)2 =

√
1− 4 det [J]

<|E0(t)|2>2
= 0

4.2 Completely polarized field

An unpolarized field is one extreme value of the degree of polarization, P = 0. The
other extreme value is a completely monochromatic field or a completely polarized
field. The complex vector E0 is then constant in time and the matrix of coherence
element is

[J] =

(
E01E0

∗
1 E01E0

∗
2

E02E0
∗
1 E02E0

∗
2

)
(4.6)

Note that the time average now has disappeared.
The determinant of the matrix of coherence for a monochromatic field is

det [J] = |E01|2 |E02|2 − E01E0
∗
2E02E0

∗
1 = 0

and the degree of polarization for a monochromatic field is

P =

√
1− 4 det [J]

(J11 + J22)2 = 1

4.3 General degree of polarization

The two extremes of the degree of polarization — unpolarized and completely po-
larized field — are characterized by the matrices of coherence of the following form:

[J]unpol =

(
A 0
0 A

)
, [J]pol =

(
B D
D∗ C

)
where A, B and C are non-negative, real numbers, A ≥ 0, B ≥ 0, C ≥ 0, and D is
a complex number, satisfying BC −DD∗ = 0.

We now show that every matrix of coherence, [J], in a unique way can be written
as a sum of an unpolarized and a completely polarized field, i.e.,

[J] =

(
J11 J12

J21 J22

)
=

(
A 0
0 A

)
+

(
B D
D∗ C

)
= [J]unpol + [J]pol
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We prove this by explicitly computing the matrix entries A, B, C, and D. The
following connections hold: 

J11 = A+B

J12 = D

J21 = D∗

J22 = A+ C

Eliminate B and C in BC −DD∗ = 0. We get

(J11 − A)(J22 − A)− J12J
∗
12 = 0

The two roots, A, of this equation are

A =
1

2
(J11 + J22)± 1

2

√
(J11 + J22)2 − 4 det [J]

where det [J] = J11J22 − J12J
∗
12. Both these roots are real and positive since

det [J] = J11J22 − |J12|2 ≤ J11J22 ≤
1

4
(J11 + J22)2

The latter inequality is easily proven by expanding (J11 − J22)2 ≥ 0. Only one of
these roots gives positive values of B and C. The unique solution is therefore

A =
1

2
(J11 + J22)− 1

2

√
(J11 + J22)2 − 4 det [J]

B =
1

2
(J11 − J22) +

1

2

√
(J11 + J22)2 − 4 det [J]

C =
1

2
(J22 − J11) +

1

2

√
(J11 + J22)2 − 4 det [J]

D = J12

This decomposition provides us with another way of defining the degree of po-
larization P . The intensity of the matrix [J]pol is given by the sum of the diagonal
elements.

Tr [J]pol = B + C =

√
(J11 + J22)2 − 4 det [J]

The quotient Tr [J]pol /Tr [J] is

P =
Tr [J]pol

Tr [J]
=

√
1− 4 det [J]

(J11 + J22)2

which coincides with our previous definition of the degree of polarization P . This ex-
pression shows that the degree of polarization P for a general quasi-monochromatic
field is given by the quotient between the intensity of the completely polarized part,
[J]pol, to the intensity of the total field.
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4.4 Stokes’ parameters

Closely related to the state of polarization of a time harmonic or a quasi-harmonic
oscillating electromagnetic field is Stokes’ parameters4,5 si, i = 0, 1, 2, 3. In this
section we define these parameters for a monochromatic or a quasi-monochromatic
field.

Stoke parameters, which are real numbers, is most easily defined in terms of the
entries of the matrix of coherence.

s0 = J11 + J22

s1 = J11 − J22

s2 = J12 + J21 = 2 Re J12

s3 = i (J21 − J12) = 2 Im J12

(4.7)

Since the entries of the matrix of coherence can be interpreted as intensity quan-
tities, I(θ, δ), along well defined directions θ and retardation δ, Stokes’ parameters
can be determined experimentally with a polarizer and a plate of retardation. The
relationship between these quantities is, see Problem 4.2

s0 = I(0, 0) + I(π/2, 0)

s1 = I(0, 0)− I(π/2, 0)

s2 = I(π/4, 0)− I(3π/4, 0)

s3 = I(π/4, π/2)− I(3π/4, π/2)

From these expressions of the parameters si, i = 0, 1, 2, 3, (4.7), we find

s2
1 + s2

2 + s2
3 = (J11 − J22)2 + (J12 + J21)2 − (J12 − J21)2 = (J11 + J22)2 − 4 det [J]

and we have another way of expression the degree of polarization P , namely

P =

√
s2

1 + s2
2 + s2

3

s0

In Section 4.3 we showed that a general state of polarization can be decomposed
uniquely as a sum of an unpolarized state, P = 0, and a completely polarized
state, P = 1. For an unpolarized state we have s0 =< |E0(t)|2> and si = 0, i =
1, 2, 3. The completely polarized state can be interpreted geometrically in Poincaré’s
sphere,6 see Section 4.5, but before making this interpretation we rewrite Stokes’
parameters of the completely polarized field. Stokes’ parameters for a completely
polarized field becomes, see (4.6)

s0 = |E01|2 + |E02|2

s1 = |E01|2 − |E02|2

s2 = 2 ReE01E0
∗
2

s3 = 2 ImE01E0
∗
2

(4.8)

4George Gabriel Stokes (1819–1903), Irish mathematician and physicist.
5Another notation often occurring in the literature is I, Q, U and V , defined such such that

I = s0, Q = s1, U = s2 and V = s3. These parameters were introduced by G. G. Stokes in 1852
to describe light that was not completely polarized.

6Henri Poincaré (1854–1912), French mathematician and theoretical physicist.
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ê1

ê2

Figure 4.3: The ellipse of polarization and the definition of the tilt angle ψ.

where the time averages are superfluous, since the field E0 is independent of the
time.

In Section 3.6 we analyzed the state of polarization of an arbitrary monochro-
matic electromagnetic field, and we concluded that the complex vector E0 com-
pletely characterizes the state of polarization, see (3.38) on page 76. Moreover, the
physical field, E(t), traces an ellipse in a fixed plane, which we take as the ê1-
ê2-plane. We also introduced two real-valued, orthogonal vectors a and b. These
vectors are the half axes of the ellipse of the polarization. We denote the lengths
of these vectors by a = |a| and b = |b|, respectively, and the tilt of the ellipse is
parameterized by the angle ψ (the angle between the ê1-axis and a), see Figure 4.3.
The relation between the complex vector E0 and the vectors a and b is given by
(3.41) on page 77.

E0 = eiϑ(a+ ib)

The relation between the Cartesian components E0n, n = 1, 2 and the vectors a and
b is {

E01 = eiϑ(a cosψ ∓ ib sinψ)

E02 = eiϑ(a sinψ ± ib cosψ)

where the plus sign holds if the vectors a and b are positioned as in the Figure 4.3,
and the minus sign if the vector b has the opposite direction.

Stokes’ parameters si, i = 0, 1, 2, 3 for a completely polarized field is now written
as, see (4.8) 

s0 = a2 + b2

s1 =
(
a2 − b2

)
cos 2ψ

s2 =
(
a2 − b2

)
sin 2ψ

s3 = ∓2ab

(4.9)
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Figure 4.4: Poincaré’s sphere and the angles 2ψ and 2χ.

All parameters are not independent. It is easy to prove that

s2
0 = s2

1 + s2
2 + s2

3 (4.10)

Two of Stokes’ parameters are invariants, i.e., they do not depend on any par-
ticular coordinate system, but have the same form in every coordinate system. In
Problem 4.3 it is proved

s0 = |a|2 + |b|2 = |E0|2 = a2 + b2

s2
1 + s2

2 = (|a|2 + |b|2)2 − 4 |a× b|2 =
(
a2 − b2

)2

s3 = −2ê · (a× b) = −iê · (E0 ×E∗0)

where ê = ê1 × ê2. The sign of s3 determines whether the field is right- or left-
handed polarized, see Table 3.8 on page 79. A negative (positive) value gives a
right-(left-)handed polarization.

4.5 Poincaré’s sphere

Stokes’ parameters, as defined in equation (4.9), can be represented geometrically
for a completely polarized field by defining a three-dimensional vector (s1, s2, s3).
The relation in equation (4.10) shows that this vector is a sphere at the origin with
radius s0. Two angles characterize this vector — the tilt angle 2ψ and the azimuth
angle 2χ in (4.9), see Figure 4.4. The angle 2χ is defined by

sin 2χ =
s3

s0

= −2ê · (a× b)
a2 + b2

= ∓ 2ab

a2 + b2
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Note that the angle π/2−2χ is the polar angle of the vector (s1, s2, s3), see Figure 4.4.
We also see that sin 2χ can be written as

sin 2χ = −iê · (p̂e × p̂∗e) (4.11)

using the result (3.43) on page 80 in terms of the polarization state vector p̂e =
E0/ |E0|.

This geometric interpretation of Stokes’ parameters shows that the upper (lower)
hemi-sphere corresponds to a left-(right-)handed polarized field. The equator χ = 0
corresponds to a the linear polarized field. The poles correspond to LCP or RCP —
the north or the south pole, respectively. This geometric interpretation is of great
value in the evaluation of the state of polarization of the field.

Problems for Chapter 4

4.1 Do the details in the computations in the expression in (4.4).

4.2 Show that Stokes’ parameters si, i = 0, 1, 2, 3, are related to the intensity measure-
ments I(θ, δ) by 

s0 = I(0, 0) + I(π/2, 0)

s1 = I(0, 0)− I(π/2, 0)

s2 = I(π/4, 0)− I(3π/4, 0)

s3 = I(π/4, π/2)− I(3π/4, π/2)

4.3 Show that Stokes’ parameters, si, i = 0, 1, 2, 3, can be expressed in the vectors a
and b or E0 in the following way:

s0 = |a|2 + |b|2 = |E0|2 = a2 + b2

s2
1 + s2

2 = (|a|2 + |b|2)2 − 4 |a× b|2 =
(
a2 − b2

)2
s3 = −2ê · (a× b) = −iê · (E0 ×E∗0)

where ê = ê1 × ê2.
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Appendix A
Vectors and linear transformations

T
his appendix contains a short overview of the concept of vectors and linear
transformations (dyadics) of vectors, and how these are represented in terms
of their components. Transformations between different rotated coordinate

systems are also reviewed as well as the corresponding transformation of the com-
ponents of a dyadic.

A.1 Vectors

In this textbook we denote vectors in italic bold face, e.g., u. Vectors are in general
functions of space and time coordinates, i.e., u = u(r, t), but in this appendix these
variables are suppressed since they are not essential for the analysis. A vector that
depends on the space and time coordinates is called a vector field.

In a particular Cartesian coordinate system (ê1, ê2, ê3) the representation of a
vector u is 1

u = ê1u1 + ê2u2 + ê3u3

A “hat” or caret (̂ ) over a vector, e.g., ê1, denotes that the vector has unit length
(unit vector). The components of the vector, ui, are obtained by the scalar product

ui = u · êi i = 1, 2, 3

The components of the vector are often written as a column vector.

[u] =

u1

u2

u3


In this textbook we use brackets around the vector, [u], to indicate that we refer to
the components of the vector in a particular coordinate system and not the vector
u itself. Notice that the vector u is geometric quantity, which is independent of

1We assume the unit vectors (basis vectors) (ê1, ê2, ê3) are orthonormal and right-hand ori-
ented.
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u

u⊥

n̂

unn̂

Figure A.1: Projection of a vector u in a component, unn̂, along the direction n̂
and a component, u⊥, perpendicular to this direction.

coordinate system. The coordinate representation, [u], on the other hand, depends
on the coordinate system we use to represent the vector in, i.e., the components are
different in different coordinate systems, but the vector itself remains the same.

In wave propagation problems, the vectors are decomposed in its components
along a given direction (usually the direction of propagation) n̂, and a component
lying in the plane orthogonal to the direction n̂. We denote this decomposition or
projection of a vector u as a sum of two parts u⊥ and un, see Figure A.1

u = u⊥ + unn̂

where {
un = u · n̂
u⊥ = u− n̂(u · n̂) = −n̂× (n̂× û)

(A.1)

by the use of the BAC-CAB rule, a× (b× c) = b(a · c)− c(a · b).

A.2 Linear transformations, matrices and dyadics

Often, we have to deal with linear mappings from one vector field to other vector
field, i.e., mapping of a vector u to another vector v — both in general functions
of the space and time coordinates r and t. The most simple type of linear transfor-
mation is

v = a (b · u)︸ ︷︷ ︸
scalar

The vector u is here mapped to a new vector v in a new direction along the vector
a. The scaling of the vector is made with the vector b by the scalar product b · u.
This mapping is a called a (simple) dyadic, and we use the symbol ab for this
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transformation, together with the dyadic product (either with or without parenthesis
around the transformation ab) defined as

v = (ab) · u = ab · u def
= a (b · u)

Note that the vectors a and b in the transformation ab are forming a new quantity
without any signs between the vectors. The components of the vector v are

vi = ai

3∑
j=1

bjuj i = 1, 2, 3

Simple dyadics can be used as building blocks for general linear transformations
of vector fields. The sum of two dyadics, e.g., A = a1b1 + a2b2, is a new dyadic
defined in the following natural way:

v = A · u = (a1b1 + a2b2) · u = a1b1 · u+ a2b2 · u

Note that the linear transformation (dyadic) A is written in roman bold face to
distinguish the quantity from the vector A (italic bold face).

In a specific coordinate system (ê1, ê2, ê3) we represent the general linear trans-
formation A from a vector field u to another vector field v by simple dyadics êiêj,
i, j = 1, 2, 3.

A =
3∑

i,j=1

Aijêiêj (A.2)

The action on a vector field u becomes

v = A · u def
=

3∑
i,j=1

êiAij (êj · u) =
3∑

i,j=1

êiAijuj

or in its components

vi =
3∑
j=1

Aijuj i = 1, 2, 3

The component representation of the linear transformation or dyadic A is repre-
sented by a matrix

[A] =

A11 A12 A13

A21 A22 A23

A31 A32 A33


Just as with vectors, we denote the matrix of the dyadic A by enclosing the dyadic
by brackets, i.e., [A], to distinguish the coordinate representation of the dyadic
from the dyadic A itself, which is independent of any coordinate representation.
This convention is similar to the one we use for a vector u and its coordinate
representation [u].
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By the notion ui =
∑3

j=1Aijêj, i = 1, 2, 3, we see that the general linear trans-
formation A always can be written as

A = ê1u1 + ê2u2 + ê3u3

which shows that three dyadics is enough to represent a general linear transformation
or dyadic.

So far, the action of vector, u, on a dyadic, A, has been from the right by a
scalar multiplication. However, some of the advantages with the dyadic notation are
seen if we let the action take place from the left. This action leads to the transpose
operation. To this end, make a scalar multiplication from the left, that gives a new
vector field v defined by, see (A.2)

v = u ·A def
=

3∑
i,j=1

(êi · u)Aijêj =
3∑

i,j=1

êjAijui =
3∑
i=1

uiui

or in component form

vi =
3∑
j=1

Ajiuj i = 1, 2, 3

We observe that a scalar multiplication from the left gives the transpose of the
matrix [A]. This operation defines the transposed dyadic, At.

v = At · u def
= u ·A

and
[At] = [A]t

In particular,
u1 · (A · u2) =

(
u2 ·At

)
· u1 = u2 ·

(
At · u1

)
for all complex-valued vectors u1 and u2.

The inverse dyadic, A−1, of a dyadic A can be defined as the matrix inverse of
its matrix representation in a specific coordinate system, i.e.,

[A−1] = [A]−1 =

A11 A12 A13

A21 A22 A23

A31 A32 A33

−1

if the coordinate representation of A is

[A] =

A11 A12 A13

A21 A22 A23

A31 A32 A33


Similarly, we define the (complex) conjugate of a dyadic, A∗, and its conjugate
transpose or Hermitian transpose, A†, of a dyadic A by the coordinate representa-
tions

[A∗] = [A]∗ =

A∗11 A∗12 A∗13

A∗21 A∗22 A∗23

A∗31 A∗32 A∗33

 [A†] = [A]† =

A∗11 A∗21 A∗31

A∗12 A∗22 A∗32

A∗13 A∗23 A∗33
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We find that A† = A∗t = At∗. A dyadic is called symmetric (Hermitian) if At = A
(A† = A). If the dyadic satisfies At = −A (A† = −A), the dyadic is called anti-
symmetric (anti-Hermitian). A general dyadic can be decomposed in a symmetric
(Hermitian) and an anti-symmetric (anti-Hermitian) part as

A = As + Aa (A = AH + Aa-H)

where 
As =

1

2

(
A + At

)
Aa =

1

2

(
A−At

)



AH =
1

2

(
A + A†

)
Aa-H =

1

2

(
A−A†

)


Similarly, a complex-valued dyadic can be decomposed in its real and imaginary
parts as

A = Ar + iAi

where 
Ar =

1

2

(
A + A†

)
Ai =

1

2i

(
A−A†

)
Notice that both Ar and Ai are Hermitian dyadics, and that the off-diagonal ele-
ments of Ar and Ai in general are not real numbers (the diagonal elements are).
For any u ∈ C3 {

Re {u∗ ·A · u} = u∗ ·Ar · u
Im {u∗ ·A · u} = u∗ ·Ai · u

Analogously, the vector product between a vector field u and a dyadic A is
defined.

B = A× u def
=

3∑
i,j=1

êiAij (êj × u)

The vector product can also be applied from the left. We get

B = u×A
def
=

3∑
i,j=1

(u× êi)Aijêj

A.2.1 Projections

Projections of a vector u on a plane with unit normal vector n̂ is a linear mapping
with a dyadic, see (A.1)

u⊥ = u− n̂(n̂ · u) = I⊥ · u

where the projection dyadic I⊥ is

I⊥ = I3 − n̂n̂
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In the same manner, an arbitrary dyadic A can be decomposed into components
parallel and perpendicular to a given fixed direction n̂. We obtain this decomposition
by employing I3 = I⊥ + n̂n̂

v = A · u = (I⊥ + n̂n̂) ·A · (I⊥ + n̂n̂) · u
This decomposition implies that every dyadic A can be written as:

A = A⊥⊥ + n̂An +A⊥n̂+ n̂Annn̂ (A.3)

where we introduced the notation
A⊥⊥ = I⊥ ·A · I⊥
An = n̂ ·A · I⊥
A⊥ = I⊥ ·A · n̂
Ann = n̂ ·A · n̂

Note that the dyadic A⊥⊥ is a two-dimensional dyadic (mapping vectors in the
plane with normal n̂ into the same plane). Similarly, the vectors An and A⊥ are
two-dimensional vectors, and Ann is a scalar. If we let the direction n̂ be the unit
vector ê3, we obtain the coordinate representations of these quantities (we use the
index 3 instead of n)

[A⊥⊥] =

A11 A12 0
A21 A22 0
0 0 0

 [A⊥] =

A13

A23

0

 [A3] =

A31

A32

0


Such a decomposition is proved useful in the analysis of wave propagation in planar
structures.

A.3 Rotation of coordinate system

Several textbooks deal with rotations in space, e.g., the excellent book by Kuipers [15],
which also contains the concept of quaternions and its connections to rotations in
R3. For details we refer to these textbooks.

Two coordinate systems (ê1, ê2, ê3) and (ê′1, ê
′
2, ê
′
3), both orthonormal and right-

hand oriented, share the common origin. An example of two such systems is depicted
in Figure A.2.

Since the unprimed unit vectors form a basis, each of the primed unit vectors
(ê′1, ê

′
2, ê
′
3) can be expressed as a linear combination of the unprimed unit vectors

(ê1, ê2, ê3). We have 
ê′1 = ê1a11 + ê2a12 + ê3a13

ê′2 = ê1a21 + ê2a22 + ê3a23

ê′3 = ê1a31 + ê2a32 + ê3a33

or

ê′i =
3∑
j=1

êjaij i = 1, 2, 3
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ê1

ê2

ê3

ê′1

ê′2

ê′3

Figure A.2: Two rotated coordinate systems (ê1, ê2, ê3) and (ê′1, ê
′
2, ê
′
3) with a

common origin. The original is shown in black and the rotated in red.

Since we have assumed that the unit vectors (ê′1, ê
′
2, ê
′
3) and (ê1, ê2, ê3) both are

right-hand oriented, the determinant of the matrix [A], with entries aij, is 1, i.e.,
det [A] = 1.

The components aij, i, j = 1, 2, 3, are the direction cosines2 between the axis i
and j.

aij = ê′i · êj i, j = 1, 2, 3

In general, we have

ê′i · êj = aij 6= aji = ê′j · êi i, j = 1, 2, 3

Similarly, the unprimed unit vectors êi can be written as a linear combination
of the primed ones (ê′1, ê

′
2, ê
′
3). We get

êi = ê′1
(
ê′1 · êi

)
+ ê′2

(
ê′2 · êi

)
+ ê′3

(
ê′3 · êi

)
i = 1, 2, 3

or expressed in the direction cosines aij
ê1 = ê′1a11 + ê′2a21 + ê′3a31

ê2 = ê′1a12 + ê′2a22 + ê′3a32

ê3 = ê′1a13 + ê′2a23 + ê′3a33

In short

êi =
3∑
j=1

ê′jaji i = 1, 2, 3

2Also given as aij = cos(xi, xj) where (xi, xj) is the angle between ê′i and êj axes.
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From these expressions we see that if the transformation êi → ê′i is made with aij
then the transformation ê′i → êi is made with aji. The matrix [A] therefore is an
orthogonal matrix, i.e., [A]−1 = [A]t.

We are now ready to give the formal definition of a vector. A vector u is a
geometric quantity with components (u1, u2, u3) in the system (ê1, ê2, ê3), which
are related to the components (u′1, u

′
2, u
′
3) in the system (ê′1, ê

′
2, ê
′
3) by the direction

cosines, aij, i, j = 1, 2, 3, in the following way:

u′i =
3∑
j=1

aijuj i = 1, 2, 3 (A.4)

or expressed as column vectors and standard matrix multiplicationu′1u′2
u′3

 =

a11 a12 a13

a21 a22 a23

a31 a32 a33

u1

u2

u3


Definition A.1. A physical quantity u which components ui and u′i in two rotated
coordinate systems, respectively, are related to each other by (A.4) is called a vec-
tor3.

This definition implies that for every vector u we have

u =ê′1u
′
1 + ê′2u

′
2 + ê′3u

′
3 =

3∑
i=1

u′iê
′
i

=
3∑

i,j=1

aijujê
′
i =

3∑
j=1

ujêj = ê1u1 + ê2u2 + ê3u3

By this definition every vector becomes a quantity which is independent of the
coordinate representation, just as we required in the beginning of this appendix.

In a similar way, we define a dyadic (or a tensor of the second kind).

Definition A.2. A physical quantity D which components Dij and D′ijin two rotated
coordinate systems, respectively, are related by

D′ij =
3∑

k,l=1

aikajlDkl i, j = 1, 2, 3

is called a dyadic. This relation can also be expressed as similarity transformation

[D]′ = [A] [D] [At] (A.5)

3A vector is also called a polar vector which distinguishes it from an axial vector which trans-
forms by (A.4) where det [A] = −1. If the vector depends on the space coordinates, i.e., u is a
vector field, then also the space coordinates are transformed as

u′i(x
′
1, x
′
2, x
′
3) =

3∑
j=1

aijuj(x1, x2, x3) i = 1, 2, 3

where x′1, x
′
2, x
′
3 and x1, x2, x3 are the components of the position vector in the primed and the

unprimed systems, respectively.
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ê2

ê
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Figure A.3: Definition of the three Euler angles α, β and γ. The first rotation has
red coordinate axes, the second rotation blue ones, and the final rotation has green
coordinate axes.

A.3.1 Euler angles

The two rotated coordinate systems, (ê1, ê2, ê3) and (ê′1, ê
′
2, ê
′
3), are related to each

other by the direction cosines. These relations can also be expressed in an alternative
way by the three Euler angles α, β, γ. These angles are defines by three consecutive
rotations, see Figure A.3. The three rotations are explicitly given by:

1. A rotation with the angle α around the ê3 axis

2. A rotation with the angle β around the ê′1 axis

3. A rotation with the angle γ around the ê′′3 axis

The three different rotations are represented by the following matrices:

1. The first rotation is represented by

[R1] =

 cosα sinα 0
− sinα cosα 0

0 0 1


2. The second rotation is represented by

[R2] =

1 0 0
0 cos β sin β
0 − sin β cos β


3. The third rotation is represented by

[R3] =

 cos γ sin γ 0
− sin γ cos γ 0

0 0 1
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θ

φ

ê1

ê2

ê3

ê′
1

ê′
2

ê′
3

Figure A.4: The angles of rotation θ and φ. The unit vector ê′1 lies in the ê1-ê2-
plane in this figure.

In total, the rotation is made by

[A] = [R3] [R2] [R1]

In this textbook, we are often using similarity transformations of linear trans-
formations (dyadics). These are made by a rotation matrix [R] consisting of a com-
bination of two rotations. The spherical angles θ and φ are defined in Figure A.4.
The relation between these angles and the Euler angles α, β and γ is:

α = φ− π/2, β = −θ, γ = 0

We get

[R] = [R2] [R1] =

1 0 0
0 cos β sin β
0 − sin β cos β

 cosα sinα 0
− sinα cosα 0

0 0 1


=

 cosα sinα 0
− sinα cos β cosα cos β sin β
sinα sin β − cosα sin β cos β


=

 sinφ − cosφ 0
cos θ cosφ cos θ sinφ − sin θ
sin θ cosφ sin θ sinφ cos θ


(A.6)



Appendix B
The Fourier transform

A
series of useful results related to Fourier1 transforms in one or several dimen-

sions is collected in this appendix. This overview also contains the Hilbert
transform, Section B.2, and Mĕıman’s theorem, Section B.3, that often are

used in conjunction with Fourier transforms. The class of functions of positive type
and Herglotz functions are also reviewed in Sections B.4 and B.5, respectively.

B.1 The Fourier transform

In this section, we summarize the most import properties of the Fourier transform
in Rn. For mathematical details and proofs we refer to the literature, see e.g., [24].
The definition of the Fourier transform of an integrable complex-valued function
f(x) is

f̂(ξ) =

∫
Rn

f(x)e−iξ·x dxn

The Fourier transform satisfy ∣∣∣f̂(ξ)
∣∣∣ ≤ ∫

Rn

|f(x)| dxn

and it has an inverse

f(x) =
1

(2π)n

∫
Rn

f̂(ξ)eiξ·x dξn

The Fourier transform of a derivative is

∂̂if(ξ) = i (ξ · êi) f̂(ξ), i = 1, 2, . . . , n

where êi is a unit vector in the xi-direction. The Parseval’s formula2 reads∫
Rn

f̂(ξ)ĝ∗(ξ) dξn = (2π)n
∫
Rn

f(x)g∗(x) dxn

1Jean Baptiste Joseph Fourier (1768–1830), French mathematician and physicist.
2Marc-Antoine Parseval (1755–1836), French mathematician.
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Convolution transform into products, i.e.,

f̂ ∗ g(ξ) =

∫
Rn

∫
Rn

f(x− y)g(y) dyne−iξ·x dxn = f̂(ξ)ĝ(ξ)

and inverse

f̂ g(ξ) =
1

(2π)n

∫
Rn

f̂(ξ − η)ĝ(η) dηn =
1

(2π)n
f̂ ∗ ĝ(ξ)

B.2 Hilbert transform and Plemelj’s formulas

Related to the Fourier transform is the Hilbert3 transform. Let f(z) be a holomor-
phic (analytic) function in the upper complex z-plane (Im z > 0, denoted C+), such
that4 |f(z)| → 0 as |z| → ∞ in C+. Then, by Cauchy’s theorem,5 we get the Hilbert
transform [1]

f(x) =
1

iπ
lim
R→∞

P

∫ R

−R

f(x′)

x′ − x dx′, x ∈ R

where P
∫

dx′ denotes Cauchy’s principle value defined by

P

∫ ∞
−∞

f(x′)

x′ − x dx′ = lim
ε→0

(∫ x−ε

−∞

f(x′)

x′ − x dx′ +

∫ ∞
x+ε

f(x) dx′
)

Plemelj’s formulas6 are obtained by taking the real and imaginary parts of this
equation, i.e., with f(z) = fr(z) + ifi(z), where the real and imaginary parts of the
complex-function f(z) are denoted fr(z) and fi(z), respectively.

fr(x) =
1

π
P

∫ ∞
−∞

fi(x
′)

x′ − x dx′

fi(x) = − 1

π
P

∫ ∞
−∞

fr(x
′)

x′ − x dx′
x ∈ R (B.1)

We proceed and decompose fr(x) and fi(x) in their even and odd parts as

fr,i(x) = f e
r,i(x) + f o

r,i(x), x ∈ R

where 
f e

r,i(x) =
1

2
(fr,i(x) + fr,i(−x))

f o
r,i(x) =

1

2
(fr,i(x)− fr,i(−x))

3David Hilbert (186—1943), German mathematician.
4Note that the only function that can satisfy these conditions in the entire complex plane is

f(z) = 0.
5Augustin-Louis Cauchy (1789–1857), French mathematician.
6Josip Plemelj (1873–1967), Slovene mathematician.
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Then {
f e

r,i(−x) = f e
r,i(x)

f o
r,i(−x) = −f o

r,i(x)
x ∈ R

Using the symmetries of the even and the odd parts of fr,i(x), Plemelj’s formulas
then become

f e
r (x) =

2

π
P

∫ ∞
0

x′f o
i (x′)

x′2 − x2
dx′

f o
r (x) =

2x

π
P

∫ ∞
0

f e
i (x′)

x′2 − x2
dx′


f e

i (x) = − 2

π
P

∫ ∞
0

x′f o
r (x′)

x′2 − x2
dx′

f o
i (x) = −2x

π
P

∫ ∞
0

f e
r (x′)

x′2 − x2
dx′

(B.2)

since
1

x′ − x +
1

x′ + x
=

2x′

x′2 − x2
,

1

x′ − x −
1

x′ + x
=

2x

x′2 − x2

The Fourier transform of a real-valued, temporal quantity satisfies f(z) = (f(−z∗))∗,
i.e., the real part is even, and the imaginary part is odd, under the transformation
z → −z∗, for all z ∈ C+. Under this assumption we get for real x, f o

r (x) = f e
i (x) = 0,

and 
fr(x) = f e

r (x) =
2

π
P

∫ ∞
0

x′f o
i (x′)

x′2 − x2
dx′ =

2

π
P

∫ ∞
0

x′fi(x
′)

x′2 − x2
dx′

fi(x) = f o
i (x) = −2x

π
P

∫ ∞
0

f e
r (x′)

x′2 − x2
dx′ = −2x

π
P

∫ ∞
0

fr(x
′)

x′2 − x2
dx′

(B.3)

The requirements of a function in order to apply the Hilbert transform is conve-
niently summarized in the theorem by Titchmarsh [24].7

Theorem B.1 (Titchmarsh). If f(x) is square integrable on the real axis, i.e.,
f ∈ L2(R), the following three conditions are equivalent:

1. the inverse Fourier transform of f(x) vanishes for x < 0, i.e.,

f(x) =
1

2π

∫ ∞
−∞

f̂(ξ)e−ixξ dξ = 0, x < 0

2. f(x) is, for almost all x, the limit as y → 0+ of the function f(z) = f(x+ iy),
which is holomorphic in the upper half of the z-plane and satisfies∫ ∞

−∞
|f(x+ iy)|2 dx <∞, y > 0

3. the real and imaginary parts of f(x) = fr(x)+ifi(x) satisfy Plemelj’s formulas
fr(x) =

1

π
P

∫ ∞
−∞

fi(x
′)

x′ − x dx′

fi(x) = − 1

π
P

∫ ∞
−∞

fr(x
′)

x′ − x dx′

7Edward Charles Titchmarsh (1899–1963), British mathematician.
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Re  z

Im z  

¡

R{R

Figure B.1: The contour Γ in the complex z-plane. The dashed part of the contour
denotes the negative real axis.

B.3 Mĕıman’s theorem

The location of roots of an analytic function f(z) in the upper half plane is of great
importance in many applications. In particular, functions f(z) that are Fourier
transforms of real-valued quantities, and thus satisfying the cross symmetry

f(z) = (f(−z∗))∗, Im z ≥ 0

are of interest. This cross symmetry implies that the functions f(z) are real-valued
along the positive imaginary axis. Specifically, f(0) is a real number. Mĕıman’s
theorem implies that the imaginary axis is the only place where the functions are
real-valued in the upper half plane, provided the imaginary part of f(z) is positive
on the real axis.

Theorem B.2 (Mĕıman). Let the function f(z) be analytic in the upper half plane
C+, Im z > 0, and continuous on the real axis, satisfying

|f(z)| → 0 as |z| → ∞ in C+ ∪ R

and the cross symmetry

f(z) = (f(−z∗))∗ in C+ ∪ R

Then, if Im f(x) > 0 for all x > 0 (and by the cross symmetry Im f(x) < 0 for
all x < 0), f(z) does not take any real values at any finite point in C+, except on
the imaginary axis, where it decreases monotonically to zero as z → i∞ along the
imaginary axis.

For convenience we give the proof.
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Re Z

Im Z

Γ′

f(0)

Figure B.2: The contour Γ′ in the complex Z = f(z)-plane, under the assumption
that f(0) > 0. If f(0) < 0, the contour lies in the left half of the complex Z-plane.
The solid part of the contour is the map of the positive real axis and the dashed
part the map of the negative real axis.

Proof: For any real constant α, the function f(z) − α is analytic in C+ and the
argument principle [8] implies that8

1

2πi

∮
Γ

df(z)

dz

dz

f(z)− α =
1

2πi

∮
Γ′

dZ

Z − α

is equal to the number of roots of the function f(z) − α in C+ inside the contour
Γ, i.e., the number of points at which f(z) = α inside Γ. The appropriate contour
Γ is shown in Figure B.1. The contour Γ′ is the map of the contour Γ under f(z),
i.e., Γ′ = f(Γ) and shown in Figure B.2, where we explicitly assume that f(0) > 0.

8The argument principle states that if f(z) is a meromorphic function inside and on some
closed contour γ, with f having no zeros or poles on γ, then the following formula holds

N − P =
1

2πi

∮
γ

f ′(z)

f(z)
dz

where N and P denote the number of zeros and poles of f(z) inside the contour γ, respectively,
with each zero and pole counted as many times as its multiplicity and order, respectively. This
statement of the theorem assumes that the contour γ is simple, i.e., without self-intersections, and
that it is oriented counter-clockwise. If the curve is self-intersecting, the number of turns around
the root or pole has to included.
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The semi-circle in Figure B.1 is mapped to the origin in Figure B.2. The positive
real axis, solid curve in Figure B.1, is mapped to a curve in the upper part of the
complex Z-plane in Figure B.2, due to the assumption that Im f(z) > 0 on the
positive real axis (solid curve). The negative real axis is mapped to the dashed part
of the curve in Figure B.2.

As a consequence, the contour Γ′ does not intersect the real z-axis for any finite
real value except at f(0). From the argument principle we then conclude that if
0 < α < f(0), so that α lies inside the contour Γ′ (or f(0) < α < 0 if f(0) < 0),
there is only one root to f(z) = α in the upper half plane, and if 0 < f(0) < α (α <
f(0) < 0) there are no roots to f(z) = α. By continuity, there must be one root on
the imaginary axis, since f(z) varies from f(0) to zero as z ∈ i[0,∞). The argument
principle showed that this is the only root in the upper half plane. Moreover,
the variation along the imaginary axis must be monotonic since a maximum or a
minimum implies that there must be more than one root of f(z) = α, which cannot
happen by the arguments above.

A consequence of Mĕıman’s theorem is the function f(z) does not have any roots
in the upper half plane, including the real axis.

B.3.1 Zeros in the upper complex half plane

Related to Mĕıman’s theorem and the absence of zeros in the upper complex half
plane is the following theorem:

Theorem B.3. Let the function f(z) be a non-constant analytic function in the
upper half plane C+, Im z > 0, and continuous in the closed domain C+. Moreover,
assume

|f(z)| → 0 uniformly as |z| → ∞ in C+

and
Re f(x) ≥ 0, x ∈ R

Then, Re f(z) > 0, for all z ∈ C+. In particular, there are no zeros of f(z) in C+.

Proof: Denote the real part of f by u, i.e., u(z) = Re f(z). The real-valued
function u is a harmonic function in the upper half plane. Let z0 be an arbitrary
point in C+, and let ε > 0 be an arbitrary real number. Since the function |u(z)| ≤
|f(z)| → 0 as |z| → ∞ in C+, there is an R0 > |z0| such that the values on the
semi-circle γ of radius R satisfy

u(z) ≥ −ε, for all |z| = R ≥ R0

The minimum principle for harmonic functions implies that u(z0) is always larger
(unless u is a constant) than its values on the boundary. This shows that

u(z0) > −ε
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Re  z

Im z  

γ

R{R

Ω

Figure B.3: The semi-circle γ in the complex upper half-plane used in the proof
of Theorem B.3.

Note that the condition on the real line u(x) ≥ 0 is always satisfied. Since ε and z0

are arbitrary, we conclude, together with the assumption on the real axis, that

u(z) ≥ 0, for all z ∈ C+

We now repeat the arguments, but using the sharper bound, u(z) ≥ 0, for all
z ∈ C+. This holds in particular on the semi-circle γ, i.e.,

u(z) ≥ 0, for all z ∈ γ

The minimum principle then shows that

u(z0) > 0

which then proves the theorem, since z0 is an arbitrary point in C+.
The same conclusion can be made by focusing on the imaginary part, and we

have the following corollary:

Corollary B.1. Let the function f(z) be a non-constant analytic function in the
upper half plane C+, Im z > 0, and continuous in the closed domain C+. Moreover,
assume

|f(z)| → 0 uniformly as |z| → ∞ in C+

and
Im f(x) ≥ 0, x ∈ R

Then, Im f(z) > 0, for all z ∈ C+. In particular, there are no zeros of f(z) in C+.
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B.4 Functions of positive type

The definition and some properties of functions positive type are reviewed in this
section. We start with the concept of a positive matrix (or more exactly, a non-
negative matrix).

An n× n complex-valued matrix A is called a positive matrix provided

n∑
i=1

n∑
j=1

Aijziz
∗
j ≥ 0

for all zi ∈ C, i = 1, 2, . . . , n. If we let all but one of the numbers zi be zero, say
zi = 1, we see that all diagonal elements have to be real and non-negative, i.e.,
Aii ≥ 0. If we let two numbers, say zi and zj, i 6= j, be non-zero and the rest equal
to zero, we obtain

Aii|zi|2 + Ajj|zj|2 + Aijziz
∗
j + Ajizjz

∗
i ≥ 0 (B.4)

The imaginary part of this expression has to be zero, which implies

(Aij − A∗ji)ziz∗j + (Aji − A∗ij)zjz∗i = 0

implying9 that Aij = A∗ji, i.e., A is Hermitian symmetric. We are now in a position
to rewrite (B.4) with zj = 1 as10∣∣∣∣√Aiizi +

Aij√
Aii

∣∣∣∣2 ≥ |Aij|2Aii
− Ajj

and with zi = −Aij/Aii, we get

|Aij|2 ≤ AiiAjj

which also holds if one of the diagonal elements is zero.
A function of positive type is defined. We restrict ourselves to continuous func-

tions, but the definition can be generalized to hold for distributions as well.

Definition B.1. A complex-valued function f(x) ∈ C0(R) is of positive type if for
every positive integer n and every set of real numbers xi, i = 1, 2, . . . , n, the matrix
A defined as

Aij = f(xi − xj)
is a positive matrix.

From above, we get 
f(0) ≥ 0

f(−x) ≥ (f(x))∗

|f(x)| ≤ f(0)

9Take e.g., zi = 1, i and zj = 1.
10Use |a + b|2 = |a|2 + |b|2 + 2 Re(ab∗). If Aii = 0, change the role of i and j. If both

Aii = Ajj = 0, then Aij = 0.
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The definition of a function of positive type can equally well be formulated as
the following condition on the convolution integral:∫

R

(∫
R
f(x− y) (φ(y))∗ dy

)
φ(x) dx ≥ 0

for all continuous functions φ(x) ∈ C0
0(R) with compact support, since the integral

is a limit of Riemann sums∑
i,j

f(xi − xj)φ(xi) (φ(xj))
∗ ∆xi∆xj

which is always positive if f is a function of positive type.
A simple example of a function of positive type is the exponential exp{ixk},

since
n∑
i=1

n∑
j=1

ei(xi−xj)kziz
∗
j =

n∑
i=1

∣∣eixikzi
∣∣2 ≥ 0

which is generalized to the Fourier transform of a positive function F (x) ≥ 0, since∫
R

∫
R

(∫
R
F (k)eik(x−y) dk

)
φ(x) (φ(y))∗ dx dy =

∫
R
F (k)

∣∣∣∣∫
R
φ(x)eikx dx

∣∣∣∣2 dk ≥ 0

The opposite is also true, i.e., a function with positive Fourier transform is a function
of positive type. This result is stated more precisely in a theorem by Bochner.11 We
have

Theorem B.4 (Bochner). The functions of positive type are exactly the functions
of the form

f(x) =

∫
R

eikx dµ(k)

where µ is a finite positive Borel12 measure, i.e., µ(R) <∞.

In the main text, we often encounters causal functions f(t), i.e., f(t) = 0 for
t < 0. If we denote the Fourier transform of this function by

f̂(k) =

∞∫
0

f(t)eikt dt

If f(t) is real-valued, f̂(−k) = (f̂(k))∗. Moreover, the Fourier transform of f can be
uniquely be extended into the upper complex plane of k, i.e., Im k ≥ 0.

We extend the function f(t) to an even function of t by defining F (t) = f(|t|).
The Fourier transform of F (t) is related to f̂(k) as

F̂ (k) =

∞∫
−∞

F (t)eikt dt =

∞∫
0

F (t)eikt dt+

∞∫
0

F (−t)e−ikt dt = 2 Re f̂(k)

11Salomon Bochner (1899–1982), American mathematician.
12Félix Édouard Justin Émile Borel (1871–1956), French mathematician.
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Suppose the causal function f(t) satisfies∫ ∞
−∞

(∫ t

−∞
f(t− t′)φ(t′) dt′

)
φ(t) dt ≥ 0, for all φ(t) ∈ C0(R)

then F (t) = f(|t|) is a function of positive type, since∫ ∞
−∞

(∫ ∞
−∞

F (t− t′)φ(t′) dt′
)
φ(t) dt

=

∫ ∞
−∞

(∫ t

−∞
f(t− t′)φ(t′) dt′

)
φ(t) dt+

∫ ∞
−∞

(∫ ∞
t

f(t′ − t)φ(t′) dt′
)
φ(t) dt

which is identical to∫ ∞
−∞

(∫ ∞
−∞

F (t− t′)φ(t′) dt′
)
φ(t) dt

=

∫ ∞
−∞

(∫ t

−∞
f(t− t′)φ(t′) dt′

)
φ(t) dt+

∫ ∞
−∞

(∫ t′

−∞
f(t′ − t)φ(t) dt

)
φ(t′) dt′ ≥ 0

As a consequence of Bochner’s theorem, Theorem B.4, a causal function f(t)
that satisfies∫ ∞

−∞

(∫ t

−∞
f(t− t′)φ(t′) dt′

)
φ(t) dt ≥ 0, for all φ(t) ∈ C0

0(R)

has a Fourier transform that has a positive real part, i.e.,

Re f̂(k) ≥ 0

B.5 Herglotz functions

Analytic functions play a central role in the theory of electromagnetics, and several
functions encountered in this book have specific analytic properties. A special class
of analytic functions are the Herglotz13 functions, which are defined as

Definition B.2. A function f(z) is called a Herglotz function if

1. f(z) is defined everywhere in the upper half plane, C+ = {z ∈ C : Im z > 0},
and f(z) is an analytic function in C+

2. Im f(z) ≥ 0 when z ∈ C+

i.e., the function maps the upper half space into itself.

Notice that if f(z) is a Herglotz function it has no zeroes or poles in C+, since
Im f(z) > 0 in the upper half plane. Moreover, if f(z) is a Herglotz function, then
−1/f(z) is a Herglotz function.

The properties of a Herglotz function are summarized in the following theo-
rem [21]:

13Gustav Herglotz (1881–1953), German mathematician.
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Theorem B.5. Let f(z) be a Herglotz function. Then

1. f(z) has finite normal limits f(x+ i0) = limε↓0 f(x+ iε) for a.e. x ∈ R.

2. If f(z) has a zero normal limit on a subset of R having positive Lebesque14

measure, then f ≡ 0.

3. There exists a Borel measure µ on R satisfying∫
R

dµ(x)

1 + x2
<∞

such that the Nevanlinna15 representation

f(z) = A+Bz +

∫ ∞
−∞

1 + zx

(1 + x2)(x− z)
dµ(x), Im z > 0

where

A = Re f(i), and B = lim
y→∞

f(iy)

iy
≥ 0

holds.

4. Let (x1, x2) ⊂ R, then the Stieltjes16 inversion formula for µ reads

1

2
µ({x1}) +

1

2
µ({x2}) + µ((x1, x2)) =

1

π
lim
ε↓0

∫ x2

x1

Im(f(x+ iε)) dx

5. The absolutely continuous part µac of µ w.r.t. Lebesque measure dx on R is
given by

dµac(x) =
1

π
Im(f(x+ i0)) dx

With enough regularity on the real axis the Herglotz functions admit the integral
representation

f(z) = A+Bz +
1

π

∫ ∞
−∞

(1 + zx) Im f(x)

(1 + x2)(x− z)
dx, Im z > 0

where

A = Re f(i), and B = lim
y→∞

f(iy)

iy
≥ 0

Example B.1
To illustrate the power of this representation, assume the function f(z) is the complex
square root, i.e.,

f(z) = z1/2

14Henri Léon Lebesgue (1875–1941), French mathematician.
15Rolf Herman Nevanlinna (1895–1980), Finnish mathematician.
16Thomas Joannes Stieltjes (1856–1894), Dutch mathematician.



120 The Fourier transform Appendix B

We fix the branch of the square root by assigning f(x) =
√
x if x > 0 (limit value

from above the real axis). This function is then a Herglotz function and the Nevanlinna
representation is

f(z) = A+Bz +

∫ ∞
−∞

1 + zx

(1 + x2)(x− z) dµ(x), Im z > 0

where

A = Re f(i) = Re
1 + i√

2
=

1√
2
, and B = lim

y→∞
f(iy)

iy
=

1 + i

i
√

2
lim
y→∞

√
y

y
= 0

and the measure

dµ(x)

dx
=

1

π
lim
ε↓0

Im(f(x+ iε)) =
1

π

{
0, x > 0√−x, x < 0

and the Nevanlinna representation becomes

z1/2 =
1√
2

+
1

π

∫ 0

−∞

1 + zx

(1 + x2)(x− z)
√
−x dx, Im z > 0

A simple change of variables, x→ −t2 gives

z1/2 =
1√
2

+
1

π

∫ ∞
−∞

(zt2 − 1)t2

(1 + t4)(t2 + z)
dt, Im z > 0

That this is an identity for Im z > 0 is readily proved by the use of residue calculus (close
the contour in the upper half plane and use the residues at the poles at t = (±1 + i)/

√
2

and t = iz1/2).

The square root is an example of a Herglotz function. Other examples are:

αz, β, −α
z
, ln z, i ln(1− iz)

where α > 0 and Im β ≥ 0. A more advanced example of a Herglotz function is

h∆(z) =
1

π

∫ ∆

−∆

1

z − t dt =
1

π
ln
z −∆

z + ∆

The real and the imaginary parts of this function as well as the imaginary part in
the upper complex plane are depicted in Figure B.4.
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Figure B.4: The real and the imaginary parts of the function h∆(z) and the imag-
inary part in the upper complex plane.
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Appendix C
Notation

A
ppropriate notion leads to a more easy understood, systematic, and structured
text, and, in the same token, implies a tendency of making less errors and
slips. Most of the notation is explained at the place in the text were they

are introduced, but some more general notion that is often used is collected in this
appendix.

• Vector-valued quantities (mostly in R3) is denoted in slanted bold face, e.g.,
a and b, and vectors of unit length have a “hat” or caret (̂ ) over a symbol,
e.g., x̂ and ρ̂.

• The (Euclidean) scalar product between two vectors, a and b, is denoted in the
usual standard way by a dot (·), i.e., a · b. If the vectors are complex-valued
the appropriate scalar product is a∗ · b, where the star ∗ denotes the complex
conjugate of the vector.

• We make a distinction between a vector a and its representation in components
in a specific coordinate system, and denote the components as a colonn vector
or with brackets around the vector, i.e.,

[a] =

axay
az


where

a = x̂ax + ŷay + ẑaz

• Linear vector-valued transformations are denoted in bold roman fonts, e.g.,
A. A linear transformation A acting on a vector field a gives a new vector
field b and we use the notation

b = A · a

In a specific coordinate system the linear transformation A is represented by
a 3× 3 matrix [A], where we again use brackets around A to emphasize that

123
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we refer to its components. The components of the vector b is then

[b] = [A] · [a]

or bxby
bz

 =

Axx Axy Axz
Ayx Ayy Ayz
Azx Azy Azz

axay
az


• The unity and the null dyadics in n dimensions are denoted In and 0n respec-

tively, and the corresponding matrix representations are denoted [I]n and [0]n,
respectively. In three dimensions we have

[I]3 =

1 0 0
0 1 0
0 0 1

 [0]3 =

0 0 0
0 0 0
0 0 0


or in two dimensions

[I]2 =

(
1 0
0 1

)
[0]2 =

(
0 0
0 0

)
• The dyadic J (matrix [J]) performs a rotation of a projection on the x-y-plane

followed by a rotation of π/2 in the x-y-plane,

[J] =

(
0 −1
1 0

)
• The transpose of a matrix is denoted by a superscript (t) and the Hermitian

of a matrix with the superscript dagger (†), i.e.,

Atij = Aji

A†ij = A∗ji

• The symbol denotes the end of an example.

• The real and the imaginary part of a complex number z = x+ iy are denoted
Re z and Im z, respectively, dvs.

Re z = x

Im z = y

A star (∗) is used to denote the complex conjugate of a complex number, i.e.,
z∗ = x− iy.

• The Heaviside’s step function, H(t), is defined in the usual way as

H(t) =

{
0, t < 0

1, t ≥ 0



Section C.0 Notation 125

• The Kronecker’s delta (function) symbol, δij, is defined as

δij =

{
1, i = j

0, i 6= j

• The cylindrical coordinate system (ρ, φ, z) is defined by

ρ =
√
x2 + y2

φ =

arccos x√
x2+y2

y ≥ 0

2π − arccos x√
x2+y2

y < 0

z = z

The domain of the coordinates are ρ ∈ [0,∞), φ ∈ [0, 2π), and z ∈ (−∞,∞).

• The spherical coordinate system (r, θ, φ) is defined as

r =
√
x2 + y2 + z2

θ = arccos
z√

x2 + y2 + z2

φ =

arccos x√
x2+y2

y ≥ 0

2π − arccos x√
x2+y2

y < 0

The domain of the coordinates are r ∈ [0,∞), θ ∈ [0, π], and φ ∈ [0, 2π).
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Appendix D
Units and constants

T
he explicit form of the equations in electromagnetism varies depending on the
system of units that we use. The SI-system is the one that is used in most
literature nowadays, and this textbook is no exception. The relevant constant

in the SI-system that is used in the text is collected in this appendix.
The speed of light in vacuum c0 has the value (exact value)

c0 = 299 792 458 m/s

µ0 and ε0 denote the permeability and the permittivity of vacuum, respectively.
Their exact values are

µ0 = 4π · 10−7 N/A2

ε0 =
1

c2
0µ0

F/m

Approximative values of these constants are

µ0 ≈ 12.566 370 614 · 10−7 N/A2

ε0 ≈ 8.854 187 817 · 10−12 F/m

The wave impedance of vacuum is denoted

η0 =

√
µ0

ε0
= c0µ0 = 299 792 458 · 4π · 10−7 Ω ≈ 376.730 314 Ω

The charge of the electron, −e, and its mass, m, have the values

e ≈ 1.602 177 33 · 10−19 C

m ≈ 9.109 389 8 · 10−31 kg

e/m ≈ 1.758 819 63 · 1011 C/kg
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Answers to problems

1.1 Apply the theorem of divergence (Gauss’ theorem) to the vector field B = A × a,
where a is an arbitrary constant vector.

1.2 Ampère’s law ∇×H = 0 implies that there exists a potential Φ such that

H = −∇Φ

Use the divergence theorem to prove the problem.

1.3 On the surface of the conductor we have S = −ρ̂1
2aσE

2 where the electric field on
the surface of the conductor is related to the current by I = πa2σE. The terms in
Poynting’s theorem are ∫∫

S

S · ν̂ dS = −πa2lσE2

∫∫∫
V

E · J dv = πa2lσE2

1.4 The electric and the magnetic fields between the plates are

E(r, t) = ẑE0J0

(
ωρ

c0

)
cos (ωt+ α)

H(r, t) = −φ̂E0

η0
J1

(
ωρ

c0

)
sin (ωt+ α)

where the wave impedance of vacuum is denoted by

η0 =

√
µ0

ε0

The phase α and the amplitude E0 are arbitrary. The terms in Poynting’s theorem
are ∫∫

S

S · ν̂ dS = πad
E2

0

η0
J0

(
ωa

c0

)
J1

(
ωa

c0

)
sin(2ωt+ 2α)

∫∫∫
V

[
H · ∂

∂t
B +E · ∂

∂t
D
]

dv = −πadE
2
0

η0
J0

(
ωa

c0

)
J1

(
ωa

c0

)
sin(2ωt+ 2α)
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132 Answers to problems

1.5 ωr2
√

2c0/a fr = 13.5 GHz

2.1

P (t) =


0 t ≤ 0

ε0ατE0

[
1− e−t/τ

]
0 < t < T

ε0ατE0e−t/τ
[
eT/τ − 1

]
t ≥ T

2.2

M(z, t) = x̂H(τ)
H0α

β

(
1− e−βτ

)
where τ = t− z

c0

2.3

E1(t) =


0 t ≤ 0

ν̂E
[
1 + α

β (1− cosβt)
]

0 < t < T

ν̂E α
β [cosβ(t− T )− cosβt] t ≥ T

2.4

P (y, t) = x̂H(τ)
Eε0αβ

ω2
0 − β2

(cosβτ − cosω0τ) where τ = t− y

c0

2.5

[Σ] (t) = ω2
pe−νt

 cosωgt sinωgt 0
− sinωgt cosωgt 0

0 0 1


2.6 

χxx(t) = χyy(t) =
ω2

p

ν2 + ω2
g

(
ωge
−νt sinωgt+ ν

(
1− e−νt cosωgt

))
χxy(t) = −χyx(t) =

ω2
p

ν2 + ω2
g

(
ωg
(
1− e−νt cosωgt

)
− νe−νt sinωgt

)
χxz(t) = χyz(t) = χzx(t) = χzy(t) = 0

χzz(t) =
ω2

p

ν

(
1− e−νt

)
3.1 {

A = x̂+ iŷ

B = (x̂+ ξŷ) + i(−ξx̂+ ŷ)

where ξ is an arbitrary real number.

3.3
2αβ + α2 + ω2 ≥ 0 which implies β ≥ −α

2

3.4
α2 − β2 + ω2 ≥ 0 which implies |β| ≤ α

3.5

[ε] =

 ε iεg 0
−iεg ε 0

0 0 εz
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where 

ε = 1−
ω2
p

ω2 − ω2
g

εg = −
ω2
pωg

ω(ω2 − ω2
g)

εz = 1−
ω2
p

ω2

3.6 
µ =

 µ iµg 0
−iµg µ 0

0 0 1


[ε] = ε [I]3

where 
µ = 1− ω0ωm

ω2 − ω2
0

µg =
ωωm

ω2 − ω2
0

The two frequencies ω0 (the gyromagnetic frequency) and ωm (the saturation fre-
quency) are explicitly given by {

ω0 = −gµ0H0

ωm = −gµ0M0

3.7

ε(ω) = 1− ω2
s

ω2
+

iω2
n

ω(ν − iω)

where the plasma frequencies for the superconducting and “normal” state, respec-
tively, are

ω2
s =

Nse
2

mε0
ω2
n =

Nne
2

mε0

3.8 a) Linearly polarized field.

b) Right circular polarized field.

c) Left circular polarized field.

d) An ellipse with half axes a and b along the ê1- and the ê2-axis, respectively.
The field is right handed elliptic polarized and E(t = 0) = ê1a.

e) An ellipse with half axes
√

2a cosπ/8 and
√

2a sinπ/8, respectively. The latter
axis is tilted 45◦ against the positive ê1-axis. The field is right handed elliptic
polarized and E(t = 0) = a

(
ê1 + ê2/

√
2
)
.

3.9 a)
E0 = ê1E1 + ê2E2 E1, E2 complex number

van be written as

E0 =
E1 − iE2

2
(ê1 + iê2)︸ ︷︷ ︸

RCP

+
E1 + iE2

2
(ê1 − iê2)︸ ︷︷ ︸

LCP
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b)
|a| = |b|

i.e.,
E0 = a(E+ + eiαE−)

3.11
ω = ω0 + ωm



Index

Active material, 62
Ampère, A.M., 1, 2
Ampère-Maxwell law, 2
Angular frequency, 44
Angular wave number in vacuum, 47
Argument principle, 113
Average

temporal, 61, 89
Axial vector, 106

Bianisotropic material
passive material, 65

Biisotropic material
passive material, 65

Biot, J.-B., 3
Bochner’s theorem, 117
Bochner, S., 117
Boundary conditions, 8

perfectly conducting material, 9

Cauchy’s principle value, 110
Cauchy, A.-L., 110
Causality, 16
Charge density

surface charge density, 8
Chiral material, 35, 51, 66, 72
Chirality parameter, 35, 65
Clausius-Mossotti’s law, 24, 56
Cole-Cole plot, 54
Condon’s model, 60, 66
Condon, E.U., 35
Conductivity, 20–23, 30, 50

conductivity model, 23
dispersion model, 22

Conservation of charge, 3
time harmonic fields, 46

Constitutive relations, 4, 16–23, 31–36
alternative formulation, 15
anisotropic material, 33
bianisotropic material, 33
biisotropic material, 33
classification, 31–36, 49
conductivity model, 23
dispersion model, 22
Fedorov model, 51
ferrite, 84
gyrotropic material, 40, 84
isotropic material, 33
lattice structure, 51
lossless material, 63
permeability, 50
permeability dyadic, 49
permittivity, 50
permittivity dyadic, 49
reciprocity, 76
time harmonic field, 47–60
uniaxial media, 51
water, 54

Current density, 2, 3
impressed, 20
induced, 20
surface current density, 8

Debye’s model
frequency domain, 52
modified, 53
time domain, 24–26

Debye, P.J.W., 24
Degree of polarization, 91, 93, 94

completely polarized field, 92
unpolarized field, 92

135



136 Index

Direction cosines, 105
Dispersion, 17
Drude’s model, 30, 57
Drude, P.K.L., 57
Dyadic, 100

anti-Hermitian, 103
anti-symmetric, 103
complex conjugate, 102
conjugate transpose, 102
decomposition, 104
definition, 106
Hermitian, 103
Hermitian transpose, 102
inverse, 102
simple, 100
symmetric, 103

Dyadic product, 101
Dyadics, 100–103

Electric field, 2
Electric flux density, 2
Electromagnetic spectrum, 45

radar bands, 46
Electron

charge, 127
mass, 127

Ellipse of polarization, 76–81
circular polarization, 79
left-handed elliptic polarization, 78
linear polarization, 79
right-handed elliptic polarization,

78
Euler angles, 107

Faraday’s law of induction, 2
Faraday, M., 1, 2
Fedorov model, 51
Ferrite, 84
Fourier transform, 109–110
Fourier, J.B.J., 43, 109
Frequency, 44
Function

positive type, 116
Function of positive type, 116

Gauss’ law, 3

Gauss, C.F., 3
Gyromagnetic quotient, 84
Gyrotropic frequency, 34, 41, 59
Gyrotropic model, 59

Herglotz functions, 118–120
Herglotz, G., 118
Hertz, H.R., 3
Hilbert transform, 110–111
Hilbert, D., 110

Invariance under time translation, 16
Isotropic material, 33

passive material, 65
Isotropic media, 16–23

Kramers-Kronig relations, 68

Langevin function, 55
Langevin, P., 55
Lebesgue, H.L., 119
Length of coherence, 87
Linear material, 16
Linear transformations, 100–103
Lorentz’ model

frequency domain, 56
time domain, 26–31

Lorentz’s force, 2
Lorentz, H.A., 2, 3
Lorenz-Lorentz’ law, 24, 56
Lossless material, 62

constitutive relations, 63

Magnetic field, 2
Magnetic flux density, 2
Magnetic induction, 2
Magnetization, 5

induced, 5
permanent, 5

Magneto-electric material, 34
Matrices, 100–103
Matrix

positive, 116
Matrix of coherence, 90
Maxwell equations, 1, 3

time harmonic fields, 46
weak solutions, 7



Index 137

Maxwell, J.C., 1, 2
Mĕıman’s theorem, 112–114
Modified Debye’s model, 53

Negative uniaxial medium, 51
Nevanlinna, R.H., 119

Ohm’s law, 20, 50
Optical active material, 35
Optical active media, 34
Optical activity, 35

Condon’s model, 35–36, 60, 66
Optical axis, 51
Optical response, 19, 32, 52
Orthogonal matrix, 106

Parseval, M.-A., 109
Passive material, 62

bianisotropic material, 65
biisotropic material, 65
isotropic material, 65

Permeability, 50
vacuum, 127

Permeability dyadic, 49
Permittivity, 50

vacuum, 127
Permittivity dyadic, 49
Plasma, 59
Plasma frequency, 28, 34, 59
Plate of retardation, 89, 94
Plemelj’s formulas, 67, 110–111
Plemelj, J., 110
Poincaré’s sphere, 96
Poincaré, H., 94
Polar vector, 106
Polarization of field, 91–93

completely polarized field, 92
general degree of polarization, 92
unpolarized field, 91

Polarization of fields
ellipse, 76–81

Polarization of matter, 5
induced, 5
permanent, 5

Polarizer, 89, 94
Positive matrix, 116

Positive uniaxial medium, 51
Poynting’s theorem, 10, 61

time harmonic fields, 61
Poynting’s vector, 10
Poynting, J.H., 10
Projection

vectors, 100
Projection dyadic, 103

Quasi-monochromatic field, 88

Radar band frequencies, 46
Reciprocity, 73–76

constitutive relations, 76
Reciprocity parameter, 65
Relaxation model

frequency domain, 52
time domain, 24–26

Relaxation time, 24
ethanol, 54

Resolvent kernel, 23, 36
Resonance model

frequency domain, 56
time domain, 26–31

Rotation matrix, 108
Rotation of coordinate system, 104–

108

Similarity transformation, 106
Simple dyadic, 100
Speed of light

vacuum, 127
Stieltjes, T.J., 119
Stokes’ parameters, 94–96
Stokes, G.G., 94
Surface charge density, 8
Surface current density, 8
Susceptibility function, 18

generalized, 33

Tesla, N., 3
The conductivity model, 23
The dispersion model, 22
Time average, 61, 89
Time harmonic field

quasi-monochromatic, 88
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Time harmonic fields, 43–46
active material, 62
condition for real field, 44
lossless material, 62
passive material, 62

Time of coherence, 87
Titchmarsh theorem, 111
Titchmarsh, E.C., 111

Uniaxial media, 51
Unpolarized field, 91

natural, 91

Vector, 99–100
axial vector, 106
definition, 106
polar vector, 106
vector field, 99

Vector field, 99

Wave impedance
vacuum, 127

Wave impedance in vacuum, 47
Wave number in vacuum, 47
Weak solutions, 7





Transformation of unit vectors

Cylindrical coordinates (ρ, φ, z) Spherical coordinates (r, θ, φ)


ρ =

√
x2 + y2

φ =

 arccos x√
x2+y2

y > 0

2π − arccos x√
x2+y2

y < 0

z = z



r =
√
x2 + y2 + z2

θ = arccos z√
x2+y2+z2

φ =

 arccos x√
x2+y2

y > 0

2π − arccos x√
x2+y2

y < 0

(r, θ, φ) −→ (x, y, z)
r̂ = x̂ sin θ cosφ + ŷ sin θ sinφ+ ẑ cos θ

θ̂ = x̂ cos θ cosφ+ ŷ cos θ sinφ− ẑ sin θ

φ̂ = − x̂ sinφ + ŷ cosφ

(x, y, z) −→ (r, θ, φ)
x̂ = r̂ sin θ cosφ+ θ̂ cos θ cosφ− φ̂ sinφ

ŷ = r̂ sin θ sinφ + θ̂ cos θ sinφ+ φ̂ cosφ

ẑ = r̂ cos θ − θ̂ sin θ

(ρ, φ, z) −→ (x, y, z) ρ̂ = x̂ cosφ+ ŷ sinφ = ( x̂x+ ŷy)/
√
x2 + y2

φ̂ = − x̂ sinφ+ ŷ cosφ = (− x̂y + ŷx)/
√
x2 + y2

ẑ = ẑ

(x, y, z) −→ (ρ, φ, z) x̂ = ρ̂ cosφ− φ̂ sinφ

ŷ = ρ̂ sinφ+ φ̂ cosφ
ẑ = ẑ

(r, θ, φ) −→ (ρ, φ, z)
r̂ = ρ̂ sin θ + ẑ cos θ

θ̂ = ρ̂ cos θ − ẑ sin θ

φ̂ = φ̂

(ρ, φ, z) −→ (r, θ, φ)
ρ̂ = r̂ sin θ + θ̂ cos θ

φ̂ = φ̂

ẑ = r̂ cos θ − θ̂ sin θ



Important vector identities

(1) (a× c)× (b× c) = c ((a× b) · c)
(2) (a× b) · (c× d) = (a · c)(b · d)− (a · d)(b · c)
(3) a× (b× c) = b(a · c)− c(a · b)
(4) a · (b× c) = b · (c× a) = c · (a× b)

Integration formulas

Stokes’ theorem and analogous theorems

(1)

∫∫
S

(∇×A) · ν̂ dS =

∫
C

A · dr

(2)

∫∫
S

ν̂ ×∇ϕ dS =

∫
C

ϕdr

(3)

∫∫
S

(ν̂ ×∇)×A dS =

∫
C

dr ×A

Gauss’ theorem and analogous theorems

(1)

∫∫∫
V

∇ ·A dv =

∫∫
S

A · ν̂ dS

(2)

∫∫∫
V

∇ϕ dv =

∫∫
S

ϕν̂ dS

(3)

∫∫∫
V

∇×A dv =

∫∫
S

ν̂ ×A dS

Green’s theorems

(1)

∫∫∫
V

(ψ∇2ϕ− ϕ∇2ψ) dv =

∫∫
S

(ψ∇ϕ− ϕ∇ψ) · ν̂ dS

(2)

∫∫∫
V

(ψ∇2A−A∇2ψ) dv

=

∫∫
S

(∇ψ × (ν̂ ×A)−∇ψ(ν̂ ·A)− ψ(ν̂ × (∇×A)) + ν̂ψ(∇ ·A)) dS


