Scattering

•Transmission

Interface defects

Best Transistors: $g_{\rm m}$ 3-3-3.45 mS/µm @ $v_{\rm DS}$ =0.5V

Fully Ballistic model: ~ 6 mS/ μ m

C.B. Zota, IEDM 2016

MOS/Bipolar(QCL) Limits

Scattering

- Ionized Impurities
- Phonons
- Surface Roughness
- Electron/electron

Basic scattering theory (Fermi's golden rule) – scattering rates are proportional to DOS

$$\frac{1}{\tau} \propto D_{nD}(E)$$
$$\lambda_0 = v_T \tau$$

Elastic Scattering (Impurities): Conserve energy of the electron / randomizes momentum

Inelastic Scattering (Phonons): Energy and momentum is not conserved – absorbtion/emmission of phonons.

Effect of scattering:

- Mixes n+ and n- states
- Most important close to the source edge
- Lowers current

Current with scattering

$$I_{D} = T(I^{+} - I^{-}) \quad \text{Linear Regieme}$$

$$I_{D,scattering} = \frac{T}{2 - T} (I^{+} - I^{-}) \quad \text{MOS Limit}$$

$$I_{D,scattering} = T(I^{+} - I^{-}) \quad \text{QCL Limit}$$

$$I_{D,scattering} = T(I^{+} - I^{-}) \quad \text{QCL Limit}$$

Transmission under low drain bias

J: flux of carriers

$$T = \frac{\lambda_0}{\lambda_0 + L}$$

$$D_n \equiv \frac{\lambda_0 v_T}{2} = \frac{kT_L}{q} \mu_{eff}$$
Low field limit
Low field, non degenerate

Low/High Bias

Backscattering probability

$$P(x) = \frac{1}{\pi} \cos^{-1} \sqrt{\frac{qV(x)}{qV(x) + (E_i - E_i)}}$$

Non-degenerate carriers have $E_i \sim kT$

"Small" probability of back scattering for V>0.025V : *kT-layer*

Degenerate carriers have higher E_i – this leads to longer effective lengths for scattering

Interface traps

Acceptor Traps: 0/- (Empty/Charged)

Donor Traps: +/0 (Empty/Charged)

$$\frac{Q_{it}}{q} = \int_{-\infty}^{+\infty} D_{it}^{don}(E) f_d(E_F) dE + \int_{-\infty}^{+\infty} D_{it}^{acc}(E) (1 - f_d(E_F) dE$$
$$C_{it} = \frac{\partial Q_{it}}{\partial \psi_s} = -q^2 \frac{\partial Q_{it}}{\partial \varepsilon(0)}$$
$$C_{it} \approx q^2 D_{it}(\psi_s) \qquad \text{T=OK approximation or} \\D_{it} \text{ constant around } E_F$$

D_{it} : (eV⁻¹ cm⁻²)

10¹⁰ 10¹¹-10¹⁴ (III-V)

A very large D_{it} is sometimes called "Fermi Level Pinning"

Interface/oxide traps

 $q^2 D_{it} = C_{it}$

 $\delta\varepsilon(0) = \frac{C_{ox}}{C_c + C_{it}} \delta V_G$

 $V_{\rm G}$

 $= C_{s} =$

Interface / Border Traps

Traps at the SI – interface : Interface Traps

- Only (really) well defined inside the band gap. Can be well modeled using SRH.
- (Conductance method)

Traps inside the oxide – Border Traps

- N_{BT}: (cm⁻³ eV⁻¹).
- SRH + WBK
- More complicate electrostatics
- 'Project' traps to the interface.
- (Aein's Thesis)

Other degradation sources

