Nanoscale MOSFETs 2017 – Excercise 6

- 1. We will here compare the width efficiency for 2D and 1D transistors. For a gate overdrive of $V_{GS}-V_T=0.3$ V, calculate the current /µm for a 2D ballistic FET. If the FET is made of square 1D nanowires, how many nanowires /µm are needed to achieve the same on-current. Assume both devices are operating in the single subband limit. Use $t_{ox}=2$ nm, $\varepsilon_r=25$, m^{*}/m₀=0.05. If the nanowires have a square size with W=H=5nm, is this integration feasible?
- 2. The first two steps of the quantized conductance for a 1D FET (with parasitic source and drain resistances) with L_G =100 nm is measured at low temperature to 49 μ S and 89.2 μ S. Assuming that the transmission if the same for both steps, calculate the mean free path and the parasitic source and drain resistances.
- 3. The transconductance at V_{DS,sat} from the device in #2 is also measured, and found to only be 10 μ S. Show that this is smaller than expected (assuming $g_d=0$), and suggest one possible origin for the degraded g_m .
- 4. An 1D InAs FET has $m^*/m_0=0.05$, $\varepsilon_r=25$, $t_{ox}=2$ nm, $r_{wire}=5$ nm. Show that at T=300 K, $C_{ox} >> C_q$ for all gate biases. The device is thus expected to operate very close to the QCL limit.
- 5. For a 10×10 nm² square InAs nanowire, calculate the two lowest subbands, assuming nonparabolicity. Compare with parabolic bands.