Nanoscale MOSFETs 2014 – Excercise 5

- 1. An InGaAs MOSFET has μ_n =3000 cm²/Vs, as measured from a long channel device. Calculate how close to the ballistic limit the FET is operating if L_g =50nm, both in the linear and saturated regime with V_{DS} =0.5V. (Assume that the device is operating in the MOS-limit).
- 2. Explain why the apparent field effect mobility, as extracted from $\mu_{eff} = \frac{L}{W} \frac{1}{V_{DS}} \frac{1}{c_G(V_{GS} V_T)}$ is decreasing as *L* is reduced.
- 3. Estimate the mean free path for bulk InAs and GaAs at room temperature.
- 4. We have assumed that the mean free path is energy independent. However, most scattering processes are energy-dependent. For example, $\tau_m(E) = \tau_0 \left(\frac{E}{kT_L}\right)^s$, where $-\frac{1}{2} \le s \le \frac{3}{2}$ for ionized impurity scattering with different degrees of screening. Derive an expression for the 2D current including energy dependent scattering.
- 5. R_{on} is measured for a 2D FET for different gate lengths. The FET has parasitic source/drain resistance R_{par} . Show that R_{on} increases linearly with L. Suggest a methodology for obtaining R_{par} and λ_0 .