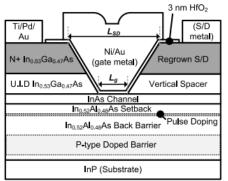
Nanoscale MOSFETs 2017 – Excercise 4

1. Graphene has a linear dispersion relation near the Dirac point, with

$$E(k) = \pm \hbar v_F \left| k_x^2 + k_y^2 \right|$$

- a. Evaluate $n_s = 4 \sum_{k_x,k_y} f_0$ and show that $n_s \propto F_1(\eta_F)$ and that graphene has a DOS which increases linearly with energy. The factor 4 originates from spin and valley degeneracy.
- b. Evaluate $J^+ = 4q \sum_{k_x,k_y} v_x f_0$ and show that $J^+ \propto F_1(\eta_F)$.
- c. Numerically evaluate the minimum achievable current density for a ballistic graphene FET at T=300 K, which occurs when E_F is at the Dirac point ($k_x=k_y=0$). $v_F=10^6$ m/s.
- 2. A high performance MOSFETs have demonstrated g_m ~3.0 mS/µm at V_{DS} =0.5 V, V_{GS} -V_T=0.4 V (*Lee et. Al, IEEE EDL pp.621, 2014*). The device consists of a 5-nm-thick InAs quantum well, and a 3-nm-thick HfO₂ oxide.



How close does this transistor operate to the ballistic limit $(g_{m,exp}/g_{m,bal})$? Numerically calculate the drain current (assuming a single subband), and obtain the transconductance. Use $\varepsilon_{r,ox}=25$ and m^{*}=0.03 m₀.

3. One of the reasons for lower g_m for a III-V MOSFETs are traps inside the high-k oxide (D_{it}). This leads to extra stored charge, changing the relationship between potential and applied voltages: $\psi_s = V_G - \frac{qn_s(\psi_s)}{c_{ox}} - \frac{qD_{it}(\psi_s)}{c_{ox}}$. Assuming a FET operating in the saturated regime with T=0K, derive a relation for $g_m \propto \frac{\delta\psi_s}{\delta V_{GS}}$. For the trapped charge, you can assume $n_{trapped} = qD_{it}\delta\psi_s$, where D_{it} is the concentration of traps. For the FET from 2, how much is the g_m degraded if D_{it} =10¹³cm⁻²eV⁻¹.

For numerical evaluation of the Fermi-Dirac integrals, you can use FD_int_approx.m from the homepage.