Nanoscale MOSFETs 2017 - Excercise 1

1. a) At which dimension does a square InAs nanowire obtain a separation between the first and second sub band of $\Delta \mathrm{E}=100 \mathrm{meV}$?
b) Assuming that the valence band quantization is negligible, what is the effective band gap?
c) Calculate the electron velocity for an electron with an energy 50 meV above E_{1}.
$\left(E_{\mathrm{g}}=0.36 \mathrm{eV}, \mathrm{m}^{*}=0.023 \mathrm{mo}\right.$)
2. An InGaAs HEMT has an (infinite potential) quantum well thickness of $W=10 \mathrm{~nm}$. Assuming $\mathrm{T}=0 \mathrm{~K}$, calculate the Fermi level if $n_{\mathrm{s}}=10^{13} \mathrm{~cm}^{-2} .\left(m^{*}=0.053 \mathrm{~m}_{0}\right)$
3. Work out the expressions for 1D and 3D strongly degenerate carriers similar to Eq. 1.28.
4. An extrinsic, diffusive semiconductor rod with length L, area A and doping N_{D} is kept at one end at $\mathrm{T}=T_{1}$ and $\mathrm{T}=T_{2}$ at the other end. At steady state, this leads to a linear temperature gradient over the rod. a) Calculate the open circuit voltage. b) Calculate the short circuit current.
5. For an InAs nanowire $\left(E_{\mathrm{g}}=0.36 \mathrm{eV}, m^{*}=0.023 \mathrm{~m}_{0}\right)$ with a width $W=20 \mathrm{~nm}$ and thickness $T=8 \mathrm{~nm}$ calculate the position of the lowest two subbands assuming:
a. Parabolic Bands.
b. Non parabolic bands. Use that k_{x} / k_{y} becomes quantized with $\frac{\pi L}{n}$
c. Assuming non-parabolic bands, what is the effective mass around the Γ-point for the lowest subband?
