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Abstract ' 
In this paper we propose a framework for  the testing of 
system-on-chip (SOC), which includes a set of design 
algorithms to deal with test scheduling, tc. 7st access 
mechanism design, test sets selection, test parallelization, 
and test resource placement. The approach minimizes the 
test application time and the cost of the test access 
mechanism while considering constraints on tests, power 
consumption and test resources. The main feature of our 
approach is that it provides an integrated design 
environment to treat several different tasks at the ,same time, 
which were traditionally dealt with as separate problems. 
Experimental results shows the efJiciency and the usefulness 
of the proposed technique. 

1. Introduction 
The increasing complexity of digital systems has led to the 
need of extensive testing and long test application times. It 
is therefore important to schedule the tests as concurrently 
as possible and to design an access mechanism for efficient 
transportation of test data in the system under test. 

When developing the test schedule, conflicts and 
limitations must be carefully considered. For instance, the 
tests may be in conflict with each other due to the sharing of 
test resources; and power consumption must be controlled, 
otherwise the system may be damaged during test. 
Furthermore, test resources such as external testers support 
a limited number of scan-chains and have a limited test 
memory which also introduce constraints on test 
scheduling. For the test designer, it is also important to get 
an early impression on the systems overall test 
characteristics in order to develop an efficient test solution. 

Research has been going on in developing techniques for 
test scheduling, test access mechanism design and 
testability analysis. For example, a technique to help the 
designer determine the test schedule for SOC with Built-In 
Self-Test (BIST) is proposed by Benso et al. [ I ] .  In this 
paper, we combine and generalize several approaches in 
order to create a framework for SOC testing where: 

1. This work has partially been supported by the Swedish 
National Board for Industrial and Technical Development 
(NUTEK). 

tests are scheduled to minimize the test time, 
a test access mechanism is designed and minimized, 
test sets for each block with test resource are selected, 
test resources are floor-planned, arid 
tests are parallelized (i.e. long scan-chains are divided 
into several scan-chains of shorter length). 

Furthermore, the above tasks are performed under test, 
power consumption and test resource constraints. 

The rest of the paper is organised as follows. After an 
overview of related work in Section 2,  a system modelling 
technique is introduced in Section 3 .  Factors affecting the 
test scheduling and an algorithm which takes them into 
account in test scheduling and test access mechanism 
design are then presented in Section 4 and 5, respectively. 
The paper is concluded with experimental results and 
conclusions in Section 6 and 7. 

2. Related Work 
Zorian proposes a test scheduling technique for fully 
BISTed systems where test time is minimized while power 

complexity of the test controller, tests are scheduled in 
sessions where no new tests are allowed to start until all 
tests in a session are completed. Furthermore, tests at blocks 
placed physically close to each other are grouped in the 
same test session in such a way that the same control line 
can be used for all tests in a group. The advantage is that the 
routing of control lines is minimized. 

In a fully BISTed system, each block has its own 
dedicated test generator (test source) and its own test 
response evaluator (test sink); and there might not be any 
conflicts among tests, i.e. the tests can be scheduled 
concurrently. However, in the general case, conflicts among 
tests may occur. Garg et al. propose a test scheduling 
technique where test time is minimized for systems with 
test conflicts [ 3 ]  and for core-based systems a test 
scheduling technique is proposed by Chakrabarty [4]. Chou 
et al. propose an analytic test scheduling technique where 
test conflicts and power constraints are considered [SI. 
Another test scheduling approach is proposed by Muresan 
et al. where constraints among tests and power consumption 
are also considered [6] .  In the latter approach, favour is 
given to reduce the test time by allowing new tests to start 

constraints are considered [Z]. In order to reduce the 

138 
1530-159l/01$10.00 0 2001 IEEE 



even if all tests in a session are not completed. The draw- 
back is the increasing complexity of the test controller. Note 
also that in the approaches by Chou et al. and by Muresan 
et al., the systems to be tested are not restricted to fully 
BISTed systems. 

The conflicts among tests can be reduced by using a 
wrapper such as Boundary scan [7], TestShell [8] or PI500 
[9]. These techniques are all developed to increase test 
isolation and to improve test data transportation. 

Usually, several test sets, can be used to test a block in the 
system under test. Sugihara et al. propose a technique for 
selecting test sets where each block may be tested by one 
test set from an external tester and one test set from a 
dedicated test generator for the block [IO]. 

The effect on test application time for systems tested by 
one test set per core using various design styles for test 
access with the TestShell wrapper is analysed by Aertes et 
al. [ I  I]. Furthermore, the impact on test time using scan- 
chain parallelization is also analyzed by Aertes et al. [ 1 I ] .  

The use of different test resources may entail constraints 
on test scheduling. For instance, external testers have 
limitations of bandwidth due to that a scan chain operates 
usually at a maximum frequency of 50 MHz 1121. External 
testers can usually only support a maximum of 8 scan 
chains [12], resulting in long test application time for large 
designs. Furthermore an external tester’s memory is limited 
by its size. 

3. System Modelling 

An example of a system under test is given in Figure 1 
where each core is placed in a wrapper in order to achieve 
efficient test isolation and to ease test access. Each core 
consists of at least one block with added DFT technique and 
in this example all blocks are tested using the scan 
technique. The test access port ( tap)  is the connection to an 
external tester and the test resources, test generator 1, test 
generator 2 ,  test response evaluator 1 and test response 
evaluator 2,  are implemented on the chip. 

The system is tested by applying several set of tests 
where each test set is created at some test generator (source) 
and the test response is analysed at some test response 
evaluator (sink). 

The system in Figure 1 can be modelled as a design with 
test, DT = (C, Rsource, Rsink, p,,,,, I; source, sink, core, 
block, constraint, memory, bandwidth), where: 

C = { c , ,  c2, ..., c, ,)  is a finite set of cores; each core 
consists of a finite set of blocks, c i =  {bi,, biz, ..., b,,,,,). Each 
core consists of at least one block and each block bde B is 
characterized by: 

p;die(bij): idle power, 
parmi,,(b$: minimal parallelization degree, and 
par,,,,(b$: maximal parallelization degree; 

R,,,,, = { r1, 1-2, ..., r p )  is a finite set of test sources; 

Figure 1. An illustrative example. 

Rsink = { r , ,  r2,..,, rq)  is a finite set of test sinks; 
pmm: maximal allowed power at any time; 
T = ( r , ,  rz ,..., t(,} is a finite set of tests, each consisting of 

a set of test vectors. Several tests form a block tests (BT). 
And each block, bw is associated with several block tests, 
B q j k  (k=I ,2,...,1). Each test ti is characterized by: 

tres,(ti): test time at parallelization degree 1, par(t;)=l, 
p,,,Tr(tj): test power at parallelization degree 1 ,par( t ; )=l ,  
tmem(,,$ti): memory required for test pattern storage. 

source: T+R,,,,, defines the test sources for the tests; 
sink: T-+R,si,,k defines the test sinks for the tests; 
core: B+C gives the core where a block is placed; 
block: T+B gives the block where a test is applied; 
constraint: T+ZB gives the set of blocks required for a test; 
memory(r;): memory available at test source r ic  R,,,,ce; 
bandwidth(ri): bandwidth at test source riE RSOUrCC. 
In the above definitions, test time, ttesr, test power 

consumption, ptest, idle power, P;dle, and memory 
requirement, t,,,(,v are given for each of the tests. The 
maximal and minimal degree of parallelization for a test is 
given by par,,,, and par,,,;,, which determine how much a 
scan-chain may be divided. For instance, if p~r, , , , (b3~)=2 
and par,,,j,,(b31)=l for block 1 at core 3 in Figure 1, then the 
scan flip-flops are connected into a single scan-chain 
@ar(bgl )=l )  or two scan-chains @ar(b3,)=2). 

4. The SOC Test Issues 
In this section the different issues considered by our SOC 
test framework are discussed. 

4.1 Test Scheduling 

Scheduling the tests means that the start time and end time 
for each test is determined in order to satisfy all constraints. 
In our approach, the test bus used to transport the test data 
is also determined by the scheduling algorithm. The basic 
difference of our scheduling approach compared to 
previously proposed approaches is illustrated in Figure 2. In 
the approaches by Zorian [2 ]  and Chou et al. [SI  no new 
tests are allowed to start until all tests in a session are 
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power 

time1 Likez time 
Figure 2. Example of test scheduling. 

completed. In their approaches test3 and test4 would not be 
allowed to be scheduled as in Figure 2. However, in the 
approach proposed by Muresan et al. [6], test3 is allowed to 
be scheduled as in Figure 2 if i t  is completed no later than 
testl. It means that test4 is still not allowed to be started 
before test1 finishes. 

In our approach it  is optional if tests may start before all 
tests in a session are completed or not. If i t  is allowed, test3 
and test, can be scheduled as in Figure 2, which gives more 
flexibility, but entails usually a more complex test 
controller. 

Let a schedule S be an ordered set of tests such that: 
{ S ( r ; )  < S ( t j ) p $ r u r r ( t ; )  2 t s rurr( tJ) ,  i * j ,  vr; E S, Vtj  E SI, 

where S(t;) defines the position of test ti in S; tsfan(t,) 
denotes the time when test ti is scheduled to start, and 
tendti) its completion time: 

te f l ( j ( t ; )  = fsrurr ( t ; )  + f r e s r ( f ; ) .  

For each test, ti, the start time and the bus for test data 
transportation have to be determined before it is inserted 
into the schedule, S. 

Let the Boolean function scheduled(ti, timel, time2) be 
true if test ti is scheduled in such a way that the test time 
overlaps with the time interval [timel, timez], i.e., 

{t i  E S A  y ( t c n d ( t i )  < time, v t s ru , r ( t i )  > t ime2)} .  , 
An example to illustrate the function scheduled for a set 

of scheduled tests is shown in Figure 3. 
The Boolean function scheduled(ri, timel, time2) is true 

if a source ri is used by a test ‘j between timeI and time2, i.e.: 
{ 3 t j  E Slri = source(tj) A scheduled(tj, time,, t ime2)} .  

A similar definition is used if a sink ri is scheduled (used 

The Boolean function scheduled(constraint(t;), timel, 
by any test) between timel and timez. 

. l(t,,Atest;)<timel v tslurr(test,)>time2) 
1-1 : i= 1; -(True v False) -s False 

: pq : i=2: l(False v False) -3 True 
i=3: +False v False) -+ True : piq i=4: +False v False) -+ True 

; 1-1 1-5: :- +False v True) + False 
1=6: -(False v False) -3 True 

test6 - timel time2 time 

Figure 3. The function scheduled. 

time,) is true if: 
{3 t j  E S(b lock( t j )  E constraint(ti) A 

scheduled(tj, time,, t ime2)} .  
The Boolean function scheduled(w, timel, time,) is true 

( 3 t j  E Slwi E b u s ( t j )  A scheduled(rj, time,, t ime2)} ,  
when a wire w, is used between time] to time2: 

where bus(tj) is the set of wires allocated for test 5. 
4.2 Power Dissipation 
In this paper, an additive model used by :Zorian [ 2 ] ,  Chou et 
al. [5] and Muresan et al. [6] for power consumption is 
assumed. Let psch(timel, timez) denote the peak power 
between time1 to time,, i.e.: 

max{ ’ c Presr ( t i )  - pid l , (b lock( t i ) )  + 
Vr,schrduled(r,. r ime)  

c pidre(bij), time E [time,, time,] 
Vb,,, E 

where scheduled(t,, time)=scheduled(t,, time, time). 
As an example, applying the function psch(timel, time2) 

on the schedule for a system with 4 tests as in Figure 2, with 
timel and time2 as indicated in the figure, returns presr(testl) 
+ p,,,,(testj) + p l ~ ~ e ( b l o c k ( t e s t 2 ) ) + p l ~ ~ ~ ( b l u c ~ ( f e s t ~ ) )  since it 
gives the peak power consumption between timel and timez. 

In our approach, the maximal power consumption should 
not exceed the power constraint, pmux, for a schedule to be 
accepted. That is, P,,h(o, m) 2 pmU. 

4.3 Test Source Limitations 
A test generator may use a memory for storing the test 
patterns. In particular, external test generators use such a 
memory with a limited size which may lead to additional 
constraints on test scheduling [ 121. 

The function memoty,lloC(rj, timel, time2) gives the peak 
allocated memory between timel and time2 for a given 
source r;, i.e.: 

, mix{ c ‘memor,y(‘j)y 
Vr,schrdu/ed(r,. r ime)  A r, = source(r,)  

time E [ t ime, ,  time2] >. 
A test resource may have a limited bandwidth. For 

instance, external tester may only support a limited number 
of scan chains at a time or there could be a limit in the 
available pins for test. This information is given in the 
attribute bandwidth for each test resource. 

The function bandwidth,ll,,(ri, timel, time2) gives the 
maximal number of buses allocated between timel and 
time2 for a given source rj ,  i.e.: 

max{ c I f h u , s ( t j ) (  7 

Vr,schedulrd(r,, r i m e )  A r ,  = source(r , )  

time E [ t ime, ,  t ime, ] } .  
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4.4 Test Floor-planning 
In the general case it is not feasible to assume that all cores 
can be tested with only one BIST structure. A block may be 
tested by several test sets produced and analyzed at different 
test resources. Furthermore, test resources may be shared 
among several blocks at different cores. It is therefore 
important to consider the routing of the test data access 
mechanism. And an efficient placement of test resources in 
thc system under test must be created in order to minimize 
tb-  routing cost associated with the test access mechanism. 

4.5 Test Set Selection 
Each test set is defined by a test source and a test sink. For 
a test set, its test power consumption, test memory 
requirement and test application time are defined as 
discussed in Section 3. We assume that an arbitrary number 
of test sets can be used to test a block. 

Due to that the test resources are defined for each test set 
it is possiblc to make a comparison of different test sets not 
only in terms of the number of test vectors but also in 
respect to test resources and test memory requirement. This 
information should be taken into account in our algorithm. 

4.6 Test Parallelization 
The test time for a test may be reduced if it is parallelized. 
This is because dividing a scan-chain into several scan- 
chains of shorter length will shorten the test application 
time. Formulas for calculating the test time for scan-based 
designs are defined by Aertes et al. [ 1 11. Similar to Aertes 
et al. we assume that the scan-chain may be divided into 
equal portions. To simplify the problem, the degree of 
parallelization is assumed to be linear with respect to test 
time and test power consumption. The test time f’rest(tj) for 
a test ti after parallelization is given by: 

where trrSr(tr) is the test time when parallelization=l and 
par(block(tJ) is the degree of parallelization for the block 
where t ,  is applied. 

Assuming that the product timexpower is constant, we let 
the test power p’lesr(t,) for a test tl after parallelization be 
given by: 

P‘tes,(t,) = P t r s , ( l , )  x par(b locQt , ) ) ,  

where prest(t,) is the test power when parallelization=l . 
The parallelization at a block can not be different for 

different test sets; the original scan-chain can not be divided 
into n chains at one moment and to m chains at another 
rnoment where mfn.  The function par(b,,) denotes the 
common parallelization degree at block b,,. 

4.7 Test Access Mechanism 
A test infrastructure transports, and controls the 

transportation of, test data in the system under test. It 
transports test pattems from test sources to the blocks and 
the test response from the blocks to the test sinks. 

The test designer faces mainly two problems, namely: 
designing and routing the test access mechanism and 
scheduling the test data transportation. 

The system can be modelled as a directed graph, 
G=(VA), where Vconsists of the set of blocks, B,  the set of 
test sources, R,,,,,,, and the set of test sinks, Rsink, i.e. 

An arc a;cA between two vertices v i  and vj indicates a 
test access mechanism (a wire) where it is possible to 
transport test data from v i  to vj. Initially no test access 
mechanism exists in the system, i.e. A=D. However, if the 
functional infrastructure may be used, it can be included in 
A initially. 

When adding a test access mechanism between a test 
source and a core or between a core and a test sink, and the 
test data has to pass through another core, c;, several routing 
options are possible: 
1. through the logic of core c; using the transparent mode 

of the core; 
2. through an optional bypass structure of core c;; and 
3. around core ci where the access mechanism is not con- 

nected to the core. 
The advantage of altematives 1 and 2 above is that the test 
access mechanism can be reused. However, a delay may be 
introduced when the core is in transparent mode or its by- 
pass structure is used. A test wrapper such as the Testshell 
has a clocked by-pass structure and the impact on the test 
time using it is analyzed by Aertes et al. [ I  I]. 

In the following, we assume that by-pass may be solved 
by a non-delay mechanism or that the delay due to clocked 
by-pass is negligible. 

A test wire wi is a path of edges {(vo,vI),.,(v,.l,v,)) 
where VOE R,,,,, and v , ~  Rsink. 

Let Ayg be defined as l y ( v j ) - y ( v j ) l  and Axjj as 
Ix(v i )  - x ( v j ) l ,  where x(vi) and y(vi) are the x-placement 
respectively the v-placement for a vertex vi. 

Initially, the test resources may not be placed. In this 
case, their placement must be determined by our algorithm 
described in the next section. 

The distance between vertex vi and vertex vj is given by: 

dist (v; ,  vi) = d w r  
The information of the nearest core in four direction, 

north, east, south and west, are stored for each vertex and 
the function south(vJ of vertex vi gives the closest vertex 
south of vi and it  is defined as: 

V=BuRsourceuRsink. 

sourh(v,) = {(%> I ) 
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The functions north(vJ,  east(vi) and west(vi) are defined in 
similar ways. The function insert(vi, vj) inserts a directed arc 
from vertex vi to vertex v, ifand only If the following is true: 

( south(v j ,  v j )  v north(vj ,  v i )  v west(vj ,  vi) v eas t (v j ,  v,)}. 

The function closest(vi, v j )  gives a vertex, Vk ,  which is in 
the neighbourhood of vi and has the shortest distance to v j  
The function udd(vi, vi) adds arcs from vi to vi in the following 
way: (1) find vk=closest(vi, vi); ( 2 )  add a wire from vi to V k ;  

(3)if vk= vi. terminate otherwise let vi=vk and go to (1). 

5. The Algorithm 
In this section the issues discussed above are combined into 
an algorithm. The algorithm assumes that the tests are 
initially sorted according to a key k which characterizes 
power@), test time(t) or powerxtest time@xt). 

Let P be an ordered set with the tests ordered based on the 
key k.  If new tests are allowed to be scheduled even if all tests 
in a session are not completed the function nexttime(t,ld) 
gives the next time where it is possible to schedule a test: 

{ tend( t , ) lmin( t , ,d ( t i ) ) ,  told < tend( t i ) ,  V t ,  E SI, 

( t , ,d ( t i ) lmax( fe ,d( t i ) ) ,  fo ld  < t e f l d ( t j ) ,  Qt; E SI. 
The algorithm is depicted in Figure 4 and it  can basically be 
divided into four parts for: 

constraint checking, 
test resource placement, 
test access mechanism design and routing, and 
test scheduling. 

otherwise function nexttime(t,,d) is defined as: 

. 

A main loop is terminated when there exists a block test (BT) 
for all blocks where all tests within the BT are scheduled. In 
each iteration of the loop over the tests in f' a test cur is 
checked. 

If the parallelization degree is fixed for the block, i.e. some 
tests have been scheduled for the block, par=par(bii) 
otherwise it is computed: 
par = min{par,,,(bjj), L(pmux -  time, t e f l d ) ) / / ? ( c u r ) j ,  

bandwidth(vu, time, t e n d )  - bandwidthull,,( vu, rime, tend) ,  

which is the minimum among the available power and the 
available bandwidth of the test source. 

A check is also made to determine if all constraints are 
fulfilled, i.e. i t  is possible to schedule test cur  at time: 

'39 ($E BT,ikA+ E SAcurE BTik) checks that another 
block test set for current block IS not used, 
pur2par,,,,,(b$ checks that the current parallelization 
degree is larger than the minimal level, 
yscheduled(v,, time, ten(/) checks that the test source is 
not scheduled during time to ten,[, 
-scheduled(v,, time, fend) checks that the test sink is not 
scheduled during time to ten,, 
~scheduled(constraint(cur), time, tenJ checks that all 
blocks required for cur are not scheduled during time to 

Sort T according to the key (p, t or pxt) and store the result in P; 
S=0, time=O; 
until V b  3BTp VI,E S do 

for  alf",r in'5: do 
bc=block(cur); vu=source(cur); 
vb'c;; v,=sink(cur); 

~ ~ ~ ~ ~ ~ ~ ~ t t ~ ~ t ( c u r y p a r C 1 ;  

$ all constraints are satisjied then 

ne paralleliz tion degree; 

Presf(CUr)=Pre,r(cur)xPar; 

-scheduled( vu, 0, t,,d)f10or-plan v', at V b ;  

-mheduled( vc, 0, te,d)f10or-p1an v,. at vb; 
for  all required test resources 

new=length of a new wire wj; 
u=number of wires connecting vu, V b  and vc, and are not 

v=number of wires connecting vu, vb and vc; 
for  all min(v-u,par) w, 

$@ar>u) 

scheduled from time to fend; 

extend=extend+length of an available wire(wj); 

extend=extend+newx@ar-u); 
move=par(v,) X min(dist(v,, vb),dist(vb, vc));  
$(move<min(extend, new x p a r ) )  

vr v,.=min(dist(v,, vb), dist(vb v J ) ,  dist(v,, vb)>o, 

addpar(v,) wires between v , ~  and v,.; 
if(vx=source(cur)) thenpoorplan va at 4; 
if(v,. = sink(cur)) thenpoorplan vc at V b ;  

&st( vb, V,.)>O 

set parallelization; 
for  r = 1 to par 

ifthere exists a not scheduled wire during time to tend 

else 
connecting vu, vb and v,. it is selected 

$(length of a new wire < length of extending a wire wj)  

else e.rtend wire; 
w,=add(v,, vb) + add(vb, vc); 

schedule cur and remove cur from P; 
time = nexttirneftime). 

Figure 4. The system test algorithm. 

tend, and 
the available memory test source v,? is checked to see i f  
memory(v,)>t, , , ,~(c~r)+memo~~// ,~(v, ,  time, tend). 

Then the placement of the test resources are checked. If the 
test resources are placed it  is checked if they are to be moved. 

When the placement of the test resources for the selected 
test is determined, the corresponding test access mechanism 
is designed and routed. The basic question is if some existing 
wires can be used or new wires must be added. 

If no routed connection is available connecting all required 
blocks, the distance for adding a completely new connection 
is re-calculated due to a possible moving of test resources. 

The extend wire step in the algorithm extends needed parts 
to connect the test resources and block with a given wire. 

The computational complexity for the above algorithm, 
where the test access mechanism design is excluded in order 
to make it  comparable with other approaches, comes mainly 
from sorting the tests and the two loops. The sorting can be 
performed using a sorting algorithm at O(nx1og n). The worst 
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case for the loops occurs when only one test is scheduled in 
each iteration resulting in a complexity given by: 

IP- II 1 , .  c ( P - i )  = c+!! 
2 2  

i = O  

The total worst case execution time is nxlog + n2/2 +n/2 
which is of O(n2).  For instance, the approach by Garg et al. 
[3] and by Chakrabarty [4] both have a worst case 
complexity of o ( ~ ~ ) .  
6.  Experimental Results 
We have performed experiments to show the efficiency of 
the proposed algorithm. 

6.1 Benchmarks 

We have used the System S presented by Chakrabarty 141, 
and ASIC Z design presented by Zorian [2] with added data 
made by Chou et al. [SI (see the floor-plan in Figure 5). We 
have also used one design consisting of 10 test presented by 
Muresan et al. [6] and an industrial design with 
characteristics given in Table 1 .  The power limitation for the 
industrial design example is 1200 mW and only one test 
may use the test bus or the functional pins (fp) at a time. 
Furthermore block-level tests may not be scheduled 
concurrently with top-level tests. 

Figure 5. ASIC 2 floor-plan. 

6.2 Test Scheduling 
We have compared our algorithm using initial sorting based 
on power@), time(t) and powerxtime(pxt) with the 
approaches proposed by Zorian [2] and Chou et al. [SI. We 
have used the same assumptions as Chou et al. and the 
results are in Table 2. Our approaches results, in all cases, in 
a test schedule with three test sessions ( t s )  at a test time of 
300 time units which is 23% better than Zorian's approach 
and 9% better than the approach by Chou et al. 

In System S, no power constraints are given and therefore 
only test scheduling using initial sorting of tests based on 
time is performed. Our approach finds the optimal solution, 
see Table 3. 

We have also compared our technique with the technique 
proposed by Muresan et al. [6]. In this case we use the same 
assumption as Muresan et al. which assumes that new tests 

A TestA 515 1 319 

B Test B 160 1 . 205 

C TestC 110 I 23 

E TestE 61 I 51 

e, F TestF 38 1 21 

I 120 2 I Test I 29 

1 13 - J Test J 6 

K Test K 3 I 9 

L TestL 3 1 9 

M TestM 218 1 5 

y1 

e, 
L - 
e, - 
U 

scan 

testbus 

testbus 

testbus 

testbus 

testbus 

testbus 

testbus 

testbus 

testbus 

A Test N 232 1 319 fp - 
N Test0 41 I 50 fP 

D TestQ 104 1 39 fP 

Table 1 .  Characteristics of the industrial design. 

can start even if all tests are not fully completed in the 
current test session. In all cases our technique achieve better 
solutions, see Table 3. 

Finally, the results on an industrial design are in Table 3 
where the industrial designer's solution is 1592 time units 
while our test scheduling achieve a test time of 1077 time 
units in all sorting variations which is 32.3% better 

All solutions using our technique were produced within 
a second on a Sun Ultra Sparc 10 with a 450 MHz processor 
and 256 Mbyte RAM. 

- m  

L 2  B TestP 12 I 205 fp 

Our algorithm zodaan Chou er al. 
I S  

Blocks Time Blocks Time Blocks Time 

RAMI. 69 RAMI.RAM3.  69 RL2,RLI. 160 
I RAM4.RF RAM4. RF RAM2 

2 RLI.RL2 160 RLI.RL2 160 RAM''RoM'' ROM2 lo2 

4 ROMI.ROM2 102 

Test time: 392 33 1 300 

Table 2. ASIC 2 test scheduling. 

6.3 Test Resource Placement 

In the ASIC Z design all blocks have their own dedicated 
BIST structure. Let us assume that all ROM blocks share 
one BIST structure and all RAM memories share another 
BIST structure; the rest of the blocks have their own 
dedicated BIST structure. Using our placement strategy the 
test resources in ASIC Z will be placed as in Figure 5. 
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Design Approach Test time Improvement 
Chakrabany’s Chakrabany 1204630 

design case [41 ours(t) 1152810 4.3% 

Muresan 29 
Muresan’s 

design case 
161 

ours(p) 28 3.496 

ours(t) 28 3.4% 
L.1  

ours(pxt) 26 10.3% 

designer 1592 

Industrial o W p )  I077 32.3% 

design ours(t) 1077 32.346 

ours(pxt) 1077 32.3% 

Table 3. Results on the designs by Chakrabarty and 
Muresan as well as the industrial design,. 

6.4 Test Access Mechanism Design 

Assume the floor-planning of ASIC Z as in Figure 5 where 
each block is placed according to its (x, y) coordinates. For 
instance, RAM2 is placed at (10,20), which means that the 
center of RAM2 has x-coordinate 10, and y-coordinate 20. 
Assume that all tests are scan-based tests applied with an 
external tester allowing a maximum of 8 scan chains to 
operate concurrently. 

In this experiment we allow a new test to start even if all 
tests are not completed, see results in Table 4. 

The test schedule and the test bus schedule achieved with 
initial sorting of tests according to powerxtime and 
considering idle power is in Figure 7. The total test access 
mechanism length is 360 units and it  is routed as in 
Figure 6. All solutions were produced within a second on a 

Mbyte RAM. 
Sun Ultra Sparc 10 with a 450 MHz processor and 256 

Initial sorting Test time Test access mechanism - 
power 300 360 

rime 290 360 

powemrime 290 360 - 
Table 4. Results on ASIC 2. 

l a  b C d e 

Figure 6. ASIC 2 with test data access mechanism. 

Apowerltest bus 
power limit 

I 
I I 

, (g) 
134 160 236 290 

Figure 7. Test schedule for ASIC 2. 

7. Conclusions 
For complex systems such as SOCs, it is a difficult problem 
for the test designer to develop an efficient test solution due 
to the large number of factors involved. In this paper we 
propose a framework where several test-related factors are 
considered in an integrated manner in order to support the 
test designer to develop an efficient test solution for a 
complex system. An algorithm has been defined and 
implemented, and experiments have been performed to 
show its efficiency. 
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