
An Integrated System-On-Chip Test Framework
Erik Larsson and Zebo Peng

Embedded Systems Laboratory
Department of Computer and Information Science,

Linkopings Universitet, Sweden.

Abstract '
In this paper we propose a framework for the testing of
system-on-chip (SOC), which includes a set of design
algorithms to deal with test scheduling, tc. 7st access
mechanism design, test sets selection, test parallelization,
and test resource placement. The approach minimizes the
test application time and the cost of the test access
mechanism while considering constraints on tests, power
consumption and test resources. The main feature of our
approach is that it provides an integrated design
environment to treat several different tasks at the ,same time,
which were traditionally dealt with as separate problems.
Experimental results shows the efJiciency and the usefulness
of the proposed technique.

1. Introduction
The increasing complexity of digital systems has led to the
need of extensive testing and long test application times. It
is therefore important to schedule the tests as concurrently
as possible and to design an access mechanism for efficient
transportation of test data in the system under test.

When developing the test schedule, conflicts and
limitations must be carefully considered. For instance, the
tests may be in conflict with each other due to the sharing of
test resources; and power consumption must be controlled,
otherwise the system may be damaged during test.
Furthermore, test resources such as external testers support
a limited number of scan-chains and have a limited test
memory which also introduce constraints on test
scheduling. For the test designer, it is also important to get
an early impression on the systems overall test
characteristics in order to develop an efficient test solution.

Research has been going on in developing techniques for
test scheduling, test access mechanism design and
testability analysis. For example, a technique to help the
designer determine the test schedule for SOC with Built-In
Self-Test (BIST) is proposed by Benso et al. [I] . In this
paper, we combine and generalize several approaches in
order to create a framework for SOC testing where:

1. This work has partially been supported by the Swedish
National Board for Industrial and Technical Development
(NUTEK).

tests are scheduled to minimize the test time,
a test access mechanism is designed and minimized,
test sets for each block with test resource are selected,
test resources are floor-planned, arid
tests are parallelized (i.e. long scan-chains are divided
into several scan-chains of shorter length).

Furthermore, the above tasks are performed under test,
power consumption and test resource constraints.

The rest of the paper is organised as follows. After an
overview of related work in Section 2, a system modelling
technique is introduced in Section 3 . Factors affecting the
test scheduling and an algorithm which takes them into
account in test scheduling and test access mechanism
design are then presented in Section 4 and 5, respectively.
The paper is concluded with experimental results and
conclusions in Section 6 and 7.

2. Related Work
Zorian proposes a test scheduling technique for fully
BISTed systems where test time is minimized while power

complexity of the test controller, tests are scheduled in
sessions where no new tests are allowed to start until all
tests in a session are completed. Furthermore, tests at blocks
placed physically close to each other are grouped in the
same test session in such a way that the same control line
can be used for all tests in a group. The advantage is that the
routing of control lines is minimized.

In a fully BISTed system, each block has its own
dedicated test generator (test source) and its own test
response evaluator (test sink); and there might not be any
conflicts among tests, i.e. the tests can be scheduled
concurrently. However, in the general case, conflicts among
tests may occur. Garg et al. propose a test scheduling
technique where test time is minimized for systems with
test conflicts [3] and for core-based systems a test
scheduling technique is proposed by Chakrabarty [4]. Chou
et al. propose an analytic test scheduling technique where
test conflicts and power constraints are considered [SI.
Another test scheduling approach is proposed by Muresan
et al. where constraints among tests and power consumption
are also considered [6] . In the latter approach, favour is
given to reduce the test time by allowing new tests to start

constraints are considered [Z]. In order to reduce the

138
1530-159l/01$10.00 0 2001 IEEE

even if all tests in a session are not completed. The draw-
back is the increasing complexity of the test controller. Note
also that in the approaches by Chou et al. and by Muresan
et al., the systems to be tested are not restricted to fully
BISTed systems.

The conflicts among tests can be reduced by using a
wrapper such as Boundary scan [7], TestShell [8] or PI500
[9]. These techniques are all developed to increase test
isolation and to improve test data transportation.

Usually, several test sets, can be used to test a block in the
system under test. Sugihara et al. propose a technique for
selecting test sets where each block may be tested by one
test set from an external tester and one test set from a
dedicated test generator for the block [IO].

The effect on test application time for systems tested by
one test set per core using various design styles for test
access with the TestShell wrapper is analysed by Aertes et
al. [I I]. Furthermore, the impact on test time using scan-
chain parallelization is also analyzed by Aertes et al. [1 I] .

The use of different test resources may entail constraints
on test scheduling. For instance, external testers have
limitations of bandwidth due to that a scan chain operates
usually at a maximum frequency of 50 MHz 1121. External
testers can usually only support a maximum of 8 scan
chains [12], resulting in long test application time for large
designs. Furthermore an external tester’s memory is limited
by its size.

3. System Modelling

An example of a system under test is given in Figure 1
where each core is placed in a wrapper in order to achieve
efficient test isolation and to ease test access. Each core
consists of at least one block with added DFT technique and
in this example all blocks are tested using the scan
technique. The test access port (tap) is the connection to an
external tester and the test resources, test generator 1, test
generator 2 , test response evaluator 1 and test response
evaluator 2, are implemented on the chip.

The system is tested by applying several set of tests
where each test set is created at some test generator (source)
and the test response is analysed at some test response
evaluator (sink).

The system in Figure 1 can be modelled as a design with
test, DT = (C, Rsource, Rsink, p,,,,, I; source, sink, core,
block, constraint, memory, bandwidth), where:

C = { c , , c2, ..., c, ,) is a finite set of cores; each core
consists of a finite set of blocks, c i = {bi,, biz, ..., b,,,,,). Each
core consists of at least one block and each block bde B is
characterized by:

p;die(bij): idle power,
parmi,,(b$: minimal parallelization degree, and
par,,,,(b$: maximal parallelization degree;

R,,,,, = { r1, 1-2, ..., r p) is a finite set of test sources;

Figure 1. An illustrative example.

Rsink = { r , , r2,..,, rq) is a finite set of test sinks;
pmm: maximal allowed power at any time;
T = (r , , rz ,..., t(,} is a finite set of tests, each consisting of

a set of test vectors. Several tests form a block tests (BT).
And each block, bw is associated with several block tests,
B q j k (k=I ,2,...,1). Each test ti is characterized by:

tres,(ti): test time at parallelization degree 1, par(t;)=l,
p,,,Tr(tj): test power at parallelization degree 1 ,par(t ;)=l ,
tmem(,,$ti): memory required for test pattern storage.

source: T+R,,,,, defines the test sources for the tests;
sink: T-+R,si,,k defines the test sinks for the tests;
core: B+C gives the core where a block is placed;
block: T+B gives the block where a test is applied;
constraint: T+ZB gives the set of blocks required for a test;
memory(r;): memory available at test source r ic R,,,,ce;
bandwidth(ri): bandwidth at test source riE RSOUrCC.
In the above definitions, test time, ttesr, test power

consumption, ptest, idle power, P;dle, and memory
requirement, t,,,(,v are given for each of the tests. The
maximal and minimal degree of parallelization for a test is
given by par,,,, and par,,,;,, which determine how much a
scan-chain may be divided. For instance, if p~r, , , , (b3~)=2
and par,,,j,,(b31)=l for block 1 at core 3 in Figure 1, then the
scan flip-flops are connected into a single scan-chain
@ar(bgl)=l) or two scan-chains @ar(b3,)=2).

4. The SOC Test Issues
In this section the different issues considered by our SOC
test framework are discussed.

4.1 Test Scheduling

Scheduling the tests means that the start time and end time
for each test is determined in order to satisfy all constraints.
In our approach, the test bus used to transport the test data
is also determined by the scheduling algorithm. The basic
difference of our scheduling approach compared to
previously proposed approaches is illustrated in Figure 2. In
the approaches by Zorian [2] and Chou et al. [SI no new
tests are allowed to start until all tests in a session are

139

power

time1 Likez time
Figure 2. Example of test scheduling.

completed. In their approaches test3 and test4 would not be
allowed to be scheduled as in Figure 2. However, in the
approach proposed by Muresan et al. [6], test3 is allowed to
be scheduled as in Figure 2 if i t is completed no later than
testl. It means that test4 is still not allowed to be started
before test1 finishes.

In our approach it is optional if tests may start before all
tests in a session are completed or not. If i t is allowed, test3
and test, can be scheduled as in Figure 2, which gives more
flexibility, but entails usually a more complex test
controller.

Let a schedule S be an ordered set of tests such that:
{ S (r ;) < S (t j) p $ r u r r (t ;) 2 t s rurr(tJ) , i * j , vr; E S, Vtj E SI,

where S(t;) defines the position of test ti in S; tsfan(t,)
denotes the time when test ti is scheduled to start, and
tendti) its completion time:

te f l (j (t ;) = fsrurr (t ;) + f r e s r (f ;) .

For each test, ti, the start time and the bus for test data
transportation have to be determined before it is inserted
into the schedule, S.

Let the Boolean function scheduled(ti, timel, time2) be
true if test ti is scheduled in such a way that the test time
overlaps with the time interval [timel, timez], i.e.,

{t i E S A y (t c n d (t i) < time, v t s ru , r (t i) > t ime2)} . ,
An example to illustrate the function scheduled for a set

of scheduled tests is shown in Figure 3.
The Boolean function scheduled(ri, timel, time2) is true

if a source ri is used by a test ‘j between timeI and time2, i.e.:
{ 3 t j E Slri = source(tj) A scheduled(tj, time,, t ime2)} .

A similar definition is used if a sink ri is scheduled (used

The Boolean function scheduled(constraint(t;), timel,
by any test) between timel and timez.

. l(t,,Atest;)<timel v tslurr(test,)>time2)
1-1 : i= 1; -(True v False) -s False

: pq : i=2: l(False v False) -3 True
i=3: +False v False) -+ True : piq i=4: +False v False) -+ True

; 1-1 1-5: :- +False v True) + False
1=6: -(False v False) -3 True

test6 - timel time2 time

Figure 3. The function scheduled.

time,) is true if:
{3 t j E S(b lock(t j) E constraint(ti) A

scheduled(tj, time,, t ime2)} .
The Boolean function scheduled(w, timel, time,) is true

(3 t j E Slwi E b u s (t j) A scheduled(rj, time,, t ime2)} ,
when a wire w, is used between time] to time2:

where bus(tj) is the set of wires allocated for test 5.
4.2 Power Dissipation
In this paper, an additive model used by :Zorian [2] , Chou et
al. [5] and Muresan et al. [6] for power consumption is
assumed. Let psch(timel, timez) denote the peak power
between time1 to time,, i.e.:

max{ ’ c Presr (t i) - pid l , (b lock(t i)) +
Vr,schrduled(r,. r ime)

c pidre(bij), time E [time,, time,]
Vb,,, E

where scheduled(t,, time)=scheduled(t,, time, time).
As an example, applying the function psch(timel, time2)

on the schedule for a system with 4 tests as in Figure 2, with
timel and time2 as indicated in the figure, returns presr(testl)
+ p,,,,(testj) + p l ~ ~ e (b l o c k (t e s t 2)) + p l ~ ~ ~ (b l u c ~ (f e s t ~)) since it
gives the peak power consumption between timel and timez.

In our approach, the maximal power consumption should
not exceed the power constraint, pmux, for a schedule to be
accepted. That is, P,,h(o, m) 2 pmU.

4.3 Test Source Limitations
A test generator may use a memory for storing the test
patterns. In particular, external test generators use such a
memory with a limited size which may lead to additional
constraints on test scheduling [121.

The function memoty,lloC(rj, timel, time2) gives the peak
allocated memory between timel and time2 for a given
source r;, i.e.:

, mix{ c ‘memor,y(‘j)y
Vr,schrdu/ed(r,. r ime) A r, = source(r,)

time E [t ime, , time2] >.
A test resource may have a limited bandwidth. For

instance, external tester may only support a limited number
of scan chains at a time or there could be a limit in the
available pins for test. This information is given in the
attribute bandwidth for each test resource.

The function bandwidth,ll,,(ri, timel, time2) gives the
maximal number of buses allocated between timel and
time2 for a given source rj , i.e.:

max{ c I f h u , s (t j) (7

Vr,schedulrd(r,, r i m e) A r , = source(r ,)

time E [t ime, , t ime,] } .

140

4.4 Test Floor-planning
In the general case it is not feasible to assume that all cores
can be tested with only one BIST structure. A block may be
tested by several test sets produced and analyzed at different
test resources. Furthermore, test resources may be shared
among several blocks at different cores. It is therefore
important to consider the routing of the test data access
mechanism. And an efficient placement of test resources in
thc system under test must be created in order to minimize
tb- routing cost associated with the test access mechanism.

4.5 Test Set Selection
Each test set is defined by a test source and a test sink. For
a test set, its test power consumption, test memory
requirement and test application time are defined as
discussed in Section 3. We assume that an arbitrary number
of test sets can be used to test a block.

Due to that the test resources are defined for each test set
it is possiblc to make a comparison of different test sets not
only in terms of the number of test vectors but also in
respect to test resources and test memory requirement. This
information should be taken into account in our algorithm.

4.6 Test Parallelization
The test time for a test may be reduced if it is parallelized.
This is because dividing a scan-chain into several scan-
chains of shorter length will shorten the test application
time. Formulas for calculating the test time for scan-based
designs are defined by Aertes et al. [1 11. Similar to Aertes
et al. we assume that the scan-chain may be divided into
equal portions. To simplify the problem, the degree of
parallelization is assumed to be linear with respect to test
time and test power consumption. The test time f’rest(tj) for
a test ti after parallelization is given by:

where trrSr(tr) is the test time when parallelization=l and
par(block(tJ) is the degree of parallelization for the block
where t , is applied.

Assuming that the product timexpower is constant, we let
the test power p’lesr(t,) for a test tl after parallelization be
given by:

P‘tes,(t,) = P t r s , (l ,) x par(b locQt ,)) ,

where prest(t,) is the test power when parallelization=l .
The parallelization at a block can not be different for

different test sets; the original scan-chain can not be divided
into n chains at one moment and to m chains at another
rnoment where mfn. The function par(b,,) denotes the
common parallelization degree at block b,,.

4.7 Test Access Mechanism
A test infrastructure transports, and controls the

transportation of, test data in the system under test. It
transports test pattems from test sources to the blocks and
the test response from the blocks to the test sinks.

The test designer faces mainly two problems, namely:
designing and routing the test access mechanism and
scheduling the test data transportation.

The system can be modelled as a directed graph,
G=(VA), where Vconsists of the set of blocks, B, the set of
test sources, R,,,,,,, and the set of test sinks, Rsink, i.e.

An arc a;cA between two vertices v i and vj indicates a
test access mechanism (a wire) where it is possible to
transport test data from v i to vj. Initially no test access
mechanism exists in the system, i.e. A=D. However, if the
functional infrastructure may be used, it can be included in
A initially.

When adding a test access mechanism between a test
source and a core or between a core and a test sink, and the
test data has to pass through another core, c;, several routing
options are possible:
1. through the logic of core c; using the transparent mode

of the core;
2. through an optional bypass structure of core c;; and
3. around core ci where the access mechanism is not con-

nected to the core.
The advantage of altematives 1 and 2 above is that the test
access mechanism can be reused. However, a delay may be
introduced when the core is in transparent mode or its by-
pass structure is used. A test wrapper such as the Testshell
has a clocked by-pass structure and the impact on the test
time using it is analyzed by Aertes et al. [I I].

In the following, we assume that by-pass may be solved
by a non-delay mechanism or that the delay due to clocked
by-pass is negligible.

A test wire wi is a path of edges {(vo,vI),.,(v,.l,v,))
where VOE R,,,,, and v , ~ Rsink.

Let Ayg be defined as l y (v j) - y (v j) l and Axjj as
Ix(v i) - x (v j) l , where x(vi) and y(vi) are the x-placement
respectively the v-placement for a vertex vi.

Initially, the test resources may not be placed. In this
case, their placement must be determined by our algorithm
described in the next section.

The distance between vertex vi and vertex vj is given by:

dist (v; , vi) = d w r
The information of the nearest core in four direction,

north, east, south and west, are stored for each vertex and
the function south(vJ of vertex vi gives the closest vertex
south of vi and it is defined as:

V=BuRsourceuRsink.

sourh(v,) = {(%> I)

141

The functions north(vJ, east(vi) and west(vi) are defined in
similar ways. The function insert(vi, vj) inserts a directed arc
from vertex vi to vertex v, ifand only If the following is true:

(south(v j , v j) v north(vj , v i) v west(vj , vi) v eas t (v j , v,)}.

The function closest(vi, v j) gives a vertex, Vk , which is in
the neighbourhood of vi and has the shortest distance to v j
The function udd(vi, vi) adds arcs from vi to vi in the following
way: (1) find vk=closest(vi, vi); (2) add a wire from vi to V k ;

(3)if vk= vi. terminate otherwise let vi=vk and go to (1).

5. The Algorithm
In this section the issues discussed above are combined into
an algorithm. The algorithm assumes that the tests are
initially sorted according to a key k which characterizes
power@), test time(t) or powerxtest time@xt).

Let P be an ordered set with the tests ordered based on the
key k. If new tests are allowed to be scheduled even if all tests
in a session are not completed the function nexttime(t,ld)
gives the next time where it is possible to schedule a test:

{ tend(t ,) lmin(t , ,d (t i)) , told < tend(t i) , V t , E SI,

(t , ,d (t i) lmax(fe ,d(t i)) , fo ld < t e f l d (t j) , Qt; E SI.
The algorithm is depicted in Figure 4 and it can basically be
divided into four parts for:

constraint checking,
test resource placement,
test access mechanism design and routing, and
test scheduling.

otherwise function nexttime(t,,d) is defined as:

.

A main loop is terminated when there exists a block test (BT)
for all blocks where all tests within the BT are scheduled. In
each iteration of the loop over the tests in f' a test cur is
checked.

If the parallelization degree is fixed for the block, i.e. some
tests have been scheduled for the block, par=par(bii)
otherwise it is computed:
par = min{par,,,(bjj), L(pmux - time, t e f l d)) / / ? (c u r) j ,

bandwidth(vu, time, t e n d) - bandwidthull,,(vu, rime, tend) ,

which is the minimum among the available power and the
available bandwidth of the test source.

A check is also made to determine if all constraints are
fulfilled, i.e. i t is possible to schedule test cur at time:

'39 ($E BT,ikA+ E SAcurE BTik) checks that another
block test set for current block IS not used,
pur2par,,,,,(b$ checks that the current parallelization
degree is larger than the minimal level,
yscheduled(v,, time, ten(/) checks that the test source is
not scheduled during time to ten,[,
-scheduled(v,, time, fend) checks that the test sink is not
scheduled during time to ten,,
~scheduled(constraint(cur), time, tenJ checks that all
blocks required for cur are not scheduled during time to

Sort T according to the key (p, t or pxt) and store the result in P;
S=0, time=O;
until V b 3BTp VI,E S do

for alf",r in'5: do
bc=block(cur); vu=source(cur);
vb'c;; v,=sink(cur);

~ ~ ~ ~ ~ ~ ~ ~ t t ~ ~ t (c u r y p a r C 1 ;

$ all constraints are satisjied then

ne paralleliz tion degree;

Presf(CUr)=Pre,r(cur)xPar;

-scheduled(vu, 0, t,,d)f10or-plan v', at V b ;

-mheduled(vc, 0, te,d)f10or-p1an v,. at vb;
for all required test resources

new=length of a new wire wj;
u=number of wires connecting vu, V b and vc, and are not

v=number of wires connecting vu, vb and vc;
for all min(v-u,par) w,

$@ar>u)

scheduled from time to fend;

extend=extend+length of an available wire(wj);

extend=extend+newx@ar-u);
move=par(v,) X min(dist(v,, vb),dist(vb, vc));
$(move<min(extend, new x p a r))

vr v,.=min(dist(v,, vb), dist(vb v J) , dist(v,, vb)>o,

addpar(v,) wires between v , ~ and v,.;
if(vx=source(cur)) thenpoorplan va at 4;
if(v,. = sink(cur)) thenpoorplan vc at V b ;

&st(vb, V,.)>O

set parallelization;
for r = 1 to par

ifthere exists a not scheduled wire during time to tend

else
connecting vu, vb and v,. it is selected

$(length of a new wire < length of extending a wire wj)

else e.rtend wire;
w,=add(v,, vb) + add(vb, vc);

schedule cur and remove cur from P;
time = nexttirneftime).

Figure 4. The system test algorithm.

tend, and
the available memory test source v,? is checked to see i f
memory(v,)>t, , , ,~(c~r)+memo~~// ,~(v, , time, tend).

Then the placement of the test resources are checked. If the
test resources are placed it is checked if they are to be moved.

When the placement of the test resources for the selected
test is determined, the corresponding test access mechanism
is designed and routed. The basic question is if some existing
wires can be used or new wires must be added.

If no routed connection is available connecting all required
blocks, the distance for adding a completely new connection
is re-calculated due to a possible moving of test resources.

The extend wire step in the algorithm extends needed parts
to connect the test resources and block with a given wire.

The computational complexity for the above algorithm,
where the test access mechanism design is excluded in order
to make it comparable with other approaches, comes mainly
from sorting the tests and the two loops. The sorting can be
performed using a sorting algorithm at O(nx1og n). The worst

142

case for the loops occurs when only one test is scheduled in
each iteration resulting in a complexity given by:

IP- II 1 , . c (P - i) = c+!!
2 2

i = O

The total worst case execution time is nxlog + n2/2 +n/2
which is of O(n2). For instance, the approach by Garg et al.
[3] and by Chakrabarty [4] both have a worst case
complexity of o (~ ~) .
6. Experimental Results
We have performed experiments to show the efficiency of
the proposed algorithm.

6.1 Benchmarks

We have used the System S presented by Chakrabarty 141,
and ASIC Z design presented by Zorian [2] with added data
made by Chou et al. [SI (see the floor-plan in Figure 5). We
have also used one design consisting of 10 test presented by
Muresan et al. [6] and an industrial design with
characteristics given in Table 1 . The power limitation for the
industrial design example is 1200 mW and only one test
may use the test bus or the functional pins (fp) at a time.
Furthermore block-level tests may not be scheduled
concurrently with top-level tests.

Figure 5. ASIC 2 floor-plan.

6.2 Test Scheduling
We have compared our algorithm using initial sorting based
on power@), time(t) and powerxtime(pxt) with the
approaches proposed by Zorian [2] and Chou et al. [SI. We
have used the same assumptions as Chou et al. and the
results are in Table 2. Our approaches results, in all cases, in
a test schedule with three test sessions (t s) at a test time of
300 time units which is 23% better than Zorian's approach
and 9% better than the approach by Chou et al.

In System S, no power constraints are given and therefore
only test scheduling using initial sorting of tests based on
time is performed. Our approach finds the optimal solution,
see Table 3.

We have also compared our technique with the technique
proposed by Muresan et al. [6]. In this case we use the same
assumption as Muresan et al. which assumes that new tests

A TestA 515 1 319

B Test B 160 1 . 205

C TestC 110 I 23

E TestE 61 I 51

e, F TestF 38 1 21

I 120 2 I Test I 29

1 13 - J Test J 6

K Test K 3 I 9

L TestL 3 1 9

M TestM 218 1 5

y1

e,
L -
e, -
U

scan

testbus

testbus

testbus

testbus

testbus

testbus

testbus

testbus

testbus

A Test N 232 1 319 fp -
N Test0 41 I 50 fP

D TestQ 104 1 39 fP

Table 1 . Characteristics of the industrial design.

can start even if all tests are not fully completed in the
current test session. In all cases our technique achieve better
solutions, see Table 3.

Finally, the results on an industrial design are in Table 3
where the industrial designer's solution is 1592 time units
while our test scheduling achieve a test time of 1077 time
units in all sorting variations which is 32.3% better

All solutions using our technique were produced within
a second on a Sun Ultra Sparc 10 with a 450 MHz processor
and 256 Mbyte RAM.

- m

L 2 B TestP 12 I 205 fp

Our algorithm zodaan Chou er al.
I S

Blocks Time Blocks Time Blocks Time

RAMI. 69 RAMI.RAM3. 69 RL2,RLI. 160
I RAM4.RF RAM4. RF RAM2

2 RLI.RL2 160 RLI.RL2 160 RAM''RoM'' ROM2 lo2

4 ROMI.ROM2 102

Test time: 392 33 1 300

Table 2. ASIC 2 test scheduling.

6.3 Test Resource Placement

In the ASIC Z design all blocks have their own dedicated
BIST structure. Let us assume that all ROM blocks share
one BIST structure and all RAM memories share another
BIST structure; the rest of the blocks have their own
dedicated BIST structure. Using our placement strategy the
test resources in ASIC Z will be placed as in Figure 5.

143

Design Approach Test time Improvement
Chakrabany’s Chakrabany 1204630

design case [41 ours(t) 1152810 4.3%

Muresan 29
Muresan’s

design case
161

ours(p) 28 3.496

ours(t) 28 3.4%
L.1

ours(pxt) 26 10.3%

designer 1592

Industrial o W p) I077 32.3%

design ours(t) 1077 32.346

ours(pxt) 1077 32.3%

Table 3. Results on the designs by Chakrabarty and
Muresan as well as the industrial design,.

6.4 Test Access Mechanism Design

Assume the floor-planning of ASIC Z as in Figure 5 where
each block is placed according to its (x, y) coordinates. For
instance, RAM2 is placed at (10,20), which means that the
center of RAM2 has x-coordinate 10, and y-coordinate 20.
Assume that all tests are scan-based tests applied with an
external tester allowing a maximum of 8 scan chains to
operate concurrently.

In this experiment we allow a new test to start even if all
tests are not completed, see results in Table 4.

The test schedule and the test bus schedule achieved with
initial sorting of tests according to powerxtime and
considering idle power is in Figure 7. The total test access
mechanism length is 360 units and it is routed as in
Figure 6. All solutions were produced within a second on a

Mbyte RAM.
Sun Ultra Sparc 10 with a 450 MHz processor and 256

Initial sorting Test time Test access mechanism -
power 300 360

rime 290 360

powemrime 290 360 -
Table 4. Results on ASIC 2.

l a b C d e

Figure 6. ASIC 2 with test data access mechanism.

Apowerltest bus
power limit

I
I I

, (g)
134 160 236 290

Figure 7. Test schedule for ASIC 2.

7. Conclusions
For complex systems such as SOCs, it is a difficult problem
for the test designer to develop an efficient test solution due
to the large number of factors involved. In this paper we
propose a framework where several test-related factors are
considered in an integrated manner in order to support the
test designer to develop an efficient test solution for a
complex system. An algorithm has been defined and
implemented, and experiments have been performed to
show its efficiency.

References
A. Benso, S. Cataldo, S. Chiusano, P. Prinetto, Y. Zorian, A
High-Level EDA Environment for the Automatic Insertion of
HD-BISTStructures,JE~A,Vo1.16.3,pp179-184,June2000.
Y. Zorian, A distributed BIST control scheme for complex
VLSI devices, Proc. of VLSI Test Symp., pp. 4-9, April 1993.
M. Garg, A. Basu, T.C. Wilson, D.K. Banerji, J.C. Majithia,
A New Test Scheduling Algorithm for VLSI Systems, Proc.
of the Symp. on VLSI Design, pp. 148- 153, November 1999.
K. Chakrabarty, Test Scheduling for Core-Based Systems,
Proc. of Int. Confon CAD, pp. 391-394, January 1991.
R. Chou, K. Saluja, V. Agrawal, Scheduling Tests for VLSI
Systems Under Power Constraints, IEEE Trans. on VLSf
Systems, Vol. 5, No. 2, pp. 175-185, June 1997.
V. Muresan et al., A Comparison of Classical Scheduling
Approaches in Power-Constrained Block-Test Scheduling,
Proc. of fnf . Test Con$, pp. 882-891, 3-5 October 2000.
H. Bleeker et al., Boundary-Scan Test:A Practical Approach,
Kluwer Academic Publishers, ISBN 0-7923-9296-5, 1993.
E. J . Marinissen etal., A Structured and Scalable Mechanism
for Test Access to Embedded Reusable Cores, Proc. of
International Test ConJ, pp 284-293, October 18-23, 1998.
IEEE P I500 Web site. http:l/grouper.ieee.org/groups/1500/.
M. Sugihara, H. Date, H. Yasuura, A Test Methodology for
Core-Based System LSIs, E K E Trans. on Fund. vol. E81-
A, No. 12, pp. 2640-2645, December 1998.
J. Aerts, E. J. Marinissen, Scan Chain Design for Test Time
Reduction in Core-Based ICs, Proceedings of the
fnrernational Test Conference, pp 448-457, 1998.
G. Hetherington et al., Logic BIST for Large Industrial
Designs: Real Issues and Case Studies, Proceedings of the
International Test Conference, pp.358-367, 1999.

144

http:l/grouper.ieee.org/groups/1500

