Hardware Accelerators for Massive MIMO

Hemanth Prabhu, Lund University, LUND, Sweden
Outline

• Why hardware accelerator
• Detector in LUMAMI
• ASIC implementation of pre-coders
• Pre-coding strategies for hardware imparity
• Conclusion
Linear pre-coders and detectors

• Linear Pre-coder

Maximum-ratio transmission (MRT)

\[z = H^H x \]

Hermitian transpose of channel

Zero-forcing (ZF)

\[z = H^+ x \]

Pseudo-inverse of channel

• Similarly uplink can be performed using linear detectors.
Processing Cost

• Complexity break-down for ZF detector/pre-coder

\[H^\dagger = H^H (H H^H)^{-1} \]

Inner matrix multiplication \(- 0.5 MK^2\)
Matrix Inversion \(- cK^3\)
Matrix-vector multiplication \(- N_{int} (K^2 + MK)\)

• Needs to be performed frequently (coherence time) and also over the sub-carriers.

• Hence the demand for hardware accelerators
Neumann Series to perform matrix inversion

\[Z^{-1} \approx \sum_{n=0}^{L} (I_K - X^{-1} Z)^n X^{-1}, \]

requires simple matrix multiplications, and has high degree of re-use.
FPGA Results

- Occupies 270 DSP blocks, 15% of Kintex-7 410T
- Clock frequency of 150 MHz.
- Takes around 0.11 ms to perform detection over 150 sub-carriers.
Pre-coder in ST-28nm

The implementation has 4 modules:

- QR decomposition for pre-coding
- Cholesky decomposition for detection
- PAR aware pre-coding
- JTAG based test logic
Algorithm Evaluation

NS – Neumann Series (L – iterations)

LDL – Cholesky Decomposition

Beta is the ratio of number of base station antennas to users.
Top Level Architecture for pre-coder

Systolic Arrays --- high throughput, high flexibility, simple scheduling, and easy design/verification.

Avoid generating Q matrix and inverse of R matrix explicitly.

Can merge both systolic arrays
Unified Processing Element

Hardware reusability – perform matrix mult and QRD. Highly time-multiplexed
ASIC Results

• Supports antenna configurations up to 128x8 (128 base-station antennas and 8 users).
• Total die area of 1mm^2 with max freq of 250MHz at 1 V, and power consumption of 29mW.
• Performance
 – Performs 8x8 QR decomposition in 72 cycles.
 – Performs 8x8 cholesky based data detection in 325 cycles.
Pre-coding strategies to tackle PAR

- PAR is a well known problem in OFDM based systems, with techniques like ”tone reservation” to tackle it.

- Massive MIMO inherently has a large degree of freedom (antennas) which can be utilized to reduce PAR.

- One technique we coined as ”Antenna Reservation”

- Constant Envelope pre-coding
PAR Aware Pre-coding – Antenna Reservation

- Low complexity and existing architecture can be re-used for this technique.
- Lowers back-off by 3 dB with only 15% increase in complexity.
Constant Envelope pre-coding

Pre-coding also can be seen as

\[\min_x \| \alpha_{Tr} s - Hx \|_2 \]

An additional stringent constraint can be added to completely mitigate PAR.

This stringent constraint based pre-coding can be solved using coordinate-descent method.

Each Processing Element

Area – 0.03 mm^2
Max Freq – 500 MHz
Very power hungry – 3.96 mW
Conclusion

The matrix properties arising in massive MIMO can be utilized to implement efficient hardware.

Neumann series is very good for implementing fast proto-types on FPGA and for hardware re-use.

The large degree of freedom (antennas) is exploited to reduce PAR and can be used to tackle other hardware impairments.