

Nanoelectronics for Communication - A wider perspective -Use of Impulse based systems

Based on input from Lars Ohlsson och Mats Ärlelid

Federal Communications Commission (FCC) spectrum allocations for the US

Motivation

Applications at 60 GHz and above

Benefits of Nanotechnology

• Improved performance using III-V technology

• New approaches for signal generation and detection

Impulse Radio at 60 GHz

- Robust Simple modulation
 - OOK, on-off keying
 - PPM, pulse position modulation
- High bit rate Utilises alot of bandwidth
 - 7 GHz bandwidth available
- Limited range Allows reusage of spectrum
 - Pathloss, proportional to prapagated wavelengths
 - 80 dB pathloss @ 60 GHz compared with 52 dB @ 2.4 GHz (4 meters)
- Small form factor Wavelength is 5 mm @ 60 GHz
 - Antennas, typically $\sim \frac{1}{2}$ wavelength
 - Inductors, typically << wavelength</p>

High-Speed Wireless Communication

<u>Application trade-off:</u> Size of data **packets – range –** – allowed **latency** – number of **users**

Multiplexing – Coexisting Networks

- Multiple Access Coding Multiplexing
 - Coexisting networks on a spectral bandwidth.
 - Hopping provides better security and fidelity.
- Frequency Division Multiple Access (FDMA)
 - The band is divided into sub-bands
- Time Division Multiple Access (TDMA)
 - The band is used in different time-slots
- Code Division Multiple Access (CDMA)
 - A code-sequence with both time and frequency multiplexing is used for each channel

Example: Bluetooth

Bit rate: 3 Mbps Carrier frequency: 2.4 Ghz Range: 10 m Maximum number of piconets ~10

Impulse radio

Signal lacks continuous carrier – Information is transmitted "digitally".

Ultra wideband

Bit rate: 480 Mbps Range: 3 m Maximum number of piconets: 3 The power is smeared out over a wide band

Coexists with other systems without degrading their performance (ideally)

Multipath Fading can never occur over the whole band

New window – new opportunities

Resonant tunneling diode

0

Nanotechnology from Lund

The GTD Pulse Generator

Z

Comparing with other techniques

2 Gpulses/s OOK @ 60 GHz

- 100 ps långa pulser
- 162 mV_{pp}
- 59 GHz centerfrekvens

2.08 Gpulses/s TH-PPM @ 60 GHz

But we also need antennas!

Longwave to THz

What Radiates, and Why?

- The Antenna Function
 - Convert Energy
 - IV to EM-wave (Transmitter)
- Example: Dipole Antenna
 - V projected to E-field
 - Electrically large
 - Charge imbalance
- "Half-wave" is enough
 - L=1,3,5... x λ/2

Patch Antenna

- Compact
 - Easy to integrate
- Easy to Fabricate
 - Milling or lithography
- Thin Substrate
 - h<<λ
 - Not possible at high frequency!

Lund University / Dept. of Electrical and Information Technology / May 19, 2014

W 50

ground

W

'qw

 h_{1}

h<<λ

dielectric (ɛ,)

patch

© emtalk.com

Efficient Millimeter-Wave Antenna?

- Conventional Antenns are Inefficient and Hard to Fabricate
 - Substrate is significantly thick
 - Scaling don't allow milled antenna
 - On-chip antenna "radiates" into substrate
- Solution
 - Design a resonant mode for radiation

Lund University / Dept. of Electrical and Information Technology / May 19, 2014

Don't struggle against the physics, let it do the job for you instead!

Dielectric Resonator Antenna (DRA)

- Utilise a Mode for Radiation
- Chip-Antenna on Carrier

Slot-fed DRA

III-V Semiconductor DRA on Carrier

- Circuits on the Antenna
 - Frequency-Conversion
 - Amplification
 - Energy Sampling

Antenna Integrated with Pulse Generator

- Pulse Generator on DRA
- Transmitter
 - 60 GHz
 - 100 ps
 - 4 mW

From Research to Enterprise

- Lund University
 - High-Speed Communication
 - Spectroscopy, Scattering, etc.
- Acconeer AB (founded winter 2011/12)
 - Non-destructive Material Qualification
 - Security Screening
 - Industrial Process Control

www.acconeer.com

