Carbon Nanotube Electronics

Johannes Svensson

Nanoelectronics FFF160

Outline

- Basics of graphene and CNTs
 - Structural
 - Electronic
 - Production of CNTs

• Advantages of CNTs for FETs

- Gate length scaling
- Coaxial gate
- High-k compatibility
- Band-to-band tunneling

• Challenges of CNT integration

- Contacts
- Doping
- Positioning
- Chirality control

• Towards integration

- Flexible electronics
- High frequency performance

Outline

- Basics of graphene and CNTs
 - Structural
 - Electronic
 - Production of CNTs
- Advantages of CNTs for FETs
 - Gate length scaling
 - Coaxial gate
 - High-k compatibility
 - Band-to-band tunneling
- Challenges of CNT integration
 - Contacts
 - Doping
 - Positioning
 - Chirality control
- Towards integration
 - Flexible electronics
 - High frequency performance

Hybridisation of carbon orbitals

- 4 valence electrons
- 1 s-electron can "mix" with 1-3 p-electrons
- sp^2 have three σ -bonds in a plane + π -bond
- sp³ have four σ-bonds

Carbon allotropes

Figure 2.1: a-d) Crystal structure of a few carbon allotropes a) Diamond b) Graphite c) C_{60} d) CNT. e) sp^3 hybridised orbitals forming σ bonds. f) sp^2 hybridised orbitals forming σ bonds and the remaining p_z orbital giving rise to π bonds.

Graphene is mother of all sp²-carbon

Graphene band structure

- Semimetal: no gap and zero DOS at E_f
- Only π-bands are interesting
- Linear dispersion near E_f
- Conduction and valence bands meet at the K-points

Rolling graphene

- Cut graphene into narrow strip and roll into tube
- Different structure depending on direction of cut
- Armchair, zigzag, chiral CNTs
- Chirality defined by index (n,m)

$$\vec{C} = n\vec{a}_1 + m\vec{a}_2 \qquad n = m \quad n = 0$$

$$\vec{C} = n\vec{a}_1 + m\vec{a}_2 \qquad b \text{ armchair } zigzag \quad chiral \\ \vec{D} = n\vec{a}_1 - \vec{D} \quad \vec{D}$$

Confinement of electron wavefunctions

- Have to have continous wavefunction around circumference
- Periodic boundary conditions
- Only some wavevectors k_{\perp} = 2n π /C with n=1,2,3... allowed

Diameter dependence of confinement

large diameter = small energy difference

small diameter = large energy difference

Confinement of electron wavefunctions

- Slices in graphene dispersion relation of allowed wavevectors around circumference
- Position of slices depends on chirality
- Small diameter CNT have larger distance between slices

Allowed wavevectors

- n-m = 3i with i=1,2,3... -> slice goes through K-point -> metallic CNT
- n-m ≠ 3i -> slice does not go through K-point -> semiconducting CNT with parabolic bands

Subbands

- π-bands split into 1D subbands of increasing energy
- Mainly important at high gate voltages or for optical transistions
- Wavefunctions just schematic, need TB calculation

Band gap vs diameter

- Linear dispersion of graphene gives E_g=0.8/d [nm]
- Curvature induced gap of 10's of meV in most of the "metallic" CNTs
- Only armchair CNTs truly metallic

Electrical characteristics

- semiconducting: strong gating effect
- metallic: no gating effect
- small gap semiconducting: some gating effect

Band diagrams

- Schottky barriers at metal contacts
- Tunneling through SB determines transport
- Negative gate voltages -> hole transport
- Positive gate voltages -> electron transport
- Similar SB heights -> ambipolar characteristics

Mobility vs diameter

- Lower curvature of bands for smaller diameter -> mobility proportional to d²
- μ >100000 cm²/Vs at 50 K

All CNTs are different

- 1/3 metallic or small gap
- 2/3 semiconducting with different gap

Density of states

- Van Hove singularites with high DOS at band edges
- Can be seem in STM or capacitance measurements
- Strong influence on optical properties

Scattering

- Elastic scattering have to reverse direction of electron

- Acoustic phonon scattering dominates at low bias and low temperatures and gives mfp > 300 nm -> ballistic transport possible
- Optical phonons scattering dominates at high bias and gives mfp = 15 nm
- Potential variations or phonons in substrate under CNT can also scatter electrons

Ballistic transport

- Channel length << mfp -> no scattering in channel
- Mobility not important but injection velocity is
- R_{min} = 6.5 kOhm in 1D system with 4 modes -> Ballistic transport

Production of CNTs

 Arc discharge: high voltage creates spark between graphite rods

• Laser ablation: laser vaporises graphite target

• Chemical vapor deposition: metal catalyst particles decompose hydrocarbon gas

Grown CNTs

- d=1-4 nm, L>10 cm
- Tangled web of CNTs
- Can be imaged using SEM, TEM, AFM, STM
- Deposit from suspension or grow on device substrate

Outline

- Basics of graphene and CNTs
 - Structural
 - Electronic
 - Production of CNTs
- Advantages of CNTs for FETs
 - Gate length scaling
 - Coaxial gate
 - High-k compatibility
 - Band-to-band tunneling
- Challenges of CNT integration
 - Contacts
 - Doping
 - Positioning
 - Chirality control
- Towards integration
 - Flexible electronics
 - High frequency performance

Gate length scaling

- + Increased speed \rightarrow lower gate delay (CV/I), higher g_m and f_T
- + Reduced power consumption -> energy delay product (CV/I \cdot CV²)
- + Enables higher packing density
- Short channel effects when source and drain influence potential in the channel

Need to reduce gate dielectric thickness, increase dielectric constant or change design.

Different gating geometries

- $L_g > 5\lambda$ to avoid short channel effects
- λ is reduced by higher gate dielectric constant or thinner channel
- More wrapping of the channel gives lower λ
- CNTs and graphene allows for ultimate gate length scaling

$$\lambda_{1} \approx \sqrt{\frac{\varepsilon_{ch}}{\varepsilon_{ox}}} t_{ox} t_{ch}$$

Gate length scaling

- No short channel effects down to L_g=15 nm
- I_{on}=10 μA
- on/off ratio = 10^5
- S=90 mV/dec also for short devices

Franklin et al. Nature Nanotechnol. 5, 858–862 (2010)

High k gate dielectrics

- No dangling bonds give nice interface
- Difficult to use ALD directly, dielectric grows only on substrate surface

Coaxially gated CNTFET

- Wrap CNT in Al2O3 and WN using ALD
- Poor subthreshold swing due to interface charge and short channel effects

Chen et al. IEEE Electron. Dev. Lett. 29, 2 (2008)

Coaxially gated CNTFET

- Control p or n-type by different high-k

Franklin et al. Nano Lett. 13 (6), (2013)

Surface scattering

- Need to reduce channel thickness to be able to reduce L_g
- Mobility of SOI MOSFETs is lowered with t_{sol} due to surface scattering
- Not a problem for CNTs

Improving the inverse subthreshold slope

- "conventional" FETs rely on thermionic emission over a barrier
- $S \ge ln(10)k_BT = 60 \text{ mV/dec at RT}$
- A decreased S enables a lower V_{dd} while keeping the same on/off ratio -> increased speed and reduced power consumption

 $S = \left(\frac{dlog_{10}(I_d)}{dV_a}\right)^{-1}$

Band-to-band tunneling

- λ is a few nm in CNT > sharp band bending
- Low effective mass
- Long mfp
- Same effective mass of electrons and holes
- Direct band gap

Electrical characteristics

- Back gate to form p-type regions
- Al gate to switch FET
- Ambipolar characteristics
- S=40 mV/dec for the n-branch
- Band-to-band tunneling at the border between the gates

Temperature dependence

- S <u>is not</u> reduced with temperature for the n-branch -> tunneling
- S <u>is</u> reduced with temperature for the p-branch –> thermionic emission

Mechanism of S reduction

- Only high energy tail of Fermi-Dirac distribution is transferred in thermionic emission or in tunneling through Schottky barrier
- Band-to-band tunneling "filters" the Fermi-Dirac distribution since the band edges "cut off" the high energy tail
- For BTB tunneling, small movement of bands give large change in current i.e. small S

An improved tunneling CNTFET

- n-i-p doping
- Only one tunneling event
- Avoids charge pile-up in central region
- Diffcult to make with a CNT

Three types of CNTFETs

Comparing devices

- For thin gate dielectrics the BTB tunneling FET can reach S<60 mV/dec
- Very low I_{on} in n-branch

Outline

- Basics of graphene and CNTs
 - Structural
 - Electronic
 - Production of CNTs
- Advantages of CNTs for FETs
 - Gate length scaling
 - Coaxial gate
 - High-k compatibility
 - Band-to-band tunneling

• Challenges of CNT integration

- Contacts
- Doping
- Positioning
- Chirality control
- Towards integration
 - Flexible electronics
 - High frequency performance

Schottky barrier basics

- Potential barrier between metal and semiconductor
- Gives rectifying behaviour
- Change metal work function -> change SB height
- Too simple !!!

$$\Phi_{SBe} = \phi_m - \chi$$

$$\Phi_{SBh} = \chi + E_g - \phi_m = I_s - \Phi_m$$

$$E_{Fm} = E_{Fs} = E_{Fs}$$

$$E_{Fm} = E_{Fs} = E_{Fs}$$

Fermi level pinning

- Interface states form dipoles that shift bands
- SB height often independent on metal work function

$$\Phi_{SBe} = \gamma (\Phi_m - \chi) + (1 - \gamma) (E_g - \Phi_0) \qquad \gamma = \frac{1}{1 + \frac{qD_{it}\delta}{\epsilon_i}}$$

Schottky barrier to CNTs

- Theoretically predicted that interface states have no influence on CNT-metal contacts
- Increasing CNT diameter gives lower barriers
- Increasing metal work function gives lower hole barriers

Different contact metals

- Increasing I_{on} with larger CNT diameter
- Increasing I_{on} with higher work function
- No or small effect of Fermi level pinning

Metal work function impact

Can form n or p-type devices using different metals ¢Τi [¢]Pd 5.1 eV Pd best for p-type -Sc best for n-type -10-6 10-7 VOUT 10-8 P (A) |₀ 10⁻⁹ Oum SiO₂ 10-10 back gate 10-11 Mg VDD VIN GND

Imaging Schottky barriers

- Laser generates e-h pairs
- Pair separated by electric field -> photocurrent
- Scan laser spot and change gate voltage
- Obtains size of depletion width

Freitag et al. Nano Lett. 7, 2037–2042 (2007)

Doping

- Important for CMOS and good contacts
- Substitutional doping is difficult
- Use charge transfer doping
- Filling with C₆₀ p-dopes
- Filling with Gd@C₈₂ n-dopes

CNTFETs in air

- Physisorbed oxygen p-dopes CNT
 OR
- Increases metal work function of contact

Potassium doping

- K physisorbed on CNT n-dopes by charge transfer
- p-branch is lowered, n-branch is increased, V_{th} shifted
- Not stable in air

Doped contacts

- Dope outer CNT segments using K
- Removes influence from Schottky barrier at metal contact

Logic gates

- Inverter from p and n CNTFET on the same CNT
- Use K doping or annealing to form n-CNTFET

Derycke et al. Nano Lett. 1, 453-456 (2001)

Positioning

- Multiple parallell CNTs in each FET increases I_{on}, g_m
- Dense packing reduces parasitic capacitances
- Need to control position and orientation of CNTs pre- or postgrowth

9.9 µm

Spin-coating

Dielectrophoresis

CVD

Electric field alignment

- Apply voltage to electrodes during CVD
- Dipole in CNTs align them with field lines
- Difficult to implement for large scale circuits

"epitaxial" alignment

- CNTs align in certain crystal orientations of sapphire or quartz substrates
- CNTs align at atomic steps
- Strong attractive interaction between CNTs and Al atoms
- 99.9% are aligned within 0.01°
- 10 CNTs / μm

Chirality control

- Metallic CNTs in FETs -> leakage currents > poor on/off ratio
- Need chirality control or at least control of CNT type
- Need to either:
 - Selectively grow only metallic or semiconducting
 - Separate the two types
 - Selectively destroy one type

Selective growth

- Anneal metal catalyst in Ar, He or H₂
- Increased metallic CNT part from 33% to 91%
- Strong facets when annealed in He
- Steps in particle important for chirality control?
- Not so good or well understood

Harutyunyan et al. Science, 326, 116-120 (2009)

Separation by dielectrophoresis

- Apply AC voltage between electrodes
- Apply drop with CNTs
- Metallic CNTs are attracted to electrodes and removed from suspension
- Only small scale (nanograms)

Separation by centrifugation

- Centrifuge CNT suspension at 64000 rpm -> 200000 g
- CNTs are sorted according to density
- Pick up some part of vial and repeat
- 97% of CNTs are within 0.2 Å of mean diameter

Selective destruction

- Apply gate voltage to switch off semiconducting CNTs
- Apply high S/D voltage
- Metallic CNTs are heated and destroyed
- Difficult for large scale circuits
- May destroy nearby CNTs

Selective destruction

Outline

- Basics of graphene and CNTs
 - Structural
 - Electronic
 - Production of CNTs
- Advantages of CNTs for FETs
 - Gate length scaling
 - Coaxial gate
 - High-k compatibility
 - Band-to-band tunneling
- Challenges of CNT integration
 - Contacts
 - Doping
 - Positioning
 - Chirality control
- Towards integration
 - Flexible electronics
 - High frequency performance

Flexible electronics

- Transfer aligned CNTs to plastic substrate
- Highest p-channel mobility (480 cm²/Vs)
- No degradation when bent

Flexible electronics 2

Yu et al. Nano Lett. 11, 1344–1350 (2011)

Transfer techniques

	Solid-phase	Liquid-phase	Gas-phase
CNT		c	e
Graphene	b	d	f No such technique
Process	CNT/graphene synthesis on rigid substrate ↓ Thin film transfer to flexible substrate ↓ Subsequent processes of transistor fabrication	CNT/graphene solution preparation Thin film formation by spin-coating, printing Subsequent processes of transistor fabrication	CNT synthesis/collection in the gas phase Dry transfer thin film to flexible substrate Subsequent processes of transistor fabrication
Feature	 On/off ratio control by post-treatment after thin film formation Device dimension limited by size of rigid substrate Demo for flexible electronics 	 Semiconducting inks prepared by purification, dispersion and separation process Deterioration of material quality during solution process High-throughput, large area manufacturing by R2R, inkjet printing 	 CNT density control by adjusting collection time As-grown CNT without contamination by solution Challenge in sorting CNT, only sparse CNT thin film in the channel Large area, continuous, fast and scale-up process

Requirements for RF applications

- on/off ratio not so important - Need high g_m and low g_d -> only semiconducting CNTs - Minimize paracitic capacitance / CNT -> dense array of CNTs $f_T = \frac{g_m}{2\pi} \frac{1}{(C_{gs} + C_{p,gs} + C_{p,gd})((R_{p,s} + R_{p,d})g_d + 1) + C_{p,gd}g_m(R_{p,s} + R_{p,d})}$

Table 1 | Ideal parameter values for making a high-frequency field-effect transistor from single-walled nanotubes.

Property/parameter	Target value or range	Justification	
Diameter	1.5-2.0 nm	Current is largest in this range ⁵⁴⁻⁵⁵ .	
Chirality	Semiconducting and same (n,m)	To obtain identical transport properties.	
Purity	>99% semiconducting nanotubes	No metallic nanotubes for high gain and high f_{\max} .	
Length	>1 µm	Nanotube length must be longer than the intended channel length.	
Density	>10 nanotubes µm ⁻¹	Reduces the parasitic capacitance per nanotube; increases current carrying capacity; improves impedance matching.	
Alignment	All parallel	Results in higher transconductance and denser nanotube packing.	
Uniformity	Wafer scale	Essential for large-scale processing.	

Rutherglen, Nature nanotechnol. 4, 811, 2009

RF performance

- Diffcult to measure on single CNT due to impedance mismatch
- Use dense net of separated semiconducting CNTs
- Extract current gain from S-parameters
- f_T=80 GHz
- Much better than "original" CNT material

CNT computer

- 178 p-type CNTFETs. Aliged growth -> transfer -> burn-off
- Not CMOS
- Multitasking operating system for counting and number sorting. 1980's level.

Shulaker et al. *Nature*, **501**, 526-530 (2013)

Summary

- Individual CNTs have great electronic properties
 - High mobility
 - coaxial gate + thin -> good scaling
 - Compatible with high-k dielectrics
 - No surface scattering

• CNTs are difficult to integrate in large scale circuits

- Schottky barriers at contacts
- Unstable doping
- Poor position control
- Semiconducting / metallic mix