An introduction to OFDM — modeling and implementation
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OFDM signal(t) = gyec(t) Yh=g Re{are/?™xt} = g, (t)Re{YF_§ are/?™rt} =

= grec()Re{TEZS agel?" ot 0ty = g, (¢)Re{(TRZ4 arel? G0t at)ei2mhrct} =

= Grec (f)RE{(Zk:u ﬂkejzﬂgkfa t)g,rzrrfmt}

OFDM signal(t) = = gyoc(t)Re{(Xh_g are’ 2™ (K-D/2HOTat) g 120fct ] —

— gl EC(I-)RE [(E(K E-I:;le}!fz HE+(K_1)H?2€j2HIfdt)Ejzn‘fct} .K iS Gdd
OFDM signal(t) = = grec (t)Re{(XX3 ay e/ (—(K=2)/2+K)fat) g i2frct] —
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y(t) = Re{(ZF=5 ayel2moxTat)el2nfret} = Re{x(t)e/2mre) @2)

X(f) - xRe(t) +jx1m(r) - J;ckz_é akgﬁﬂgkrﬂt ’ 0=t= Tobs (2'3)

y(t) = Re{x(t)e2™ret} = xp, (t) cOS(2Mfyet) — Xy (t) sin27f,t)  (2.5)

j‘;amp:N/Tabs:Nfd = Hfd 2-]2)

x, = x(nT,ps/N) = YK Lq, e/2m9x®/N  n=01..,(N—1) (2.13)

Observe that the right hand side of Equation (2.13) actually gives us a way to create the desired
samples xg, X4, ..., Xjy—, of the complex baseband OFDM signal x(t)!
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X(v) = LNZg xpe/2mm (2.14)
Xm = X(v = m/N) = EN=3 ey J2mmni,

m=01,..,.N—1 (DFT) (2.15)
Xy = = I Xped2mmn/N =01, N -1

(IDFT) (2.16)
Consider as an example the case K=8 and N=12. In this case k,. = 3 and gx_, = 4. and the desired

sequence Xy, Xy, ..., X;; then equals: Nas, Nay, Nacz,Nag, Na,0,0,0,0,Na,, Na,, Na,. See also
Figure 6.
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Xy = = XN Xpel2mmn/N =01, ., N—1 (IDFT) (2.16)

Hence, as soon as we have determined the samples in the frequency domain Xy, X4, ..., Xy_1 we
should use them in the size-N IDFT in Equation (2.16) to create the desired sequence of fime-
domain samples x! The values X,, will be determined in step 3.

In practice. N is chosen to be a power of 2 since fast Fourier transform (FFT) algorithms then can be
used to significantly speed up the calculations in Equations (2.15) - (2.16).
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Let us use Equation (2.13) to establish the connection between the sequences a,, a,, ..., ag_; and
Xo, Xy, ..., Xy_1. We rewrite Equation (2.13) in the following way.

j2mgp-n
“Tubs) _ wK—-1 I" "9k

ji2rm(got+kIn/N _
;. N EI, (1 el 0
N k=0 “k

xn=x(

_ v gp—1 i2m(go+k+N)n/N K-1 i2m(go+kIn/N —
— ZkZD nkg} (g0 n/ + Zk=—gﬂ. ﬂkgj (go n/N —

= YNl N Qe (gy i) 4 I, eI/ =
Em b Xmel2mmn/N (2.18)
Inspection of Equation (2.18) yields the relationships below:
Xp=Nap_ o, if 0<m<gg, (2.19)
Xm = 0. if gg1+l=m=ge+N-1 (2.20)
Xm =Napm_(go4n)-1f go+ N=m<=N-1 (2.21)
Digital communications - Advanced 6
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As an example: Consider the WLAN standard IEEE 802.11n. see the example on page 7. Since

K=117 then k,. = —gg = % =58 and gx_, = % = 58. Furthermore. assume that N=128. From

Equations (2.19) — (2.21) it 1s then concluded that the sub-sequence X,, X4, ..., Xcg contains the QAM
signal points dzg, Acg, ..., ;1 16. the sub-sequence X.q, X, ..., X4 contains only zero values. and the
sub-sequence X,q, X74, ..., X127 contains the QAM signal points ag, ay, ..., 0.
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XE — Nﬂ'krc""l I - 0,1 "'-"-gff—l (22-')

X—krc+N+k — Nﬂk k — 0.1. (k'i"f: - 1) (229)

If we first construct the size-N sequence Nag. Nay, ... Nag_4.0.0....0, and then “left-rotate™ this
sequence My, positions ( or “right-rotate™ this sequence (gg + N) positions), then the desired
sequence Xy, Xy, ... Xpy—q in equations (2.20)-(2.23) is obtained!

Consider as an example the case K=8 and N=12. In this case k,. = 3 and gi_, = 4. and the desired
sequence Xy, Xq, ..., X1 then equals: Nas, Nay, Nac, Nag, Na;,0,0,0,0,Na,, Nay, Na,. See also
Figure 6.
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The final step 1s to calculate the size-N IDFT.,

m=0

Xy = %Eﬁ—l X, el2mmn/N n=201..,N-1 (2.30)

In practice. N is chosen to be a power of 2 since fast Fourter transform (FFT) algorithms can then be
used to significantly speed up the calculations in equation (2.30).

Equation (2.30) is the desired final expression to compute the discrete-time signal x, i.e. the N fime-
domain samples of the complex baseband OFDM signal x(t). Equation (2.30), i.e. the size-N IDFT,
is computationally very efficient when implemented using FFT algorithms (if N is chosen fo be a
power of 2). The sequence Xo, X, ..., Xy_1 s given by Equations (2.27) and (2.29) or alternatively
by Equations (2.19)-(2.21). See also the construction (“rotation”) given above. See also Figure 7 on
page 27.

The (N — K) zeroes in the sequence Xy, X;, ..., Xy_; may be interpreted as using zero-valued signal-
points at baseband sub-carrier frequencies located at the edges but outside of the OFDM frequency
band.
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3. The Cvclic Prefix (CP) and Digital-to-Analog (D/A) conversion

Based on the discussion about periodicity above let us therefore construct a new size-(L+N) vector u
as a so-called periodic extension of the size-N vector x. This means that the L [ast samples in x are
copied and placed as the first L samples in u. The remaining N samples in u are identical to x. This
means that,

Ug = XN—Lew--mUp_q3 = XN—q1- U} = Xgeenoo UpaN—1 = XN—1- (3.1)

The construction of the vector w above implies that the first L samples in u are 1dentical with the last
L samples in u . and this reflects the periodicity discussed above.

The duration of the OFDM signal interval 1s T. and it can be expressed as.

(L+N)Tops
T === Tep + Tons (3-2)
Digital communications - Advanced 10
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The vector uw in equation (3.1) contains (L+N) time-domain complex samples of a complex
baseband OFDM signal defined over the entire OFDM signal interval 0 <t < T_. This complex
baseband OFDM signal is here denoted u(t), and based on the previous discussion in this section,

the OFDM signal u(t) is,

U(t) = Uge (t) + jum () = XKL g ef2moxfa(t-Tce) | g <t < T, (3.3)
s(t) = Re{u(t)e/2™ret] = up, (t) cos(27f,.t) — Uy, (t) sin(27f, .t) (3.5)
#  Rell —uR“- oA — ,5!“} ﬂnahs&;c;;ﬂn;:;:zr;mnhe
X.J,.il.’,,...,xl,-_L X u
— IDFT o AddCP
L mi} | Uy T —-sqft] Analagn?;:nr:?gﬂ:mm

Figure 7. Block diagram 1llustrating the operations in the digital domain, and the fransition to the
analog domain. The IDFT 1s given in Equation (2.30) (and in Equation (2.18)).
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Analog l-component of the

- e
Rel} + o —s5;(t) OFDM signal
X u
Ko X1, ""x""‘L—h- IDET B AddCP
u Analog Q-compont of the
L o mi} | "Imo  pa _.SQ (r] OFDM signal

Figure 7. Block diagram 1llustrating the operations in the digital domain, and the fransition to the
analog domain. The IDFT 1s given in Equation (2.30) (and in Equation (2.18)).

s(t) = s;(t) cos(2nfret + @) — 5o(t) sin(2mfpct + @) (4.1)

cos(2nf.t + ¢)
.
s; () ’® ] \‘/

f’ﬁ“\l s(t} o Power Antenna

. amplifier | coupling unit

s(t) Q? |

—sin(2nf .t + ¢)

h J

Figure 8. Block diagram illustrating frequency up-conversion (mixer stage) to the carrier frequency (K

15 odd), the power amplifier, and the antenna coupling unit. The OFDM signal s(t) 1s given in
Equation (4.1).
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Section 5: The multi-path (linear filter) channel. and the additive white Gaussian noise (AWGN)

INPUT OFDM: As(t) = ARe{(X52 aje/2m9rfalt=Ter)yoi@nfret+d)} 0 <t < T, (5.10)
or alternatively as,

INPUT OFDM: As(t) = ARe{YX 2 a, e/ ™ kt+01)} 0

IA
=
| )

< T, (5.11)

OUTPUT OFDM: z(t) = ARe{(Xico arH(fy)e /2™ ok a(t=Ter)yoiCrfret+ &)} Top < t < T, (5.12)
or alternatively as,

OUTPUT OFDM: z(t) = ARe{X; ¢ arH(f;) e/ G /kt+6i)} Tep<t< T, (513)

Digital communications - Advanced 13
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6. The Receiver: Frequency down-converting, sampling (A/D) and the DFT

r(t) = bycos(2mfpt) — bgsin(2mfgt) +n(t). 0=t =T

Py (t) = cos(2mfpt)/C, 0=<t=T
Pa(t) = —sin(2mfgt)/C, 0=t=T
= [ r(t)p,(t) dt = Cb;+ny rp = [3 r(t)a(t) dt = Chg +ny
r=r,+jr, = [ r(t)e 7275t dt/C = R(f3)/C = Cb +n (6.8)

It 15 now very important to observe in equation (0.8) that the received noisy signal point r can be
found by calculating the Fourier transform R(f) of the received signal r(f) over the time
interval 0 = t = T, and then sample R{f) at f = f; to obtain K(fz). As will be seen later on,
using the DFT in an OFDM receiver can be viewed as a natural extension of this result. This
concludes the example, and it is time to focus on frequency down-converting to baseband.

Digital communications - Advanced 14
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Figure 10. Illustrating the first part of the receiver: the antenna coupling umit, band-pass filter, low-
noise amplifier (LNA) and a homodyne unit for frequency down-conversion and extracting the

baseband signals r;(t) and rg (). It 15 here assumed that K 1s odd for which f.. = f..

?f(tj +jrg (i_‘) = Iff;{J)- akHEqu)Ejznﬂkfﬂ{t—TCP] + W[t), TCP E t c_‘,: Ts

Hoq(fi) = Hogre = AH(fi)e® Gy (fi)e %Gy (fie — fre = Orfa)/2
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Ti(t) . thecP | Tl 5

F R Rearranging

and remaowe —
r ! I ¥ (M) naise | it rd j‘fﬂ + n
samples

r f, — D ) Remaove Q s Equ.{6.22) | samples |
;Q[ ) the CP |

Figure 11. Tllustrating sampling. removal of the CP, and the size-N DFT in the receiver to extract the K

received distorted and noisy signal pomts collected in the size-K vector ry4.

1n = 17((L + N)Tpps/N), n=01,..,N—1

Tom = To((L+n)Typs/N), n=01,...,N—1

r=r; ‘|‘er (619)
R(v) =YN 1y g—j2mvn (6.21)
R, =R(v=m/N)=YNty e i2nmn/N m=01.., N—-1
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R=X,+w, (6.24)

(Ha)tr = (:ﬂﬂHeq,l) anqul -nH—lHquK—l:} (625}
X, = NQ,Ha (6.26)
re =—0Q,R=Q,QHa+-Qw,=Ha+n (6.28)

Observe that the elements in the size-K column vector r 4 in Equation (6.28) are the desired
received distorted and noisy signal points,

Yak = GHegr + M, k=01,...,(K—1) (6.29)

The results in Equations (6.28)-(6.29) are extremely important!

Digital communications - Advanced 17
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For the special case of uncoded OFDM (though rarely used in practice)

P, =4 (1 — )Q‘ IminiEok ) _ (1 — #)2 02 [Ammkfek) 401 K—1 (630)
sk y'lrﬂTk ND V{-ﬁ"TFr Nu ] gl weey .

where dZ;,; is the normalized squared minimum Euclidean distance in the received QAM signal

constellation with index k and.

d2 _ 3log:(My)
mink — Mp—1

(6.31)

Furthermore, € denotes the average received signal energy per information bit in the recerved
QAM signal space with index k. and €, is proportional to |H. x|°.
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Chapter 9

An Introduction to
Time-varying Multipath
Channels

?{ILJ — Z {}fﬂ_[;f;]*g(f — Tﬂ{f-J} (Q*J'/]
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Figure 9.1: a) The digital communication system: b) A scattering medium;:

¢) Illustrating the fading envelope e, ().
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s(t) =cos((we+wi)t), —o0o<t<oc

() = Z ap(t) cos((w, +wi)(t — T (t))) =

M

= [Z 0t (1) cos((we + wy Jrn{tjn] cos((we +wi)t) —

"
iy o
"

z1(t) :HH.E[: f1.t)/2

[Z ay, (t) sin(—(we 4+ w )™ {t}]] sin((we + wi)t)

’tf?(fj:-{;-‘rhn':fl-t:'.f{z
z1(t) cos((we + w1)t) — zo(t) sin((we + w1)t)
= e, (t)cos((w. +wi)t +0.(t))

Compare with the time-invariant QAM-result:

A, +jB. = (A4 jB)H(f.) = /A2 4+ B2|H(f.)|e!VToUe)) =
= '::*4 +?B][HRr[ff:' +jHIm I:ff”

Digital communications - Advanced
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s(t) = cos((we +wy)t) , —oo <t <o (9.2)

2t) = Y an(t)cos((we +wi)(t—Ta(t))) =

= e,(t)cos((we +wi)t+6.(1)) (9.3)

ez (D)

W VY

Observe that the quadrature components zj(f) and zg(t) In (9.3) are time-
varying. Hence, the output signal z(f) is not a pure sine wave with frequency
fe+ fi. This 1s a significant difference compared with the linear time-
invartant channel. It is seen in (9.3) that the quadrature components depend

Digital communications - Advanced 22
course: week 3



2(t) = Y an(t)cos((we +wi)(t —Ta(t))) =

= z1(t) cos((we + w1)t) — 2g(t) sin((we + w1)t)
= e(t) C'OS((UJC +wy)t+ 0, (tj)

Throughout this chapter it is assumed that 2;(f) and 25(t) may be modelled as
haseband zero-mean wide-sense-stationary (WSS) Guaussian random processes
(with variances o7 = r:rf;, = ¢2). This is a commonly used assumption when the
munber of scatterers is large, implyving that central limit theorem arguments can
he used [43], [65], [68], [30]. For a fixed value of ¢, this assumption leads to a

Rayleigh-distributed envelope e, ().

e.(t) = /23(t) + 23(1) (9.4)

. E.l _52 /b . . y
Pe. (x) = e "oz = 0, Rayleigh distr. (9.5)
b= E{e3(t)} = 20% = 2P, (9.6)

and a uniformly distributed phase 6,(f) (over a 27 interval). The zero-mean
assumption means that there is no deterministic signal path present in 2(t). If a

Digital communications - Advanced
course: week 3
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9.1.1 Doppler Power Spectrum and Coherence Time

Rp(f) = Fl(c.(T))

1 L .

C. (1) = 5 {zr(t +7) + jzo(t + 7)) [21(t) — jzo(t)]}
R“':f:IZE I:RI":\f_‘_ffr“‘f],:'+Rﬂi\f_fft_f1,:',:'

©

-

RD[D F'l EZ[T:I |
—
F
0 d 0
——— -E-.
Bp teoh= 1 Bp

Figure 9.2: Illustrating the Fourier transform pair ¢, (7) «—— FEp(f).

teoh = ]-fl BT’

Digital communications - Advanced
course: week 3



If the channel is slowly changing, then the coherence time is large. Note that
zr(t+7) and z7(t) (also zo(t +7) and 24 (t)) are correlated over time-intervals
7 (much) smaller than the coherence time t.,5. Hence, input signals within such
intervals are therefore affected similarly by the fading channel. On the other
hand. input signals that are separated in time by (much) more than t.,;, are
affected differently by the channel, and at the output of the channel they become
essentially independent of each other. If the former case apply (time flat fading),
for a given time-interval, then we say that the channel is time-nonselective.
and if the latter case apply, then the channel is said to be time-selective.

Digital communications - Advanced 25
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9.1.2 Coherence Bandwidth and Multipath Spread

1 - |
,ZI:E':] - z':flvt) = Hﬂe(flvt]cﬂs((wc +'-‘-"‘1:]t:] I HIm

B 5 (f1,t) sin((we + w1 )t)
e S e e——
zr(t) zg(t)

(9.9)
What can be said about the output signal z(f) if another frequency fo = fi 4+ fa
is used, instead of f;7 Are different frequency-intervals, in the input signal
spectrum, treated differently by the time-varyving multipath channel? To answer
these questions the correlation between z( f1.1) and z( fi + fa,t) can be found by

|Ez,freq{fi;} F-l cp(T)
—_—
F
- f. — T
0 A -
—— —
feoh Tm

Figure 9.3: Illustrating the Fourler transform pair ¢, (7) «— . freqlfa).
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course: week 3

26



The coherence bandwidth f.,n of the channel is defined as the width of
the autocorrelation function ¢, greq(fa), see Figure 9.3. Note that frequencies
within a frequency-interval (much) smaller than the coherence bandwidth f..p
are correlated, and they are aftected similarly by the fading channel. On the
other hand, two frequencies that are separated by (much) more than fe.n, are
affected differently by the channel, and they are essentially independent of each
other. If the former case apply (frequency flat fading), for a given frequency-
interval, then we say that the channel is frequency-nonselective. and if the
latter case apply. then the channel is said to be frequency-selective.
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z(t) = flm hiT,t)s(t — 7)d7 (9.10)

delay power spectrum cp(7) (also multipath intensity profile) of the time-
varying impulse response h(t,1).

(1, )R (1,1)} (9.15)

h?(t,t 1 o R 1
L‘fh(?”]=a]’:7{1 7 )}=§E{hﬂ?,t)+h‘@(?,ﬂ}=§

2
An example of the delay power spectrum ¢, (7) 1s illustrated in Figure 9.3. The
width of the delay power spectrum is referred to as the multipath spread of
the channel and it 1s denoted by T},,. This is an important parameter since if 7,
is too large, compared with e.g. the symbol time, then intersymbol interference
can occur.

T:rn ~ 1;,“}?&1}! (916:1

Digital communications - Advanced
course: week 3
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9.2 Frequency-Nonselective, Slowly Fading
Channel

T, < tooh (9.27

or equivalently,

)

Bp < R. (0.28)

This means that the channel 1s slowly fading, which imply that it can be

treated as a time-invariant channel within the coherence time.

In this subsection a frequency-nonselective channel is investigated. To obtain this
situation it is required that the bandwidth of the transmitted signal, denoted
W, 1s much smaller than the coherence bandwidth f..n of the channel,

W < feon (9.29)

or equivalently,

T,, < 1/W (9.30)

N,

Digital communications - Advanced
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—
o
-2
o

S

) =5 [ SOHGD T

X

21(t) +72q(t) = 5/ [S1(f) + iSo(f)] [Hi(f,t) + jHo(f.t)]e”* ™ df

(9.33)

21(t) + jzg(t) = 5 / [S1(f)+7So(f)]- (Hy + jHq)e?* tdf (9.36)

w— O

zr(t) + jzgqlt) = 5 (sr(t) + jsolt))(Hr +jHg) =

= es(t)e??*) . qe?? = e, ()% V) (9.37)
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. 1 . .
21(t) +7z2Q(t) = 5 (s1(t) + jso(1))(Hr + jHg) =

where,

and.,

= es(t)ejgsit} cael? = Efz(fjffjﬂzit) (9.37)
2(t) = aeg(t) cos(wt + O05(t) + @) (9.38)
. 2r _ L‘gfb . . . .
Palx) = - e /7 x>0 (Rayleigh distribution)
1 1 —
Ela} = 5 Vb
E{a*} = b

poly) =4 M/ o —mSysw
ree 0 . otherwise
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If we assume uncoded equally likely binary signals over a Rayleigh fading chan-
nel (z1(t) = asy(t),zo(t) = asp(t)), then the bit error probability of the ideal
DE

coherent ML receiver is (0 < d? = =150 < 2)
2-E'b__sen|:

P, = / Pr{error|a}p,(x)dxr = E{Pr{error|a}} (9.43)
0

= P o i PmT 2- =
P, = / Q{\ft’fz;tzEb_wﬂf;'f\"()} FI‘ E’_‘t'g-" bde =
i

2

= e = /b Q[;I.'Mfllfszb_wﬂtfﬂ"_g::I:| — / (—e " /b)
o Jo

_ \/dz Eih.senf ,.-"'IIJ“"*'TIJ _ z2a® Ep aent/ N0
— e Z dr =
\*J'IZ’."E'

]_ ll,l}l J!T'EE . “‘: 3 [-}:. e_g,z_l.,-ﬂ_-jﬂ I!T [g 443
= - — i sent/AV0 "L —_—lr LGS
2 \Iu E f.- 0 v ) O IS \/‘-!I A

S

1/2
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- 9 o e
&y = E{{T }Eb,sent - bEb,SEﬂt {9“1:5}

P 1 | dgc:b/i\’?g B 1
P2 \ 2+ d*& /No 2+ d?E,/No + /2 + d?E, /No/d*E, /N

Ep /Ny “large”
‘ 1 (9.46)
- 2d2E,/No o

where d? = 2 for antipodal signals and d? = 1 for orthogonal signals.
Observe the dramatic inerease tn Py, due to the Rayleigh fading chan-
nel. Py ts no longer exponentially decaying in £, /Ny, it now decays

essentially as (E,/Ny) 1!
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EXAMPLE 9.1
Assume that equally likely, binary orthogonal FSK signals, with equal energy, are sent
from the transmitter. Hence, si(t) = \/2Eb,semf'ﬂ cos(2m fit) in O <t <1y, i =0,1.

These signals are communicated over a Rayleigh fading channel, i.e. the received signal
is (see (9.38)),

r(t) = H-\/EEb,smt [Ty cos(2m fit + @) + N(t)
Assume that the incoherent receiver in Figure 5.28 on page 397 is used. From (5.109)
it is known that for a given value of a,

since a*Ey sent then is the average received energy per bit.

For the Rayleigh fading channel, and the same receiver, P, can be calculated by using
(9.43),

P, = f Pr{errorlja = x}pa(x) = E{Pr{error|a}}
0
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E{Pr{errorja}} = E {; e~ Ebsent/ END} _

E {l {J_ﬂgEb.sentfz-h"rD} - F {(i_a%Eb.sent_fz—MO}
.'} . .

—

b 1/2 1
b= Eb..sen E{GQ} — 2 = I N
1+ No . 5 -’+'£bx4\'0

Observe the dramatic increase in Py due to the Rayleigh fading channel. Py
15 no longer exponentially decaying in £, /No, it now decays essentially as
(Eu/No)~ 1! As an example, assuming &, /No = 1000 (30 dB), we obtain

P — 0.5 =~ 3.6.-1072" | AWGN
"7 (1002)7' =~ 1073 . Rayleigh+AWGN
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DIVERSITY IS NEEDED!
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