Study week 5.

NOTE!

All project groups should by now have a project group number (PG1 - PG16).
Deadline for the project report (pdf-format) Thursday 4 December 2014, 17.00.

You can now sign-up for the lab on the home page.

Chapter 9

An Introduction to Time-varying Multipath Channels

$$
\begin{equation*}
z(t)=\sum_{n} \alpha_{n}(t) s\left(t-\tau_{n}(t)\right) \tag{9.1}
\end{equation*}
$$

Figure 9.1: a) The digital communication system; b) A scattering medium; c) Illustrating the fading envelope $e_{z}(t)$.

$$
\begin{align*}
s(t)= & \cos \left(\left(\omega_{c}+\omega_{1}\right) t\right), \quad-\infty \leq t \leq \infty \tag{9.2}\\
z(t)= & \sum_{n} \alpha_{n}(t) \cos \left(\left(\omega_{c}+\omega_{1}\right)\left(t-\tau_{n}(t)\right)\right)= \\
= & \underbrace{\left[\sum_{n} \alpha_{n}(t) \cos \left(\left(\omega_{c}+\omega_{1}\right) \tau_{n}(t)\right)\right]}_{z_{I}(t)=\tilde{H}_{R e}\left(f_{1}, t\right) / 2} \cos \left(\left(\omega_{c}+\omega_{1}\right) t\right)- \\
& -\underbrace{\left[\sum_{n} \alpha_{n}(t) \sin \left(-\left(\omega_{c}+\omega_{1}\right) \tau_{n}(t)\right)\right]}_{z_{Q}(t)=\tilde{H}_{I m}\left(f_{1}, t\right) / 2} \sin \left(\left(\omega_{c}+\omega_{1}\right) t\right) \\
= & z_{I}(t) \cos \left(\left(\omega_{c}+\omega_{1}\right) t\right)-z_{Q}(t) \sin \left(\left(\omega_{c}+\omega_{1}\right) t\right) \\
= & e_{z}(t) \cos \left(\left(\omega_{c}+\omega_{1}\right) t+\theta_{z}(t)\right)
\end{align*}
$$

Compare with the time-invariant QAM-result:

$$
\begin{align*}
A_{z}+j B_{z} & =(A+j B) H\left(f_{c}\right)=\sqrt{A^{2}+B^{2}}\left|H\left(f_{c}\right)\right| e^{j\left(\nu+\phi\left(f_{c}\right)\right)}= \\
& =(A+j B)\left(H_{R e}\left(f_{c}\right)+j H_{I m}\left(f_{c}\right)\right) \tag{3.110}
\end{align*}
$$

$$
\begin{align*}
s(t) & =\cos \left(\left(\omega_{c}+\omega_{1}\right) t\right), \quad-\infty \leq t \leq \infty \tag{9.2}\\
z(t) & =\sum_{n} \alpha_{n}(t) \cos \left(\left(\omega_{c}+\omega_{1}\right)\left(t-\tau_{n}(t)\right)\right)= \\
= & e_{z}(t) \cos \left(\left(\omega_{c}+\omega_{1}\right) t+\theta_{z}(t)\right) \tag{9.3}
\end{align*}
$$

Observe that the quadrature components $z_{I}(t)$ and $z_{Q}(t)$ in (9.3) are timevarying. Hence, the output signal $z(t)$ is not a pure sine wave with frequency $f_{c}+f_{1}$. This is a significant difference compared with the linear timeinvariant channel. It is seen in (9.3) that the quadrature components depend

$$
\begin{aligned}
& z(t)=\sum_{n} \alpha_{n}(t) \cos \left(\left(\omega_{c}+\omega_{1}\right)\left(t-\tau_{n}(t)\right)\right)= \\
& =z_{I}(t) \cos \left(\left(\omega_{c}+\omega_{1}\right) t\right)-z_{Q}(t) \sin \left(\left(\omega_{c}+\omega_{1}\right) t\right) \\
& =e_{z}(t) \cos \left(\left(\omega_{c}+\omega_{1}\right) t+\theta_{z}(t)\right)
\end{aligned}
$$

Throughout this chapter it is assumed that $z_{I}(t)$ and $z_{Q}(t)$ may be modelled as baseband zero-mean wide-sense-stationary (WSS) Gaussian random processes (with variances $\sigma_{I}^{2}=\sigma_{Q}^{2}=\sigma^{2}$). This is a commonly used assumption when the number of scatterers is large, implying that central limit theorem arguments can be used [43], [65], [68], [39]. For a fixed value of t, this assumption leads to a Rayleigh-distributed envelope $e_{z}(t)$,

$$
\begin{align*}
e_{z}(t) & =\sqrt{z_{I}^{2}(t)+z_{Q}^{2}(t)} \tag{9.4}\\
p_{e_{z}}(x) & =\frac{2 x}{b} e^{-x^{2} / b}, \quad x \geq 0, \text { Rayleigh distr. } \tag{9.5}\\
b & =E\left\{e_{z}^{2}(t)\right\}=2 \sigma^{2}=2 P_{z} \tag{9.6}
\end{align*}
$$

and a uniformly distributed phase $\theta_{z}(t)$ (over a 2π interval). The zero-mean assumption means that there is no deterministic signal path present in $z(t)$. If a

9.1.1 Doppler Power Spectrum and Coherence Time

$$
\begin{align*}
& R_{\mathcal{D}}(f)=\mathcal{F}\left(\tilde{c}_{z}(\tau)\right) \\
& \tilde{c}_{z}(\tau)=\frac{1}{2} E\left\{\left[z_{I}(t+\tau)+j z_{Q}(t+\tau)\right]\left[z_{I}(t)-j z_{Q}(t)\right]\right\} \tag{9.7}\\
& R_{z}(f)=\frac{1}{2}\left(R_{\mathcal{D}}\left(f+f_{c}+f_{1}\right)+R_{\mathcal{D}}\left(f-f_{c}-f_{1}\right)\right) \\
& \hline
\end{align*}
$$

Figure 9.2: Illustrating the Fourier transform pair $\tilde{c}_{z}(\tau) \longleftrightarrow R_{\mathcal{D}}(f)$.

$$
\begin{equation*}
t_{c o h} \approx 1 / B_{\mathcal{D}} \tag{9.8}
\end{equation*}
$$

If the channel is slowly changing, then the coherence time is large. Note that $z_{I}(t+\tau)$ and $z_{I}(t)$ (also $z_{Q}(t+\tau)$ and $\left.z_{Q}(t)\right)$ are correlated over time-intervals τ (much) smaller than the coherence time $t_{\text {coh }}$. Hence, input signals within such intervals are therefore affected similarly by the fading channel. On the other hand, input signals that are separated in time by (much) more than $t_{c o h}$, are affected differently by the channel, and at the output of the channel they become essentially independent of each other. If the former case apply (time flat fading), for a given time-interval, then we say that the channel is time-nonselective, and if the latter case apply, then the channel is said to be time-selective.

$$
\begin{equation*}
z(t)=z\left(f_{1}, t\right)=\underbrace{\frac{1}{2} \tilde{H}_{R e}\left(f_{1}, t\right)}_{z_{I}(t)} \cos \left(\left(\omega_{c}+\omega_{1}\right) t\right)-\underbrace{\frac{1}{2} \tilde{H}_{I m}\left(f_{1}, t\right)}_{z_{Q}(t)} \sin \left(\left(\omega_{c}+\omega_{1}\right) t\right) \tag{9.9}
\end{equation*}
$$

What can be said about the output signal $z(t)$ if another frequency $f_{2}=f_{1}+f_{\Delta}$ is used, instead of f_{1} ? Are different frequency-intervals, in the input signal spectrum, treated differently by the time-varying multipath channel? To answer these questions the correlation between $z\left(f_{1}, t\right)$ and $z\left(f_{1}+f_{\Delta}, t\right)$ can be found by

Figure 9.3: Illustrating the Fourier transform pair $c_{h}(\tau) \longleftrightarrow \tilde{c}_{z, f r e q}\left(f_{\Delta}\right)$.

The coherence bandwidth $f_{\text {coh }}$ of the channel is defined as the width of the autocorrelation function $\tilde{c}_{z, f r e q}\left(f_{\Delta}\right)$, see Figure 9.3. Note that frequencies within a frequency-interval (much) smaller than the coherence bandwidth $f_{\text {coh }}$ are correlated, and they are affected similarly by the fading channel. On the other hand, two frequencies that are separated by (much) more than $f_{\text {coh }}$, are affected differently by the channel, and they are essentially independent of each other. If the former case apply (frequency flat fading), for a given frequencyinterval, then we say that the channel is frequency-nonselective, and if the latter case apply, then the channel is said to be frequency-selective.

$$
\begin{equation*}
z(t)=\int_{-\infty}^{\infty} h(\tau, t) s(t-\tau) d \tau \tag{9.10}
\end{equation*}
$$

delay power spectrum $c_{\boldsymbol{h}}(\tau)$ (also multipath intensity profile) of the timevarying impulse response $h(\tau, t)$,

$$
\begin{equation*}
c_{h}(\tau)=E\left\{\frac{h^{2}(\tau, t)}{2}\right\}=\frac{1}{2} E\left\{h_{I}^{2}(\tau, t)+h_{Q}^{2}(\tau, t)\right\}=\frac{1}{2} E\left\{\tilde{h}(\tau, t) \tilde{h}^{*}(\tau, t)\right\} \tag{9.15}
\end{equation*}
$$

An example of the delay power spectrum $c_{h}(\tau)$ is illustrated in Figure 9.3. The width of the delay power spectrum is referred to as the multipath spread of the channel and it is denoted by T_{m}. This is an important parameter since if T_{m} is too large, compared with e.g. the symbol time, then intersymbol interference can occur.

$$
\begin{equation*}
T_{m} \approx 1 / f_{c o h} \tag{9.16}
\end{equation*}
$$

9.2 Frequency-Nonselective, Slowly Fading Channel

$$
\begin{equation*}
T_{s} \ll t_{c o h} \tag{9.27}
\end{equation*}
$$

or equivalently,

$$
\begin{equation*}
B_{\mathcal{D}} \ll R_{s} \tag{9.28}
\end{equation*}
$$

This means that the channel is slowly fading, which imply that it can be treated as a time-invariant channel within the coherence time.

In this subsection a frequency-nonselective channel is investigated. To obtain this situation it is required that the bandwidth of the transmitted signal, denoted W, is much smaller than the coherence bandwidth $f_{\text {coh }}$ of the channel,

$$
\begin{equation*}
W \ll f_{c o h} \tag{9.29}
\end{equation*}
$$

or equivalently,

$$
\begin{equation*}
T_{m} \ll 1 / W \tag{9.30}
\end{equation*}
$$

$$
\begin{equation*}
\tilde{z}(t)=\frac{1}{2} \int_{-\infty}^{\infty} \tilde{S}(f) \tilde{H}(f, t) e^{j 2 \pi f t} d f \tag{9.26}
\end{equation*}
$$

$$
\begin{equation*}
z_{I}(t)+j z_{Q}(t)=\frac{1}{2} \int_{-\infty}^{\infty}\left[S_{I}(f)+j S_{Q}(f)\right]\left[H_{I}(f, t)+j H_{Q}(f, t)\right] e^{j 2 \pi f t} d f \tag{9.33}
\end{equation*}
$$

$$
\begin{align*}
& z_{I}(t)+j z_{Q}(t)=\frac{1}{2} \int_{-\infty}^{\infty}\left[S_{I}(f)+j S_{Q}(f)\right] \cdot\left(H_{I}+j H_{Q}\right) e^{j 2 \pi f t} d f \tag{9.36}\\
& z_{I}(t)+j z_{Q}(t)=\frac{1}{2}\left(s_{I}(t)+j s_{Q}(t)\right)\left(H_{I}+j H_{Q}\right)= \\
&=e_{s}(t) e^{j \theta_{s}(t)} \cdot a e^{j \phi}=e_{z}(t) e^{j \theta_{z}(t)} \tag{9.37}
\end{align*}
$$

$$
\begin{align*}
z_{I}(t)+j z_{Q}(t) & =\frac{1}{2}\left(s_{I}(t)+j s_{Q}(t)\right)\left(H_{I}+j H_{Q}\right)= \\
& =e_{s}(t) e^{j \theta_{s}(t)} \cdot a e^{j \phi}=e_{z}(t) e^{j \theta_{z}(t)} \tag{9.37}
\end{align*}
$$

$$
\begin{equation*}
z(t)=a e_{s}(t) \cos \left(\omega_{c} t+\theta_{s}(t)+\phi\right) \tag{9.38}
\end{equation*}
$$

$$
\begin{equation*}
p_{a}(x)=\frac{2 x}{b} e^{-x^{2} / b}, \quad x \geq 0 \quad \text { (Rayleigh distribution) } \tag{9.39}
\end{equation*}
$$

where,

$$
\begin{align*}
E\{a\} & =\frac{1}{2} \sqrt{\pi b} \tag{9.40}\\
E\left\{a^{2}\right\} & =b \tag{9.41}
\end{align*}
$$

and,

$$
p_{\phi}(y)=\left\{\begin{array}{lll}
1 / 2 \pi & , & -\pi \leq y \leq \pi \tag{9.42}\\
0 & , & \text { otherwise }
\end{array}\right.
$$

If we assume uncoded equally likely binary signals over a Rayleigh fading channel $\left(z_{1}(t)=a s_{1}(t), z_{0}(t)=a s_{0}(t)\right)$, then the bit error probability of the ideal coherent ML receiver is $\left(0<d^{2}=\frac{D_{s_{1, s}, s_{0}}^{2}}{2 E_{b, \text { sent }}} \leq 2\right)$

$$
\begin{equation*}
P_{b}=\int_{0}^{\infty} \operatorname{Pr}\{\operatorname{error} \mid a\} p_{a}(x) d x=E\{\operatorname{Pr}\{\operatorname{error} \mid a\}\} \tag{9.43}
\end{equation*}
$$

$$
\begin{align*}
P_{b}= & \int_{0}^{\infty} Q\left(\sqrt{d^{2} x^{2} E_{b, \text { sent }} / N_{0}}\right) \frac{2 x}{b} e^{-x^{2} / b} d x= \\
= & \left.-e^{-x^{2} / b} Q\left(x \sqrt{d^{2} E_{b, \text { sent }} / N_{0}}\right)\right]_{0}^{\infty}-\int_{0}^{\infty}\left(-e^{-x^{2} / b}\right) \\
& \left(\frac{-\sqrt{d^{2} E_{b, \text { sent }} / N_{0}}}{\sqrt{2 \pi}} e^{-\frac{x^{2} d^{2} E_{b, \text { sent }} / N_{0}}{2}}\right) d x= \\
= & \frac{1}{2}-\sqrt{d^{2} E_{b, \text { sent }} / N_{0}} \cdot \beta \underbrace{\int_{0}^{\infty} \frac{e^{-x^{2} / 2 \beta^{2}}}{\beta \sqrt{2 \pi}} d x}_{1 / 2} \tag{9.44}
\end{align*}
$$

$$
\begin{equation*}
\mathcal{E}_{b}=E\left\{a^{2}\right\} E_{b, \text { sent }}=b E_{b, \text { sent }} \tag{9.45}
\end{equation*}
$$

$$
\begin{align*}
P_{b}= & \frac{1}{2}\left(1-\sqrt{\frac{d^{2} \mathcal{E}_{b} / N_{0}}{2+d^{2} \mathcal{E}_{b} / N_{0}}}\right)=\frac{1}{2+d^{2} \mathcal{E}_{b} / N_{0}+\sqrt{2+d^{2} \mathcal{E}_{b} / N_{0}} \sqrt{d^{2} \mathcal{E}_{b} / N_{0}}} \\
\quad \mathcal{E}_{b} / N_{0} & \text { "large" } \\
& \downarrow \tag{9.46}
\end{align*}
$$

where $d^{2}=2$ for antipodal signals and $d^{2}=1$ for orthogonal signals.
Observe the dramatic increase in P_{b} due to the Rayleigh fading channel. P_{b} is no longer exponentially decaying in \mathcal{E}_{b} / N_{0}, it now decays essentially as $\left(\mathcal{E}_{b} / N_{0}\right)^{-1}$!

EXAMPLE 9.1

Assume that equally likely, binary orthogonal FSK signals, with equal energy, are sent from the transmitter. Hence, $s_{i}(t)=\sqrt{2 E_{b, \text { sent }} / T_{b}} \cos \left(2 \pi f_{i} t\right)$ in $0 \leq t \leq T_{b}, i=0,1$.
These signals are communicated over a Rayleigh fading channel, i.e. the received signal is (see (9.38)),

$$
r(t)=a \sqrt{2 E_{b, \text { sent }} / T_{b}} \cos \left(2 \pi f_{i} t+\phi\right)+N(t)
$$

Assume that the incoherent receiver in Figure 5.28 on page 397 is used. From (5.109) it is known that for a given value of a,

$$
P_{b}=\frac{1}{2} e^{-a^{2} E_{b, \text { sent }} / 2 N_{0}}
$$

since $a^{2} E_{b, \text { sent }}$ then is the average received energy per bit.
For the Rayleigh fading channel, and the same receiver, P_{b} can be calculated by using (9.43),

$$
P_{b}=\int_{0}^{\infty} \operatorname{Pr}\{\text { error } \mid a=x\} p_{a}(x)=E\{\operatorname{Pr}\{\text { error } \mid a\}\}
$$

$$
\begin{aligned}
& E\{\operatorname{Pr}\{\text { error } \mid a\}\}=E\left\{\frac{1}{2} e^{-a^{2} E_{b, \text { sent }} / 2 N_{0}}\right\}= \\
& E\left\{\frac{1}{2} e^{-a_{1}^{2} E_{b, \text { sent }} / 2 N_{0}}\right\} \cdot E\left\{e^{-a_{2}^{2} E_{b, \text { sent }} / 2 N_{0}}\right\}
\end{aligned}
$$

$$
P_{b}=\frac{1 / 2}{1+\frac{E_{b, \text { sent }}}{N_{0}} \cdot \frac{E\left\{a^{2}\right\}}{2}}=\frac{1}{2+\mathcal{E}_{b} / N_{0}}
$$

Observe the dramatic increase in P_{b} due to the Rayleigh fading channel. P_{b} is no longer exponentially decaying in \mathcal{E}_{b} / N_{0}, it now decays essentially as $\left(\mathcal{E}_{\boldsymbol{b}} / N_{\mathbf{0}}\right)^{-1}$! As an example, assuming $\mathcal{E}_{b} / N_{0}=1000$ (30 dB), we obtain

$$
P_{b}=\left\{\begin{array}{lll}
0.5 e^{-500} \approx 3.6 \cdot 10^{-218} & , & \text { AWGN } \\
(1002)^{-1} \approx 10^{-3} & , & \text { Rayleigh }+ \text { AWGN }
\end{array}\right.
$$

DIVERSITY IS NEEDED!

course: week 4

7.3 Reception and Detection

Within a bit interval: A received random number of photons generates a random number of photo-electrons after the photo-detector.

The Poisson Process:

In (7.27), the arrival times $\ldots, t_{i-1}, t_{i}, t_{i+1}$, are modeled as a Poisson process with an intensity $\mathcal{I}(t)$. This means that the number of arrivals $\mathcal{N}_{\mathcal{T}}$, within a time interval of length \mathcal{T}, is a random variable having the properties

$$
\begin{align*}
& \operatorname{Prob}\left\{\mathcal{N}_{\mathcal{T}}=n\right\}=\frac{\mu^{n} e^{-\mu}}{n!} \\
& \mu=E\left\{\mathcal{N}_{\mathcal{T}}\right\}=\int_{t_{0}}^{t_{0}+\mathcal{T}} I(t) d t \tag{7.29}\\
& \sigma^{2}=E\left\{\left(\mathcal{N}_{\mathcal{T}}-\mu\right)^{2}\right\}=\mu
\end{align*}
$$

Note that the mean and the variance are identical.

Fig. 7.8a

Compare with
Chapter 4!

Digital communications - Advanced

Fig. 7.8:

"0": po
"1": po+p(t)
b)

Received optical power.
c)

$\mathrm{q}=$ charge of an electron. $\mathrm{id}(\mathrm{t})=$ "dark current".

$$
\begin{equation*}
\mathcal{P}_{\text {rec }}(t)=p_{0}+\sum_{i=-\infty}^{\infty} m[i] p\left(t-i T_{b}\right), \quad m[i] \in\{0,1\}, \quad-\infty \leq t \leq \infty \tag{7.31}
\end{equation*}
$$

$$
\begin{equation*}
\xi=y\left(T_{b}\right)=\int_{-\infty}^{\infty} i(\tau) v\left(T_{b}-\tau\right) d \tau=A \int_{0}^{T_{b}} i(\tau) d \tau= \tag{7.32}
\end{equation*}
$$

$=A \int_{0}^{T_{b}}\left(i_{r}(t)+i_{d}(t)\right) d t=A q \mathcal{N}_{T_{b}}$

Digital communications - Advanced

Bit error probability:

$$
\begin{align*}
P_{b}= & P_{0} \underbrace{\operatorname{Prob}\left\{\text { error } \mid m_{0} \text { sent }\right\}}_{P_{F}}+P_{1} \underbrace{\operatorname{Prob}\left\{\text { error } \mid m_{1} \text { sent }\right\}}_{P_{M}} \\
= & P_{0} \operatorname{Prob}\left\{\xi>B \mid m_{0} \text { sent }\right\}+P_{1} \operatorname{Prob}\left\{\xi \leq B \mid m_{1} \text { sent }\right\}= \\
= & P_{0} \operatorname{Prob}\left\{\mathcal{N}_{T_{b}}>(B / A q) \mid m_{0} \text { sent }\right\}+ \\
& +P_{1} \operatorname{Prob}\left\{\mathcal{N}_{T_{b}} \leq(B / A q) \mid m_{1} \text { sent }\right\} \tag{7.33}\\
P_{F}= & \operatorname{Prob}\left\{\mathcal{N}_{T_{b}}>\alpha \mid m_{0} \text { sent }\right\}=\sum_{n=\alpha+1}^{\infty} \frac{\mu_{0}^{n} e^{-\mu_{0}}}{n!} \\
P_{M}= & \operatorname{Prob}\left\{\mathcal{N}_{T_{b}} \leq \alpha \mid m_{1} \text { sent }\right\}=\sum_{n=0}^{\alpha} \frac{\mu_{1}^{n} e^{-\mu_{1}}}{n!} \\
\alpha= & B / A q
\end{aligned} \quad \begin{aligned}
& \text { Exact expressions! }
\end{align*}
$$

We need the averages!

$$
\begin{align*}
& \operatorname{Prob}\left\{\mathcal{N}_{\mathcal{T}}=n\right\}=\frac{\mu^{n} e^{-\mu}}{n!} \\
& \mu=E\left\{\mathcal{N}_{\mathcal{T}}\right\}=\int_{t_{0}}^{t_{0}+\mathcal{T}} I(t) d t \tag{7.29}\\
& \sigma^{2}=E\left\{\left(\mathcal{N}_{\mathcal{T}}-\mu\right)^{2}\right\}=\mu
\end{align*}
$$

$\mathcal{I}_{e}(t)=\eta \cdot \mathcal{M} \cdot \mathcal{I}_{p h}(t)+\mathcal{I}_{d}=\eta \cdot \mathcal{M} \cdot \frac{\mathcal{P}_{r e c}(t)}{h f}+\mathcal{I}_{d}$ [electrons $/ \mathrm{s}$]

Id=id/q Page 476.

Combining (7.29), (7.8) and (7.31) it is found that

$$
\begin{align*}
& \mu_{0}=E\left\{\mathcal{N}_{T_{b}} \mid m_{0} \text { sent }\right\}=\int_{0}^{T_{b}}\left(\frac{\eta}{h f} p_{0}+\mathcal{I}_{d}\right) d t=\mathcal{I}_{d} T_{b}+\frac{\eta \lambda}{h c} p_{0} T_{b} \\
& \mu_{1}=E\left\{\mathcal{N}_{T_{b}} \mid m_{1} \text { sent }\right\}=\mu_{0}+\frac{\eta \lambda}{h c} \int_{0}^{T_{b}} p(t) d t=\mu_{0}+\frac{\eta \lambda}{h c} \cdot \mathcal{E}_{p} \tag{7.34}
\end{align*}
$$

A very useful approximate expression of the bit error probability:

The key to the Gaussian approximation is to approximate the conditional random variable $\mathcal{N}_{T_{b}}$ in (7.35), with a Gaussian random variable having the same mean and variance. Doing this, P_{F} and P_{M} are approximated by

$$
\begin{align*}
& P_{F}=\operatorname{Prob}\left\{\left.\frac{\mathcal{N}_{T_{b}}-\mu_{0}}{\sqrt{\mu_{0}}}>\frac{\alpha-\mu_{0}}{\sqrt{\mu_{0}}} \right\rvert\, m_{0} \text { sent }\right\} \approx Q\left(\frac{\alpha-\mu_{0}}{\sqrt{\mu_{0}}}\right) \\
& P_{M}=\operatorname{Prob}\left\{\left.\frac{\mathcal{N}_{T_{b}}-\mu_{1}}{\sqrt{\mu_{1}}} \leq \frac{\alpha-\mu_{1}}{\sqrt{\mu_{1}}} \right\rvert\, m_{1} \text { sent }\right\} \approx Q\left(\frac{\mu_{1}-\alpha}{\sqrt{\mu_{1}}}\right) \tag{7.37}
\end{align*}
$$

A very useful approximation on the bit error probability is obtained by also approximating the threshold α in (7.37) by

$$
\begin{equation*}
\alpha \approx \sqrt{\mu_{0} \mu_{1}} \tag{7.38}
\end{equation*}
$$

which makes the approximations of P_{F} and P_{M} in (7.37) identical. The resulting approximate expression of the bit error probability then becomes

OBS!

$$
\begin{align*}
& P_{b} \approx Q(\varrho) \\
& \varrho=\sqrt{\mu_{1}}-\sqrt{\mu_{0}} \tag{7.39}
\end{align*}
$$

$$
\begin{aligned}
& P_{b} \approx Q(\varrho) \\
& \varrho=\sqrt{\mu_{1}}-\sqrt{\mu_{0}}
\end{aligned}
$$

(7.39)

$$
\begin{align*}
& \mu_{0}=E\left\{\mathcal{N}_{T_{b}} \mid m_{0} \operatorname{sent}\right\}=\int_{0}^{T_{b}}\left(\frac{\eta}{h f} p_{0}+\mathcal{I}_{d}\right) d t=\mathcal{I}_{d} T_{b}+\frac{\eta \lambda}{h c} p_{0} T_{b} \tag{7.34}\\
& \mu_{1}=E\left\{\mathcal{N}_{T_{b}} \mid m_{1} \text { sent }\right\}=\mu_{0}+\frac{\eta \lambda}{h c} \int_{0}^{T_{b}} p(t) d t=\mu_{0}+\frac{\eta \lambda}{h c} \cdot \mathcal{E}_{p}
\end{align*}
$$

$$
\mathcal{I}_{d}=i_{d} / q
$$

7.3.2 Additive Noise

Consider the receiver in Figure 7.8a, and assume now that noise is introduced by the amplifier. This means that the decision variable ξ will contain a noisy component, here denoted by U,

$$
\begin{equation*}
\xi=y\left(T_{b}\right)=A q \mathcal{N}_{T_{b}}+U \tag{7.40}
\end{equation*}
$$

$$
\begin{align*}
P_{F} & =\operatorname{Prob}\left\{\mathcal{N}_{T_{b}}+w>\alpha \mid m_{0} \text { sent }\right\}= \tag{7.43}\\
& =\operatorname{Prob}\left\{\left.\frac{\mathcal{N}_{T_{b}}+w-\mu_{0}}{\sqrt{\mu_{0}+\sigma_{w}^{2}}}>\frac{\alpha-\mu_{0}}{\sqrt{\mu_{0}+\sigma_{w}^{2}}} \right\rvert\, m_{0} \text { sent }\right\} \approx Q\left(\frac{\alpha-\mu_{0}}{\sqrt{\mu_{0}+\sigma_{w}^{2}}}\right)
\end{align*}
$$

$$
\begin{align*}
& P_{b} \approx Q(\varrho) \\
& \varrho=\sqrt{\mu_{1}+\sigma_{w}^{2}}-\sqrt{\mu_{0}+\sigma_{w}^{2}}=\frac{\mu_{1}-\mu_{0}}{\sqrt{\mu_{0}+\sigma_{w}^{2}}+\sqrt{\mu_{1}+\sigma_{w}^{2}}} \tag{7.46}
\end{align*}
$$

$$
\begin{aligned}
& \varrho=\frac{\frac{n \lambda}{h c} \mathcal{P}_{p} T_{b}}{\sqrt{\mathcal{I}_{d} T_{b}+\frac{n \lambda}{h c} p_{0} T_{b}+k_{\sigma} T_{b}}+\sqrt{\mathcal{I}_{d} T_{b}+\frac{n \lambda}{h c}\left(p_{0} T_{b}+\mathcal{P}_{p} T_{b}\right)+k_{\sigma} T_{b}}} \\
& \mathcal{P}_{p}=\mathcal{E}_{p} / T_{b}
\end{aligned}
$$

$$
\begin{equation*}
\frac{\mathcal{P}_{p, 1}}{\sqrt{R_{b, 1}}}=\frac{\mathcal{P}_{p, 2}}{\sqrt{R_{b, 2}}} \tag{7.48}
\end{equation*}
$$

