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Chapter 9

An Introduction to
Time-varying Multipath
Channels
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Figure 9.1: a) The digital communication system: b) A scattering medium;:

¢) Illustrating the fading envelope e, ().

Digital communications - Advanced
course: week 3




s(t) =cos((we+wi)t), —o0o<t<oc

() = Z ap(t) cos((w, +wi)(t — T (t))) =

M

= [Z 0t (1) cos((we + wy Jrn{tjn] cos((we +wi)t) —

"
iy o
"

z1(t) :HH.E[: f1.t)/2
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’tf?(fj:-{;-‘rhn':fl-t:'.f{z
z1(t) cos((we + w1)t) — zo(t) sin((we + w1)t)
= e, (t)cos((w. +wi)t +0.(t))

Compare with the time-invariant QAM-result:

A, +jB. = (A4 jB)H(f.) = /A2 4+ B2|H(f.)|e!VToUe)) =
= '::*4 +?B][HRr[ff:' +jHIm I:ff”

Digital communications - Advanced
course: week 3

(3.110)



s(t) = cos((we +wy)t) , —oo <t <o (9.2)

2t) = Y an(t)cos((we +wi)(t—Ta(t))) =

= e,(t)cos((we +wi)t+6.(1)) (9.3)

ez (D)

W VY

Observe that the quadrature components zj(f) and zg(t) In (9.3) are time-
varying. Hence, the output signal z(f) is not a pure sine wave with frequency
fe+ f1. This 1s a significant difference compared with the linear time-
invartant channel. It is seen in (9.3) that the quadrature components depend
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2(t) = Y an(t)cos((we +wi)(t —Ta(t))) =

= z1(t) cos((we + w1)t) — zg(t) sin((we + w1)t)
= e(t) C'OS((UJC +wy)t+ 0, (tj)

Throughout this chapter it is assumed that 2;(f) and 25(t) may be modelled as
haseband zero-mean wide-sense-stationary (WSS) Gaussian random processes
(with variances o7 = r:rf;, = ¢2). This is a commonly used assumption when the
mumnber of scatterers is large, implying that central limit theorem arguments can
he used [43], [65], [68], [30]. For a fixed value of ¢, this assumption leads to a

Rayleigh-distributed envelope e, (1),

ex(t) = \[23(t) + 23(1) (9.4)

. E.l _52 /b . . y
Pel2) = € r = 0, Rayleigh distr. (9.5)
b= E{e3(t)} = 20% = 2P, (9.6)

and a uniformly distributed phase 6,(f) (over a 27 interval). The zero-mean
assumption means that there is no deterministic signal path present in 2(t). If a
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9.1.1 Doppler Power Spectrum and Coherence Time

Rp(f) = Fl(c.(T))

1 L .

C. (1) = 5 {zr(t +7) + jzo(t + 7)) [21(t) — jzo(t)]}
R“':f:IZE I:RI":\f_‘_ffr“‘f],:'+Rﬂi\f_fft_f1,:',:'
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—
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Figure 9.2: Illustrating the Fourier transform pair ¢, (7) —— Rp(f).
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If the channel is slowly changing, then the coherence time is large. Note that
zr(t+7) and z7(t) (also zo(t +7) and 24 (t)) are correlated over time-intervals
7 (much) smaller than the coherence time t.,5. Hence, input signals within such
intervals are therefore affected similarly by the fading channel. On the other
hand. input signals that are separated in time by (much) more than t.,;, are
affected differently by the channel, and at the output of the channel they become
essentially independent of each other. If the former case apply (time flat fading),
for a given time-interval, then we say that the channel is time-nonselective.
and if the latter case apply, then the channel is said to be time-selective.
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9.1.2 Coherence Bandwidth and Multipath Spread
1

- 1 =~ )
z(t) - z(flvt) = 5 Hﬂe(flvt](:ﬂs((wc +"-"-"'1:]t:] - 5 Hj'm(fl,ﬂSlI'l((hJc +"-"-’11)t:|
e S e e——
zr(t) zg(t)

(9.9)
What can be said about the output signal z(f) if another frequency fo = fi 4+ fa
is used, instead of f;7 Are different frequency-intervals, in the input signal
spectrum, treated differently by the time-varyving multipath channel? To answer
these questions the correlation between z( f1.1) and z( fi + fa,t) can be found by

|Ez,freq{fi;} F-l cp(T)
—_—
F
= f — T
0 A -
—— —
feoh Tm

Figure 9.3: Illustrating the Fourler transform pair ¢, (7) «— . freqlfa).
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The coherence bandwidth f.,n of the channel is defined as the width of
the autocorrelation function ¢, greq(fa), see Figure 9.3. Note that frequencies
within a frequency-interval (much) smaller than the coherence bandwidth f..p
are correlated, and they are aftected similarly by the fading channel. On the
other hand, two frequencies that are separated by (much) more than fe.n, are
affected differently by the channel, and they are essentially independent of each
other. If the former case apply (frequency flat fading), for a given frequency-
interval, then we say that the channel is frequency-nonselective. and if the
latter case apply. then the channel is said to be frequency-selective.
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z(t) = /.m hiT,t)s(t — 7)dt (9.10)

delay power spectrum cp(7) (also multipath intensity profile) of the time-
varying impulse response h(t,1).

(1, )R (1,1)} (9.15)

h?(t,t 1 o R 1
L‘fh(?”]=a]’:7{1 7 )}=§E{hﬂ?,t)+h‘@(?,ﬂ}=§

2
An example of the delay power spectrum ¢, (7) 1s illustrated in Figure 9.3. The
width of the delay power spectrum is referred to as the multipath spread of
the channel and it 1s denoted by T},,. This is an important parameter since if 7,
is too large, compared with e.g. the symbol time, then intersymbol interference
can occur.

T:rn ~ 1;,“}?&1}! (916:1
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9.2 Frequency-Nonselective, Slowly Fading
Channel
TS & leoh (QQT:)
or equivalently,
Bp < R, (9.28)

This means that the channel 1s slowly fading, which imply that it can be
treated as a time-invariant channel within the coherence time.

In this subsection a frequency-nonselective channel is investigated. To obtain this
situation it is required that the bandwidth of the transmitted signal, denoted
W, 1s much smaller than the coherence bandwidth f..n of the channel,

W < feoh (9.29)
or equivalently,
T, < 1/W (9.30)
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21(t) +72q(t) = 5/ [S1(f) + iSo(f)] [Hi(f,t) + jHo(f.t)]e”* ™ df

(9.33)

o . 1 /M~ .. L ) , 0 .
zr(t) + jzqlt) = E / [f_‘lrj"[f] +j.5rQi‘f]] - (Hj —|—_]H;_?]€*J“'Tﬁdf (9.36)

w— O

zr(t) + jzgqlt) = 5 (sr(t) + jsolt))(Hr +jHg) =

= es(t)e?? V). qe? = e, (t)e??: (V) (9.37)
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. 1 . .
21(t) +7z2Q(t) = 5 (s1(t) + jso(1))(Hr + jHg) =

where,

and.,

= es(t)ejgsit} cael? = Efz(fjffjﬂzit) (9.37)
2(t) = aeg(t) cos(wt + O05(t) + @) (9.38)
. 2r _ L‘gfb . . . .
Palx) = - e /7 x>0 (Rayleigh distribution)
1 1 —
Ela} = 5 Vb
E{a*} = b

poly) =4 M/ o —mSysw
ree 0 . otherwise

Digital communications - Advanced
course: week 4

14



If we assume uncoded equally likely binary signals over a Rayleigh fading chan-
nel (z1(t) = asy(t),zo(t) = asp(t)), then the bit error probability of the ideal
DE

coherent ML receiver is (0 < d? = =150 < 2)
2-E'b__sen|:

P, = / Pr{error|a}p,(x)dx = E{Pr{error|a}} (9.43)
0

= P o i PmT 2- =
P, = / Q{\ft’fz;tzEb_wﬂf;'f\"()} FI‘ E’_‘t'g-" bde =
i

— _e T /b Q[;trfd?Eb_mmfﬂ"g}} —/ [—E*_‘t:z""fb]
o JO

_ \/dz Eih.senf ,.-"'IIJ“"*'TIJ _ z2a® Ep aent/ N0
— e Z dr =
\*J'IZ’."E'

]_ ll,l}l J!T'EE . “‘: 3 [-}:. e_g,z_l.,-ﬂ_-jﬂ I!T [g 443
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- 9 o e
&y = E{{T }Eb,sent - bEb,SEﬂt {945}

P 1 | dgc:b/i\’?g B 1
P2 \ 2+ d*& /No 2+ d?E,/No + /2 + d?E, /No/d*E, /N

Ep /Ny “large”
‘ 1 (9.46)
- 2d2E,/No o

where d? = 2 for antipodal signals and d? = 1 for orthogonal signals.
Observe the dramatic inerease tn Py, due to the Rayleigh fading chan-
nel. Py ts no longer exponentially decaying in £, /Ny, it now decays

essentially as (E,/Ny) 1!
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EXAMPLE 9.1
Assume that equally likely, binary orthogonal FSK signals, with equal energy, are sent
from the transmitter. Hence, s;(t) = \/ZEMEHIL_;"IL cos(2m fit) in O <t <T,, i =0,1.

These signals are communicated over a Rayleigh fading channel, i.e. the received signal
is (see (9.38)),

r(t) = H-\/EEb,smt [Ty cos(2m fit + @) + N(t)
Assume that the incoherent receiver in Figure 5.28 on page 397 is used. From (5.109)
it is known that for a given value of a,

Pb — % {-?_ﬂzEb.SERtfﬁE‘r\rD

since a’Ey sone then is the average received enerqy per bit.

For the Rayleigh fading channel, and the same receiver, P, can be calculated by using
(9.43),

P, = f Pr{errorla = x}pa(x) = E{Pr{error|a}}
0
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1 2 ronT
E{Pr{errorja}} = E {; e~ Ebsent/ END} _

E {l {J_ﬂf‘E‘b.sent’fz.ﬂrD} - B {(’_a%Eb.sent:‘fzﬁrO}
.'} i i

—

b 1/2 1
b= Epoone Ela?} 21 & /N
L + Np - 2 4T b/ 4T0

Observe the dramatic increase in Py due to the Rayleigh fading channel. Py
15 no longer exponentially decaying in £, /No, it now decays essentially as
(Eu/No)~ 1! As an example, assuming &, /No = 1000 (320 dB), we obtain

057" ~3.6-107%"% | AWGN
Pb — h W —l —3 - T T
(1002)™" =~ 10 . Rayleigh+AWGN
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DIVERSITY IS NEEDED!
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7.3 Reception and Detection

Within a bit interval: A received random number of photons generates a random number
of photo-electrons after the photo-detector.

The Poisson Process:

In (7.27), the arrival times ..., t;_1, t;, ti+1, are modeled as a Poisson process
with an intensity Z(t). This means that the number of arrivals N7, within a
time interval of length 7, is a random wvariable having the properties

L 1
Prob{N7 =n} = £ °
!
to+T .
p=E{NT} = [ I(t)dt (7.29)
Jig
0 = E{(Nt — p,}ﬂ} = U

Note that the mean and the variance are identical.

———————————————————————————————

i RECEIVER i
Optical | I 1
power 1 o et Tl Compare with
. Frec(t) =1 3 EE];: H vt} =L ZB—L—=1
Fig. 7.8a Lt 3 T | Chapter 4!
I 1_Tb I
: ﬂun;jhfim :
: integrate & dump :
: filter :
a) | 4
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B) T, 0 Ty 2T, 3Ty
w(t)
_;,LI[I
=t
Ty

Preclt) = po + Z mli|p(t —iTy), mf[i] € {0,1}, —oc <t < ¢ (7.31)

T=— D

o0 T
£ = ylTy) = / i(7T)v(Ty — 7)dr = A [ i(7)dT =
J = S0

g=charge of T, ‘ f -
an electron. = 4 [ (2r-(t) +2a(t))dt = AgN, (7.32)
S0
1d(t)="dark
current”. Digital communications - Advanced 21
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Pay

k

Bit error probability:

Fo Prob{error|mg sent} +F, Prob{error|m; sent}
e " A T, > 2
Fp Py

FoProb{f = Blmg sent} + Fy Prob{& < Blmy sent} =

Fy Prob{ N, > (B/Ag)|mg sent} +

+P Prob{ N, < (B/Aq)|my sent}

; = upeHe
ProbiNr, = a|mg sent} = Z -
n=a-+1 e
s
-
Prob{ N, < a|my sent} = Z —~
Prr—i
B/Aq (7.35)

We need the averages!
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) ) ] -f-” E—,—IH-
Probi Nt =n! = ¢
' n!
ta+7T - 9
p,zEJ.xTIL:/ I(t)dt (7.29)
Jiq
o2 = B{(NT — p)?} = p

— — — .Pl‘f'r' t - f - =
L(t)=mn - M- -Iy(t)+Io=mn M- *) + I [electrons/s] (7.8) |d=1d/q
‘ hf Page 476.
{:qu;inhi;ling [T,QQV]‘ (7.8) and (7.31) it is‘fq:rund that
. . T 1 — — nA
to = E{NT,|mp sent} = — po+ 2Ly | dt = 14Ty + — poly
' Ji hf he
(7.34)
. | N A
pt1 = E{NT,|mq sent} = pg + Uit / plt)dt = po + o - &
' he o he
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A very useful approximate expression of the bit error probability:

The key to the Gaussian approximation is to approximate the conditional ran-
dom variable N7, in (7.35), with a Gaussian random variable having the same
mean and variance. Doing this, Fr and Py are approximated by

,""u':. — i P — i N — i
Pr = P-rouia{ T _“E - 2 i' |1720 snnt} =0 (n '“E)
Vo VD WO
(7.37)
N, — v — — o
Py = P-r:)b{ T‘“_m < - il |1724 spnt} /=R ('“1 : )
Wi W W

A very useful approximation on the bit error probahbility is obtained by also
approximating the threshold o in (7.37) by

e TR T (7.38)

which makes the approximations of Pr and Fuy in (7.37) identical. The resulting
approximate expression of the hit error probability then becomes

OBS! Py, ~ Q(p)
e
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o . Ty 1 _ _ A
o = E{N1,|mg sent} = / po+2Lg | dt =10 + — pody
' Jo hf fic

T

. . : nA .

p1 = E{N1,|mq sent} = pug + Ui plt)dt = g + i &y
' he Jo he

La=14/q
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7.3.2 Additive Noise

Consider the receiver in Figure 7.8a, and assume now that noise 1s introduced
by the amplifier. This means that the decision variable £ will contain a noisy
component, here denoted by U,

¢ =y(Ty) = AgNT, + U (7.40)

Pr = Prob{Nt, +w > ajmg sent} = (7.43)

N1, +w — po a — o a — fig
= Prob . > Img sent » ~ Q
{ Vio+on  ypo+ o Vo + a2
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H1 — Ho

0=V +0% — o+ ok =

Vo + 02, + /1 + 02

22 P.T,

|il-!lII L B -
0= — , (7.47)
\‘I.-If—‘r_rlr.ﬂ: + % pl:'Tb + .Ii{,:-_.-T,_i;. =+ \l‘l.-"llf—’r_:fTb + T:":TA (E}':IT:!J =+ ijrﬂ:] + 'I‘:Jﬂ:
'P P — é}_-l, ;."'lf TJ:,
P, 1 2 o
B = (7.48)

\/ Rrﬁ,l a \/ 1th.2
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