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Physical	layer

• Analog	vs	digital	(Previous	lecture)
• Transmission	media
• Modulation
• Represent	digital	data	in	a	continuous	world

• Disturbances,	Noise	and	distortion
• Information
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Transmission	media
Guided	media
• Fibre optic	cable
• Twisted	pair	copper	cables
• Coax	cable
Unguided	media
• Radio
• Microwave
• Infra	red



Fibre	optic

• Transmission	is	done	by	light	in	
a	glass	core	(very	thin)

• Total	reflection	from	core	to	
cladding
• Multi-mode	(typ 50-100	um)
• Single-mode	(typ 5-10	um)

• Very	high	capacity
• Not	disturbed	by	radio	signals

4



Optical	network	architekture

Point	to	point
§ Two	nodes	are	connected	by	one	dedicated	fibre
Point	to	multi-point
§ One	point	is	connected	to	several	end	nodes
• PON	(Passive	Optical	Network)

Wavelength	division	(WDM)	
§ Physical	P2P
§ Logical	P2MP
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Twisted	pair	copper	cables

Two	copper	lines	twisted	around	each	other
• Twisting	decreases	disturbances	(and	emission)
• Used	for	
• Telephony	loop	(CAT3)
• Ethernet	(CAT5,	CAT6	and	sometimes	CAT	7)



Coax	cable

One	conductor	surrounded	by	a	shield
• Used	for
• Antenna	signals	
• Measurement	instrumentations



Radio	structures
§ Single	antenna	system

§ MIMO	(Multiple	In	Multiple	Out)



From	bits	to	signals

§ Principles	of	digital	communications

Internet

Digital	data
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On-off	keying

• Send	one	bit	during	Tb seconds	and	use	two	
signal	levels,	“on”	and	“off”,	for	1	and	0.

Ex.	

t

s(t)

T 2T 3T

x=10010010101111100

A

0

a(t) = A ⋅ x 0 ≤ t ≤ Tb
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Non-return	to	zero	(NRZ)

• Send	one	bit	during	Tb seconds	and	use	two	
signal	levels,	+A and	-A,	for	0	and	1.

Ex.

t

s(t)

T 2T 3T

x=10010010101111100

A

-A

a(t) = A ⋅(−1)x 0 ≤ t ≤ Tb
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Description	of	general	signal
With	the	pulse	form	𝑔 𝑡 = 𝐴, 0 ≤ 𝑡 < 𝑇*,	the	
signals	can	be	described	as	

					𝑠 𝑡 =- 𝑎/𝑔(𝑡 − 𝑛𝑇*)
�

/
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Two	signal	alternatives
On-off	keying

𝑎/ = 𝑥/ ⇒ 𝑠7 𝑡 = 0 and	𝑠8 𝑡 = 𝑔(𝑡)
NRZ

𝑎/ = −1 :; 	⇒ 	 𝑠7 𝑡 = 𝑔 𝑡 and	𝑠8 𝑡 = −𝑔(𝑡)



Manchester	coding

• To	get	a	zero	passing	in	each	signal	time,	split	the	
pulse	shape	g(t) in	two	parts	and	use	+/- as	
amplitude.

Ex.

T

g(t)

t

A

T/2

-A

13



Differential	Manchester	coding
§ Use	a	zero	transition	at	the	start	to	indicate	the	data.	
§ For	a	transmitted	0	the	same	pulse	as	previous	slot	is	

used,	while	for	a	transmitted	1	the	inverted	pulse	is	
used,	i.e.	𝑎/ = 𝑎/<8 −1 :;
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PAM (Pulse Amplitude Modulation)

§ NRZ	and	Manchester	are	forms	of	binary	PAM
§ The	data	is	stored	in	the	amplitude	and	

transmitted	with	a	pulse	shape	𝑔(𝑡)

§ Graphical	representation
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a(t) = an ⋅g(t) an = (−1)
x



M-PAM

§Use	M amplitude	levels	to	represent	k=log2(M)	bits

t

s(t)

T 2T 3T

x=10 01 00 10 10 11 11 10 00

A

-A

3A

-3A

01:

10:

00:

11:

16

§Ex.	Two	bits	per	signal	(4-PAM)



M-PAM

§ Ex:	4-PAM
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§ Ex:	8-PAM



Bandwidth of signal

§ The	bandwidth,	W,	is	the	(positive	side)	frequency	
band	occupied	by	the	signal

§ So	far,	only	base-band	signals	(centered	around	f=0)
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Pass-band signal

§ Frequency	modulate	the	signal	to	a	carrier	
frequency	𝑓7
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§ The	following	multiplication	centers	the	signal	
around	the	carrier	frequency	𝑓7
				𝑠 𝑡 = 𝑎 𝑡 > cos 2𝜋𝑓7𝑡
where 𝑎(𝑡) is	a	base-band	signal



Modulation	in	frequency
⇥ =

# F

s(t)

t

�3A

�1A

1A

3A

cos(2⇡f0t)

t

sf0(t)

t

�3A

�1A

1A

3A

⇤ =S(f)

f

1
2 (�(f + f0) + �(f � f0))

f�f0 f0

1
2 (S(f + f0) + S(f � f0))

f�f0 f0
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t

s(t)

T 2T 3T

x=10010010101111100

A

0

-A

ASK	(Amplitude	Shift	Keying)

§ Use	on-off	keying	at	frequency	f0.

§ Ex.

s(t) = xng(t − nT )cos(2π f0t)
n
∑
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BPSK	(Binary	Phase	Shift	Keying)
§ Use	NRZ	at	frequency	f0,	but	view	information	in	

phase
s(t) = (−1)xn g(t − nT )cos(2π f0t) = g(t − nT )cos(2π f0t + xnπ )

n
∑

n
∑

t

s(t)

T 2T 3T

x=10010010101111100

A

-A
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t

s(t)

T 2T 3T

x=10010010101111100

A

-A



M-QAM	
(Quadrature	Amplitude	Modulation)

Use	that	cos	(2𝜋𝑓7𝑡) and	sin	(2𝜋𝑓7𝑡) are	orthogonal	
(for	high	𝑓0)	to	combine	two	orthogonal	M-PAM	
constellations

g(t)cos

g(t)sin

g(t)cos

g(t)sin
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OFDM
Orthogonal	Frequency	Division	Multiplexing

§ N	QAM	signals	combined	in	an	orthogonal	manner
§ Used	in	e.g.	xDSL,	WiFi,	DVB-C&T&H,	LTE,	etc

f

W
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Idea of OFDM implementation

25
 (x1,..., xN )∈!

N
 (y1,..., yN ) = IFFT (

!x)

QAM

QAM

QAM

(a1,...,aN )∈Z16
N

QAM	mapping
I
F
F
T

Frequency	domain Time	domain



Some important parameters

§ Ts time	per	symbol
§ Rs symbol	per	second
§ Es energy	per	symbol
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k=bit	per	symbol
§ Tb=Ts /k time	per	bit
§ Rb=kRs bit	per	second	[bps]
§ Eb=Es /k energy	per	bit

§ SNR,	Signal	to	noise	ratio	
¨average	signal	power	relative	to	noise	power

§ W Bandwidth,	frequency	band	occupied	by	signal
§ Bandwidth	efficiency:	bits	per	second	per	Hz	[bps/Hz]

ρ = Rb
W



Impairments on the communication 
channel (link)
§ Attenuation
§ Multipath	propagation	(fading)
§ Noise
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y(t) = x(t)∗h(t)+ n(t)



Noise	disturbances
• Thermal	noise	(Johnson-Nyquist)

• Generated	by	current	in	a	conductor
• -174	dBm/Hz		(=3.98*10-18 mW/Hz)

• Impulse	noise	(Often	user	generated,	e.g.	electrical	switches)
• Intermodulation	noise	(From	other	systems)
• Cross-talk	(Users	in	the	same	system)
• Background	noise	(Misc disturbances)

https://en.wikipedia.org/wiki/Johnson-Nyquist_noise

28



Some Information Theory
Entropy

§ Discrete	case:	X discrete	random	variable

Entropy	is	uncertainty	of	outcome	(for	discrete	case)

§ Continuous	case:	X continuous	random	variable
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H (X) = E[− log2 p(X)]= − p(x)log2 p(x)x∑

H (X) = E[− log2 f (X)]= − f (x)log2 f (x)R∫ dx



Example Entropy

Let	X be	a	binary	random	
variable	with	
P(X=0)=p	
P(X=1)=1-p.	

The	binary	entropy	
function	is	
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h(p) = − p log2 p − (1− p)log2(1− p)

i
i
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1/2 1

Figure 3.1: The Binary entropy function.

The definition of the entropy is also valid for vectorised random variables, such
as (X, Y) with the joint probability function p(x, y).

DEFINITION 3.5 The joint entropy for a pair of random variables with the joint
distribution p(x, y) is

H(X, Y) = EXY
⇥

� log p(X, Y)
⇤

= �Â
x,y

p(x, y) log p(x, y) (3.23)

⇤

Similarly, in the general case with an n-dimensional vector X = (X1, . . . , Xn),
the joint entropy function is

H(X1, . . . , Xn) = E
X

⇥

� log p(X)
⇤

= �Â
x

p(x) log p(x) (3.24)

EXAMPLE 3.6 Let X and Y be the outcomes from two independent fair dice.
Then the joint probability is P(X, Y = x, y) = 1/36 and the joint entropy

H(X, Y) = �Â
x,y

1
36

log
1

36
= log 36 = 2 log 6 ⇡ 5.1699 (3.25)

Clearly, the uncertainty of the outcome of two dice is twice the uncertainty of
one die.

Let Z the sum of the dice, Z = X + Y. The probabilities are shown in the
following table

Z 2 3 4 5 6 7 8 9 10 11 12
P(Z) 1

36
2

36
3

36
4
36

5
36

6
36

5
36

4
36

3
36

2
36

1
36



Compression

The	entropy	sets	a	limit	on	the	compression	ratio
§ Consider	a	source	for	X with	N symbols	and	the	

distribution	P(N).	In	average	a	symbol	must	be	
represented	by	at	least	H(P) bits.

§ Well	known	compression	algorithms	are	zip,	gz,	
png,	Huffman

§ Lossy compression	e.g.	jpeg and	mpeg
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Some more Information Theory
Mutual information

§ Let	X and	Y be	two	random	variables
§ The	information	about	X by	observing	Y is	given	

by
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I(X;Y ) = E log2
P(X,Y )
P(X)P(Y )

⎡
⎣⎢

⎤
⎦⎥

§ This	gives

I(X;Y ) = H (X)+ H (Y )− H (X,Y )



Example Mutual Information

P(X,Y) Y=0 Y=1
X=0 0 3/4

X=1 1/8 1/8

33

The	random	variables	X and	Y has	the	joint	distribution
That gives

and
and

P(X = 0) = 3 / 4 P(X = 1) = 1/ 4
P(Y = 0) = 1/ 8 P(Y = 1) = 7 / 8

Entropies: H (X) = h( 14 ) = 0.8114
H (Y ) = h( 18 ) = 0.5436
H (X,Y ) = − 3

4 log 3
4 − 1

8 log 1
8 − 1

8 log 1
8 = 1.0613

Information: I(X;Y ) = H (X)+ H (Y )− H (X,Y ) = 0.2936



Some Information Theory
Channel capacity

§ The	channel	is	a	model	of	the	transmission	link.
§ Transmit	X and	receive	Y.	How	much	information	

can	the	receiver	get	from	the	transmitter?
§ The	channel	capacity is	defined	as	
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C = max
p(x )

I(X;Y )



AWGN
Additive White Gaussian Noise channel

§ Let	X be	band-limited	in	bandwidth	W	
§ ,	where
§ The	capacity	is	

[bps]

§ where	P is	the	power	of	X, i.e.	E[X2]=P.
§ It	is	not	possible	to	get	higher	data	rate	on	this	

channel!
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N ∼ N 0, N0 / 2( )Y = X + N

C =W log2 1+
P

N0W
⎛
⎝⎜

⎞
⎠⎟



AWGN Example (VDSL)

§ Consider	a	channel	with
𝑊 = 17	𝑀𝐻𝑧
𝑃L = −60	𝑑𝐵𝑚/𝐻𝑧
𝑁7 = −145	𝑑𝐵𝑚/𝐻𝑧

§ Power																																mW
§ Noise																							mW/Hz
§ Capacity																																																																						Mbps
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P = 10−60/10 ⋅17 ⋅106

N0 = 10
−145/10

C =W log 1+ P
N0W( ) =W log 1+ 10−60/10

10−145/10( ) = 480



Shannon’s fundamental limit
§ Plot	capacity	vsW

§ Is	there	a	limit?
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W

C

Figure 9.7: Capacity as a function of the bandwidth W for a fixed total signal
power P.

where Es is the average energy per transmitted symbol, Eb the average energy
per information bit and Tb = Ts/k the average transmission time for each infor-
mation bit. The variable Eb is very important since it can be compared between
different systems, without having the same number of bits per symbol or even
the same coding rate. Hence, a system independent signal to noise ratio can be
derived as SNR = Eb/N0. From (9.53) the energy per information bit can be
written as

Eb =
PTs

k
(9.54)

Since the achieved bit rate can be expressed as Rb = k
Ts

, the ration between C•
and the bit rate Rb can be written

C•
Rb

=
P/N0
ln 2

Ts
k

=
Eb/N0

ln 2
> 1 (9.55)

where it is used that reliable communication requires C• > Rb. Rewriting the
above, concludes that for reliable communication

Eb
N0

> ln 2 = 0.69 = �1.59 dB (9.56)

The value �1.6 dB is a well known bound in communication theory, and is
often referred to as the Shannon limit or the fundamental limit. It constitute
a hard limit for when it is possible to achieve reliable communication. If the
SNR is less than this limit it is not possible to reach error probability that tends
to zero, independent of what system is used. To see the demands this limit
puts on the system, the capacity formula will be rewritten to show a limit on
the bandwidth efficiency Rb/W in the used system. Often the bandwidth is a
limited resource and then to reach a high data rate the system should have a
high bandwidth efficiency.

§ Let	W	->	∞

§ With	Eb=PTb and	Ts=kTb

C∞ = lim
W→∞

W log 1+ P/N0
W( )

= lim
W→∞

log 1+ P/N0
W( )W = logeP/N0 = P / N0

ln2

C∞

Rb
= Eb / N0

ln2
>1

Eb

N0

> ln2 = −1.59dB

§ Which	gives	the	fundamental	
limit

𝐶 = 𝑊 log(1 + Y
Z[\

)



AWGN with attenuation

§ Let	X be	bandlimited in	bandwidth	W
§ Let	G be	attenuation	on	channel,	G<1

§ The	capacity	is	

[in	bit/s]
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C =W log2 1+
|G |2 P
N0W

⎛
⎝⎜

⎞
⎠⎟


