#### **ETSF15: Lecture 5**

- Routing
- Network protocols
  - IPv4/IPv6
  - ARP/NDP

Jens A Andersson



# Lab 2: Adressering, ARQ, CRC

#### Lager 2

- ◆ Lab 1 handlade om ramar, bitar och signaler
- Funktioner tillgängliga i skelettet:
  - Skapa sändbuffer och sända signaler
  - Läsa in signaler och lagra i mottagarbuffer
  - Koda ram med FDU-variabler
  - Avkoda ram till FDU-variabler

## Link topologies

#### Bus



# **Generic multiplexing**

Allocate channels in the available transmission medium



# Synchronous time division multiplex

Forwards one frame per channel in round robinIf channel has nothing to send, corresponding time slot is i empty.



# Statistical time division multiplexing

Frames are transmitted as they arrive.
Need buffering if outgoing link is occupied.
Need 'address' for channel identification



#### **Access methods**



#### Multiple access requires ordered access!

#### **ALOHA**

central node)



University of Hawaii (1971)

#### Carrier Sense Multiple Access (CSMA) CSMA/CD

- CS: Listen before transmit
  - If busy, wait and try again

#### CD: Collision Detection

- Listen for collision while transmitting
- Works only in wired environment
- CSMA/CA
  - CA: Collision avoidance
  - Request channel before sending
  - RTS/CTS (master/slave)

#### The need for addresses



- ◆ All stations must have a unique address.
- All stations receives frame.
- Only addressed station handle the frame

#### Domains

- Collision domain
  - Every station are effected by the same collision
  - Number of (busy) stations in a domain affects throughput
- Broadcast domain
  - Every station receives the same broadcast message
  - ◆ Alas: there exists a broadcast address!
  - Number of stations/broadcasts in a domain affects throughput

#### **Circuit switching**



#### **Packet Switching**



#### **Ethernet, wired**

- Ethernet developed by Xerox, Intel and DEC 1976.
- •IEEE 802.3 is based on Ethernet.
  - Ethernet version II is included in IEEE802.3
  - Differences in the frame format but can co-exist on same link as 802.3.



#### **Protocol structure so far**



A bridge recognises frames!

#### **Extended Networks**

#All layer 2 networks have limitations in reach.#There is a demand for connecting networks.



# Layer 2 networks for long reach

#### **#**SONET/SDH

- encapsulates several telephone calls (64kbps) in a hierarki of flows
- flows can be added or dropped

**#**ATM

- for telephony and data
- cells, small equal sized frames

\* "packet switching" over virtual circuits (label switching)
#Ethernet based networks for long distances
#WDM – Wavelength Division Multiplexing

#### Switches selects routes?



- In networks there might (preferable) exist multiple paths.
- Switches must keep track of all stations!

#### The objective of a switch?

- Connects networks with *same L2 protocol*
- Selects next network for incoming frames depending on destination address.



# Routing

- Routing = selection of best path to destination
  - Router generic name for a best path selector on layer 3
  - Some layer 2 protocols include some form of routing
- Adapt best path to dynamics in the network
- Based on Graph theory
  - E.g. Dijkstra Shortest Path First
- Switching/Forwarding = select output interface and next hop based on best path

# Routing (cont ...)

Principles

- Centralised
  - Remote switching/forwarding nodes send network information to central node that finds best paths and pushes those to switching/forwarding nodes

Distributed

• All nodes share network information and find best paths

# Flooding

Incoming frames are copied out on all other ports.To break loops: All frames must have a hop counter.



## **Network graphs**

- A graph has nodes and edges
   (su poder och bågar)
  - (sv noder och bågar)



## Nätgraf forts.

- Each edge is assigned a cost
- In network cost to use a link



# Link cost metrics

**#**Capacity/Bit rate **#**Load **#**Type of network **#**Fixed **#**Mobile **#**Wifi **#**Latency **#**Etc ...

## Least-hop path

Least-hop path assumes link/edge cost is equal for all links/edges

Path with least hop is preferred



#### Least-cost path

Adapt to different link/edge costPath with least cumulative cost is preferred



#### **Problem!**

If LANs don't have same L2 protocol?

- Different propagation media
- Different signaling
- Different frame structure
- Different MAC layer address formats

# **Solution: Network Layer Protocol**

- Rides on top of any layer 2 network
  - Encapsulation (a frame as payload of another frame)
- Global address structure
  - Network ID requirement
    - Flat structure impossible; requires all addresses known to all switches
  - Host ID is address to individual host on a network
- Global frame format

#### **Network Protocol**



#### **One Network Protocol: IP**

- IP = Internet Protocol
- IP used on what is called Internet.
- IP defines IP addresses.
- Data transfered in IP packets/datagrams.
- Connection Free datatransfer.
- No error detection or control.
- This is called "best-effort".

#### **Connection Oriented data transfer**



#### **Connection Free data transfer**



#### **Internet Protocol**

- Two versions in parallel: version 4 (IPv4) och version 6 (IPv6).
  - Incompatible
  - Translation needed
- IPv4 developed during 1970s.
  - All IPv4 addresses are allocated!
- IPv6 supports
  - More addresses
  - Realtime media transfer (built in)
  - Encryption and autentication (built in)

#### IPv4 datagram



## IPv4 header format



#### IPv4 address structure

IPv4 addresses are 32 bits long.

- ◆4.3 10<sup>9</sup> idividual addresses
- Only 3.8 10<sup>9</sup> can be used

Printed as 4 decimal numbers; full stop as delimiter

Dot decimal notation

♦4 bytes/octets

 $\begin{array}{c} 10000010 \ 11101011 \ 00010010 \ 10011110_{2} \\ = \\ 130.235.18.158_{10} \end{array}$ 

## IPv4 address structure (2)

- Two parts:
  - Network identity (net id)
  - Host identity (host id)

One EIT IP address = 130.235.202.173 ???? EIT network id = 130.235.200

## IPv4 address structure (3) Classful adddressing



# IPv4 address structure (4) Subnetting

- Split network into subnets: Add a subnet mask
- 32 bit vector
  - Ones identify bits in net id
    - Always consecutive from the left
  - Zeros identify bits in host id
- **2**55.255.255.128
  - Splits one C net into two subnets
  - Splits one B net into 512 subnets

# IPv4 address structure (3) Classless adddressing (CIDR)

- Skip classes
- Use only (sub)net mask

| Address: | 11011110 00010111 01000011 01000100 |
|----------|-------------------------------------|
| Mask:    | 11111111 1111111 11000000 00000000  |
| Net id:  | 11011110 00010111 0100000 00000000  |
| Host id: | 0000000 0000000 0000011 01000100    |

#### IPv6 datagram

| header   | data           |
|----------|----------------|
| 40 bytes | 0-65.535 bytes |





#### **IPv6 address structure**

IPv6 addresses are 128 bits long
 3.4 10<sup>38</sup> individual addresses

 $010A : 1234 : E4F5 : 1003 : 4567 : BC98 : 0000 : 2341_{16}$ 

## IPv6 address structure (2)

- Address space divided into blocks
- Each block idetified by its *block prefix* 
  - 001 = *global unicast* ; host to host)
  - 1111 110 = *unique local unicast*; corresponds to IPv4 private adresses, rfc 1918
  - 1111 1110 11 = *link local* ; used in combination with MAC address for auto configuration

# IPv6 address structure (3)

Printed as eight hexadecimal numbers; colon delimiter

Colon-hexadecimal notation

- Leading zeros in a group kan be omitted
- Consecutive groups with zeros only
  - Can be printed as ::
  - Only allowed once per address

#### IPv6 address structure (4)

FDEC: 0102: 0000: 0000: 0000: EB82: 0013: 14A5

can be shortened to

FDEC: 102:: EB82: 13: 14A5

# IPv6 address structure (5)

- Net id or host id?
- Compare IPv4 (sub)net mask
- Printed as number of consecutive ones
- Exempel prefix: FDEC::BBFF:0:FFFF/60
  - The first 60 bits gives the net id

# Check Sum (Hash Sum)

- Split the bit vector into equal sized segments
- Calculate sum over all the segments
- Remove carry bits and add to the sum

- Before transmission
  - Calculate the sum's one complement
- Send segments and the one complemented sum

# Check Sum (Hash Sum) (2)

Receiver side:

- Split the bit vector into equal sized segments
  - same segments size as the sending end
- ♦ Calculate sum over all the segments
  - Remove carry bits and add to the sum
- Calculate the sum's one complement
- If complement of sum = 0 then segments are received without error

#### From IP address to MAC-adress

- Hosts have to know MAC addresses to be able to communicate on one LAN
- Find out the MAC/IP address mapping
  - IPv6 uses sub protocol of Neighbor Discovery Protocol (NDP)
  - IPv4 uses Address Resolution Protocol (ARP)

#### From IPv4 address to MAC address

ARP:

 Before transmitting an IP datagram sender must know of the corresponding MAC address on the same LAN

ARP caches known IP/MAC address pair

•First look in ARP cache; if not found ask for it on the LAN

#### From IPv4 address to MAC address (2)



ARP reply MAC a:b:c:d:e:f



#### From IPv4 address to MAC address (3)

If the IPv4 address is to another network the default gateway's MAC address has to be used



# "Routing" in a host

- Sending host must know
  - Is destination on same network?
  - If not, which is the path to the outside world?

- Compare own net id with destinations net id:
  - If the same: ARP request for destination's MAC address
  - If different: ARP request for default gateway's MAC address



# **ARP (2)**



#### From IPv6 address to MAC address

- NDP ion stead of ARP
- NDP is part of ICMPv6
  - Internet Control Message Protocol
  - Supporting protocol for IPv6
- Neighbor-Solicitation Message corresponds to ARP request
- Neighbor-Advertisement Message corresponds to ARP reply





# NDP (3)

Also Automatic Configuration

- Network Discovery
- Host "invents" own address
- Ask all stations on the LAN if there is a conflict
- Requests net id and default gateway's address