
ETSF15 - Point to point communication
Lab 1 - Manual v.1

February 1, 2016

1

Contents

Part I Introduction 2

1 Application . 2

Part II Communication specifications 3

2 Physical . 3
2.1 Flags . 3
2.2 Communication parameters . 3

3 Medium access . 3
3.1 Frame structure . 3

3.1.1 DATA . 4
3.1.2 ACK . 4

3.2 Collision avoidance (Not in this lab) . 5
3.3 Addressing (Not in this lab) . 5

4 Reliable transmission . 5

Part III Arduino 7

5 Board . 7

6 Shield . 8
6.1 Communication . 9
6.2 Application . 10
6.3 Service and debug . 10

7 Software . 11

Part IV Master Node 13

8 States . 13
8.1 SEND . 14
8.2 RECEIVE . 14
8.3 PROCESS . 15
8.4 ACK SEND . 16
8.5 ACK RECEIVE . 17
8.6 ACT . 17

9 Parameters . 17

Part V Development Node 19

10 Software skeleton . 19

Part VI Instructions 21

11 Preparations . 21

12 Lab set-up . 21

13 Tasks . 22

Part A Skeleton.ino 26

1

Part I

Introduction

This text supplies a background to the lab, an introduction to the lab hardware and
software, and a manual to the first lab. The Point to point communications consists
of two labs. In this first lab you will develop the necessary mechanisms to enable two
units to communicate over an Infra-red (IR) link. One unit, the Master Node will be
provided for you and is fully functional according to the specifications in Parts II and IV.
The Development Node, with which you will be working, comes with a complete set of
Hardware (HW) and a Software (SW) skeleton downloadable from the website. The aim of
the lab is to implement the necessary functionality to succeed in making the Development
Node communicate with the Master Node. To your aid is a description of the Master Node,
the communication standard, the HW for the Development Node, and a SW skeleton.

The nodes have limited memory, computational, and Input/Output (I/O) resources.
This imposes constraints on the speed of communication, redundancy, and complexity of
the application. The nodes are for example single threaded. It is therefore, non-trivial to
run concurrent processes such as simultaneous transmission and reception on the device.
These constraints have to be accommodated for and dealt with in your implementation.

The remainder of this document is structured as follows. In Part II an overview is given
of the singular practical objective of the lab, to get two primitives nodes to distributively
perform a simple task. Then details the of communication standard used in the lab is
outlined. Part III gives an overview of the HW you will be working with. Part IV provides
a specification for the Master Node. Part V covers what is known about the Development
Node. Finally, Part VI details the lab and provides you with a lab manual.

1 Application

The reason why these two nodes even need to communicate with each other is to be able
to remotely set which light/Light Emitting Diode (LED) to illuminate on the other node.
One node acts as the agent and the other as the actuator. In this lab the Master Node will
act as the actuator and the Development Node will act as the agent. The designated agent
node has three different-coloured LEDs and a button. The LEDs on the Master Node
light randomly at a fixed rate. When the button is pressed, the ID of the lit LED shall be
transmitted to the actuator node, where the same coloured LED shall be illuminated until
the next instruction. Upon successful transmission the agent node shall return to waiting
for the next input. Similarly, after addressing the instructions in the ingress frame, the
actuator node returns to waiting for the next instruction.

2

Part II

Communication specifications

2 Physical

The communication link is physically achieved by using a pair IR LEDs (λ = 900nm)
over a simplex channel. Communication on the link is coded and propagated using On-Off
keying, meaning no light is a zero and light is a one. The nodes clocks are asynchronous.

2.1 Flags

As the device is only capable of intermittent reception, a start and a stop frame is used
to delimit a frame and synchronise the nodes. The flags are 11-bit Baker codes.

• Start flag
11100010010

• Stop flag
00011101101

2.2 Communication parameters

The system codes the transmission as On-off keying (OOK) with symbol length Ts and
oversampling factor Ns, see Table 1. A zero is transmitted as a high signal (light), and a
one as no signal (no light).

Table 1: Communication parameters
Parameter Value Description

Ts 100ms Symbol length
Ns 2 Oversampling factor
Tb 500ms Backoff time when sensing the channel

The oversampling means here thet for each bit transmitted this is the number of
signals sent. The bit time is NsTs, which in our case is 200 ms. Hence, the starting flag
11100010010 will be signalled as shown in Figure 1.

3 Medium access

3.1 Frame structure

The frame size is fixed and de-marked at either end with a start and a stop flag, see
Table 2 and Figure 2. The flags are as specified in Section 2.1. There are two types of

3

s(t)

t [s]

5

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2

1 1 1 0 0 0 1 0 0 1 0

Figure 1: Signal for the Start Flag.

frames, DATA and ACK. Each frame has a 2-bit sequence number. The sequence number
is incremented for each DATA frame and is used by the ACK frame to acknowledge a
successfully received DATA frame. Each frame type carries a checksum of its content.
The payload is only allocated 4-bits and used by the application. In this lab addressing is
not used. The important parts at this point are Start and Stop flags, Payload (i.e. LED
number) and Type.

Table 2: Frame decomposition
Field Length (bits) Description

Start flag 11 De-marks start of transmission

From 4 Sender address

To 4 Receiver address

Type 2 Type of message [ACK — DATA]

Seq 2 Sequence number

Payload 4 Message content

Checksum 4 Checksum of message excluding flags

Stop flag 11 De-marks end of transmission

3.1.1 DATA

A DATA frame carries information from the application and is allocated the entire Payload
section of 4-bits. The Seq number is incremented for each new DATA frame. A DATA
frame is denoted by a 102 in the type field.

3.1.2 ACK

The ACK or acknowledgement frame trails a received DATA frame to signal that is has
been received correctly. It is only sent once, and carries an empty payload. An ACK
frame is denoted by a 012 in the type field.

4

STOP FLAG

11 bits

START FLAG

11 bits

FROM TO TYPE SEQ PAYLOAD CHECKSUM

4 bits 4 bits 4 bits 4 bits2 bits 2 bits

DATA

STOP FLAGSTART FLAG FROM TO TYPE SEQ NULL CHECKSUMACK

Figure 2: Frame structure.

3.2 Collision avoidance (Not in this lab)

Nodes on the link employ collision avoidance by sensing the link before transmission.
When transmitting, if highs are detected on the link for Tc ms, the nodes proceeds with
the transmission. On the other hand, if a high is detected the backs-off for Tb ms before
sensing the channel again.

3.3 Addressing (Not in this lab)

Each node has a four-bit address, i.e. an address space of 16. The address is set using
the four-toggle dip-switch located on the board. A node shall only process received mes-
sages address to it. The node reads and subsequently updates its address for every state
transition, more on this in Section 8.

4 Reliable transmission

There are a number of reasons why a frame might not have been received correctly:

• Recipient out of range

• Recipient not receiving

• Sender and receiver out of sync

• Partial reception of the frame

• Collision due to simultaneous transmission

Given these circumstances, to achieve a rudimentary degree of reliability, the nodes
employ a Stop-and-wait Automatic Repeat Request (ARQ) scheme. The sender of a
DATA frame shall retransmit that frame, persisting the Seq number, if it does not receive
an ACK frame with the same Seq number from the recipient in Tt. Similarly, if retrieved
successfully and is correctly addressed, the recipient of a DATA frame shall transmit an
ACK to the sender pertaining the same Seq number, see Figure 3

5

Propagation

Propagation

P
ro

c
e

s
s

in
g

R
e

c
e

iv
in

g
 D

A
T
A

In
s

p
e

c
ti

n
g

fr
a

m
e

R
e

c
e

iv
in

g
 A

C
K

Sender Receiver

ti
m
e

DATA

AC
K

T
x

T
x

Figure 3: Example communication scenario (No to proportion)

6

Part III

Arduino

Both the Master Node and the Development Node are constructed using an Arduino board
and micro-controller [4], complimented by a custom made shield attached to the board.
The micro-controller is single threaded and is programmed using a language called Pro-
cessing. The programming environment used in the lab is the default Arduino software,
that can be downloaded from [1]. Both the Arduino board and the development environ-
ment are open source. In this lab you will not modify the HW but focus on implementing
the desired functionality in SW. In Section 5 you will get an overview of the Arduino
board, followed by a introduction to the shield in Section 6. A brief introduction to the
software is given in Section 7.

5 Board

The Arduino micro-controller is fitted onto a small board with a set of digital and ana-
logue I/O pins, see Table 3. These pins can easily be manipulated and read form the
programmable micro-controller. The RISC micro-controller is 8-bit and is clocked to 16
MHz. You communicate with the board over USB, see Figure 4

Figure 4: Arduino UNO board

7

Table 4: Pin assignments
Assignment Pin number Type

Receive (Rx) diode 0 Analogue

TX diode 13 Digital

Button 1 Digital

Address DIP 1 6 Digital

Address DIP 2 5 Digital

Address DIP 3 4 Digital

Address DIP 4 3 Digital

Debug LED #1 7 Digital

Debug LED #2 8 Digital

Debug LED #3 9 Digital

Application Blue LED 10 Digital

Application Green LED 11 Digital

Application Red LED 12 Digital

Table 3: Arduino specifications
Component Property

Microcontroller ATmega328

Operating Voltage 5V

Input Voltage (recommended) 7-12V

Input Voltage (limit) 6-20V

Digital I/O Pins 14

PWM Digital I/O Pins 6

Analog Input Pins 6

DC Current per I/O Pin 40 mA

DC Current for 3.3V Pin 50 mA

Flash Memory 32 KB

Flash Memory for Bootloader 0.5 KB

SRAM 2 KB

EEPROM 1 KB

Clock Speed 16 MHz

6 Shield

The shield attaches to the board and supplies the communication, interaction, and ser-
vice/debugging functionality. The boards pins have been assigned according to Table 4.
The shield is laid out as Figure 5.

8

Debug LED 3

Debug LED 2

Debug LED 1

1 2 3 4

R
ed LED

G
reen LED

B
lue LED

Button

IR LED (Tx)

Address DIP switches

IR Photo diode (Rx)

Tx indicator LED

Figure 5: Shield layout

6.1 Communication

The communication circuit provides the board with a set of Rx and Transmit (Tx) IR
diodes. The Tx diode is complimented with a red LED to provide visual feedback whether
the node is transmitting. To be able to assign the node an address, the communication
circuit is also equipped with a four-toggle dip-switch, see Figure 6. The most significant
bit is set using the left-hand-side switch, DIP Switch 1 which is connected to PIN 6.

9

135v Analouge: 0
IR LED

Address DIP Switches

1
2

IR Photo diode

3
4

5

6

4

3

Tx indicator LED

Figure 6: Communication circuitry

6.2 Application

The application circuit is constructed to enable the application specified in Section 1. It
therefore consists of three differently coloured LEDs and a button, see Figure 7.

101112

BlueGreenRed

15v

Button

Figure 7: Application circuitry

6.3 Service and debug

In addition to the debug messages outputted by the Arduino, accessible though the Ar-
duino IDE, the shield has been equipped with the three user customisable LEDs accessible
on pins 7, 8, 9, labeled D3, D4 and D5 on the circuitboard. Additionally, as previously
mentioned, the Tx LED will light when the Tx diode is activated.

10

789

Debug LED 1

Debug LED 2

Debug LED 3

Figure 8: Service and debug circuitry

7 Software

An Arduino micro-controller is programmed using a language called Processing [5] which
has many similarities with C/C++. You preferably develop your code in the Arduino
Integrated Development Environment (IDE) [2].

Arduino programs are called sketches [1]. A sketch has of two primary functions,
setup() and loop(). The setup() function is where you declare how you want the I/O
to behave and initialise your global variables, see Code Snippet 1. The code contained
inside the loop() is looped in runtime. You can declare your own functions, variables,
and constants outside of the these two functions. Please consult the Arduino beginners
guide [3] (https://www.arduino.cc/en/Guide/HomePage) before you begin the lab. There
are numerous code example to be found by a quick web search. Have a look at the typical
Blink.ino program. This is the counterpart of the “Hello World” program.

Listing 1: Sample Arduino code, Tx and Rx

// Assign pin num
const int PIN RX = 0 ; // Receive pin \#
const int PIN TX = 13 ; // Transmit pin \#

void setup () {
S e r i a l . begin (9 6 0 0) ; // Conf igure s e r i a l por t
pinMode (PIN TX , OUTPUT) ; // Conf igure output pin

}
void loop () {

// Transmit
d i g i t a l W r i t e (PIN TX , HIGH) ; // turn on the IR LED
delay (1 0 0) ; // wai t f o r a 100ms
d i g i t a l W r i t e (PIN TX , LOW) ; // turn o f f the IR LED

11

// Receive
r x b i t = analogRead (PIN RX) ; // read input pin
S e r i a l . p r i n t l n (r x b i t) ; // p r i n t input

// Delay u n t i l next c y c l e
delay (1 0 0 0) ; // wai t f o r a 1 s

}

12

Part IV

Master Node

The Master Node consists of an Arduino and the lab-shield. Its HW is identical to the
Development Node. The Master Node is a fully functioning node and should be seen
as a reference. The documentation below details now the node’s functionality has been
implemented and how you can expect it to behave.

8 States

The Master Node has been implemented with the states detailed below. The state transi-
tions can be configured in any manner to achieve different functionalities and behaviours.
As the Arduino node is single-threaded and asynchronous to the other nodes, it traverses
the states sequentially. The systems time-outs and delays have thus to be configured ac-
cordingly. For example, the intended recipient of a message might not be in the RECEIVE
state at the time you want to send it a message. The time-outs on the sender node there-
fore need to reflect the time it might take for the receiving node to re-enter the RECEIVE
state. Furthermore, in this lab the node is configured to behave as depicted in Figure 9.

SENDACK_REC

ACK_SEND

RECEIVE

PROCESS ACT

PRODUCE

Start

Figure 9: Master Node states

13

8.1 SEND

The send state depicted in Figure 10, transmits the message stored in a Tx buffer according
to the Tx parameters in Table 5. Before it constructs and transmits the frame, it senses
the channel and wait until a time-out for it to be free.

Generate

frame

Send

Channel

clear
Time outNO

Start

Stop: FalseStop: True

YES

NO

Yes

Sense

channel

Figure 10: Send state

8.2 RECEIVE

The receive state depicted in Figure 11, continuously reads the input source and saved
to an Rx buffer. The Rx buffer is the same size as a frame. After every received bit the
Rx buffer is correlated with either the start or the stop flag masks depending on which
internal state it is in. The loop is exited once both flags have been found or the processes
has timed out.

Because execution is sequential, sampling and correlating is done in sequence. To try
to keep the symbols synchronised a delay of Ts− T̂c, where T̂c is the estimated correlation
time, is added between samplings.

14

Read pin

Correlate

Flag found NO

Start flag

Stop flag

YES

YES

NO

Timeout

NO

NO

Start

Stop: FalseYES

Stop: True YES

start_flag_ptr

stop_flag_ptr

Figure 11: Receive state

When the Master Node detects a start flag it will light Debug LED #1 on its shield.
If the Rx buffer is overflown Debug LED #1 is turned of again. However, if a end flag is
found, Debug LED #3 is illuminated to convey that a frame has successfully been received.
Furthermore, is the PROCESS state, Debug LED #2 is illuminated if the frame is intact
and its payload successfully retrieved.

8.3 PROCESS

The process state depicted in Figure 12, down samples, decodes, and decomposed the
message in the Rx buffer. Conditions can be applied to for example the type of message,
and recipient. A successfully received message will light Debug LED #2 on the Master
Node’s shield.

15

Decode

message

Decompse

message

Checksum

Fields

YES

Start

Stop: False

Stop: True

YES

NO

NO

Figure 12: Process state

8.4 ACK SEND

The acknowledgement send state depicted in Figure 13, sends a ACK frame and the
proceeds to the following state.

16

Generate

frame

Send

Channel

clear
Time outNO

Start

Stop: FalseStop: True

YES

NO

YES

Sense

channel

Figure 13: ACK send state

8.5 ACK RECEIVE

In acknowledgement receive state depicted in Figure 13, the sender of a DATA frame
awaits an ACK message from the recipient with the same Seq number. If the expected
ACK frame is not received within TACK,t the node transitions to the SEND state.

8.6 ACT

The message that was decoded in the PROCESS state is in this state acted open. If for
example, the received message instructed the node to turn on the blue LED this state will
carry out that action.

9 Parameters

Table 5 presents the fundamental parameters that define the behaviour of the Master
Node.

17

Table 5: Arduino specifications
Parameter Value Description

Ts 100 ms Symbol time

No 2 Oversampling factor

18

Part V

Development Node

During the lab you will have access to one Master Node and a Development Node. The
Development Node’s HW is identical to the Master Node but the Development Node will
not come with a complete SW stack. It will be your task to achieve the goals outlined
in Part VI by programming the Development Node accordingly. When developing the
node you can seek help from Master Node specifications in Part IV and the supplied SW
skeleton. A state machine is provided in the void loop() function.

Th program skeleton given for the lab is also printed in Appendix A, at the end of
this manual. In the code some parts are marked with A, B, C and D. These parts will be
referred to in the Instructions part, Part VI.

10 Software skeleton

The software skeleton contains a set of basic support functions, constants, and variables.
The support functions and the constants they are governed by are described below, see
Table 7.

Table 6: Software constants
Constant Parameter Value Description

T_S Ts 100 ms Symbol time

OVERSAMPLING No 2 Oversampling factor

START_FLAG - {1,1,1,0,0,0,1,0,0,1,0} Oversampled start flag

STOP_FLAG - {0,0,0,1,1,1,0,1,1,0,1} Oversampled stop flag

LED_B - 10 Blue LED pin

LED_R - 11 Red LED pin

LED_G - 12 Green LED pin

DEB_1 - 9 Debug LED #1

DEB_2 - 8 Debug LED #2

DEB_3 - 7 Debug LED #3

PIN_RX - 0 Rx diode pin

PIN_TX - 13 Tx LED pin

MSG_TYPE_ACK - 1 ACK frame type identifier

MSG_TYPE_DATA - 2 DATA frame type identifier

CORRELATION_THLD - 10 Correlation threshold

19

Table 7: Software constants
Constant Type Description

rx_buffer int array Circular Rx buffer

rx_buffer_ptr int RX buffer pointer

address_bin int array Binary representation of the address

address_dec int Decimal representation of the address

Correlate
int correlate(const int mask[]) : This function takes a mask input and corre-
lates it with the rx_buffer starting at rx_buffer_ptr for the length of the mask.

Decimal to Binary conversion
void dec_to_bin(int number, int size_of_bin, int dest[], int start_point)

: This function converts decimal values to binary.

Binary to decimal conversion
int bin_to_dec(int data[], int start_point, int stop_point): This func-
tion converts binary values to decimal.

Get address
void get_address() : Retrieves the address by reading the address pins and stores
values in address_bin converts it to decimal and saves it in address_dec.

20

Part VI

Instructions

11 Preparations

In order to be able to complete the lab in the allotted time you need to understand how
to develop and deploy an Arduino sketch and what its limitations are, prior to the lab
session. Please refer to the Arduino getting started guide [3]. Study the behaviour of the
Master Node, the SW skeleton, and the tasks in Section 13. Before you begin the lab you
will be asked to present a basic outline of how you intend to implement the Development
Node.

12 Lab set-up

During the lab you will have access to a lab computer equipped with the Arduino IDE and
a USB power supply. You will also have access to one Master Node and one Development
Node. The Master Node will loop through the states depicted in Figure 9 and you will not
have access to manipulate or view its SW stack/sketch. By default, the Master Node will
be powered by the USB power supply. You can however connect it to the lab computer
to view its debug output.

To log in the computers in the lab room use the following credentials

• User name: comnat

• Password: Kanejbytas123

After logging in you should create a personal directory under U:\. This is where you will
store your program project. Download the Development Node program skeleton from the
course home page ????? and save it in your directory. Then start the Arduino software
located in the Windows Start menue, and copy-paste the code into the text editor and
save the project in your directory.

To set up the communication with the Arduino board ensure that

• Tools–Board is set to “Arduino/Genuino Uno”.

• Tools–Port is set to “COM3 (Arduino/Genuino Uno)”. It can be some other number
on the COM but the text should be here.

In the development environment you can also find typical examples that comes by default.
Go to File–Examples to have a look. There are also many examples on the Internet. e.g.
visit https://www.arduino.cc/en/Reference for a reference on the Arduino language.

There should be two Arduinos on your working bench, one connected to the computer,
i.e. the Development Node, marked with a D, and one connected to a USB power outlet,

21

i.e. the Master Node marked with M. Try to upload the program to the Development
Node. This can be done using the icons in the upper left corner of the text editor.

For debugging purposes you can use either the three LEDs D3 to D5 on the shield
(pins 7, 8 and 9) or use the Serial functions for printing data to the computer. Then open
the Serial Monitor by clicking the magnifying glass in the upper right corner.

13 Tasks

The primary practical objectives of this lab is to:

• Implement the necessary functionality in the Development Node so that it is able to
communicate with the static and predicable Master Node

• Convey an action from the agent node (Development Node) to the actuator node
(Master Node). The actuator shall then actuate the action.

These two objectives have been broken down in to tasks which you should complete
during this lab:

1. Develop the PRODUCE state In the Skeleton code the implementation of the state
transition graph is made by a switch statement that you find marked by a B in
Appendix A. The code is started in state PRODUCE, so this where your first code
goes. Here the parts of the frame should be produced, which you find marked with
a C in the code. The transmitted frame is made up from the tx-variables and the
received frame the rx-variables.

(a) Start by turning off all the colour LEDs. In the Skeleton.ino code there are
some constants defined, you find them marked with A in the appendix list.
These constants give the pin numbers for the LEDs used by the program. In
the function void setup() they are defined as inputs or outputs. After you
turned them off insert a delay so you can see what is happening.

(b) Choose one of the colour LEDs and light it. It can e.g. be chosen at random
(see random()) or sequentially looping through them for a random number of
iterations. This is the colour that eventually will be send to the Master Node.

(c) Update the tx-variables that will form the frame (mark C in the appendix).
This is the information that will go into the transmitted frame.

(d) After you are done with the PRODUCE state the next time the program comes
to the switch statement it should choose the SEND state. This is accomplished
by updating the variable state.

Verify the outcome by outputting the result over the serial connection to the com-
puter. e.g. Serial.print or Serial.println.

22

2. Implement the SEND state. The first thing to do is to convert all the parts (as
decimal numbers) to binary vectors and store serialised in tx_msg.

(a) Since the signalling is binary, the frame must be represented as a binary vector.
In Arduino, as in C/C++, a vector is represented by an array, typically initiated
with something like int Values[10];. Then an array of length 10 is allocated.
The values are accessed by indexing starting at 0, so the values are Values[0],
Values[1], . . ., Values[9]. As in C/C++ there is no runtime check of the
indexing, so you can continue to write and read outside the vector without any
complaints. But then you are writing and reading on other memory elements
which will typically cause strange errors. So be aware of your index pointer and
use the module % operator.1 Use the function dec_to_bin given in the skeleton
code. Test it first and see the answer in the Serial Monitor.

(b) The addressing, sequence number and checksum is not used in this lab and
therefore not checked by the receiver. These can all be set to zeros. There are
two types of frames, DATA and ACK, and this should be set as DATA.

(c) Convert the decimal values in a frame buffer to binary and store the frame in
tx_msg. Use Serial.print and Serial.println to see that it is correct. The
frame structure is depicted in Figure 2. There is a predefined array for storing
the binary frame, called tx_msg, see mark C in the appendix code. This is
allocated as an array with length LEN_FRAME, which is the length of the frame,
excluding the starting and ending flags.

(d) Transmit start flag, frame and end flag in a sequence using the transmit IR
LED, defined as PIN_TX. Notice that Ts = 100 ms is the sample time and that
there are Ns = 2 samples per signal pulse. When transmitting the signal the
Master Node respond by lighting the debugging LEDs. The first is lit when
the start flag is detected and the second when the frame is completed. The
third is lit after the checksum is accepted, but since this is not used here it
comes directly after the second LED. If the frame was successfully received by
the Master Node it will turn on the LED specified in the payload. If it doesn’t,
there is something wrong in the signalling. Use the debugging LEDs and the
Serial.print to find out what.

Now the first part of the lab is completed and you can send data from the Develop-
ment Node to the Master Node. When the Master Node receives the data it sends
back an Acknowledge frame, and ACK. This frame looks the same, but the type is
set to ACK. So the next step is to receive a frame and check that the Master Node

1initialisation of the array allocates space for 10 integers in this case. The variable Value is a pointer to
the first value in the memory, and the index is used to increment the pointer a number of positions in the
memory. An integer uses 4 bytes so the value of Value[i] is read by pointing to the memory at position
Value+i*4.

23

has received your data. This is typically done in the RECEIVE state. See to that
the program ends up here after transmitting the frame.

3. Implement the RECEIVE state. In the Skeleton code a read buffer rx_buffer is
defined. The idea of receiving is to listen to channel continuously, with sample
time Ts, and correlate against the starting flag. Reading the channel means read-
ing the analogue value of PIN_RX and storing the sequence in the buffer. Then the
buffer needs to be implemented circularly, in this case with cycle length LEN_BUFFER.
The buffer pointer rx_buffer_ptr is incremented using modulo LEN_BUFFER. If this
buffer and buffer pointer are used, the correlation can be performed using the func-
tion int correlate defined at the end of the Skeleton code in the appendix. As
input you give the sequence to correlate against, i.e. start or end flag.

(a) Read the Rx pin and deposit value in rx_buffer and increment rx_buffer_ptr.
Correlate the signal to determine if you encountered a flag. Remember to use
analogRead() when reading the Rx diode.

(b) Wait until the next sample time. The time spent in correlation is not negligible,
meaning that just waiting time Ts to the next sample might get your program
out of sync. The sample time is the time between two consecutive sampling
starts. Use the Arduino function millis() which gives the time since start in
milliseconds.

(c) Exit when a full message has been received. Do not forget about the oversam-
pling. Use two consecutive samples to estimate if it was a 0 or a 1 that was
sent.

(d) Decode the message and determine if it was a DATA or ACK frame and then
proceed to the correct subsequent state. If it is ACK the Master Node has
received your data, and the program can start from the beginning.

4. What happens if you send a frame to the Master Node and it is not received? How
can you solve the problem?

5. What happens if you send a frame to the Master Node and it sends back an ACK
frame, but you don’t receive it? How can you solve the problem?

References

[1] Arduino software. https://www.arduino.cc/en/Main/Software, 2015.

[2] Arduino software (ide). https://www.arduino.cc/en/Guide/Environment, 2015.

[3] Getting started with arduino. https://www.arduino.cc/en/Guide/HomePage, 2015.

[4] Introduction to the arduino board. https://www.arduino.cc/en/Reference/Board,
2015.

24

[5] Ben Fry, Casey Reas, et al. Processing. http://aiweb.techfak.uni-bielefeld.de/
content/bworld-robot-control-software/, 2007.

25

Part A

Skeleton.ino

In the following pages the code for Skeleton.ino is given.

26

//
// Communication parameters
// // Tx/Rx
 const int T_S = 100;
 const int TX_DELAY = 5000;
 const int OVERSAMPLING = 2;
 // Messageing
 const int LEN_MSG = 4;
 const int LEN_MSG_TYPE = 2;
 const int LEN_SEQ_NBR = 2;
 const int LEN_ADDR = 4;
 const int LEN_CHECKSUM = 4;
 // Flags
 const int LEN_FLAG = 11;
 const int START_FLAG[] = {1,1,1,0,0,0,1,0,0,1,0}; // Shorter and
flags design for teh IR medium would be better
 const int START_FLAG_MASK[] =
{1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,1,1,-1,-1,-1,-1,1,1,-1,-1}; //
Oversampling = 2, TO-DO - Generate dynamically
 const int STOP_FLAG[] = {0,0,0,1,1,1,0,1,1,0,1}; // Shorter and
flags design for teh IR medium would be better
 const int STOP_FLAG_MASK[] =
{-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,-1,-1,1,1,1,1,-1,-1,1,1}; //
Oversampling = 2, TO-DO - Generate dynamically
 const int CORRELATION_THLD = 10;
 // A/D Converter
 const int AD_TH = 900;
 // Buffers
 const int LEN_BUFFER = LEN_FLAG*OVERSAMPLING*2 +
LEN_ADDR*OVERSAMPLING*2 + LEN_MSG_TYPE*OVERSAMPLING +
LEN_SEQ_NBR*OVERSAMPLING + LEN_MSG*OVERSAMPLING +
LEN_CHECKSUM*OVERSAMPLING;

//// Hardware
// // LEDs
 const int LED_B = 10;
 const int LED_G = 11;
 const int LED_R = 12;
 const int DEB_1 = 7;
 const int DEB_2 = 8;

DA

 const int DEB_3 = 9;
 const int PIN_RX = 0;
 const int PIN_TX = 13;
 // Address
 const int PIN_ADDR[] = {3,4,5,6};

//// Messaging
// const int MSG_TYPE_ACK = 1;
 const int MSG_TYPE_DATA = 2;
 const int LEN_FRAME = LEN_ADDR*2 + LEN_MSG_TYPE + LEN_SEQ_NBR +
LEN_MSG + LEN_CHECKSUM;
 // Rx message
 int rx_msg[LEN_FRAME];
 int rx_msg_ptr = 0;
 int rx_msg_len = 0;
 int rx_msg_from = -1;
 int rx_msg_to = -1;
 int rx_msg_type = -1;
 int rx_msg_payload = -1;
 int rx_msg_seq_nbr = -1;
 boolean rx_msg_checksum = -1;
 // Tx message
 int tx_msg[LEN_FRAME];
 int tx_msg_ptr = 0;
 int tx_msg_ctr = 0;
 int tx_msg_from = -1;
 int tx_msg_to = -1;
 int tx_msg_type = -1;
 int tx_msg_payload = -1;
 int tx_msg_seq_nbr = -1;

//// Runtime
// // States
 const int NONE = -1; // No state
 const int RECEIVE = 0; // Rx: Receive message with a timeout.
 const int SEND = 1; // Tx: Transmitt what is in the
 const int PROCESS = 2; // Process payload
 const int ACK_SEND = 3; // Handle ACK
 const int ACK_REC = 4; // Handle ACK
 const int PRODUCE = 5; // Produce content/messahe to send

AC

 const int ACT = 6; // Act on payload
 const int WAIT = 7; // Wait
 const int DEBUG = 8; // Print all system proporties
 // Rx buffer
 const int START_FLAG_LEN_BUFFER = 11;
 int rx_buffer[LEN_BUFFER]; // Seize of 2 flags and max message
 int start_flag_ptr = -1;
 int stop_flag_ptr = -1;
 int rx_buffer_ptr = 0;
 // Address
 int address_bin[LEN_ADDR]; // Address is dynamically assigned using
DIP switches.
 int address_dec = -1;
 // Runtime variables
 int i, j, result, corr, mean, sensor_value, start_point, index; //
Not very readable, sorry :)
 boolean outcome;
 // Channel state
 boolean ch_available = 0;
 int ch_state[] = {-1,-1,-1,-1};
 // Timekeeping
 unsigned long timer, time, t_s_delay_temp;
 // State
 int state = NONE;

//// Device functionality
//int current_led = -1;

//// Code
//void setup() {
 Serial.begin(9600);
 pinMode(LED_B, OUTPUT);
 pinMode(LED_G, OUTPUT);
 pinMode(LED_R, OUTPUT);
 pinMode(DEB_1, OUTPUT);
 pinMode(DEB_2, OUTPUT);
 pinMode(DEB_3, OUTPUT);
 pinMode(PIN_TX, OUTPUT);

 // Address pins
 for (i=0; i<LEN_ADDR; i++) {
 pinMode(PIN_ADDR[i], INPUT);
 }
 // Inital state
 //state = RECEIVE;
 state = PRODUCE;
}void loop() {
 get_address();
 // State machine
 switch(state){

 case SEND:
 break;

 case RECEIVE:
 break;

 case PROCESS:
 break;

 case ACK_SEND:
 break;

 case ACK_REC:
 break;

 case PRODUCE:
 break;

 case ACT:
 break;

 default:
 break;
 }
}// Retreive address from DIP switch
void get_address(){
 for (i=0; i<LEN_ADDR; i++) {
 address_bin[i] = digitalRead(PIN_ADDR[i]);
 }

B

 address_dec = bin_to_dec(address_bin, 0, LEN_ADDR-1);
 Serial.print("[F] Address is: ");
 Serial.println(address_dec);
}//// Frame/Message processing.
//// Binary to decimal
int bin_to_dec(int data[], int start_point, int stop_point){
 Serial.print("\t [F] Binary to decimal: ");
 result = 0.0;
 j = 0;
 for(i=stop_point; i>=start_point; i--){
 Serial.print(data[i]);
 result += data[i]*pow(2.0, j) + data[i]*0.01; // +0.01 for float
to int rouding error
 j++;
 }
 Serial.print(" -> ");
 Serial.println((int)result);
 return result;
}// Decimal to binary with destination array with pointers
void dec_to_bin(int number, int size_of_bin, int dest[], int
start_point){
 Serial.print("\t [F] Dedcimal to Binary: Number ");
 Serial.println(number);
 Serial.print("\t");
 for(i=0; i<size_of_bin; i++){
 dest[start_point + size_of_bin - 1 - i] = number & 1 ? 1: 0;
 Serial.print(start_point + size_of_bin - 1 - i);
 Serial.print(":");
 Serial.print(number & 1 ? 1: 0);
 Serial.print(" ");
 number = number/2;
 }
 Serial.println(" ");
}// A/D Converter
int adConv(int value){
 return sensor_value > AD_TH ? 0 : 1;
}

// Correlate signal with flag
int correlate(const int mask[]){
 corr = 0;
 start_point = (LEN_BUFFER + rx_buffer_ptr - LEN_FLAG * OVERSAMPLING)
% LEN_BUFFER;
 for (i=0; i< LEN_FLAG * OVERSAMPLING; i++){
 corr += mask[i] * rx_buffer[(start_point + i) % LEN_BUFFER];
 }
 if (corr>=CORRELATION_THLD){ // Set automatically based on
oversampling rate, flag, and mask.
 Serial.println("[Rx] Flag found");
 return rx_buffer_ptr;
 }
 return -1;
}

