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Physical layer

* Analog vs digital

« Sampling, quantisation
* Modulation

- Represent digital data in a continuous world
* Disturbances

 Noise and distortion

* Digital data processing

* Information



From bits to signals

" Principles of digital communications
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On-Off keying

* Send one bit during T, seconds and use two
signal levels, “on” and “off”, for 1 and O.

at)=A-x  0<t<T,

EX. x=10010010101111100
s(t)
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Non-return to zero (NRZ)

* Send one bit during T, seconds and use two
signal levels, +A and -A, for 0 and 1.

a(t)=A-(-1)" 0<t<T,

EX. %=10010010101111100

f(t)
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Mathematical description

= With g(t)=A, 0<t<T, the signals can be described
as

s(1)= D a,g(t—nT)

e On-off Two signal alternatives
a,=x, s,(t)=0 and s,(t)=g(t)
* NRZ

a, =(=1)" sy(t)=g(t) and s,(t)=-g(t)



Manchester coding

* To get a zero passing in each signal time, split the
pulse shape g(t) in two parts and use +/- as
amplitude.

Ex x=10010010101111100
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Differential Manchester coding

= Use a zero transition at the start to indicate the data.

" For a transmitted O the same pulse as previous slot is
used, while for a transmitted 1 the inverted pulse is
used.

x=10010010101111100
AS(I)
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PAM (Pulse Amplitude Modulation)

= NRZ and Manchester are forms of binary PAM

"= The data is stored in the amplitude and
transmitted with a pulse shape g(t)

a(t)=a,-g(t)

a,=(-1y’

= @Graphical representation
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M-PAM

= Use M=2k amplitude levels to represent k bits

" Ex. Two bits per signal (4-PAM)

00: 3A
01:
10:

11:

-3A —

x=1001 001010 11 11 10 00

s(t)
A
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Ex: 4-PAM
a(t)

Sy,() S1o(l) Spq(t) Sgolt)
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Ex: 8-PAM

a(t)
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Bandwidth of signal

= The bandwidth, W, is the (positive side) frequency
band occupied by the signal

= So far only base-band signals (centered around f=0)

/1N
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Pass-band signal

" Frequency modulate the signal to a carrier

frequency f, -
A 4

/ N\ / \

I I > f
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= The following multiplication centers the signal
around f,

s(t)=a(t)-cos(2xmf,t)
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Modulation in frequency

s(t) X cos(2m fot) = St (t)
3A 3A —
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S(f) * s(6(f+ fo) +6(f — fo)) = s(S(f+ fo)+S(f — fo))
g ol ot
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Modulated On-Off keying

= Use on-off keying at frequency f,.

s(t)=) x,8(t—nT)cos2x ;1)

=

= EX.
x=10010010101111100
s(t)
A
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BPSK (Binary Phase Shift Keying)

= Use NRZ at frequency f,, but view information in
phase

s(t)= 2( 1) g(t —nT)cosRm f,t) = Zg(t nT)cos(2r fyf +x,7T)

X= 10010010101111100
s(t)
A
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M-QAM (Quadrature amplitude
Modulation)

Use that cos(2rtf,t) and sin(2nf,t) are orthogonal (for
high f,) to combine two orthogonal PAM
constellations

g(t)sin g(t)sin

>
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g(tjcos ® ® o | o
¢ o @ o ®
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OFDM
Orthogonal Frequency Division Multiplexing

= N QAM signhals combined in an orthogonal manner
= Usedine.g. ADSL, VDSL, WiFi, DVB-C&T&H, LTE, etc
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Idea of OFDM implementation

Time domain

Frequency domain
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QAM mapping
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Some important parameters

= T . time persymbol = T,=T/ktime per bit
= R.symbol per second = R,=kR. bit per second [bps]
= E_energy per symbol = E,=E_/k energy per bit

SNR, Signal to noise ratio: ratio of signal energy and
noise energy

W Bandwidth, frequency band occupied by signal

Bandwidth utilisation: bits per second per Hz [bps/Hz]
_K,
P=Ww
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Impairments on the communication
channel (link)

= Attenuation
= Multipath propagation (fading)
= Noise

n(t)

A R %

y(t)

y(t) = x(1)*h(t)+n(t)

21



Noise disturbances

Thermal noise (Johnson-Nyquist)
 Generated by current in a conductor
. -174 dBm/Hz (=3.98*108 mW/Hz)
Impulse noise (Often user generated, e.g. electrical switches)
Intermodulation noise (From other systems)
Cross-talk (Users in the same system)
Background noise (Misc disturbances)

https://en.wikipedia.org/wiki/Johnson-Nyquist noise
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Some Information Theory
Entropy

= Discrete case: X discrete random variable

H(X)= E[-log, p(X)]=-2, p(x)log, p(x)

Entropy is uncertainty of outcome (for discrete case)

= Continuous case: X continuous random variable

H(X)= E[-log, f(X)]==] f(x)log, f(x)ix
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Example Entropy

Let X be a binary random 1|
variable with

P(X=0)=p
P(X=1)=1-p.
The binary entropy

function is

h(p)=-plog, p— (- p)log,(1-p)

1/2
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Compression

The entropy sets a limit on the compression ratio

= Consider a source for X with N different symbols
and the distribution P(X). In average a symbol
must be represented by H(X) bits.

= Well known compression algorithms are zip, gz,
png, Huffman

= Lossy compression e.g. jpeg and mpeg
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Huffman coding

Given a random variable X € {x,,x,,...,x,} with probabilities P(X =x,)= p,
Algorithm:

= |NIT: List all symbols as nodes
= REPEAT:

e Merge the two least probable nodes, i and j, in a binary tree,
and list as one node with probability p;+p,

e If only one node left STOP
= Label the branches of the constructed tree with 0 and 1

The obtained compression code is optimal for i.i.d. sequences.
Optimal means minimal expected length per symbol, over all codes

26



Huffman example

Xe{a,b,c,d,e,f}

Probabilities Construct tree Code book

a 03
a 0.3 b 03 a 00 2

b 0.3 c 0.2 b 01 2

C 0.2 d 0.1 C 10 2

d 0.1 e 0.05 d 110 3

e 0.05 f 0.05 e 1110 4

f 0.05 f 1111 4

Average codeword length E[L]=0.3-2+---+0.05-4 =2.3 bit/symb
Entropy H(X)=-0.3-10g0.3—---—0.05-10g0.05 =2.27bit



Some Information Theory
Mutual information

= et Xand Y be two random variables

* The information about X by observing Y is given
by

P(X.)Y
= E{bgz P()(()P(l)/)}

" This gives

I(X:Y))=HX)+HY)-H(X.Y)
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Example Mutual Information

The random variables X and Y has the joint distribution

PXY) [Y=0  Y=1 That gives
X=0 |0 3/4 P(X=0)=3/4 and P(X=1)=1/4
X=1 |1/8  1/8 P(Y=0)=1/8 and PY¥=1)=7/8

Entropies: H(X)=h(1)=0.8114 bit
H(Y)=h(1)=0.5436 bit
H(X,Y)=—=2logs—+logs—+log+=1.0613 bit
Information: I(X;Y)=H(X)+ H(Y)-H(X,Y)=0.2936 bit
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Some Information Theory
Channel capacity

X Y
»  Channel >

= The channel is a model of the transmission link.

= Transmit X and receive Y. How much information
can the receiver get from the transmitter?

= The channel capacity is defined as

C=maxI(X;Y)

p(x)
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AWGN

Additive White Gaussian Noise channel

Let X be bandlimited in bandwidth W
Y=X+N,where N~N(0.N,/2)

The capacity is

P L
C—W10g2(1+NOWj [in bit/s]

where P is the power of X, i.e. E[X?]=P.

It is not possible to get higher data rate on this
channel!
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AWGN Example (VDSL)

Consider a channel with

W =17-10°Hz

P, =—60dBm / Hz

N, =145dBm / Hz

Power P=10"".17-10°mW

Noise N, =10"""" mw/Hz

Capacity C = Wlog(1+ NOLW) = Wlog(l +

10—60/10
10—145/10

) =480 Mbps
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Shannon’s fundamental limit

= letW->00
C._ = lim W log(1+53%)

W —co

" Plot capacity vs W

£ C
P
= lim log(1+ B )W =loge"™ = /N
In2

W —eo

= With E,=PT, and R,=1/T,
C. _E,IN,

= > 1
R, In2
= Which gives the fundamental
limit
= |stherealimit? E

—t >1n2=-1.59dB
NO
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AWGN with attenuation

= Let X be bandlimited in bandwidth W
= |let G be attenuation on channel, G<1

N

X l Y=GX+N
» G >® >

" The capacity is

IGI* P o
C—W10g2(1+ NOW) [in bit/s]
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