ETSF15
 Physical layer

Stefan Höst

Physical layer

- Analog vs digital
- Sampling, quantisation
- Modulation
- Represent digital data in a continuous world
- Disturbances
- Noise and distortion
- Digital data processing
- Information

From bits to signals

- Principles of digital communications

On-Off keying

- Send one bit during T_{b} seconds and use two signal levels, "on" and "off", for 1 and 0.

$$
a(t)=A \cdot x \quad 0 \leq t \leq T_{b}
$$

Ex.

$$
\mathrm{x}=10010010101111100
$$

Non-return to zero (NRZ)

- Send one bit during T_{b} seconds and use two signal levels, $+A$ and $-A$, for 0 and 1.

$$
a(t)=A \cdot(-1)^{x} \quad 0 \leq t \leq T_{b}
$$

Ex.

Mathematical description

- With $g(t)=A, 0<t<T$, the signals can be described as

$$
s(t)=\sum_{n} a_{n} g(t-n T)
$$

- On-off

Two signal alternatives

$$
a_{n}=x_{n}
$$

$$
s_{0}(t)=0 \text { and } s_{1}(t)=g(t)
$$

- NRZ

$$
a_{n}=(-1)^{x_{n}}
$$

- $s_{0}(t)=g(t)$ and $s_{1}(t)=-g(t)$

Manchester coding

- To get a zero passing in each signal time, split the pulse shape $g(t)$ in two parts and use $+/-$ as amplitude.

$\mathrm{x}=10010010101111100$

Differential Manchester coding

- Use a zero transition at the start to indicate the data.
- For a transmitted 0 the same pulse as previous slot is used, while for a transmitted 1 the inverted pulse is used.

PAM (Pulse Amplitude Modulation)

- NRZ and Manchester are forms of binary PAM
- The data is stored in the amplitude and transmitted with a pulse shape $\mathrm{g}(\mathrm{t})$

$$
a(t)=a_{n} \cdot g(t) \quad a_{n}=(-1)^{x}
$$

- Graphical representation

M-PAM

- Use $M=2^{k}$ amplitude levels to represent k bits
- Ex. Two bits per signal (4-PAM)

M-PAM

- Ex: 4-PAM

- Ex: 8-PAM

Bandwidth of signal

- The bandwidth, W, is the (positive side) frequency band occupied by the signal
- So far only base-band signals (centered around $f=0$)

Pass-band signal

- Frequency modulate the signal to a carrier frequency f_{0}

- The following multiplication centers the signal around f_{0}

$$
s(t)=a(t) \cdot \cos \left(2 \pi f_{0} t\right)
$$

Modulation in frequency

Modulated On-Off keying

- Use on-off keying at frequency f_{0}.

$$
s(t)=\sum_{n} x_{n} g(t-n T) \cos \left(2 \pi f_{0} t\right)
$$

- Ex.

$$
x=10010010101111100
$$

BPSK (Binary Phase Shift Keying)

- Use NRZ at frequency f_{0}, but view information in phase

$$
s(t)=\sum_{n}(-1)^{x_{n}} g(t-n T) \cos \left(2 \pi f_{0} t\right)=\sum_{n} g(t-n T) \cos \left(2 \pi f_{0} t+x_{n} \pi\right)
$$

$\mathrm{x}=10010010101111100$

M-QAM (Quadrature amplitude Modulation)

Use that $\cos \left(2 \pi f_{0} t\right)$ and $\sin \left(2 \pi f_{0} t\right)$ are orthogonal (for high f_{0}) to combine two orthogonal PAM constellations

OFDM
 Orthogonal Frequency Division Multiplexing

- N QAM signals combined in an orthogonal manner
- Used in e.g. ADSL, VDSL, WiFi, DVB-C\&T\&H, LTE, etc

Idea of OFDM implementation

Frequency domain Time domain

QAM mapping

$$
\left(a_{1}, \ldots, a_{N}\right) \in Z_{16}^{N} \quad\left(x_{1}, \ldots, x_{N}\right) \in \mathbb{C}^{N} \quad\left(y_{1}, \ldots, y_{N}\right)=\operatorname{IFFT}(\vec{x})
$$

Some important parameters

- T_{s} time per symbol - $T_{b}=T_{s} / k$ time per bit
- R_{s} symbol per second - $R_{b}=k R_{s}$ bit per second [bps]
- E_{s} energy per symbol - $E_{b}=E_{s} / k$ energy per bit
- SNR, Signal to noise ratio: ratio of signal energy and noise energy
- W Bandwidth, frequency band occupied by signal
- Bandwidth utilisation: bits per second per Hz [bps/Hz]

$$
\rho=\frac{R_{b}}{W}
$$

Impairments on the communication channel (link)

- Attenuation
- Multipath propagation (fading)
- Noise

$$
y(t)=x(t) * h(t)+n(t)
$$

Noise disturbances

- Thermal noise (Johnson-Nyquist)
- Generated by current in a conductor
- $-174 \mathrm{dBm} / \mathrm{Hz}\left(=3.98^{*} 10^{-18} \mathrm{~mW} / \mathrm{Hz}\right)$
- Impulse noise (Often user generated, e.g. electrical switches)
- Intermodulation noise (From other systems)
- Cross-talk (Users in the same system)
- Background noise (Misc disturbances)
https://en.wikipedia.org/wiki/Johnson-Nyquist noise

Some Information Theory Entropy

- Discrete case: X discrete random variable

$$
H(X)=E\left[-\log _{2} p(X)\right]=-\sum_{x} p(x) \log _{2} p(x)
$$

Entropy is uncertainty of outcome (for discrete case)

- Continuous case: X continuous random variable

$$
H(X)=E\left[-\log _{2} f(X)\right]=-\int_{R} f(x) \log _{2} f(x) d x
$$

Example Entropy

Let X be a binary random ${ }_{1}$ variable with

$$
\begin{aligned}
& P(X=0)=p \\
& P(X=1)=1-p .
\end{aligned}
$$

The binary entropy function is

$h(p)=-p \log _{2} p-(1-p) \log _{2}(1-p)$

Compression

The entropy sets a limit on the compression ratio

- Consider a source for X with N different symbols and the distribution $P(X)$. In average a symbol must be represented by $H(X)$ bits.
- Well known compression algorithms are zip, gz, png, Huffman
- Lossy compression e.g.jpeg and mpeg

Huffman coding

Given a random variable $X \in\left\{x_{1}, x_{2}, \ldots, x_{N}\right\}$ with probabilities $P\left(X=x_{i}\right)=p_{i}$ Algorithm:

- INIT: List all symbols as nodes
- REPEAT:
- Merge the two least probable nodes, i and j , in a binary tree, and list as one node with probability $p_{i}+p_{j}$
- If only one node left STOP
- Label the branches of the constructed tree with 0 and 1

The obtained compression code is optimal for i.i.d. sequences.
Optimal means minimal expected length per symbol, over all codes

Huffman example

$X \in\{a, b, c, d, e, f\}$

Probabilities

\mathbf{X}	$\mathbf{P}(\mathbf{X})$
a	0.3
b	0.3
c	0.2
d	0.1
e	0.05
f	0.05

Code book

\mathbf{X}	\mathbf{Y}	\mathbf{L}
a	00	2
b	01	2
c	10	2
d	110	3
e	1110	4
f	1111	4

Average codeword length $E[L]=0.3 \cdot 2+\cdots+0.05 \cdot 4=2.3 \mathrm{bit} /$ symb Entropy $H(X)=-0.3 \cdot \log 0.3-\cdots-0.05 \cdot \log 0.05=2.27$ bit

Some Information Theory Mutual information

- Let X and Y be two random variables
- The information about X by observing Y is given by

$$
I(X ; Y)=E\left[\log _{2} \frac{P(X, Y)}{P(X) P(Y)}\right]
$$

- This gives

$$
I(X ; Y)=H(X)+H(Y)-H(X, Y)
$$

Example Mutual Information

The random variables X and Y has the joint distribution

$\mathbf{P}(\mathbf{X}, \mathbf{Y})$	$\mathbf{Y}=\mathbf{0}$	$\mathbf{Y}=\mathbf{1}$
$\mathbf{X}=\mathbf{0}$	0	$3 / 4$
$\mathbf{X}=\mathbf{1}$	$1 / 8$	$1 / 8$

That gives

$$
\begin{array}{ll}
P(X=0)=3 / 4 \text { and } & P(X=1)=1 / 4 \\
P(Y=0)=1 / 8 \text { and } & P(Y=1)=7 / 8
\end{array}
$$

Entropies: $H(X)=h\left(\frac{1}{4}\right)=0.8114$ bit

$$
\begin{aligned}
& H(Y)=h\left(\frac{1}{8}\right)=0.5436 \text { bit } \\
& H(X, Y)=-\frac{3}{4} \log \frac{3}{4}-\frac{1}{8} \log \frac{1}{8}-\frac{1}{8} \log \frac{1}{8}=1.0613 \text { bit }
\end{aligned}
$$

Information: $I(X ; Y)=H(X)+H(Y)-H(X, Y)=0.2936$ bit

Some Information Theory Channel capacity

- The channel is a model of the transmission link.
- Transmit X and receive Y. How much information can the receiver get from the transmitter?
- The channel capacity is defined as

$$
C=\max _{p(x)} I(X ; Y)
$$

AWGN Additive White Gaussian Noise channel

- Let X be bandlimited in bandwidth W
- $Y=X+N$, where $N \sim N\left(0, \sqrt{N_{0} / 2}\right)$
- The capacity is

$$
C=W \log _{2}\left(1+\frac{P}{N_{0} W}\right) \quad[\text { in } \mathrm{bit} / \mathrm{s}]
$$

- where P is the power of X, i.e. $E\left[X^{2}\right]=P$.
- It is not possible to get higher data rate on this channel!

AWGN Example (VDSL)

- Consider a channel with

$$
\begin{aligned}
& W=17 \cdot 10^{6} \mathrm{~Hz} \\
& P_{\Delta}=-60 \mathrm{dBm} / \mathrm{Hz} \\
& N_{0}=145 \mathrm{dBm} / \mathrm{Hz}
\end{aligned}
$$

- Power $P=10^{-60 / 10} \cdot 17 \cdot 10^{6} \mathrm{~mW}$
- Noise $N_{0}=10^{-145 / 10} \mathrm{~mW} / \mathrm{Hz}$
- Capacity $C=W \log \left(1+\frac{P}{N_{0} W}\right)=W \log \left(1+\frac{10^{-00110}}{10^{-14 / 10}}\right)=480 \mathrm{Mbps}$

Shannon's fundamental limit

- Plot capacity vs W
- Let W-> ∞

$$
\begin{aligned}
& C_{\infty}=\lim _{W \rightarrow \infty} W \log \left(1+\frac{P / N_{0}}{W}\right) \\
& =\lim _{W \rightarrow \infty} \log \left(1+\frac{P / N_{0}}{W}\right)^{W}=\log e^{P / N_{0}}=\frac{P / N_{0}}{\ln 2}
\end{aligned}
$$

- With $E_{b}=P T_{b}$ and $R_{b}=1 / T_{b}$

$$
\frac{C_{\infty}}{R_{b}}=\frac{E_{b} / N_{0}}{\ln 2}>1
$$

- Which gives the fundamental limit

$$
\frac{E_{b}}{N_{0}}>\ln 2=-1.59 d B
$$

AWGN with attenuation

- Let X be bandlimited in bandwidth W
- Let G be attenuation on channel, $G<1$

- The capacity is

$$
C=W \log _{2}\left(1+\frac{|G|^{2} P}{N_{0} W}\right) \quad[\text { in } \mathrm{bit} / \mathrm{s}]
$$

