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Physical	layer	

•  Analog	vs	digital	
•  Sampling,	quan3sa3on	

•  Modula3on	
•  Represent	digital	data	in	a	con3nuous	world	

•  Disturbances	
•  Noise	and	distor3on	

•  Digital	data	processing	
•  Informa3on	
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From	bits	to	signals	

§  Principles	of	digital	communica3ons	

Internet	

Digital	data	

Analog	sig
nal	
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On-Off	keying	
•  Send	one	bit	during	Tb	seconds	and	use	two	

signal	levels,	“on”	and	“off”,	for	1	and	0.	

Ex.		

t

s(t)

T 2T 3T

x=10010010101111100

A

0

a(t) = A ⋅ x 0 ≤ t ≤ Tb
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Non-return	to	zero	(NRZ)	

•  Send	one	bit	during	Tb	seconds	and	use	two	
signal	levels,	+A	and	-A,	for	0	and	1.	

Ex.	
	

t

s(t)

T 2T 3T

x=10010010101111100

A

-A

a(t) = A ⋅(−1)x 0 ≤ t ≤ Tb
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Mathema?cal	descrip?on	

§  With	g(t)=A,	0<t<T,	the	signals	can	be	described	
as	

•  On-off	

•  NRZ	

s(t) = ang(t − nT )
n
∑

an = xn

an = (−1)
xn

Two	signal	alterna3ves	
•  s0(t)=0	and	s1(t)=g(t)	

•  s0(t)=g(t)	and	s1(t)=-g(t)	
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Manchester	coding	

•  To	get	a	zero	passing	in	each	signal	3me,	split	the	
pulse	shape	g(t)	in	two	parts	and	use	+/-	as	
amplitude.	

Ex.	

T

g(t)

t

A

T/2

-A
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Differen?al	Manchester	coding 

§  Use	a	zero	transi3on	at	the	start	to	indicate	the	data.		
§  For	a	transmiSed	0	the	same	pulse	as	previous	slot	is	

used,	while	for	a	transmiSed	1	the	inverted	pulse	is	
used.		
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PAM (Pulse Amplitude Modulation) 

§  NRZ	and	Manchester	are	forms	of	binary	PAM	
§  The	data	is	stored	in	the	amplitude	and	

transmiSed	with	a	pulse	shape	g(t)	

§  Graphical	representa3on	
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a(t) = an ⋅g(t) an = (−1)
x



M-PAM	
§  Use	M=2k	amplitude	levels	to	represent	k	bits	

§  Ex.	Two	bits	per	signal	(4-PAM)	

t

s(t)

T 2T 3T

x=10 01 00 10 10 11 11 10 00

A

-A

3A

-3A

01:

10:

00:

11:
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M-PAM 

§  Ex:	4-PAM	

§  Ex:	8-PAM	
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Bandwidth of signal 

§  The	bandwidth,	W,	is	the	(posi3ve	side)	frequency	
band	occupied	by	the	signal	

§  So	far	only	base-band	signals	(centered	around	f=0)	
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Pass-band signal 
§  Frequency	modulate	the	signal	to	a	carrier	

frequency	f0	

§  The	following	mul3plica3on	centers	the	signal	
around	f0	
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s(t) = a(t) ⋅cos(2π f0t)



Modula?on	in	frequency	
⇥ =

# F

s(t)

t

�3A

�1A

1A

3A

cos(2⇡f0t)

t

sf0(t)

t

�3A

�1A

1A

3A

⇤ =S(f)

f

1
2 (�(f + f0) + �(f � f0))

f�f0 f0

1
2 (S(f + f0) + S(f � f0))

f�f0 f0
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Modulated	On-Off	keying	

§  Use	on-off	keying	at	frequency	f0.	

§  Ex.	
s(t) = xng(t − nT )cos(2π f0t)

n
∑
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BPSK	(Binary	Phase	ShiJ	Keying)	

§  Use	NRZ	at	frequency	f0,	but	view	informa3on	in	
phase	
s(t) = (−1)xn g(t − nT )cos(2π f0t) = g(t − nT )cos(2π f0t + xnπ )

n
∑

n
∑

t

s(t)

T 2T 3T

x=10010010101111100

A

-A
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M-QAM	(Quadrature	amplitude	
Modula?on)	

Use	that	cos(2πf0t)	and	sin(2πf0t)	are	orthogonal	(for	
high	f0)	to	combine	two	orthogonal	PAM	
constella3ons	

g(t)cos

g(t)sin

g(t)cos

g(t)sin
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OFDM	
Orthogonal	Frequency	Division	Mul?plexing	

§  N	QAM	signals	combined	in	an	orthogonal	manner	
§  Used	in	e.g.	ADSL,	VDSL,	WiFi,	DVB-C&T&H,	LTE,	etc	

f

W

18 



Idea of OFDM implementation 
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 (x1,..., xN )∈!
N

 (y1,..., yN ) = IFFT (
!x)

QAM 

QAM 

QAM 

(a1,...,aN )∈Z16
N

QAM	mapping	
I 
F 
F 
T 

Frequency	domain	 Time	domain	



Some important parameters 

§  Ts	3me	per	symbol	
§  Rs	symbol	per	second	
§  Es	energy	per	symbol	

20 

§  Tb=Ts/k	3me	per	bit	
§  Rb=kRs	bit	per	second	[bps]	
§  Eb=Es/k	energy	per	bit	

§  SNR,	Signal	to	noise	ra3o:	ra3o	of	signal	energy	and	
noise	energy	

§  W	Bandwidth,	frequency	band	occupied	by	signal	
§  Bandwidth	u3lisa3on:	bits	per	second	per	Hz	[bps/Hz]	

ρ = Rb
W



Impairments on the communication 
channel (link) 
§  ASenua3on	
§  Mul3path	propaga3on	(fading)	
§  Noise	
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y(t) = x(t)∗h(t)+ n(t)



Noise	disturbances	

•  Thermal	noise	(Johnson-Nyquist)	
•  Generated	by	current	in	a	conductor	

•  -174	dBm/Hz		(=3.98*10-18	mW/Hz)	

•  Impulse	noise	(Oken	user	generated,	e.g.	electrical	switches)	
•  Intermodula3on	noise	(From	other	systems)	
•  Cross-talk	(Users	in	the	same	system)	
•  Background	noise	(Misc	disturbances)	
	
hSps://en.wikipedia.org/wiki/Johnson-Nyquist_noise	
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Some Information Theory 
Entropy 

§  Discrete	case:	X	discrete	random	variable	

	
Entropy	is	uncertainty	of	outcome	(for	discrete	case)	

§  Con3nuous	case:	X	con3nuous	random	variable	
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H (X) = E[− log2 p(X)]= − p(x)log2 p(x)x∑

H (X) = E[− log2 f (X)]= − f (x)log2 f (x)R∫ dx



Example Entropy 

Let	X	be	a	binary	random	
variable	with		
			P(X=0)=p		
			P(X=1)=1-p.		
The	binary	entropy	
func3on	is		
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h(p) = − p log2 p − (1− p)log2(1− p)
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p

h(p)

1

1/2 1

Figure 3.1: The Binary entropy function.

The definition of the entropy is also valid for vectorised random variables, such
as (X, Y) with the joint probability function p(x, y).

DEFINITION 3.5 The joint entropy for a pair of random variables with the joint
distribution p(x, y) is

H(X, Y) = EXY
⇥

� log p(X, Y)
⇤

= �Â
x,y

p(x, y) log p(x, y) (3.23)

⇤

Similarly, in the general case with an n-dimensional vector X = (X1, . . . , Xn),
the joint entropy function is

H(X1, . . . , Xn) = E
X

⇥

� log p(X)
⇤

= �Â
x

p(x) log p(x) (3.24)

EXAMPLE 3.6 Let X and Y be the outcomes from two independent fair dice.
Then the joint probability is P(X, Y = x, y) = 1/36 and the joint entropy

H(X, Y) = �Â
x,y

1
36

log
1

36
= log 36 = 2 log 6 ⇡ 5.1699 (3.25)

Clearly, the uncertainty of the outcome of two dice is twice the uncertainty of
one die.

Let Z the sum of the dice, Z = X + Y. The probabilities are shown in the
following table

Z 2 3 4 5 6 7 8 9 10 11 12
P(Z) 1

36
2

36
3

36
4
36

5
36

6
36

5
36

4
36

3
36

2
36

1
36



Compression 

The	entropy	sets	a	limit	on	the	compression	ra3o	
§  Consider	a	source	for	X	with	N	different	symbols	

and	the	distribu3on	P(X).	In	average	a	symbol	
must	be	represented	by	H(X)	bits.	

§  Well	known	compression	algorithms	are	zip,	gz,	
png,	Huffman	

§  Lossy	compression	e.g.	jpeg	and	mpeg	
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Huffman coding 
Given	a	random	variable																													with	probabili3es	
Algorithm:			
§  INIT:	List	all	symbols	as	nodes	
§  REPEAT:		

●  Merge	the	two	least	probable	nodes,	i	and	j,	in	a	binary	tree,	
and	list	as	one	node	with	probability	pi+pj	

●  If	only	one	node	lek	STOP	
§  Label	the	branches	of	the	constructed	tree	with	0	and	1	
	
The	obtained	compression	code	is	op3mal	for	i.i.d.	sequences.	
Op3mal	means	minimal	expected	length	per	symbol,	over	all	codes	

26 

 X ∈{x1, x2,…, xN} P(X = xi ) = pi



Huffman example 
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X ∈{a,b,c,d,e, f }
Probabili3es		
X P(X) 

a 0.3 

b 0.3 

c 0.2 

d 0.1 

e 0.05 

f  0.05 

Construct	tree	
X Y L 

a 00 2 

b 01 2 

c 10 2 

d 110 3 

e 1110 4 

f  1111 4 

Code	book	

Average	codeword	length																																																												bit/symb	
Entropy																																																																																					bit	

 E[L]= 0.3⋅2 +!+ 0.05 ⋅4 = 2.3

 H (X) = −0.3⋅ log0.3−!− 0.05 ⋅ log0.05 = 2.27



Some Information Theory 
Mutual information 

§  Let	X	and	Y	be	two	random	variables	
§  The	informa3on	about	X	by	observing	Y	is	given	

by	
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I(X;Y ) = E log2
P(X,Y )
P(X)P(Y )

⎡
⎣⎢

⎤
⎦⎥

§  This	gives	

I(X;Y ) = H (X)+ H (Y )− H (X,Y )



Example Mutual Information 

P(X,Y) Y=0 Y=1 

X=0 0 3/4 

X=1 1/8 1/8 
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The	random	variables	X	and	Y	has	the	joint	distribu3on	

That	gives	
                               and 
                               and 

P(X = 0) = 3 / 4 P(X = 1) = 1/ 4
P(Y = 0) = 1/ 8 P(Y = 1) = 7 / 8

Entropies:																																								bit	
																																																													bit	
																																																																																																	bit						

H (X) = h( 14 ) = 0.8114
H (Y ) = h( 18 ) = 0.5436
H (X,Y ) = − 3

4 log 3
4 − 1

8 log 1
8 − 1

8 log 1
8 = 1.0613

Informa3on:																																																																				bit	I(X;Y ) = H (X)+ H (Y )− H (X,Y ) = 0.2936



Some Information Theory 
Channel capacity 

§  The	channel	is	a	model	of	the	transmission	link.	
§  Transmit	X	and	receive	Y.	How	much	informa3on	

can	the	receiver	get	from	the	transmiSer?	
§  The	channel	capacity	is	defined	as		

30 

C = max
p(x )

I(X;Y )



AWGN 
Additive White Gaussian Noise channel 

§  Let	X	be	bandlimited	in	bandwidth	W		
§  																				,	where	
§  The	capacity	is		

																																																						[in	bit/s]	

§  where	P	is	the	power	of	X,	i.e.	E[X2]=P.	
§  It	is	not	possible	to	get	higher	data	rate	on	this	

channel!	
31 

 
N ∼ N 0, N0 / 2( )Y = X + N

C =W log2 1+
P

N0W
⎛
⎝⎜

⎞
⎠⎟



AWGN Example (VDSL) 

§  Consider	a	channel	with	

§  Power																																mW		
§  Noise																							mW/Hz	
§  Capacity																																																																						Mbps	

32 

W = 17 ⋅106Hz
PΔ = −60dBm /Hz
N0 = 145dBm /Hz

P = 10−60/10 ⋅17 ⋅106

N0 = 10
−145/10

C =W log 1+ P
N0W( ) =W log 1+ 10−60/10

10−145/10( ) = 480



Shannon’s fundamental limit 

§  Plot	capacity	vs	W	

§  Is	there	a	limit?	
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W

C

Figure 9.7: Capacity as a function of the bandwidth W for a fixed total signal
power P.

where Es is the average energy per transmitted symbol, Eb the average energy
per information bit and Tb = Ts/k the average transmission time for each infor-
mation bit. The variable Eb is very important since it can be compared between
different systems, without having the same number of bits per symbol or even
the same coding rate. Hence, a system independent signal to noise ratio can be
derived as SNR = Eb/N0. From (9.53) the energy per information bit can be
written as

Eb =
PTs

k
(9.54)

Since the achieved bit rate can be expressed as Rb = k
Ts

, the ration between C•
and the bit rate Rb can be written

C•
Rb

=
P/N0
ln 2

Ts
k

=
Eb/N0

ln 2
> 1 (9.55)

where it is used that reliable communication requires C• > Rb. Rewriting the
above, concludes that for reliable communication

Eb
N0

> ln 2 = 0.69 = �1.59 dB (9.56)

The value �1.6 dB is a well known bound in communication theory, and is
often referred to as the Shannon limit or the fundamental limit. It constitute
a hard limit for when it is possible to achieve reliable communication. If the
SNR is less than this limit it is not possible to reach error probability that tends
to zero, independent of what system is used. To see the demands this limit
puts on the system, the capacity formula will be rewritten to show a limit on
the bandwidth efficiency Rb/W in the used system. Often the bandwidth is a
limited resource and then to reach a high data rate the system should have a
high bandwidth efficiency.

§  Let	W	->	∞	

§  With	Eb=PTb	and	Rb=1/Tb	

C∞ = lim
W→∞

W log 1+ P/N0
W( )

= lim
W→∞

log 1+ P/N0
W( )W = logeP/N0 = P / N0

ln2

C∞

Rb
= Eb / N0

ln2
>1

Eb

N0

> ln2 = −1.59dB

§  Which	gives	the	fundamental	
limit	



AWGN with attenuation 

§  Let	X	be	bandlimited	in	bandwidth	W		
§  Let	G	be	aSenua3on	on	channel,	G<1	

	
§  The	capacity	is		

																																																											[in	bit/s]	
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C =W log2 1+
|G |2 P
N0W

⎛
⎝⎜

⎞
⎠⎟


