

Transport Layer Protocols

2016
Jens Andersson

ETSF05/ETSF10 – Internet Protocols

Transport Layer

Communication between applications
• Process-to-process delivery
• Client/server concept

– Local host
• Normally initialiser

– Remote host
• Normally always on server

2016-11-22 3ETSF05/ETSF10 - Internet Protocols

IP addresses and port numbers

2016-11-22 4ETSF05/ETSF10 - Internet Protocols

Socket addresses

• Combination of IP address & port number
– Unique for each process on the host

2016-11-22 5ETSF05/ETSF10 - Internet Protocols

Two Transport Mechanisms

• Two basic types of transport service:

Connection-oriented
• Establishment, maintenance and termination

of a logical connection between TS users
• Has a wide variety of applications
• Most common
• Implies service is reliable

Connectionless or Datagram Service

2016-11-22 ETSF05/ETSF10 - Internet Protocols 6

User Datagram Protocol (UDP)
• Transport-level protocol that is commonly

used as part of the TCP/IP protocol suite
• RFC 768
• Provides a connectionless service for

application-level procedures
• Unreliable service; delivery and duplicate

protection are not guaranteed
• Reduces overhead and may be adequate in

many cases
2016-11-22 ETSF05/ETSF10 - Internet Protocols 7

User Datagram Packet format

2016-11-22 ETSF05/ETSF10 - Internet Protocols 8

IPv4 Pseudoheader for Checksum
Calculation

• Optional for IPv4,
mandatory for IPv6

• Data not included in
IPv6

• Used also for TCP
• Cross Layer!

2016-11-22 ETSF05/ETSF10 - Internet Protocols 9

How to Deal with Unreliable Network
Service

 Segments are occasionally lost and may arrive
out of sequence due to variable transit delays

Examples:

• Internetwork using IP
• IEEE 802.3 & 802.11 LAN using

the unacknowledged
connectionless LLC service

2016-11-22 ETSF05/ETSF10 - Internet Protocols 10

Issues to Address

Ordered delivery

Retransmission strategy
Duplicate detection

Flow control (sender/receiver)
Connection establishment

Connection termination
Failure recovery

2016-11-22 ETSF05/ETSF10 - Internet Protocols 11

Ordered Delivery

• With an unreliable network service it is
possible that segments may arrive out of
order

• Solution: number segments sequentially
– TCP uses scheme where each data octet is

implicitly numbered

2016-11-22 ETSF05/ETSF10 - Internet Protocols 12

Duplicate Detection

• Receiver must be able to recognize duplicates
• Segment sequence numbers help
• Complications arise if:

– A duplicate is received prior to the close of the
connection
• Sender must not get confused if it receives multiple

acknowledgments to the same segment
• Sequence number space must be long enough

– A duplicate is received after the close of the
connection

2016-11-22 ETSF05/ETSF10 - Internet Protocols 13

Transport
Entity A

Transport
Entity B

Figure 15.5 Example of Incorrect Duplicate Detection

A times out and
retransmits SN = 201

Obsolete SN = 1
arrives

A times out and
retransmits SN = 1

AN = 601, W = 600

AN = 601, W = 600

AN = 801, W = 600

AN = 1001, W = 600

AN = 1201, W = 600

AN = 1401, W = 600

AN = 1, W = 600

AN = 201, W = 600

SN = 201

SN = 401

SN = 1

SN = 201

SN = 601

SN = 801

SN = 1001

SN = 1201

SN = 1401

SN = 1

SN = 1
2016-11-22 ETSF05/ETSF10 - Internet Protocols 14

Max window
size and
number of bits
for sequence
number are
dependent!

Retransmission Strategy
• Events necessitating retransmission:

• Sending entity does not know transmission was
unsuccessful

• Receiver acknowledges successful receipt by
returning a segment containing an
acknowledgment number Cont.

Segment may be
damaged in transit
but still arrives at

its destination

Segment fails to
arrive

2016-11-22 ETSF05/ETSF10 - Internet Protocols 15

Retransmission Strategy

• No acknowledgment if a segment does not
arrive successfully

• A timer needs to be associated with each
segment as it is sent

• If timer expires before acknowledgment is
received, sender must retransmit

• See Table 15.1 for Transport Protocol
Timers

2016-11-22 ETSF05/ETSF10 - Internet Protocols 16

Connection Establishment and
Termination

• Serves three main purposes:
– Allows each end to assure that the other exists
– Allows exchange or negotiation of optional

parameters
– Triggers allocation of transport

entity resources
 Is by mutual agreement

2016-11-22 ETSF05/ETSF10 - Internet Protocols 17

Remarks on Connection Establishment

• Must take into account the unreliability of a
network service

• Calls for the exchange of SYNs (two way
handshake minimum)
– Could result in:

• Duplicate SYNs
• Duplicate data segments

• Check Figures 15.4,
15.6—15.9 for details

2016-11-22 ETSF05/ETSF10 - Internet Protocols 18

Remarks on Connection Termination

• Two-way handshake was found to be inadequate for
an unreliable network service

• Out of order segments could cause the FIN segment
to arrive before the last data segment

• To avoid this problem the next sequence number after
the last octet of data can be assigned to FIN

• Each side must explicitly acknowledge the FIN of the
other using an ACK with the sequence number of the
FIN to be acknowledged

2016-11-22 ETSF05/ETSF10 - Internet Protocols 20

Remarks on Failure Recovery
• When the system that the transport entity is

running on fails and subsequently restarts, the
state information of all active connections is
lost
– Affected connections become half open because

the side that did not fail does not realize the
problem
• Still active side of a half-open connection can close the

connection using a keepalive timer

Cont…
2016-11-22 ETSF05/ETSF10 - Internet Protocols 22

Failure Recovery (cont.)
 In the event that a transport entity fails and

quickly restarts, half-open connections can be
terminated more quickly by the the use of the
RST segment (RST = RESET)
• Failed side returns an RST i to every segment i

that it receives
• RST i must be checked for validity on the other

side
• If valid an abnormal termination occurs

 There is still the chance that some user data
will be lost or duplicated

2016-11-22 ETSF05/ETSF10 - Internet Protocols 23

Reliable Sequencing
Network Service
Issues:

Addressing

Multiplexing

Flow control

Connection establishment/termination

2016-11-22 ETSF05/ETSF10 - Internet Protocols 24

Flow Control

• Complex at the transport layer:
– Considerable delay in the communication of flow

control information
– Amount of the transmission delay may be highly

variable, making it difficult to effectively use a
timeout mechanism for retransmission of lost data

Reasons for control:
User of the receiving

transport entity cannot
keep up with the flow

Receiving transport entity
itself cannot keep up with

the flow of segments

2016-11-22 ETSF05/ETSF10 - Internet Protocols 26

Alternatives to Flow Control
Requirements

Do nothing
• Segments that overflow the

buffer are discarded
• Sending transport entity will

retransmit

Refuse to accept further
segments from the network
service
• Relies on network service to do

the work (backpressure)

Use a fixed sliding window
protocol
• (Window size never changes)
• With a reliable network service

this works quite well

Use a credit scheme
• Receiver controls senders

window size
• A more effective scheme to use

with an unreliable network
service

• Compare with ACK

Receiving transport
entity can:

2016-11-22 ETSF05/ETSF10 - Internet Protocols 27

ETSF05/ETSF10 - Internet Protocols 28
2016-11-22 28

Receiver

Sender

ETSF05/ETSF10 - Internet Protocols

Sliding Windows: Reminder

Congestion Control in
Packet-Switching Networks

Send control
packet to
some or all
source nodes
• Requires

additional
traffic during
congestion

Send control
packet to
some or all
source nodes
• Requires

additional
traffic during
congestion

Rely on
routing
information
• May vary too

quickly

Rely on
routing
information
• May vary too

quickly

End to end
probe
packets
• Adds to

overhead

End to end
probe
packets
• Adds to

overhead

Add
congestion
information
to
packets in
transit
• Either

backwards or
forwards

Add
congestion
information
to
packets in
transit
• Either

backwards or
forwards

2016-11-22 ETSF05/ETSF10 - Internet Protocols 29

Congestion control methods

• Avoiding and eliminating congestion
– Open-loop = proactive
– Closed-loop = reactive

2016-11-22 30ETSF05/ETSF10 - Internet Protocols

Closed-loop congestion control (1)

• Backpressure

2016-11-22 31ETSF05/ETSF10 - Internet Protocols

Closed-loop congestion control (2)

• Choke packet

2016-11-22 32ETSF05/ETSF10 - Internet Protocols

TCP Services

• RFC 793

• Defined in terms of primitives and parameters
(see Tables 15.2, 15.3 & 15.4 for details)

TCP labels data as:

• Data stream Push
• Urgent data signaling

2016-11-22 ETSF05/ETSF10 - Internet Protocols 33

TCP header format

2016-11-22 34ETSF05/ETSF10 - Internet Protocols

TCP Mechanisms

• Can be grouped into:

Connection
establishment
• Always uses a three-

way handshake
• Connection is

determined by host
and port

Data transfer
• Viewed logically as

consisting of a stream
of octets

• Flow control is
exercised using credit
allocation
(Received ACKs open
the sender window)

Connection
termination
• Each TCP user must

issue a CLOSE primitive
• An abrupt termination

occurs if the user
issues an ABORT
primitive

2016-11-22 ETSF05/ETSF10 - Internet Protocols 35

2016-11-22 ETSF05/ETSF10 - Internet Protocols 36

CLOSED

SYN SENT LISTEN

ESTAB

FIN WAIT CLOSE WAIT

CLOSED

Active Open
send SYN

Event
Action

Receive SYN
Send SYN

Close
Send FIN

Close
Send FIN

Close Close

Passive Open

Receive SYN

Receive FIN

Receive FIN

Figure 15.3 Simple Connection State Diagram

State

Legend:

Reference

TCP Three Way Handshake

2016-11-22 37ETSF05/ETSF10 - Internet Protocols

TCP Connection termination

2016-11-22 38ETSF05/ETSF10 - Internet Protocols

TCP Half-close

2016-11-22 39ETSF05/ETSF10 - Internet Protocols

2016-11-22 ETSF05/ETSF10 - Internet Protocols 40

A may send 1400 octets

A shrinks its transmit window with each
transmission

B is prepared to receive 1400 octets,
beginning with 1001

B acknowledges 3 segments (600 octets), but is only
prepared to receive 200 additional octets beyond the
original budget (i.e., B will accept octets 1601
through 2600)

B acknowledges 5 segments (1000 octets) and
restores the original amount of credit

A adjusts its window with each credit

A exhausts its credit

A receives new credit

SN = 1001
SN = 1201
SN = 1401

SN = 1601SN = 1801

SN = 2001
SN = 2201
SN = 2401

AN = 1601,W = 1000

AN = 2601,W = 1400

Transport Entity A Transport Entity B

Figure 15.1 Example of TCP Credit Allocation Mechanism

...1000 1001 2400 2401... ...1000 1001 2400 2401...

...2600 2601 4000 4001...

...2600 2601 4000 4001...

...1000 1001 1601 2401...

...1000 1001 2001 2401...

...1600 1601 2001 2601...

...1600 1601 2601...

...1600 1601 2001 2601...

...1600 1601 2600 2601...

TCP Flow Control

Window decreased

Window increased

Flow controlled by receiver!

TCP Implementation
Policy Options

• Implementation opportunities:

Send policy
Deliver policy
Accept policy

Retransmit policy
Acknowledge policy

2016-11-22 ETSF05/ETSF10 - Internet Protocols 41

Send Policy
• In the absence of both pushed data and a closed

transmission window a sending TCP entity is free to
transmit data at its own convenience

• TCP may construct a segment for each batch of data
provided or it may wait until a certain amount of
data accumulates before constructing and sending a
segment

• Infrequent and large transmissions have low
overhead in terms of segment generation and
processing

• If transmissions are frequent and small, the system is
providing quick response

2016-11-22 ETSF05/ETSF10 - Internet Protocols 42

Deliver Policy
• In the absence of a Push, a receiving TCP entity is

free to deliver data to the user at its own
convenience

• May deliver as each in-order segment is received, or
may buffer data before delivery

• If deliveries are infrequent and large, the user is not
receiving data as promptly as may be desirable

• If deliveries are frequent and small, there may be
unnecessary processing, as well as operating system
interrupts

2016-11-22 ETSF05/ETSF10 - Internet Protocols 43

Accept Policy
• If segments arrive out of order the receiving TCP

entity has two options:

• Accepts only segments that arrive in order; any segment that
arrives out of order is discarded

• Makes for simple implementation but places a burden on the
networking facility

• If a single segment is lost in transit, then all subsequent segments
must be retransmitted

In-order

• Accepts all segments that are within the receive window
• Requires a more complex acceptance test and a more sophisticated

data storage scheme

In-window

2016-11-22 ETSF05/ETSF10 - Internet Protocols 44

Retransmit Policy
• Retransmission strategies:

Retransmit
First-only

• Maintain one retransmission timer for
entire queue

• Efficient in terms of traffic generated
• Can have considerable delays

Retransmit
Batch/All

• Maintain one retransmission timer for
entire queue

• Reduces the likelihood of long delays
• May result in unnecessary retransmissions

Retransmit
Individual

• Maintain one timer for each segment in the
queue

• More complex implementation
2016-11-22 ETSF05/ETSF10 - Internet Protocols 45

Acknowledge Policy
• Timing of acknowledgment:

2016-11-22 ETSF05/ETSF10 - Internet Protocols 46

TCP Congestion Control

• Parallel to but separate from Flow Control
• Congestion window

– Sliding window (byte-oriented)
– Variable size
– Hybrid impl. (Go-back-N & Selective repeat)

• Slow start (state)
• Congestion avoidance (state)
• Congestion detection (event to act upon)

2016-11-22 47ETSF05/ETSF10 - Internet Protocols

Table 20.1
Implementation of TCP Congestion Control

Measures

2016-11-22 ETSF05/ETSF10 - Internet Protocols 48

Retransmission Timer Management
Essential! Virtually all TCP implementations
estimates RTT and sets timer to a somewhat higher
value.
• Static RTT

– Cannot adapt to network conditions
• Simple average RTT

– Over a number of segments
– Works well if average is a good predictor

• Exponential average RTT
– predicting the next value on the basis of a time series

of past values (RFC 793)

2016-11-22 ETSF05/ETSF10 - Internet Protocols 49

Congestion window

2016-11-22 51ETSF05/ETSF10 - Internet Protocols

= credit

Window Management
• The size of TCP’s send window can have a critical

effect on whether TCP can be used efficiently
without causing congestion

• Two techniques found in virtually all modern
implementation of TCP are:
– Slow start
– Dynamic window sizing on congestion

• Combined with flow control (credit)
awnd = MIN[rwnd, cwnd]

– Credit = rwnd

2016-11-22 ETSF05/ETSF10 - Internet Protocols 52

Slow start: Exponential increase

2016-11-22 54ETSF05/ETSF10 - Internet Protocols

For each ACK:
cwnd = cwnd +1

Congestion avoidance: Additive increase

2016-11-22 55ETSF05/ETSF10 - Internet Protocols

For each RTT/’Round’:
cwnd = cwnd +1

Reaction to Congestion Detection

• Detection by time-out (RTO)
– Probably both channels congested
– New slow start phase

• Detection by three ACK of same segment
– Indicates lost segment

(= hole in segment sequence)
– Probably sending channel congested only
– New congestion avoidance phase

2016-11-22 56ETSF05/ETSF10 - Internet Protocols

RTO Retransmission Timer Overflow

TCP congestion policy: Summary

2016-11-22 57ETSF05/ETSF10 - Internet Protocols

Fast Retransmit

• After three duplicate ACKs
• Under some circumstances

improve on the
performance provided by
RTO

• Takes advantage of the rule
that if a TCP entity receives
a segment out of order, it
must immediately issue an
ACK for the last in-order
segment that was received

Fast Recover

• Retransmit the lost
segment, cut cwnd in half,
and then proceed with the
linear increase of cwnd

• RFC 3782 modifies the fast
recovery algorithm to
improve the response when
two segments are lost
within a single window

2016-11-22 ETSF05/ETSF10 - Internet Protocols 58

TCP congestion policy: Example

2016-11-22 59ETSF05/ETSF10 - Internet Protocols

Random Early Discard (RED)
• Buffers in routers can detect congestion (buffer

overflow)
• Buffer overflow impact on TCP:

– Problably RTO
– All TCP connections affected
– Will return to slowstart; synkronised

• RED: Start discarding packets randomly before buffer
overflow
– Single pkt loss = Fast Restransmitt,
– cwnd = cwnd/2

• Compare with ECN flag in IP header

2016-11-22 ETSF05/ETSF10 - Internet Protocols 60

TCP operation: Summary

• Connection establishment
– Three-way handshake

• Data transfer
– Flow control ( congestion control)
– Error control

• Connection termination
– Three-way handshake
– Half-close

2016-11-22 61ETSF05/ETSF10 - Internet Protocols

