"Hi, I'd like to hear a TCP joke."

"Hello, would you like to hear a TCP joke?"

"Yes, I'd like to hear a TCP joke."

"OK, I'll tell you a TCP joke."

"Ok, | will hear a TCP joke."

"Are you ready to hear a TCP joke?"

"Yes, | am ready to hear a TCP joke."

"Ok, | am about to send the TCP joke. It will last 10
seconds, it has two characters, it does not have a
setting, it ends with a punchline."

"Ok, | am ready to get your TCP joke that will last 10
seconds, has two characters, does not have an explicit
setting, and ends with a punchline."

"I'm sorry, your connection has timed out.

...Hello, would you like to hear a TCP joke?"

Jens Aqdersson

BTSF10 —|Internet Protoco
SMTP FTP TFTP DNS SNMP
SCTP TCP
IGMP ICMP
IP
& Underlying LAN or WAN
technology

Transport Layer

Communication between applications
* Process-to-process delivery

* Client/server concept
— Local host

* Normally initialiser

— Remote host

* Normally always on server

2016-11-22 ETSFO5/ETSF10 - Internet Protocols

IP addresses and port numbers

2016-11-22

L e, Ty

93.14.26.7 |

IP header

Transport layer
header

IP address
193.14.26.7 H selects the host |

13

ETSFO5/HTSF10 - Internet Protocols

Socket addresses

 Combination of IP address & port number
— Unique for each process on the host

IP address| 200.23.56.8 | | 69 IPort number

Socket address| 200.23.56.8 69 I

2016-11-22 ETSFO5/ETSF10 - Internet Protocols

Two Transport Mechanisms

Connectionless or Datagram Service

Connection-oriented

e Establishment, maintenance and termination
of a logical connection between TS users

e Has a wide variety of applications
e Most common
e Implies service is reliable

2016-11-22 ETSFO5/ETSF10 - Internet Protocols 6

User Datagram Protocol (UDP)

* Transport-level protocol that is commonly
used as part of the TCP/IP protocol suite

* RFC /768

* Provides a connectionless service for
application-level procedures

* Unreliable service; delivery and duplicate
protection are not guaranteed

* Reduces overhead and may be adequate in
many cases

2016-11-22 ETSFO5/ETSF10 - Internet Protocols

User Datagram Packet format

8 to 65,535 bytes

-

8 bytes

——— Header

a. UDP user datagram

16 31

Source port number

Destination port number

2016-11-22

Total length

Checksum

b. Header format

ETSFO5/ETSF10 - Internet Protocols

IPv4 Pseudoheader

Calculation

Pseudoheader

Source port address

32-bit source IP address

32-bit destination IP address

8-bit protocol 16-bit UDP total length

Destination port address

for Checksum

= 16 bits 16 bits
& UDP total length Checksum
16 bits 16 bits
Data

o

(Padding must be added to make
the data a multiple of 16 bits)

g .

2016-11-22

Optional for IPv4,
mandatory for IPv6

Data not included in
IPv6

Used also for TCP
Cross Layer!

ETSFO5/ETSF10 - Internet Protocols 9

How to Deal with Unreliable Network
Service

e Internetwork using IP
e |[EEE 802.3 & 802.11 LAN using

c =<
Examples: the unacknowledged
connectionless LLC service

> Segments are occasionally lost and may arrive
out of sequence due to variable transit delays

2016-11-22 ETSFO5/ETSF10 - Internet Protocols 10

Issues to Address

Ordered delivery
Duplicate detection

Retransmission strategy

2016-11-22 ETSFO5/ETSF10 - Internet Protocols

11

Ordered Delivery

* With an unreliable network service it is
possible that segments may arrive out of
order

* Solution: number segments sequentially

— TCP uses scheme where each data octet is
implicitly numbered

2016-11-22 ETSFO5/ETSF10 - Internet Protocols

12

Duplicate Detection

* Receiver must be able to recognize duplicates
* Segment sequence nhumbers help

 Complications arise if:

— A duplicate is received prior to the close of the
connection

* Sender must not get confused if it receives multiple
acknowledgments to the same segment

* Sequence number space must be long enough

— A duplicate is received after the close of the
connection

Transport Transport

Entity A Entity B
& :
X Max window
SN = 294 .
size and
S,V=401 .
. number of bits
A times out and
retransmits SN =1 SN =1
for sequence
A times out and SN = 201 W= 500
retransmits SN = 201 =601, W=
AN number are
SN =
601 L dependent!
N
SN = _
801 \ AN=801’\N—600
SN = =600
SN = 1294 oW e 600
= 600
SN=1401 l AN=1401!\N
SN=1
Obsolete SN =1
AN=1’\N=600 arrives

an=20LW2 o

Figure15.5 Example of I ncorrect Duplicate Detection

Retransmission Strategy

* Events necessitating retransmission:

Segment may be
damaged in transit Segment fails to

but still arrives at arrive
its destination

* Sending entity does not know transmission was
unsuccessful

e Receiver acknowledges successful receipt by
returning a segment containing an
acknowledgment number

Cont.

2016-11-22 ETSFO5/ETSF10 - Internet Protocols 5

Retransmission Strategy

* No acknowledgment if a segment does not
arrive successfully

e A timer needs to be associated with each
segment as it is sent

* |f timer expires before acknowledgment is
received, sender must retransmit

e See Table 15.1 for Transport Protocol
Timers

e
[]
L]
2016-11-22 ETSFO5/ETSF10 - Internet Protocols @

Connection Establishment and
Termination

e Serves three main purposes:
— Allows each end to assure that the other exists

— Allows exchange or negotiation of optional
parameters

— Triggers allocation of transport
entity resources

> |s by mutual agreement

2016-11-22 ETSFO5/ETSF10 - Internet Protocols

Remarks on Connection Establishment

* Must take into account the unreliability of a
network service

e Calls for the exchange of SYNs (two way
handshake minimum)

— Could result in: AN
| A
* Duplicate SYNs ¢

.Y
* Duplicate data segments %L/ \QAO
* Check Figures 15.4, , ﬁj
15.6—15.9 for details \@ .

Remarks on Connection Termination

 Two-way handshake was found to be inadequate for
an unreliable network service

Out of order segments could cause the FIN segment
to arrive before the last data segment

* To avoid this problem the next sequence number after
the last octet of data can be assigned to FIN

* Each side must explicitly acknowledge the FIN of the
other using an ACK with the sequence number of the
FIN to be ack ledged o7 <\

O be acknowledge Q/}\\% ‘/,\%3
CEAAAV))
LA~ (L/\/c f

g

2016-11-22 ETSFO5/ETSF10 - Internet Protocols 20

Remarks on Failure Recovery

* When the system that the transport entity is

running on fails and subsequently restarts, the

state information of all active connections is
lost

— Affected connections become half open because

the side that did not fail does not realize the
problem

* Still active side of a half-open connection can close the
connection using a keepalive timer

Cont...

2016-11-22 ETSFO5/ETSF10 - Internet Protocols 22

Failure Recovery (cont.)

> In the event that a transport entity fails and
quickly restarts, half-open connections can be
terminated more quickly by the the use of the
RST segment (RST = RESET)

* Failed side returns an RST j to every segment i
that it receives
* RST i must be checked for validity on the other
side
- If valid an abnormal termination occurs

> There is still the chance that some user data
will be lost or duplicated

Reliable Sequencing
Network Service

Issues:

Flow control

Connection establishment/termination

2016-11-22 ETSFO5/ETSF10 - Internet Protocols 24

Flow Control

Reasons for control:

User of the receiving Receiving transport entity
transport entity cannot itself cannot keep up with
keep up with the flo the flow of segments

 Complex at the transport layer:

— Considerable delay in the communication of flow
control information

— Amount of the transmission delay may be highly
variable, making it difficult to effectively use a
timeout mechanism for retransmission of lost data

2016-11-22 ETSFO5/ETSF10 - Internet Protocols 26

Alternatives to Flow Control
Requirements

Do nothing Refuse to accept further
segments from the network
service

Receiving transport
entity can:

Use a fixed sliding window Use a credit scheme
protocol

2016-11-22 ETSFO5/ETSF10 - Internet Protocols

27

Sliding Windows: Reminder

Octets not yet
Data octets so far acknowledged acknowledged

b d
L |

v

Window of octets
that may be transmitted

A

Data octets already transmitted

a d
Ll |

A

N

» Sender

X ﬂﬂ ﬂ / e

/= L

Initial Sequence ast octet astoctet Window shrinks fro Window expands

Number (ISN) acknowledged transmitted trailing edge as from leading edge
(AN -1) segments are s as credits are received
(a) Send sequence space
Octets not yet
acknowledged
. Data octets so far acknowledged > > Window of octets
Data octets already received L that may be accepted - .
« = > Recelver

.) / .

/=

Initial Sequence Last octet Last octet ~ Window shrinks from Window expands
Number (ISN) acknowledged received trailing edge as from leading edge
(AN -1) segments are feceived as credits are sent

—

(b) Receive sequence space

Figure 15.2 Sending and Receiving Flow Control Perspectives

Congestion Control in
Packet-Switching Networks

Send control Rely on End to end
packet to routing probe
some or all information packets

source nodes e May vary too e Adds to
e Requires quickly overhead
additional
traffic during
congestion

=
—)
)
-

2016-11-22 ETSFO5/ETSF10 - Internet Protocols

Add
congestion
information
to

packets in
transit

e Either
backwards or
forwards

29

Congestion control methods

* Avoiding and eliminating congestion
— Open-loop = proactive
— Closed-loop = reactive

Congestion
control
‘ Open-loop | ‘ Closed-loop |

Retransmission policy Back pressure
Window policy Choke packet
Acknowledgment policy —— Implicit signaling
Discarding policy
—— Admission policy

Explicit signaling

2016-11-22 ETSFO5/ETSF10 - Internet Protocols

30

Closed-loop congestion control (1)

* Backpressure

Backpressure Backpressure Backpressure
—-€ —-€ —€
| I Il
Source Congestion
>
Data flow

2016-11-22 ETSFO5/ETSF10 - Internet Protocols 31

Closed-loop congestion control (2)

* Choke packet

ﬁ ﬁ Il

Congestion Destination
>

Data flow

2016-11-22 ETSFO5/ETSF10 - Internet Protocols 32

TCP Services

* RFC 793

TCP labels data as:

e Data stream Push
e Urgent data signaling

* Defined in terms of primitives and parameters
(see Tables 15.2, 15.3 & 15.4 for details)

2016-11-22 ETSFO5/ETSF10 - Internet Protocols 33

TCP header format

H Header

Data

-

Source port address
16 bits

Destination port address

16 bits

32 bits

Sequence number

HLEN Reserved
4 bits 6 bits

Checksum
16 bits

32 bits

Acknowledgment number

Window size
16 bits

Urgent pointer
16 bits

2016-11-22

Options and Padding

ETSFO5/ETSF10 - Internet Protocols

34

TCP Mechanisms

* Can be grouped into:

Connection Data transfer

establishment e Viewed logically as

e Always uses a three- consisting of a stream
way handshake of octets

e Connection is * Flow control is
determined by host exercised using credit
and port allocation

(Received ACKs open
the sender window)

TSFO5/ETSF10 - Internet Protocols

Connection
termination

e Each TCP user must
issue a CLOSE primitive

e An abrupt termination
occurs if the user
issues an ABORT
primitive

Active Open

send SYN Passive O
CLOSED = R f
Close Close
SYN SENT LISTEN
Receive SYN
Receive SYN Send SYN
o ESTAB <
Close Receive FIN
Send FIN Legend:
Event
v v Action
FIN WAIT CLOSE WAIT
State
Close
Receive FIN Send FIN

» CLOSED <«

Figure 15.3 Simple Connection State Diagram

TCP Three Way Handshake

Server
==
o]
A: ACK flag —
S: SYN flag _____

Active

open Passive

open

Time Time
2016-11-22 ETSFO5/ETSF10 - Internet Protocols 37

TCP Connection termination

Server

Client —
’ | o]
=—= A: ACK flag —
AR SRR F: FIN ﬂag =

paive 4 [e
close ~E_
— T
FIN
” Passive
w close
] -

FIN + ACK

2016-11-22 Time ETSFOS5/ETSF10 - Internet Protocols Time 38

TCP Half-close

Client
== .

Active

2016-11-22 ng

m@-

A: ACK flag
F: FIN flag

S B e —
N

ient
g Data segments from server to clien

ACknOw'ed
gdments frOm cli
lent to serve

‘

ACK

ETSFO5/ETSF10 - Internet Protocols

Passive
close

Time

39

TCP Flow Control

Transport Entity B

...1000 {1001 2400| 2401...

B is prepared to receive 1400 octets,
beginning with 1001

...1600 |1601 2601...

Transport Entity A
...1000 |1001 2400| 2401...
A may send 1400 octets
...1000 |1001 1601 2401...
A shrinksits transmit window with each
transmission
...1000 1001 2001 2401...

Window decreased L

B acknowledges 3 segments (600 octets), but is only
prepared to receive 200 additional octets beyond the
original budget (i.e., B will accept octets 1601
through 2600)

2\

...1600]1601 2001 2601.).
A adjustsits window with it
...1600]1601 2600| 2601...

A exhaustsits credit

Window increased .~ ,—+*

...2600 | 2601 4000| 400)...

A receives new credit \/

...1600 |1601 2001 2601...

...2600 | 2601 4000| 4001...

B acknowledges 5 segments (1000 octets) and
restores the original amount of credit

Flow controlled by receiver!

Figure 15.1 Example of TCP Credit Allocation M echanism

TCP Implementation
Policy Options

* Implementation opportunities:

Send policy

Deliver policy
Accept policy

Retransmit policy

Acknowledge policy

Send Policy

* In the absence of both pushed data and a closed
transmission window a sending TCP entity is free to
transmit data at its own convenience

 TCP may construct a segment for each batch of data
provided or it may wait until a certain amount of
data accumulates before constructing and sending a
segment

2016-11-22 ETSFO5/ETSF10 - Internet Protocols

42

Deliver Policy

* In the absence of a Push, a receiving TCP entity is
free to deliver data to the user at its own
convenience

* May deliver as each in-order segment is received, or
may buffer data before delivery

* If deliveries are infrequent and large, the user is not
receiving data as promptly as may be desirable

* If deliveries are frequent and small, there may be
unnecessary processing, as well as operating system
interrupts

2016-11-22 ETSFO5/ETSF10 - Internet Protocols 43

Accept Policy

* If segments arrive out of order the receiving TCP
entity has two options:

e Accepts only segments that arrive in order; any segment that
arrives out of order is discarded

e Makes for simple implementation but places a burden on the
networking facility

e If a single segment is lost in transit, then all subsequent segments
must be retransmitted

e Accepts all segments that are within the receive window

e Requires a more complex acceptance test and a more sophisticated

data storage scheme
2016-11-22 ETSFO5/ETSF10 - Internet Protocols

44

Retransmit Policy

* Retransmission strategies:

/‘

Maintain one retransmission timer for
Retransmit entire queue
First-only Efficient in terms of traffic generated

Can have considerable delays

Maintain one retransmission timer for
Retransmit entire queue

Batch/All < Reduces the likelihood of long delays
May result in unnecessary retransmissions
Retransmit (I;/Iua;:’;am one timer for each segment in the
Individual

e More complex implementation

2016-11-22 ETSFO5/ETSF10 - Internet Protocols 45

Acknowledge Policy

* Timing of acknowledgment:

e Immediately transmit ACK (empty e Wait for an outbound segment with
segment containing the data on which to piggyback the
appropriate acknowledgement acknowledgement
number) e Typically used

* Simple and keeps the remote TCP e Requires more processing at the
fully informed receiving end and complicates the

e Limits unnecessary retransmissions task of estimating round-trip time

e Results in extra segment
transmissions

e Can cause a further load on the
network

2016-11-22 ETSFO5/ETSF10 - Internet Protocols 46

TCP Congestion Control

e Parallel to but separate from Flow Control

* Congestion window
— Sliding window (byte-oriented)
— Variable size
— Hybrid impl. (Go-back-N & Selective repeat)

* Slow start (state)
e Congestion avoidance (state)
e Congestion detection (event to act upon)

2016-11-22 ETSFO5/ETSF10 - Internet Protocols

47

Table 20.1

Implementation of TCP Congestion Control
Measures

Measure RFC 1122 | TCP Tahoe| TCP Reno | NewReno

RTT Variance Estimation v

Exponential RTO
Backoff

Karn's Algorithm

Slow Start

Dynamic Window Sizing
on Congestion

S TSNS S TS

ST S SN S

Fast Retransmit

SIS S TSNS S TS

Fast Recovery

STESNESE S SNPSN S

Modified Fast Recovery

Retransmission Timer Management

Essentiall Virtually all TCP implementations
estimates RTT and sets timer to a somewhat higher
value.

e Static RTT

— Cannot adapt to network conditions
* Simple average RTT

— Over a number of segments

— Works well if average is a good predictor
* Exponential average RTT

— predicting the next value on the basis of a time series
of past values (RFC 793)

2016-11-22 ETSFO5/ETSF10 - Internet Protocols 49

Congestion window

acknowledge

Sent, not

Can be sent immediately

2016-11-22

-

200

207 208

o

209 oo

Window size = minimum (rwnd, cwnd)

Closing

S~
Shrinking «=——— | = credit
M+1| eee
Sliding window .
Opening

ETSFO5/ETSF10 - Internet Protocols

51

Window Management

* The size of TCP’s send window can have a critical
effect on whether TCP can be used efficiently
without causing congestion

* Two techniques found in virtually all modern

implementation of TCP are:
— Slow start
— Dynamic window sizing on congestion

e Combined with flow control (credit)
awnd = MIN[rwnd, cwnd)]

— Credit = rwnd

2016-11-22 ETSFO5/ETSF10 - Internet Protocols

52

Slow start: Exponential increase

For each ACK:
cwnd = cwnd +1

RTT

CI T T T T T T] <---[
cwnd y .
Time Time

2016-11-22 ETSFO5/ETSF10 - Internet Protocols 54

Congestion avoidance: Additive increase

\ =, Client Server ',
1=4 ! '
T T] <---
cwnd
For each RTT/’Round’: -
cwnd = cwnd +1
1+ 1
C T T T T J]<---
cwnd
RTT
1+2
I I B
cwnd
RTT
i+3 '
CI T T T T T J<€--- v
cwnd

Time Time
2016-11-22 ETSFO5/ETSF10 - Internet Protocols 55

Reaction to Congestion Detection

e Detection by time-out (RTO)
— Probably both channels congested
— New slow start phase

* Detection by three ACK of same segment

— Indicates lost segment
(= hole in segment sequence)

— Probably sending channel congested only
— New congestion avoidance phase

RTO Retransmission Timer Overflow

2016-11-22 ETSFO5/ETSF10 - Internet Protocols 56

TCP congestion policy: Summary

ssthresh =1/2 window

cwnd =1 MSS
- - Time-out Slow start 3 ACKs -
Congestion Congestion
cwnd > ssthresh
ssthresh =1/2 window
cwnd = ssthresh
- Time-out Congestlon 3 ACKs -
Congestion avoidance Congestion

ssthresh =1/2 window
cwnd = ssthresh

2016-11-22 ETSFO5/ETSF10 - Internet Protocols

Fast Retransmit Fast Recover

» After three duplicate ACKs * Retransmit the lost
 Under some circumstances segment, cut cwnd in half,
improve on the and then proceed with the
performance provided by linear increase of cwnd
RTO * RFC 3782 modifies the fast
* Takes advantage of the rule recovery algorithm to
that if a TCP entity receives improve the response when
a segment out of order, it two segments are lost
must immediately issue an within a single window

ACK for the last in-order
segment that was received

2016-11-22 ETSFO5/ETSF10 - Internet Protocols 58

TCP congestion policy: Example

cwnd

26 - SS: Slow start
24 L Al:Additive increase
27 L MD: Multiplicative decrease

20 -
18
16
14
12
10
08
06
04
02

Time-out

Threshold =16

Threshold =10

MD

| |
>
1T 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Rounds

2016-11-22 ETSFO5/ETSF10 - Internet Protocols 59

Random Early Discard (RED)

* Buffers in routers can detect congestion (buffer
overflow)

e Buffer overflow impact on TCP:
— Problably RTO
— All TCP connections affected
— Will return to slowstart; synkronised

 RED: Start discarding packets randomly before buffer
overflow

— Single pkt loss = Fast Restransmitt,
— cwnd = cwnd/2
e Compare with ECN flag in IP header

2016-11-22 ETSFO5/ETSF10 - Internet Protocols 60

TCP operation: Summary

e Connection establishment
— Three-way handshake
e Data transfer

— Flow control (= congestion control)
— Error control

e Connection termination
— Three-way handshake
— Half-close

2016-11-22 ETSFO5/ETSF10 - Internet Protocols

61

