

Routing on the Internet

- Unicast routing protocols (part 2) [ed.5 ch.20.3]
- Multicast routing, IGMP [ed.5 ch.21.1-5]
- NAT & Firewalls
 [ed.5 ch.18.4.5 & 32.4]

Internet Hierarchy

Hierarchical Routing

- aggregate routers into "autonomous systems"
- routers in same AS run same routing protocol
 - "intra-AS"
- routers in different AS can run different intra-AS routing protocol

Border Gateway Routers -

- special routers in AS
 - run intra-AS routing protocol with all other routers in AS
- also responsible for routing to destinations outside AS
 - run inter-AS routing protocol with other gateway routers

Autonomous Systems

• Inter-AS border (exterior gateway) routers

Why different Intra- & Inter-AS routing?

- Policy
 - Inter-AS: admin wants control over how its traffic routed, who routes through its net.
 - Intra-AS: single admin, so no policy decisions needed
- Scale
 - Hierarchical: saves table size, reduced update traffic
- Performance
 - Intra-AS: can focus on performance
 - Inter-AS: policy may dominate over performance

Internet Inter-AS routing: BGP

- Border Gateway Protocol: *de facto* standard
- Path Vector protocol:
 - Similar to *Distance Vector*
 - Border gateways broadcast to peers (not necessarily neighbours) entire path (sequence of AS) to destination
 - BGP routes to networks (AS), not individual hosts

Path Vector Messages

• Same principle as distance vector routing

Path Vector Routing Table

AS = Autonomous System = Organisation

Network	Next Router	Path		
N01	R01	AS62, AS23, AS67		
N02	R05	AS67, AS22, AS05, AS89		
N03	R06	AS67, AS89, AS09, AS34		
N03	R12	AS62, AS02, AS34		
Network id	"next hop"	"Metric" Most valid of many ATTRIBUTES		
2013-10-29	FTSE05/FTSE10 - Internet Protocols	9		

BGP Router Operations

- Receiving and filtering route advertisements from directly attached neighbour(s)
- Route selection
 - To route to destination X, which path (of several advertised) will be taken?
- Sending route advertisements to neighbours

BGP Router Operations

eBGP Operation

eBGP combined with iBGP

Multicast: One-to-many Routing

Unicast

 Routers forward multiple unicast datagrams

Multicast

 Routers (red) duplicate and forward multicast datagrams

Source and Group Addresses

Joining a Multicast Group

- Local: host informs local multicast router
 IGMP (Internet Group Management Protocol)
- Wide area: local router interacts with other routers to build forwarding tree and receive multicast data flow
 - MOSPF, DVMRP, PIM-DM
 - CBT, PIM-SM

Multicast Routing Protocols

- Shortest path trees, again!
- In unicast routing
 - One path (on tree) used at a time
- In multicast routing
 - Whole tree used each time
 - Each source needs a tree

Source-Based Tree

- One tree per source (at each router)
- One source per group
- High complexity, high efficiency

Group-Shared Tree

- One tree per group (at one router)
- Shared by multiple sources in group
- Lower complexity, lower efficiency

Reverse Path Forwarding

Source address routing!

Classification of Algorithms

PIM

- Independent from unicast protocol
- Uses available routing info for path lookups
- Two modes:
 - Sparse Mode
 - Dense Mode

PIM-SM

- Relatively few members assumed
- Trees are built on demand (when needed)
 - Group-shared trees with rendezvous points
- Methods for tree construction
 - Grafting
 - Pruning
- Can switch from group-shared to sourcebased if more efficient

PIM-DM

- All hosts assumed to be members
- Build source-based tree from source
- Routers without members prune tree
- Grafting used to add new members

Truncated Broadcast

Pruning

Steady State after Pruning

Grafting on New Receivers

Steady State after Grafting

Logical Tunnelling

- Very few Internet routers can multicast
 - How to connect them?

Multicast Backbone (MBONE)

Internet Group Management Protocol

- IGMP, runs on top of IP
- Not a multicast protocol
 - Complementary
 - Runs in the leaves of the network
- Manages group membership
 - Provides multicast router with info

IGMP Message Format

IGMP Operation

- Only one router distributes packets in a group
 - Other routers may be serving their networks

Joining a Group

• Request to router

- Forwarded if first for a group

Leaving a Group

IGMP General Query

NAT - Network Address Translation

- Sharing of routable addresses (scarse resource)
- Adds some security ...

NAT (network address only)

- Change source address on outgoing packets
- Add address pair to active translations table
- Only one internal address per destination

• Add transport layer port			Alternative: External source address 200.24.5.8 goes here	Alternative: External source port goes here	e
Private	Private	External	External/	Transport	
address	port	address	/ port //	protocol	
172.18.3.1	1400	25.8.3.2	80	TCP	
172.18.3.2	1401	25.8.3.2	80	TCP	
:	:	:	:	:	

- Normally initiated from inside
- Port forwarding: Setup static entry in table

Firewalls: Filtering

• Accept or reject

Proxy Firewall

- Filter on message content
- Application gateway acts as proxy for http

