## Simulation

The following is needed:

- A description of the state of the system
- The events that can occur
- Rules describing what will happen if an event occurs


## The event list

Keeps track of when events shall happen

| T 1 |
| :--- |
| E 1 |
| A 1 | | T 2 |
| :--- |
| E 2 |
| A 2 | | T 3 |
| :--- |
| E 3 |
| A 3 | | T 4 |
| :--- |
| E 4 |
| A 4 |

$\mathrm{Ti}=$ time when event Ei will take place
$\mathrm{Ai}=$ attributes to event I
The list is sorted: $\mathrm{T} 1<\mathrm{T} 2<\mathrm{T} 3<\mathrm{T} 4$ etc.

## How a simulation run is done

1. Extract the first element in the event list
2. Set Time $=$ the time of the extracted event
3. Update the state of the system and insert new events if needed
4. If not finished, Go to 1

## The state description

Assume that we want to find the mean number
of customers in the queue.
$N=$ number of customers in the system

The appropriate state description depends on the results we desire

An example: a queuing system


It might be of interest to find
-Probability of rejection
-Mean (or variance) of time spent in system
-The mean number of customers in the system

## Events that may take place

- Arrival
- Departure (when service is ready)
- Measurement (does not change the state)


## What we also need to know

## Assume the following:

- The service time distribution is exponential with mean 2
- The mean time between arrivals is exponential with mean 3
- The number of places in the waiting line is infinite


## Rule at arrival

N := N + 1;
If $\mathrm{N}=1$ then
add departure to event list ;
Add a new arrival to event list;

When we add the departure and arrival we have to draw a random number (exponentially distributed)

## Rule at departure

```
N := N - 1;
If N>0 then
    add departure to event list ;
```


## Rule at measurement

```
Write(N)
Add a new measurement to event
    list;
```


## When the simulation begins

## Time and state:

Time $=0$
$\mathrm{N}=0$ Event list:
3 Arrival
5 measurement

## Step 1

## Time and state:

Time $=3$
$\mathrm{N}=1$

Event list:
4 Arrival
5 measurement
9 Departure

## Step 2

## Time and state:

Time $=4$
$\mathrm{N}=2$
vent list:
5 measurement
9 Departure
10 Arrival

## Step 3

## Time and state:

Time $=5$
$N=2$

## Event list:

9 Departure
10 Arrival
14 Measurement

## Step 4

## Time and state:

Time = 9
$N=1$

## Event list:

10 Arrival
12 Departure
14 Measurement

```
begin
    a := 3; (* mean time between arrivals = 3 *)
    s := 2; (* mean service time = 3 *)
    m := 10; (* mean time between measurements = 10 *)
    simulationlength := 1000;
    No_in_queue := 0;
    time := 0;
    insert_event(measurement, Exp(m));
    insert_event(arrival, Exp(a));
    while time < simulationlength do
    begin
        dummy := FirstInQueue(eventlist);
        time := dummy.eventtime;
        case dummy.eventkind of
            arrival: arrive;
            departure: depart;
            measurement: measure;
        end;
    end;
end.
```

```
procedure arrive;
begin
    No_in_queue = 0 then
    insert_event(departure, Exp(s));
    No_in_queue := No_in_queue + 1;
    insert_event(arrival, Exp(a));
end;
procedure depart;
begin
    No_in_queue := No_in_queue - 1;
    if No_in_queue > 0 then
        insert_event(departure, Exp(s));
end;
procedure measure
begin
    write(utfil, No_in_queue);
    insert_event(measurement, Exp(m));
end;
```

