ETIN80 — Algorithms in Signal Processors Projects

Tekn.Dr. Mikael Swartling

Lund Institute of Technology Department of Electrical and Information Technology

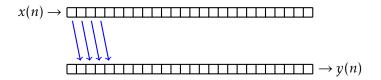
Projects

Some suggested projects.

- Speech recognition.
- Speech synthesis.
- Speech separation.
- Adaptive line enhancer.
- Adaptive echo canceller.
- Adaptive gain controller.
- Digital communication.
- Beat detection.
- Instrument effects.

Offline vs. Realtime Processing

Offline processing in Matlab has some advantages.


- Non-causal or anti-causal filtering.
- Unlimited memory and processing resources.
- The entire signal is available at all times.

Realtime considerations.

- Limited memory and processing resources.
- The algorithm must run faster than the sample time.
- Sample based processing when delay must be minimised.
- Block processing can reduce the effective processing time.

Process in blocks rather than individual samples.

- Wait for *N* samples before processing.
- ▶ Process all *N* samples at the same time.
- The supplied framework provides block processing.

Process in blocks rather than individual samples.

- Wait for *N* samples before processing.
- ▶ Process all *N* samples at the same time.
- The supplied framework provides block processing.

Block Processing

Process in blocks rather than individual samples.

See the function buffer in Matlab for block processing.

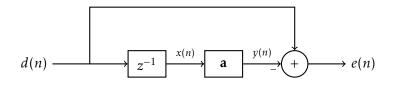
```
xb = buffer(x, n)
```

```
function myproject
    x = audioread('input.wav');
    xb = buffer(x, 320);
    [M, N] = size(xb);
    yb = zeros(M, N);
    for n = 1:N
        yb(:, n) = process(xb(:, n));
    end
        y = yb(:);
end
function y = process(x)
    ...
end
```

Sometimes long-time averaging is required.

Low memory prevents long buffers for linear averaging.

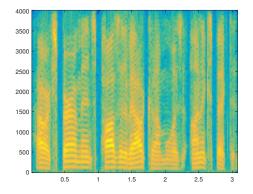
$$P(n) = \frac{1}{N} \sum_{k=0}^{N-1} x(n-k)^2$$


Recursive averaging allows averaging without memory.

$$P(n) = \alpha P(n-1) + (1-\alpha)x(n)^2$$

Linear Prediction

The 1-step forward linear prediction filter.


- Wiener problem with analytical or adaptive solutions.
- The filter describes deterministic properties of the signal.
- Common in speech processing.
 - Describes formants or acoustic resonance.
 - Filter **a** is normalized and pitch-independent.

Speech Modeling

Formants and stationarity.

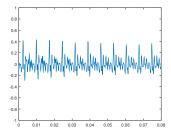
- Formants show up as lines over time.
- Stationary over roughly 20 ms for speech.

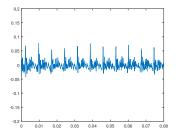
Recognize spoken words from a pre-defined database.

- Frame the signal into blocks.
- Calculate the prediction filter.
- Compare the LP coefficients to a database.

$$x(n) \longrightarrow \text{Pre-emph.} \longrightarrow \text{Framing} \longrightarrow \text{LPC} \longrightarrow \mathbf{v}_k$$

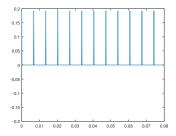
Speech Synthesis

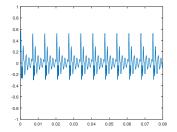

Transform speech into a robotic voice.


- Frame the signal into blocks.
- Calculate the prediction filter.
- Calculate the pitch from the error signal.
- Construct a new excitation signal for different effects.
- Filter with the inverse of the prediction filter.

$$x(n) \longrightarrow \mathbf{a} \longrightarrow e(n) \qquad \qquad e'(n) \longrightarrow \mathbf{a}^{-1} \longrightarrow x'(n)$$

Linear prediction analysis.

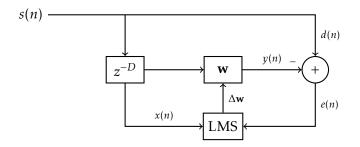

Input signal and error signal.



Linear prediction synthesis.

Synthetic error signal and reconstructed output signal.

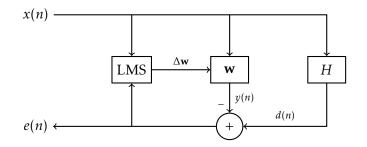
Separate two simultaneous speech sources.


- Speech excite narrow frequency bands at short times.
- Different speech sources rarely overlap.
- Separate different sources with selective masking.

$$Y_n(\omega, \tau) = \begin{cases} X(\omega, \tau) & \text{if source } n \text{ is active in } (\omega, \tau), \\ 0 & \text{otherwise.} \end{cases}$$

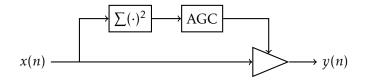
Adaptive Line Enhancer

Remove tonal components from a signal.


- Delays a signal and attempt to predict it.
- Extract uncorrelated components such as speech.
- Suppress correlated components such as tonal sounds.

Adaptive Echo Cancellation

Remove echo form a signal.

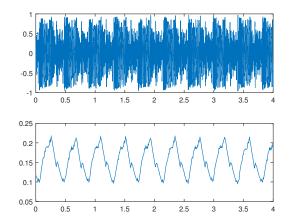

- Identify the far-end to near-end channel.
- Extract near-end speech.
- Suppress far-end speech or disturbance.

Adaptive Gain Controller

Adjusts a gain to compress or expand the signal.

- Suppress high signal levels.
- Pass normal signal levels.
- Suppress background noise levels.

Transmit digital information using modulation.


- Implement a transmitter and a receiver structure.
- Decide on modulation method and parameters:
 - PSK, FSK, UWB modulation format.
 - Communication protocol.
 - Message length and synchronization.
 - Error correction.

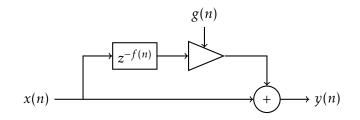
$$x(n) \longrightarrow TX \longrightarrow y(n) \longrightarrow y'(n) \longrightarrow RX \longrightarrow \hat{x}(n)$$

Beat Detection

Find beats in music.

- Beats in a music dictates its rhythm.
- Mixing of music relies on beat matching.

Instrument Effects


Bank of audio effects for instruments.

Time based effects.

Delay, echo, reverb.

Modulation based effects.

Chorus, flanger, ring modulator, tremolo.

Or choose your own project...

- Base on your own personal interest or field of research.
- Project details and focus can be adapted as necessary.