
Lunds Tekniska Högskola

ETIN80 ALGORITHMS IN
SIGNAL PROCESSORS
SPEECH SYNTHESIS

GROUP 6

March 20, 2017

Albin Berggren, Albin.Berggren.466@student.lu.se
Nishant Gupta, nishant.gupta.4086@student.lu.se

Berta Morral, be2103mo-s@student.lu.se
Ricard Núñez-Prieto, soc15rnu@student.lu.se

Handledare: Mikael Swartling

1 Outline
The project contains different milestones which were completed and adjusted
throughout the project. This report is a reflection of the different parts of
the program. We start with a brief discussion about the theory used. Then
how the MATLAB model was implemented followed by the implementation
in C, the code which was used on the DSP board. In the end we share our
results and some conclusions about the project.

2 Theory
A known signal is autocorrelated and processed through a predictive filter
which outputs an estimated error signal. The filter for the predictive model is
a Wiener filter and we use the Levinson-Durbin algorithm to solve the system
equations. They will provide the variance and the coefficients needed to
construct an FIR filter that will estimate the value of the signal. The known
signal is passed through this FIR filter which uses the coefficients obtained
from the Levinson-Durbin algorithm. The signal is then autocorrelated in
order to create a pulse train with the same pitch as the input signal. An IIR
filter is used to recreate the original signal. The inverse filter can also be fed
with e.g. a Gaussian noise signal or a pulse train with constant frequency to
obtain different effects in the recreated speech.

2

2.1 Human speech model
Over a short time interval, about 2 to 40 ms, speech can be modeled by three
parameters:

(1) The source that can be either a periodic (pulse train) or a noise
excitation, where the pulse train represents the voiced sounds produced by
the vibration of vocal chords and the random noise represents the fricative
sounds (’f’, ’s’) or turbulent airflow through constricted mouth. Both sources
can be used independently to produce understandable human speech.

(2) In the case of using the periodic (pulse) excitation we need to know
the pitch or period (the fundamental frequency of the waveform).

(3) And finally the coefficients of a recursive linear IIR filter mimicking
the vocal tract response.

The reason for the use of an IIR filter is because the human speech process
can be approximated to an autoregressive process which by definition specifies
the output variable as a linear combination of the previous outputs. And this
fits perfectly with the behavior of an IIR filter. To approximate the speech
process to an autoregressive process we need first to satisfy what is called the
condition of stationarity which states that if the properties of the process (in
this case the vocal tract) which generates the events (in this case the speech)
does not change in time, then the process is stationary.

In the case of the voice speech it is not stationary because clearly in order
to produce different voiced sounds the vocal tract and the vocal chords need
to change its shape but we can consider the speech process to be stationary
at least during the minimum interval of time that takes for the vocal tract
to change its shape to produce a new voiced sound. This time is considered
to be around 20 ms. Now if you consider an audio file sampled at 16 kHz, a
20 ms interval corresponds to 320 samples which corresponds to the size of
the sample blocks used in our algorithm.

Now that we already satisfy the conditions to use an IIR filter to mimic
the behavior of the vocal tract, we need to know the right coefficients. We
can extract these coefficients or the parameters which characterize the speech
process by using a linear prediction model. If the process really is an autore-
gressive process, the predictive model will reveal it. By using linear prediction,
the intention is to determine an FIR filter that can optimally predict future
samples of our autoregressive process (speech) based on a linear combination
of past samples. The difference between the actual autoregressive signal and
the predicted signal is called the prediction error. This prediction error is
then autocorrelated. The autocorrelated error is then used to construct the
periodic excitation signal (pulse train).

3

2.2 Autocorrelation
In order to process the signal, it is divided into parts which are autocorrelated
to find the correlation between the elements in the series. A Toeplitz matrix
is created with the results which are then processed in the system.

2.3 Levinson-Durbin Algorithm
The algorithm is used in linear prediction to solve a Wiener problem, using
a Toeplitz matrix created from the autocorrelated signal with the goal of
minimizing the error in the signal. The base behind the recursion are to first
solve a small system of small size and then use the data obtained to solve
larger systems.

We are trying to find A1 =
(

1
a1

)
so that N1A1 =

(
E1
0

)
with N1 as the

Toeplitz matrix
(

R0 R1
R1 R0

)
. From this we find that a1 = −R1

R0
. We have therefore

solved A1 and also E1, which is the variance of the signal.
If we expand the matrices used we can use the same algorithm to find the
solution by iteration.

R0 R1 · · · Rk+1
R1 R0 · · · Rk
...

Rk+1 Rk · · · R0

1
a1
a2
...

ak

0

=

Ek

0
0
...
0

2.4 FIR-IIR filter
An FIR filter consists of an input signal, delays and the impulse response.
The difference with an IIR filter is that it consists of a feedback system. The
coefficients in A1 are used as impulse response for both filters.
FIR: y(n) = ∑

h(k) ·x(n−k) IIR: y(n) = ∑
h(k) ·x(n−k)−∑

b(j) ·y(m− j)

4

2.5 Pulse train
The power of the signal is concentrated into the pulses using the standard
deviation gained from the Wiener filter as the square root of the variance.
The signal is processed in blocks and between each of the signal blocks it is
needed to adjust the placement of the pulses and the variance of the signal.
This is achieved by adjusting the placement of the first pulse in a new block
and using the new pitch offset for the rest of the block.

Figure 1: Pulse train. Horizontal axis represents the sample number and the
units are given in tens of thousands

3 MATLAB model
Once we understood the theory and the algorithms to use, we started imple-
mentation of the algorithm in MATLAB. We began using MATLAB because
of the amount of implemented functions it has and the simplicity to debug
the code.

5

Figure 2: Schematic Matlab code

We started using a prerecorded signal as the input data, so the first step
was to load this prerecorded signal and save it into a MATLAB variable.
At this point we have a vector with all signal samples we need to process.
As it is explained before, we must process the signal in chunks or blocks of
approximately 20 ms to assure the stationary signal. Therefore, we converted
the signal vector in a matrix of rows size of block size that is equivalent to
20 ms and N columns depending on the signal vector size. It allows us to
process each column separately and to have a stationary signal.

After that, we have to do the autocorrelation of the signal chunk to obtain
the Levinson coefficients. At this point, depending on which effect is wanted
the code differs from each other.

Option 1: Once the Levinson coefficients are obtained the signal needs to
be filtered using FIR filter and Levinson coefficients. Then the autocorrelation
of the filtered signal has done in order to find the pitch and be able to create
the pulse train. There are two different effects done depending on how we
create the pulse train.

- Option 1a: Variable pitch. The pitch is founded in the chunk so it may
change from chunk to chunk.

- Option 2b: Fixed pitch. Constant fixed pitch value.

6

Figure 3: Create Pulse Train Block

Option 2: Raspy or harsh voice effect. At this point we just need to create
a Gaussian noise vector using the variance obtained on Levinson function and
the size equal to the block size variable.

Last step for both options is to use the IIR filter to reconstruct the
modified signal. If the option 1 is used, the pulse train signal is needed but
if the option 2 is used, the Gaussian noise signal is needed instead. In both
cases the linear prediction coefficients are needed.

4 Implementation in C
Once we had MATLAB code working we started to program in C code. The
first step was to create the functions that did not exist in C code:
- Filter FIR
- Filter IIR
- Find Max/Min
- Autocorrelation
- Levinson
After the functions were created and tested separately, it was the moment to
start to program the whole system.

7

Figure 4: Schematic C code

The C program itself is almost the same it is in MATLAB but with some
differences. Firstly, we should highlight that in this case we do not have an
audio file to process at the beginning, we use the DSP board audio interrupt
to catch the audio instead. Therefore, it allows us to synthesize the voice
in real time. When the audio processing is done, the audio is sent to the
output audio channels (left and right). Another important difference is how
the effects are changed, in this case the push buttons are used to modify the
effect applied each time.

BUTTON EFFECT
SW1 Effect 0: Fixed Pitch

Pulse Pitch 1
Pulse Pitch 2

SW2 Effect 1: Variable Pitch
SW3 Effect 2: Raspy Voice
SW4 Effect 3: No effect applied

Table 1: Push buttons vs Effects equivalences

8

5 Result
The result of the project is a working product implemented on the DSP board
with working buttons for different operations. The following graphs show
the result of the implementation in MATLAB. Note that the horizontal axis
represents the sample number and the units are given in tens of thousands.

Figure 5: Original signal fed into the system

Figure 6: The error signal from the filter

9

Figure 7: The auto-correlated signal

Figure 8: The pulse train

10

Figure 9: The reconstructed signal without effects

6 Conclusions
The graphs from the MATLAB scripts shows the functions of the internal
components included in the design. The implementation of the functions
in MATLAB yielded results which helped to give an understanding of the
concepts and made it easier to implement the program on the DSP.

After completing the project in MATLAB and then its implementation
on real time DSP board, we were able to successfully produce the planned
types of voice effects. It was interesting to try the algorithms learned from
other courses and implement it in a way that creates these results.

11

7 The code

7.1 Matlab code
% I f the p r o p e r t i e s o f the p r o c e s s that g e n e r a t e s the s i g n a l DOES NOT
% change in time , then the p r o c e s s i s s t a t i o n a r y (Ex . : weather i s a prime
% example o f a c h a o t i c process , i t cannot be cons ide r ed s t a t i o n a r y f o r too
% long) .
%
% The Basic P r o p e r t i e s o f Speech :
% ===============================
% Speech i s produced when a i r i s f o r c e d from the lungs through the voca l
% cords and along the voca l t r a c t .
% The t r a c t i n t r o d u c e s short−term c o r r e l a t i o n s (o f the order o f 1 ms) i n t o
% the speech s i g n a l , and can be thought o f as a f i l t e r with broad resonances
% c a l l e d formants .
% The f r e q u e n c i e s o f the se formants are c o n t r o l l e d by vary ing the shape o f
% the t rac t , f o r example by moving the p o s i t i o n o f the tounge .
% An important part o f many speech codecs i s the mode l l ing o f the voca l
% t r a c t as a shor t term f i l t e r .
% As the shape o f the voca l t r a c t v a r i e s r e l a t i v e l y s lowly ,
% the t r a n s f e r f u n c t i o n o f i t s mode l l ing f i l t e r needs to be updated only
% r e l a t i v e l y i n f r e q u e n t l y (t y p i c a l l y every 20 ms or so) .
% THAT’ s the reason why the speech p r o c e s s i s cons ide r ed a quasi−s t a t i o n a r y
% p r o c e s s (and 20 ms i s the t y p i c a l time that i s cons ide r ed as the time
% that the shape o f the voca l t r a c t remains unchanged during the speech
% p r o c e s s) .
% In other words , the shape o f the voca l t r a c t and i t s mode o f e x c i t a t i o n
% change r e l a t i v e l y s lowly , and so speech can be cons ide r ed to be
% quasi−s t a t i o n a r y over shor t p e r i o d s o f time (o f the order o f 20 ms) .
%
% BANDWIDTH SPEECH: the speech s i g n a l has f requency components upto 8 kHz
% and hence 16 kHz (wideband speech) i s the optimal sampling f requency .
% However , when te l ephone communication s tar ted , with bandwidth being a
% p r e c i o u s re source , the speech s i g n a l was passed through an ant i −a l i a s i n g
% low pass f i l t e r with c u t o f f f r equency o f 3 . 3 kHz and sampled at 8 kHz
% sampling f requency (narrowband speech) .
%
c l e a r a l l
c l o s e a l l

[s t e r eo _s ig na l , f s] = audioread (’ s t e r e o p h o n i c . wav ’) ;
% ’ s i g n a l ’ i s the 2−column matrix s t o r i n g the audio record ;
% ’ f s ’ i s the sampling f requency ; t h i s i n f o can be ext rac t ed a l s o from the
% wav f i l e us ing : a u d i o i n f o () ;

mono_signal = s t e r e o _ s i g n a l (: , 1) ;
%data = load (’ sn ippet . mat ’) ;
%mono_signal = data . sn ippet ;

% the wav f i l e i s a 2−column matrix : one column f o r each audio channel (s t e r e o) .
% In p r i n c i p l e both channe l s are the same f o r the f i l e s that are going to be used .
% We j u s t need to use to use the i n f o o f one o f the channe l s .

s tat ionary_t ime = 20e −3;
b lock_s i ze = f l o o r (f s ∗ s tat ionary_t ime) ;

% use block p r o c e s s i n g technique ; the block s i z e can be d e f i ne d as the
% number o f samples generated during the 20 ms o f the cuas i −s t a t i o n a r y
% speech p r o c e s s ;

12

s i g n a l = b u f f e r (mono_signal , b lock_s i ze) ;

% convert the s i g n a l i n t o a matrix with m ul t ip l e columns

[rows , columns] = s i z e (s i g n a l) ;
l ag = 100 ; % VARIABLE ’ lag ’ a l s o s e t s the number o f c o e f f i c i e n t s that the Levinson_Durbin a lgor i thm w i l l c a l c u l a t e
lag_window = f l o o r (b lock_s i ze / 2) ; % VARIABLE ’ lag_window ’ s e t s the window f o r the auto−c o r r e l a t i o n o f the obta ined e r r o r s i g n a l

% The v a r i a b l e ’ lag ’ s e t s the l ag i n t e r v a l used to c a l c u l a t e the
% a u t o c o r r e l a t i o n sequence that d e s c r i b e s our Auto−r e g r e s s i v e (AR) p r o c e s s
% (i . e . the speech s i g n a l) .
% The lag range goes from −l ag to +lag (in t o t a l the obta ined
% a u t o c o r r e l a t i o n sequence has 2∗ l ag+1 elements) .
%
% D e f i n i t i o n : An A u t o r e g r e s s i v e p r o c e s s /model i s a s t a t i s t i c a l f o r e c a s t i n g
% model in which f u t u r e va lue s are computed only on the b a s i s o f past
% va lues o f a time s e r i e s data .
%

f i l t e r _ s t a t e 1 = [] ;
f i l t e r _ s t a t e 2 = [] ;
p u l s e _ o f f s e t =0;
% The ’ f i l t e r _ s t a t e ’ vec to r w i l l be used by the FIR and IIR f i l t e r ; t h i s i s
% so because when f i l t e r i n g l a r g e amount o f data in b locks or ’ chunks ’
% us ing a FIR or IIR , the re are some delay e lements which pass some va lue s
% to the next i t e r a t i o n .
% In i t s most b a s i c form , the ’ f i l t e r ’ f u n c t i o n i n i t i a l i z e s the
% delay outputs to 0 . This i s e q u i v a l e n t to assuming both past inputs
% and outputs are zero . So , t h i s produces a g l i t c h or d i s c o n t i n u i t y in
% next i t e r a t i o n output .
% But by s e t t i n g the i n i t i a l c o n d i t i o n s by us ing the in fo rmat ion s t o r e d in
% the prev ious i t e r a t i o n , we as su re to not to cause any g l i t c h e s in the
% output when p r o c e s s i n g the data in chunks .

f o r i =1: columns
signal_chunk = s i g n a l (: , i) ;
%each ’ chunk ’ o f data corresponds to one column

rxx = xcorr (signal_chunk , l ag) ;
% the a u t o c o r r e l a t i o n o f each chunk o f data i s c a l c u l a t e d in the lag
% i n t e r v a l that goes from −l ag to +lag

rxx = rxx (l ag +1:end) ;
% the order o f the obta ined a u t o c o r r e l a t i o n sequence i s o f order
[c o e f f , va r i ance] = l e v i n s o n (rxx) ;

% rxx i s the a u t o c o r r e l a t i o n sequence that c h a r a c t e r i z e s our
% a u t o r e g r e s s i v e p r o c e s s (speech s i g n a l) o f order=length (rxx) −1.
% The c o e f f i c i e n t s o f our AR l i n e a r p r o c e s s
% are obtained by us ing the MATLAB ’ l ev inson ’ f u n c t i o n .

Hz_num = c o e f f ; % H(z) numerator
Hz_den = 1 ; % H(z) denominator

[error_chunk , f i l t e r _ s t a t e 1] = f i l t e r (Hz_num, Hz_den , signal_chunk , f i l t e r _ s t a t e 1) ;
e r r o r (: , i) = error_chunk ;

% The f i l t e r f u n c t i o n i s d e f i n e d by i t s t r a n s f e r f u n c t i o n H(z) = N(z)/D(z)
% where N(z) = SUM(a i ∗z^(− i)) <from i =0 to i=P>
% with P=feed forward f i l t e r order , i . e . amount o f prev ious input va lue s

13

%
% and D(z) = 1 + SUM(bj ∗z^(− j)) <from j=1 to j=Q>
% with Q=feedback f i l t e r order , i . e . amount o f prev ious output va lue s used
% in the f i l t e r
%
% IF D(z)=1 then i t i s a FIR f i l t e r (i t s impulse re sponse or re sponse to
% any f i n i t e l ength input i s o f f i n i t e durat ion) .

%noise_chunk = s q r t (var i ance)∗ randn (block_size , 1) ;
noise_chunk = s q r t (var i ance)∗wgn(block_size , 1 , 0) ; %white no i se , 0db (1W)
% generate random n o i s e (normal or gauss ian d i s t r i b u t i o n) that can be
% used i n s t e a d o f the pu l s e t r a i n to produce a s y n t h e t i c speech .
% randn (sz1 , sz2) −−> sz1 ROWS x sz2 COLUMNS
n o i s e (: , i) = noise_chunk ;
% c o n s t r u c t the n o i s e s i g n a l ’ chunk by chunk ’

% PULSE TRAIN
xcorr_error_chunk = xcorr (error_chunk , lag_window) ;
xcorr_error_chunk = xcorr_error_chunk (lag_window+1:end) ;

% 1) To c o n s t r u c t the pu l s e t r a i n sequence cor respond ing to each chunk
% of input s i g n a l f i r s t we need to auto−c o r r e l a t e the e r r o r s i g n a l with
% i t s e l f . The lag window should be l a r g e enough that a l l o w s to f i n d
% enough peaks in the auto−c o r r e l a t e d s i g n a l .
% The f i r s t va lue o f the r e s u l t a n t auto−c o r r e l a t e d vec to r i s always the
% l a r g e s t o f the a l l vec to r .

l o c a l _ o f f s e t = 150 ; % i n c r e a s e the o f f s e t i f you hear s y n t h e t i c n o i s e s

% We make the search s e t t i n g the window l i m i t s , s t a r t i n g at the
% p o s i t i o n d e f i n e d by the v a r i a b l e ’ l o c a l _ o f f s e t ’ up to the end o f the
% vecto r or e a r l i e r .

[Max_Peak Q] = max(xcorr_error_chunk (l o c a l _ o f f s e t : end)) ;

% Store the sample index with the peak in the v a r i a b l e ’ p itch ’

p i t ch = Q + l o c a l _ o f f s e t − 1 ;
% OPTION 1 : VARIABLE PITCH. USE THIS VALUE of ’ p itch ’ to r e c o n s t r u c t e d a

% s y n t h e t i c v e r s i o n o f the o r i g i n a l speech .
% ’ pitch ’ i s the d i s t a n c e (in number o f samples) between the p u l s e s
% that conform the pu l s e t r a i n .
% ! !NOTE: NOISE reduct i on and b e t t e r v o i c e q u a l i t y can achieved by
% i n c r e a s i n g the v a r i a b l e ’ stat ionary_time ’ (f . ex . : 30 or 40 ms)

%pi t ch = 200 ;
% OPTION 2 : USE THIS ’ pitch ’ f o r a REAL ROBOT speech e f f e c t . I t s e t s
% a FIXED value f o r the t r a i n pu l s e p i t ch . Changing t h i s va lue we can
% change the p i t ch (tone) o f the s y n t h e t i c v o i c e . Also i n c r e a s i n g the
% number o f Levinson−Durbin c o e f f i c i e n t s w i l l improve sound q u a l i t y .
% !NOTE:
% 1) f o r HIGH−PITCH voice , b e t t e r v o i c e q u a l i t y by DECREASING the value o f
% the v a r i a b l e ’ stat ionary_time ’ (f . ex . : 10 ms) and
% a l s o d e c r e a s i n g the value o f the p i t ch ’ pitch ’

p u l s e s = l i n s p a c e (0 , 0 , b lock_s i ze) ;
r a t i o = Max_Peak/ xcorr_error_chunk (1) ;

i f (r a t i o) <0.05
% dec rea se the r a t i o l i m i t a c c o r d i n g l y i f you hear cuts during the speech

%i f ((r a t i o) <0 .05 | | xcorr_error_chunk (1) <0.0008)

14

% a l t e r n a t i v e l y we can try to s o r t out chunks with very smal l
% a u t o c o r r e l a t i o n value (smal l main peak , Index=1)

var iance = 0 ;
end

% Contruct the pu l s e t r a i n (car ry the prev ious p i t ch when needed)

f o r n = 1 : b lock_s i ze ;
i f (n <= p u l s e _ o f f s e t)

p u l s e s (n)=0;
e l s e

i f (mod((n − p u l s e _ o f f s e t − 1) , p i t ch) == 0)
p u l s e s (n) = s q r t (var i ance) ;

e l s e
p u l s e s (n)=0;

end
end

end

% r e c a l c u l a t e the o f f s e t a c c o r d i n g l y
i f (mod((b lock_s i ze − p u l s e _ o f f s e t) , p i t ch) == 0)

p u l s e _ o f f s e t = 0 ;
e l s e

p u l s e _ o f f s e t = p i t ch −(mod((b lock_s ize − p u l s e _ o f f s e t) , p i t ch)) ;
end ;

pu l s e_tra in (: , i) = p u l s e s ;
xcor r_error (: , i) = xcorr_error_chunk ;
% Construct the pu l s e t r a i n and the auto−c o r r e l a t e d e r r o r s i g n a l ’ chunk
% by chunk ’ so they can be p l o t t e d l a t e r .

% RECONSTRUCT OUTPUT SIGNAL
% =========================
% To i n v e r t the f i l t e r we only have to i n v e r t the t r a n s f e r f u n c t i o n
% H(z) o f our prev ious FIR f i l t e r , i . e . when pas s ing the parameters to
% the MATLAB ’ f i l t e r ’ f u n c t i o n we j u s t swith the numerator by the
% denominator . The input now i s each one the e r r o r s i g n a l ’ chunks ’ that
% we obtained p r e v i o u s l y .

[synth_speech_chunk , f i l t e r _ s t a t e 2] = f i l t e r (Hz_den , Hz_num, pul ses , f i l t e r _ s t a t e 2) ;
%%%%% OPTION 1 : USING the PULSE TRAIN (FIXED PITCH OR VARIABLE PITCH)

% NOTE: f o r v a r i a b l e pitch , the q u a l i t y o f the speech can be improved
% by i n c r e a s i n g the time ’ stat ionary_time ’ (f . ex . : 50 ms)

%[synth_speech_chunk , f i l t e r _ s t a t e 2] = f i l t e r (Hz_den , Hz_num, noise_chunk , f i l t e r _ s t a t e 2) ;
%%%% OPTION 2 : USING the random n o i s e (harsh , raspy v o i c e)

synth_speech (: , i) = synth_speech_chunk ;
% c o n s t r u c t the s y n t h e s i z e d s i g n a l ’ chunk by chunk ’

end

%%% Convert r e s u l t a n t s i g n a l matr i ce s i n t o 1−D vector f o r p l o t t i n g purposes
e r ro r_vector = e r r o r (:) ;
synth_speech_vector = synth_speech (:) ;
xcorr_error_vector = xcorr_error (:) ;
pu l s e_tra in = pul se_tra in (:) ;

%%%% PLOT ORIGINAL AUDIO SIGNAL

15

f i g u r e ;
p l o t (mono_signal) ;
t i t l e (’ORIGINAL AUDIO SIGNAL ’) ;

%%%% PLOT ERROR SIGNAL
f i g u r e ;
p l o t (e r ro r_vector) ;
t i t l e (’ERROR SIGNAL ’) ;

%%%% PLOT ERROR SIGNAL
f i g u r e ;
p l o t (xcorr_error_vector) ;
t i t l e (’AUTOCORRELATED ERROR SIGNAL ’) ;

%%%% PLOT RECONSTRUCTED AUDIO SIGNAL
f i g u r e ;
p l o t (synth_speech_vector) ;
t i t l e (’RECONSTRUCTED AUDIO SIGNAL ’) ;

%%%% PLOT DIFFERENCE BETWEEN ORIGINAL AND RECONSTRUCTED SIGNAL
f i g u r e ;
p l o t (mono_signal − synth_speech_vector (1 : s i z e (mono_signal)))
t i t l e (’DIFFERENCE BETWEEN ORIGINAL AND RECONSTRUCTED SIGNAL ’) ;

%%%% PLOT PULSE TRAIN
f i g u r e ;
p l o t (pu l se_tra in)
t i t l e (’PULSE TRAIN’) ;

%%%% REPRODUCE SIGNALS
% sound (mono_signal , f s) ;
% pause (5) ; % pause o f 5 seconds
sound (synth_speech_vector , f s) ;

16

