
Noise Reduction
ETIN80 Algorithms in Digital Signal Processors

Alexander Skafte tfy13ask@student.lu.se
Mattias Josefsson tpi13mjo@student.lu.se

Supervised by: Mikael Swartling

March 14, 2017

Summary

In this document we examine a simple algorithm for reduction of static
noise in real time. First a prototype is developed in Matlab, after which
the algorithm is implemented on a SHARC digital signal processor using
the Visual DSP++ framework.

1

Contents
1 Introduction 3

2 Theory 3

3 Implementation 5

4 Results 6

5 Conclusion 6

2

1 Introduction

A problem with capturing audio input is static noise generated by either internal
hardware or by external factors such as nearby fans, air conditioners or other
constant auditory disturbances. In this paper we investigate a method and
an algorithm for reducing such noise while retaining the relevant parts of the
audio. To test the algorithm we implement it on a widely used digital signal
processor.

2 Theory

By means of block processing we obtain, for each block k, an input vector x(k) of
32 audio samples, with the amplitude of x(k) being normalized to have a value
between 0 and 1. x(k) is then passed through a set of narrow-band analysis
filters which give us 64 frequency sub-bands. We express this quantity, for each
sub-band n, as Xn(k).

For purposes of identifying changes in amplitude and thus separating relevant
input from noise, we keep a temporal recursive average of the power of each
sub-band of Xn(k), which is, for each sub-band n, done by the update

Pn(k) = αPn(k − 1) + (1− α)|Xn(k)|2

where Pn(k) is the power of Xn(k) at time instant k, and α denotes a forgetting
factor that is usually in the range [0.90, 0.99] (we use α = 0.93). P is preferably
initialized to have the same power as the noise, but it converges quickly either
way. The value of α should be fast (i.e. low) enough to "notice" and follow
changes in amplitude, e.g. when someone is speaking.

P is thereafter transformed into the dB domain, and from that value a con-
stant noise level is subtracted which in our case is approximately −67 dB, so we
have

qn(k) = 10 log10[Pn(k)]− (−67 dB)

Ideally, the noise level would be estimated by some mechanism and not approx-
imated by a constant.

We then in the dB domain create a damping value D by means of interpolation
between a lower and upper threshold L and U using a Sigmoid-curve. In our
case, we use L = 5dB and U = 20dB. For qn(k) > U we do not suppress any
noise (since we have actual input, not just noise) and for qn(k) < L we suppress
the noise by some level, in our case D = −15 dB.

The interpolation function has the following form, where s is a ”squeeze” factor

3

that controls how steep the interpolation is:

Interpolate(qn(k)) =

−D, ∞ < qn(k) ≤ L
D + 0−D

1+exp(2s(−qn(k)+
U+L

2))
, L < qn(k) < U

0, U ≤ qn(k) <∞

By interpolating qn(k) in such a way and thereafter converting the result back
from the dB domain we obtain a gain factor with which we can scale each Xn(k)
to obtain an output frequency domain signal Yn(k).

gn(k) = Interpolate(qn(k))

Gn(k) = 10gn(k)/20

Yn(k) = Gn(k)Xn(k)

Yn(k) is thereafter synthesized into a 32 sample output audio block y(k) by
passing it through an inverse of the filter bank mentioned at the beginning of
the description of this algorithm.

Figure 1: The interpolation function.

4

In conclusion, one may express the algorithm as the following pseudo-code:

function Process[x(k)]→ y(k)

Input vector x(k), 0 ≤ |x(k)| ≤ 1

For each block k, do

X(k) = Analyze[x(k)]

For each frequency sub-band n in X(k), do

Pn(k) = αPn(k − 1) + (1− α)|Xn(k)|2

qn(k) = 10 log10[Pn(k)]− (−67 dB)

gn(k) = Interpolate[qn(k)]

Gn(k) = 10gn(k)/20

Yn(k) = Gn(k)Xn(k)

y(k) = Synthesize[Y(k)]

3 Implementation

We chose to first implement the algorithm in Matlab due to its vast math
library and development speed. After having created a working prototype acting
on a recorded signal with added artificial static noise added we moved on to the
Visual DSP++ environment, where we would rewrite the algorithm in C.

3.1 Matlab progress

In our initial Matlab implementation we used an ordinary discrete Fourier
transform (with Matlab’s fft command) to separate our signal into frequency
sub-bands. By doing so we encountered the issue of not being able to remove
input noise without removing parts of the speech as well, resulting in a frag-
mented output. By instead using a multi-rate polyphase filter bank—a set of
narrow-band filters, the details of which can be found in [1]—our algorithm
managed to remove the noise without significantly affecting the speech part of
the signal.

Initially we also used two recursive averages of the power of X; a ”slow” one
meant to follow the noise and a ”fast” one meant to react to fast and large
changes in amplitude (i.e. relevant input such as speech). At this stage we
encountered the issue of the slow average taking at least 20 seconds to converge
to the correct noise level, and without long enough pauses between relevant
input (e.g. speech) the slow average would start to increase undesirably, going

5

over the noise mean making the algorithm remove a large part of the speech
as well. To counter this we modified the algorithm to instead have only a fast
moving average and a constant estimated value for the noise level.

3.2 Visual DSP++ progress

For the DSP we had to change programming language to C instead of Matlab.
This meant converting the algorithm to C and implementing functions as we
is included in the standard Matlab library but not in C, such as complex
conjugate and element wise multiplication. Aside from that we now had a
continuous discrete signal to work with in real time instead of a prerecorded
finite signal. This made us change our parameters around to suit the static
noise from the DSP, and use interrupts on the DSP to handle processing the
signal while constantly getting new samples to handle.

4 Results

For purposes of displaying the results we recorded two audio samples; one with-
out noise reduction and one with a noise reduction of −19 dB. They can be
found by following the links below:

Before: alexanderskafte.com/static/dsp_noise_0.wav

After: alexanderskafte.com/static/dsp_noise_19.wav

5 Conclusion

By implementing the algorithm explained in this report on the DSP we were
able to remove most of the static noise without significantly reducing the qual-
ity of the relevant input signal. We however hard coded our parameters to fit a
specific environment of the DSP. Should the noise occur under different circum-
stances the parameters would have to be different, which is obviously subopti-
mal. As such, an improvement would be to have the algorithm automatically
estimate the properties of the noise and then choose parameters based on the
estimate.

The usage of the α parameter could also be modified further so that the rise
time and fall time of P would be different. Before updating P one can also have
an update of α of the form

α =

{
0, |Xn(k)|2 > Pn(k − 1)

α′, otherwise

6

http://alexanderskafte.com/static/dsp_noise_0.wav
http://alexanderskafte.com/static/dsp_noise_19.wav

meaning that when the amplitude is rising with time (first case) the reaction
is ”instant”, and when the amplitude is constant or falling with time the usual
recursive average is applied for some α′ ∈ [0.90, 0.99].

During this project we have mainly focused on the processing part of the noise
reduction and how to reduce noise in a pre-filtered signal. Since the filter bank
was provided to us by our adviser, an extension of the project would be to
implement one ourselves for use in the algorithm.

Another way to extend this project would be to look at more advanced models
to reduce static noise in a signal such as using a hidden Markov model.

References

[1] Direction of Arrival Estimation and Localization of Multiple Speech Sources
in Enclosed Environments, Mikael Swartling. Karlskrona: Blekinge Institute
of Technology, 2012.

7

	Introduction
	Theory
	Implementation
	Results
	Conclusion

