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1 Introduction
The goal of this paper is to introduce and explain the concept of an AGC, adaptive gain controller.
An Adaptive gain controller is no foreign concept for someone familiar with basic signal processing.
AGCs are widely used in devices such as AM Radio receivers, Radar, Video or in your Smart phone.
The purpose of an AGC is to regulate a gain on an output signal based on the energy content of
the input signal. A normal AGC will increase the gain for low energy samples and decrease it for
high thus keeping a fixed volume on the output independently of input variations. We have chosen
to implement our AGC to attenuate signals with both high and low energy content meaning we
will remove low background noise when no one is speaking and attenuate the signal if someone is
screaming or tapping on the microphone. We didn’t implement an aggressive AGC since we still
wanted some comfort noise.

2 Theory

2.1 The AGC
The theory behind an AGC is fairly simple and can be implemented in two steps. The first step is
to derive an appropriate energy content from the sampled input. Since we are working with sample
blocks we use 32 samples and generate a power level based on the mean of the squared samples.
Below in equation (1) you can see how we calculated the instant energy content called Pi.

Pi =
1

32

32∑
i=1

x(i)2 (1)

Then we use a first order IIR-filter where we calculate an average energy level, denoted Pa, based on
the previous average energy content and current instant energy content weighted with the variable
α as illustrated in equation (2).

Pa(n) = αPa(n− 1) + (1− α)Pi (2)

The second step is to generate a gain based of this energy level. This is done by converting the
energy to full scale dB, dBFS. This is done by taking the log of Pa and multiply by 10. When we
have our energy content in dBFS we use a predefined function to calculate our gain. The function
is illustrated in figure 1. When we convert this value back to a linear we will get a value in the
interval (0, 1] this value is our gain. This gain is then multiplied by our original vector containing
32 samples and then sent as output to the headphone jack.

Figure 1: Calculating gain
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2.2 The time constant
The time constant is a value that decides the time it takes for the output of the AGC to reflect
a 63% percent change in the input amplitude. The time constant, usually written with a τ , can
be derived from the constant α in the filter description (2) above by expanding the recursive filter
function and rearrange the terms. This is done in a introductory class in signal theory.

This affects how fast the AGC responds to a change in input power, for example if the α is
high, then the AGC will take longer changing the output level because (1 - α) will be small. And
the other way around for small values of α.

This is useful to know when designing the filter, if someone taps the microphone for example
then then we quickly want to decrease the output level and in our case, if no one is talking we want
to cut away the noise. We don’t want this to happen to quickly though as this will cut away all
the comfort noise between words. A perfect combination(that we did not implement would be to
have different α, one for the increase and one for the decrease of noise levels, so that the decrease
for high volumes works faster than the one for low levels.

The conclusion on this discussion on time constants is that it is important as the choice of one
affects how the AGC behaves, a badly tuned time constant makes the AGC unusable.

3 Implementation

3.1 MatLab
We started out by implementing the AGC in Matlab. First we wrote the function to calculate the
energy content of a block of samples. We knew that the DSP would give us chunks of data in 32
elements long vectors. All that was left to determine was the weighting variable α. We knew that
we wanted to rely more on the current sample block than the previous, which means that our α
should be in the range [0.90, 1). The closer towards 1 the more we will rely on our current block.
We experimented some with different values on α and found that choosing it to α = 0.97 gave us a
smooth energy development. The middle graph in figure 2 is the energy content. The red graph is
t randomly generated noise and the green graph is the output after going through our algorithms.
We see that the rise in energy content is relatively slow but this also means that we will have a less

Figure 2: Generated signal, energy content and attenuated signal

jumpy signal. Choosing α is a trade off between the energy rise time and consistency. The code is
fairly simple and is written below.

function y = process(x, prevPL)
a=0.97;
y=a*prevPL +(1-a)*sum(x.^2)/32;
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end

The next objective was to generate a gain based on this energy content. We converted our energy
to full scale dB by the simple formula

dbFS = 10 ∗ log10(prevPL) (3)

and matched our result with an desired output as in figure 1.
The shape of this function is determined by 4 factors. An increasing slope, decreasing slope, a

minimum threshold and a maximum threshold. Initially we guessed these values but as we tested
our implementation on the hardware we figured out which limits were appropriate based on the
behavior of the DSP. After converting the matched decibel value back to linear scale we get our
gain which we multiply by the initial input and then put as output.

3.2 C
The code loading the audio from the microphones and later pushing the data to the headphone
jack was done in C. The DSP processor is event driven and when a button is pressed or audio in
recorded a event is generated, and different function calls are performed based on what kind of
event. To know function a event should call the following line of code is used

interrupt(SIG_SP1 , process );
interrupt(SIG_USR0 , keyboard );
interrupt(SIG_TMZ , timer);

SIG_SP1 is the incoming audio event, and it should call a function process. SIG_USR0 is the button
pressed event that should call the keyboard function and SIG_TMZ is a timer interrupt calling the
timer function.

The function process is where the AGC is applied.

void process(int sig){
int n;

sample_t *u32 = dsp_get_audio_u32 (); /* mic 1 and 2 in, headset out */

for(n=0; n<DSP_BLOCK_SIZE; ++n) {
mic1[n] = u32[n].right;

}

if(on > 0) {
prvSmpl = PWR(mic1 ,prvSmpl );

float g = GAIN(prvSmpl );

gains = powf(10, g);
} else {

gains = 1;
}

for(n=0; n<DSP_BLOCK_SIZE; ++n) {
u32[n].right = (mic1[n]*gains+ mic1[n]* gains );
u32[n].left = (mic1[n] + mic1[n])* gains;

}

}

The framework of the DSP works in the way that if we read from the array u32 we get the audio in
data but if we write to the array we write to the audio output. We begin by reading all the audio
data into our own array called mic1. Lastly we multiply our array with the calculated gain and
write then to the u32 array and thus we get the modified audio playing through the headphones.
Between reading and writing we send the data through our assembly functions, PWR takes the audio
array and the power from the last segment and calculates the current segments power by squaring
all the samples and dividing by the sample size. GAIN takes the calculated power and performs
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the AGC calculations as explained previously. prevSmpl is a global floating point variable holding
the power from the previous processed segment. On is a variable that we can change by pressing a
button on the DSP, it turn on or off our AGC.

3.3 Assembly
Our assembly implementation consist out of two files and functions. The first PWR calculates the
power by looping through all the samples in an array and squaring it. The second Gain performs
our AGC calculation.

i0 = f4; // Pointer to in , prevIn in f8
f0 = 0.97;
f8 = f0 * f8; // \alpha*prevIn

On this DSP the variables sent to a function are stored in register R4 and R8 for the first and
second parameters. At the end of the function, if it should return a value it is always the value
in R0 that is returned. Using this knowledge we can optimize the memory usage by storing most
of our calculation affecting our return value in R0 as this is the value return anyways. Register
Rx and Fx is the same physical register the only difference is thar Rx is a integer value and Fx is a
floating point.

The most interesting part of PWR is the loop that goes through all our data points.

lcntr=32, do sum_loop -1 until lce;

f4 = dm(i0 ,m6);
f6 = f4;
f2 = f4 * f6; // square sample

f0 = f0 + f2; // accumulate

sum_loop:

lcntr is a loop counter where we specify we want to loop the sum_loop 32 times. f4 = dm(i0,m6);
tells our compiler that we want to take the value stored in i0 (prevIn pointer) and then increase
it by m6 which is a register that always contains the number 1. Works the same way as f4 =
prevPL[i++] would in C. If we instead had used the call f4 = dm(m6, i0) we would only have
got the first value of the array and not increasing it, the C equivalent would be f4 = prevPL[i +
1]. Then we copy the register f4 into f6 to be able to square the value without a power function.
Lastly we accumulate the squared sum in f0 because thats the value we want to return, after
dividing by 32 which we do by multiplying the f0 register by 0.03125.

In GAIN we have two interesting parts, the first is external function calls to C code.

ccall(_log10f );
f1 = 10.0;
f0 = f1 * f0;

Here we want to perform the C code f0 = 10*log10(prevSmpl). Here we used the fact that the
input variables always are stored in register f4. At the start of our function we have prevSmpl
in f4 from our C code, if we do nothing and just call ccall(_logf) the register f4 will be used
as input to the log function so we have performed f4 = log10(prevSmpl) right at the beginning.
We also use the fact that return values are always stored in f0, so after the ccall we have the
result in f0, all we have left to do is to multiply f0 with 10.

The second part is conditional jumps.

f10 = f0 - f1;
if LT jump _LWR;

To do conditional jumps the DSP uses the last computation done by the ALU. Here we want to
check if f0 is grater than f1. If f1 is grater the result will be negative, and we use the keyword
LT which means that if the result is below zero it should jump to the function LWR. In the same
way if the result is greater than zero and we want to jump, we use the keyword GT instead.

The DSP also have a lot of different features that we did not use. Mainly the ability to perform
two instructions at the same time. Because unlike ordinary systems this DSP have two types of
memory, one Program Memory (PM) and one Data Memory (DM). The program memory is set
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in code and do not change during run time, while data memory is dynamic. Usually you can not
read and write to memory at the same time, but having two different memories leads to the ability
to read from PM and at the same time write to DM or vice versa.

4 Result
We managed to implement our AGC in MATLAB, C and in assembly. However it was very
aggressive and acted more as a noise gate, but this is something we can easily fix by tweaking
our α value and the cut off limits. Further improvements of the AGC could include some more
tweaking of our 4 variables that determine slope and limits. We could also implement two different
α for when the energy contenis rising or declining. This would allow us to get an AGC that
responds quickly when the energy content rises quickly but also keep a steady volume when the
energy content is stable.
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