
1

	
	
	
	
	
	
	

	

Beat	Detection		
	

Algorithms	in	Signal	Processors		
ETIN80	

	
	
	
	
	
	
	
by	
	

Luis	Cavo	
Siyu	Tan	
Adam	Urga	

	
2016-03	

	 	

2

Table	of	content	
Introduction .. 3

Theory ... 3

Methods ... 3

Algorithms ... 3

Time	domain	algorithm .. 3

Frequency	domain	algorithm .. 4

Implementation .. 5

Results ... 7

Time	domain	power	averaging ... 7

Frequency	domain	FFT	and	bpm	searching ... 8

Discussion ... 9

Performance .. 9

Issues	and	solutions ... 9

Conclusions ... 10

References ... 10

	
	 	

3

Introduction	
This	 report	 covers	 the	 project	 work	 done	 for	 ‘ETIN80	 Algorithms	 in	 Signal	 Processors	 -	 Project	
Course’.	The	objective	of	the	project	is	the	implementation	of	a	beat	detection	algorithm	in	a	Digital	
Signal	Processor	(DSP)	board.	This	board	will	process	the	audio	input	and	will	calculate	the	beats	
per	minute	(BPM)	of	the	inputted	music.	A	LED	present	on	this	board	will	be	blink	at	the	same	rate	
as	the	beats	of	the	music.	Furthermore,	one	of	the	onboard	keys	is	used	for	manually	synchronizing	
the	LED	flashing	frequency	with	the	beat	of	 the	music.	For	example,	when	a	beat	occurs,	 the	user	
presses	the	key	immediately.	The	LED	will	reset	and	flash	again	in	phase	with	the	music.	
	
The	 DSP	 used	 in	 this	 course	 is	 SHARC	 ADSP-21262	 and	 the	 programming	 environment	 used	 is	
Visual	 DSP++.	 The	 DSP	 platform	 is	 connected	 to	 an	 emulator	 platform,	 the	 HPUSB-ICE	 platform.	
Input	 is	 provided	 by	 a	 3.5mm	 cable	 connected	 to	 external	 source,	 and	 a	 headphone	 is	 used	 to	
monitor	the	output	music.	
	

Theory	
As	we	will	discuss	later,	the	most	important	mathematical	tool	used	in	this	project	 is	the	Discrete	
Fourier	 Transform	 (DFT).	 The	 DFT	 plays	 an	 important	 role	 in	 the	 analysis,	 design	 and	
implementation	 of	 discrete-time	 signal	 processing	 algorithms.	 The	 DFT	 is	 used	 to	 analyze	 the	
frequency	content	of	a	continuous-time	audio	signal,	which	has	been	previously	sampled	in	the	DSP	
processor.		
The	digital	computation	of	an	N-point	DFT	is	done	by	means	of	an	efficient	class	of	algorithms	called	
fast	Fourier	transform	(FFT)	algorithms	[1].	These	algorithms	reduce	the	computational	complexity	
of	the	DFT	from	O(N2)	to	(N/2)log2(N).	

Methods	
This	sections	covers	an	explanation	of	the	different	algorithms	used	to	find	the	BPM	of	music.	The	
implementation	of	these	algorithms	on	a	DSP	is	also	covered.	

Algorithms	
The	algorithm	used	in	this	project	was	first	developed	and	tested	using	Matlab.	The	algorithm	can	
be	separated	into	two	different	parts:	time	domain	analysis	and	frequency	domain	analysis	[2].	

Time	domain	algorithm	
When	the	audio	signal	is	sampled	by	the	DSP,	it	is	stored	in	a	buffer.	This	buffer	has	a	limited	size	
which	 is	 chosen	by	 the	designer.	Every	 time	 this	buffer	 is	 filled	 in	with	new	data,	 an	 interrupt	 is	
raised	by	the	system	and	the	corresponding	handling	routine	is	executed	in	the	DSP.	Therefore,	the	

4

algorithm	 can	 only	 process	 a	 limited	 number	 of	 samples	 at	 a	 time.	 In	 our	 algorithm,	we	 set	 the	
buffer	size	to	375	samples.		
First,	an	average	power	calculation	of	the	input	sequence	is	performed.	The	average	power	of	each	
block	of	375	samples	is	calculated	using	the	equation	below:	
	

𝑋!"#(𝑛) =
!
!

𝑥(𝑛 − 𝑘)! !!!
!!! (1)	

	
For	each	new	block	we	calculate	the	new	power	average	by	using	the	following	recursive	formula:	
	

𝑃(𝑛) = 𝛼𝑃(𝑛 − 1) + (1 − 𝛼)𝑋!"#(𝑛)! 		 (2)	
	
	
Where	P(n)	 and	P(n-1)	 represent	 the	 current	 and	previous	 recursive	 average	power	 calculations	
respectively,	and	𝛼	is	a	constant	to	control	the	effectiveness	of	the	algorithm.	A	greater	𝛼	value	will	
make	P(n)	less	variant	on	new	input	average	values	(𝑋!"#).	We	set	𝛼=0.85	in	the	current	project.	All	
the	 values	of	P(n)	 are	 stored	and	are	used	 for	 further	 frequency	processing.	 P(n)	 is	 a	 signal	 that	
provides	 information	about	 the	power	of	 the	 input	sequence.	Therefore,	by	performing	an	FFT	to	
this	signal,	we	will	be	able	to	find	the	frequency	at	which	the	power	is	maximum.	The	size	chosen	
for	 the	FFT	 should	be	a	power	of	2,	 and	 for	 this	 reason	after	different	 simulations	with	different	
values,	we	chose	N	=	2048	as	FFT	size	and	therefore	2048	values	of	P(n).	
Furthermore,	P(n)	is	not	re-calculated	every	time,	but	a	sliding	window	is	implemented.	When	the	
vector	containing	P(n)	is	filled	in	with	values,	the	next	value	will	be	added	to	this	same	vector	and	
the	 first	 value	 in	 the	 vector	 will	 be	 discarded.	 Without	 implementing	 a	 sliding	 window,	 the	
calculation	 of	 the	 FFT	would	 be	 performed	 every	 time	 2048	 samples	 are	 acquired,	which	would	
approximately	correspond	to:	

𝑇!!" = !"##$% !"#$
!×!!

= 16 𝑠𝑒𝑐 (3)

	
This	would	mean	that	we	would	only	be	able	to	detect	variations	in	the	BPM	only	every	16	seconds.	
By	using	the	sliding	window	approach,	the	BPM	calculated	is	continuously	following	the	BPM	of	the	
music.	

Frequency	domain	algorithm	
The	P(n)	data	stored	in	the	FIFO	is	used	to	perform	an	FFT	calculation.	At	the	beginning,	the	FIFO	is	
empty.	 After	more	 data	 is	 stored,	 FFT	 spectrum	 increases	 in	 power.	 However,	 even	 if	 there	 are	
zeros	in	the	FIFO,	the	FFT	can	still	perform	the	correct	result.		
	
Based	on	the	theory,	we	know	that	the	frequency	which	represents	the	beat,	has	the	highest	power.	
Therefore,	 by	 analyzing	 the	 power	 spectrum	 of	 the	 P(n)	 sequence	 and	 finding	 the	 bin	 that	
corresponds	 to	 the	 highest	 power,	 we	 are	 able	 to	 find	 the	 BPM	 of	 the	 sound	 which	 should	 be	
proportional	to	the	highest	bin.	However,	we	have	limited	the	searching	algorithm	to	a	certain	bin	
range,	which	is	in	between	of	the	lowest	BPM	(60)	and	the	highest	BPM	(200).	It	is	from	bin	#16	to	

5

bin	#52.	The	correspondence	between	 the	bin	number	and	 frequency	of	 the	BPM	 is	given	by	 the	
following	formula:	
	

BPM	=	𝑁!"#×
!!

!"##_!"#$
𝑁!"#$%&! × 60	 	 (4)	

Implementation	
Once	we	have	a	working	algorithm	in	Matlab,	an	implementation	on	a	DSP	is	straightforward.	Every	
time	the	 input	buffer	 is	 full,	meaning	375	samples	are	available,	an	 interrupt	 is	 triggered	and	the	
program	 execution	 jumps	 to	 the	 interrupt	 handler.	 The	 recursive	 averaging	 FIFO	 shifts	 left	 one	
position,	 and	 the	 last	 position	 stores	 the	 previous	 recursive	 value	 plus	 the	 instantaneous	 power,	
with	coefficient	𝛼.	Then,	a	2048	points	FFT	is	performed	by	calling	the	built-in	function	rfft2048().	
Finally,	the	bin	with	the	highest	power	represents	the	BPM	value,	which	is	then	calculated	using	(4).	
Only	the	bins	in	the	range	between	60	BPM	and	200	BPM	are	checked	as	we	mentioned	before.	The	
following	code	extract	performs	the	aforementioned	task:	

	
				//	Copy	audio	from	left	channel	to	input	buffer.	Audio	samples	are	32	bit	
				//	fixed-point	values	in	the	range	[-1,	1]	so	no	additional	scaling	is	required.	
				for(n=0;	n<DSP_BLOCK_SIZE;	++n)	{	
								X[n]	=	audioin[n].left;	
								X_avg	=	(X[n]*X[n]+X_avg);	
				}	
									
								//	Instantanious	average	per	block:	
								X_inst	=	(1/block_size)*X_avg;	
									
								//	Sliding	window	average	power:	
								for	(n=0;	n<(REC_BLOCK_SIZE-1);	++n)	{	
												X_Rec[n]	=	X_Rec[n+1];			
								}	
									
								X_Rec[REC_BLOCK_SIZE-1]=(X_Rec[REC_BLOCK_SIZE-2])*alpha+(1-alpha)*X_inst;						
									
								//	Calculate	the	FFT	of	the	power	signal	
								rfft2048(X_Rec,	FFT_Real,	FFT_Imag);	
								for	(n=0;n<(REC_BLOCK_SIZE/2)-1;n++){	
												Y[n]	=	sqrt(pow(FFT_Real[n],2)+pow(FFT_Imag[n],2));	
												if	((Y[n]>Y_max)&&(n<(BPM_MAX+1))&&(n>(BPM_MIN-1)))	{	
																Y_max=Y[n];	
																n_max=n;	
												}	
								}	

	
	
The	 limitation	 of	 the	 algorithm,	 however,	 is	 the	 BPM	 resolution.	 Neighboring	 bins	 have	 a	 BPM	
difference	 of	 ±4	 BPM,	 and	 thus,	 if	 we	want	 to	 have	 an	 increased	 resolution,	 some	 optimizations	
need	to	be	done.	When	a	bin	n_max	is	found,	the	power	of	neighbor	two	bins	n_max-1	and	n_max+1	
is	 checked,	 and	compared	between	each	other	 to	 find	which	one	 is	 larger.	 In	 the	 range	 that	goes	
from	 n_max	 to	 n_max±1,	we	 directly	 perform	 the	 DFT	 of	 the	 P(n)	 signal,	 as	 the	 equation	 shows	
below.	
	

𝑋𝑘 = 𝑃(𝑛) ⋅ 𝑒!!!"#$/!!!!
!!! = 𝑃(𝑛) ⋅ 𝑒!!!"#(!!!)/!!!!

!!! ⋅ 𝑒!!!"#⋅!/!		(5)	

6

	
Figure	1	BPM	resolution	improvement	algorithm	

	

The	 first	 value,	 when	 n=1,	 leads	 to	 a	 result	𝑋𝑘|!!! = 𝑃(1) ⋅ 1 ⋅ 𝑒!!!"#⋅
!
! .	 Unlike	 the	 normal	 DFT	

operation,	the	complex	exponential	𝑒!!!"#⋅!/!	is	only	calculated	once	and	acts	as	a	constant	in	the	
iteration,	 and	𝑒!!!"#(!!!)/! ⋅ 𝑒!!!"#⋅!/!=𝑒!!!"#(!!!)/! ⋅ 𝑒!!!"#⋅!/! ⋅ 𝑒!!!"#⋅!/! .	 This	 saves	 precious	
amount	of	CPU	 time	when	calculating	DFT	result.	Fig.	1	 illustrates	 the	concept	of	 such	algorithm.	
The	code	extract	is	shown	below.	

	
for	(j;j<1	&&	j>-1;){												
												E_0.re	=	1;	
												E_0.im	=	0;	
												E_1	=	E_0;	
												E.re	=	X_Rec[0];	
												E.im	=	0;	
												z.re	=	0;	
												z.im	=	n_max+j;	
												y				=	cexpf(z);	
												for	(n=1;n<REC_BLOCK_SIZE-1;n=n+4){														
																E_1.re	=	y.re	*	E_0.re	-	y.im	*	E_0.im;	
																E_1.im	=	y.re	*	E_0.im	+	y.im	*	E_0.re;	
																E.re	=	E.re	+	X_Rec[n]	*	E_1.re;	
																E.im	=	E.im	+	X_Rec[n]	*	E_1.im;	
																E_0	=	E_1;	
												}												
												E_abs	=	pow(E.re,2)+pow(E.im,2);	
									
												if	(E_abs	>=	E_max)	{	
																E_max	=	E_abs;	
																n_max_opt	=	n_max+j;				//	Refresh	the	bin	
												}	
												if(Y[n_max+1]	>	Y[n_max-1]){	
																				j	=	j+0.25;}	
																else{	
																				j	=	j-0.25;}	
								}	

7

	
Every	time	an	accurate	BPM	value	is	found,	this	value	will	be	used	to	blink	a	LED	according	to	the	
BPM	value	found.	The	DSP	has	a	frequency	of	98304000	Hz,	and	by	knowing	this	value	a	timer	can	
be	set	 to	blink	the	LED.	The	timer	 is	 loaded	with	a	new	value,	and	the	timer	controls	 the	 flashing	
period	of	a	LED.	This	value	is	calculated	as	follows:	

	
T	=	!!"#×!"#$!!"#$×!

!×!"#$×!"
	 (6)	

	
Where	Block	size	=	375,	N	=	2048	and	Fs	=	48000	samples/second.	
	
In	addition,	the	LED	can	then	be	synchronized	with	music	manually.	This	will	be	done	by	the	user	
by	pressing	a	button	on	the	DSP	board.	The	button	press	will	trigger	an	interrupt,	and	the	keyboard	
interrupt	handler	reset	the	timer	by	loading	the	cycle	value,	by	using	the	function:	timer_set(cycles,	
cycles).		
	
Finally,	when	there	is	no	audio	input,	the	recursive	averaging	value	will	gradually	decrease	to	zero.	
We	keep	track	of	the	20th	value	in	the	FIFO,	if	it	is	smaller	than	a	threshold,	then	LED	is	turned	off.	

Results		

Time	domain	power	averaging	
In	Matlab,	a	time	domain	averaging	is	performed	and	the	result	is	illustrated	in	Fig.	2.	The	orange	
plot	is	the	input	signal	in	time	domain,	and	the	purple	one	is	the	recursive	averaged	power	of	this	
signal,	 corresponding	 to	 the	P(n)	 sequence.	The	power	 follows	 the	peak	of	 the	 input	 signal	quite	
well.	
	

	
Figure	2	Time	domain	average	power	calculation	

8

Frequency	domain	FFT	and	bpm	searching	
The	power	samples	are	further	processed	using	a	2048-point	FFT,	and	the	result	is	shown	in	Fig.	3.	
As	shown	in	the	figure,	bin	number	25	has	the	highest	peak,	which	represents	a	bpm	of	93.	Finally,	
in	Matlab,	we	plotted	the	calculated	bpm	during	every	FFT	calculation.	It	shows	a	flat	result	without	
large	 fluctuation.

	
	

Figure	3	FFT	spectrum,	with	a	peaking	indicates	the	bpm	
	

	
Figure	4	BPM	plot	in	Matlab	

9

Discussion	

Performance	
	
Unsurprisingly,	the	performance	was	highly	dependent	on	the	various	parameters	and	even	minor	
changes	 could	 change	 the	 result.	 The	 resolution	 could	 change	 depending	 on	 various	 factors,	 but	
what	 set	 the	 base	 limitations	 was	 the	 amount	 of	 stored	 sampled	 data.	 The	 more	 data	 that	 was	
stored	and	used	gave	a	higher	resolution	while	costing	memory.	By	configuring	what	type	of	data	
was	stored	(block	size,	recursive	average,	etc.)	it	affected	in	various	ways	the	different	performance	
related	results	such	as	accuracy	and	precision.	

Issues	and	solutions	
	
We	had	some	 issues	with	 the	 limitations	on	both	 the	computational	power	as	well	as	 the	 limited	
amount	 of	memory	 on	 the	DSP.	While	 neither	 of	 them	 caused	us	 any	 large	 amount	 of	 grief,	 they	
could	be	a	bit	tricky	to	work	around.	To	avoid	the	problem	with	limited	amounts	of	memory	it	was	
necessary	to	keep	a	close	eye	on	the	balance	between	the	amount	of	stored	values	for	block	sizes,	
the	 recursive	 averages,	 FFT	 and	 DFT.	 The	 DFT	 was	 heavy	 on	 the	 computational	 power,	 but	 by	
careful	adjustments	to	the	various	parameters	used	by	it	and	the	other	functions	we	were	able	to	
get	around	the	problem.	
	 	
We	had	some	minor	problems	with	deactivating	the	LED	quickly	when	the	music	was	stopped.	This	
was	solved	by	monitoring	the	recursive	average	power	and	selecting	a	threshold.	This	resulted	in	a	
very	minor	delay	before	deactivating	the	LED.		

	
We	had	 several	 issues	 before	we	were	 able	 to	 accurately	 detect	 the	 beats.	While	 there	 is	 still	 an	
error,	 it’s	 is	 now	minor.	We	managed	 to	minimize	 the	 delay	 as	well.	Much	 of	 this	was	 thanks	 to	
careful	tuning	of	parameters	and	the	optimization	by	DFT.	
	
We	had	 some	problems	with	 irregular	 beats	 showing	up	on	 the	LED	 rhythm	due	 to	 the	 code	we	
were	 using,	 but	 by	 using	 optimization	 and	 configuring	 the	 recursive	 averaging	 and	 the	 FFT	 that	
problem	was	solved.	
	
A	problem	our	 implementation	was	unable	 to	 solve	was	 songs	with	beats	 that	were	 represented	
with	various	level	of	power,	for	example	heavy	techno-based	music	or	synthesizer	music.	To	solve	
something	of	this	magnitude	we	concluded	that	a	more	advanced	algorithm	would	be	needed	with	
higher	accuracy	and	other	ways	to	discern	patterns	to	be	able	to	find	the	beat	rate.	
	

10

Conclusions	
	
We	have	seen	from	our	code	that	the	parameters	are	very	important.	Even	minor	changes	can	make	
or	break	the	program.	As	mentioned	in	the	issues	and	solution	section	certain	types	of	music	would	
require	a	more	advanced	implementation	than	what	is	covered	in	this	course.	As	far	as	we	was	able	
to	 discern	 you	would	 need	 a	 combination	 of	 a	more	 advanced	 base	 algorithm	 as	well	 as	 several	
more	 secondary	 methods	 to	 optimize	 the	 accuracy.	 This	 would	 almost	 certainly	 require	 more	
computational	power	and	memory.	
	

	

References	
[1]		Weisstein,	Eric	W,	"Fast	Fourier	Transform."	From	MathWorld–AWolfram	Web	Resource,	2014.	
Available	from:	http://mathworld.wolfram.com/FastFourierTransform.html	
[2]	S.	Hillbom,	R.	Lindberg,	E.	Jing,	Realtime	BPM	and	Beat	Detection	using	ADSP-21262	SHARC	DSP.	
[3]	VisualDSP++	5.0	Run-Time	Library	Manual	for	SHARC®	Processors:	
http://www.analog.com/media/en/dsp-documentation/software-
manuals/50_21k_rtl_mn_rev_1.5.pdf	
	

http://mathworld.wolfram.com/FastFourierTransform.html

	h.vqbk53amsx8v
	h.fc45f4w9716f
	h.p7sz5xvm1v02
	h.rzkh76avm38o
	h.ik3hyu6ztune
	h.5iw686e1p4tt
	h.5voz8t4a0nmo
	h.wm4jrii18bzh
	h.u60tem6clbei
	h.qm5of8nxc2tl
	h.x9mbqv5c3net
	h.sonqsxyvvudn
	h.e8x2io8mk06k
	h.krb560unl2c6
	h.fujqy2om4w0w
	h.psm4zpe5dsow
	h.3p75tpegktgc

