
Speech Synthesis

Joakim Ysing lan11jys@student.lu.se
Ricardo Gomez soc14rgo@student.lu.se
Kevin Froimson ksf5fk@virginia.edu

March 10, 2015

1

Contents

1 Introduction 3

2 Implementation 3
2.1 Proof of concept . 3

2.1.1 Block Processing . 3
2.1.2 Speech signal . 4
2.1.3 LPC . 5
2.1.4 Speech Synthesis (Excitation Generation) 5
2.1.5 Speech Synthesis (Output signal Generation) 6

2.2 DSP Implementation . 7

3 Problems 8
3.1 Problems in Matlab . 8
3.2 DSP problems . 9

4 Results 9

5 Conclusions 9

A Matlab code 12
A.1 SpeechSynth.m . 12
A.2 processLev.m . 12

B C code 14
B.1 autoRegressiveFilter.c . 14
B.2 ETIN80.c . 14
B.3 GWN.c . 17
B.4 levinsonDurbin.c . 17

2

1 Introduction

The purpose of the project was to research and implement speech synthesizing
on a SHARC ADSP-21262 digital signal processing unit (DSP). Since the DSP
was an unfamiliar platform and containing a lot of hardware limitations the
project was split into two main parts.

The first part consisted of implementing the speech synthesizing in Matlab.
Working with Matlab compared to the DSP presented a lot of simplifications.
Code written in Matlab can contain non-causal or anti-causal filtering. Running
the code on a computer gives access to a seemingly unlimited amount of memory
and processing resources while the DSP has very limited amount of memory
and processing resources. We can gain access to the entire signal at all times
in Matlab where as the DSP must be run with realtime demands. The Matlab
implementation was done mostly as a proof of concept to make sure that the
method was correct before working on the DSP.

The second part of the project was the actual implementation on the DSP.
Since we already had the method written in Matlab this step was consisted
mainly of converting the Matlab code into c code with a few additional problems.

2 Implementation

2.1 Proof of concept

In this Project various goals were pursued. The main one was speech synthesis.
This basically means being able to produce speech signals from an computer
generated excitation signal. To address this problem, a first study of the speech
signal, together with the study of the different signal processing blocks used is
presented.

2.1.1 Block Processing

Block processing is a kind of processing that is widely used in DSP implemen-
tations. Whereas in sample processing, one sample is processed at a time (as
it is the case of an FIR filter with a continuous input data stream), in block
processing as seen in figure 1,

Figure 1: The processing of several signals at a time X(n), referred to as blocks,
lead to an increased delay in the output Y (n) as can be seen in the figure.

N samples are processed at a time and thus, the system wait to buffer all of
them before it starts processing them.

There are many reasons of why this kind of processing is done this way. In
this example, the main reason is the characteristics of the speech signal. As

3

will be described in the next sections, some parameters of the speech signal are
going to be estimated, such as pitch, formants, etc. It is obvious that, during a
normal speech, all this characteristics change over time, and thus they can’t be
estimated just once for the whole speech. Then, it is neccesary to look for some
time lapse that guarantees us (with certain precision) that, during that time,
most of this characteristics are going to remain constant.

In the example of speech, it is widely used the 20ms time lapse. However,
because of the fact that this project deals with digital signals, this time has to
be converted to samples. In this conversion, the sampling frequency takes place.
Depending on that sampling frequency, the amount of samples buffered in each
block will change. It is often the case that, due to a high sampling frequency,
it is desirable to perform some kind of downsampling (as in this case) to reduce
the processing load to the DSP.

However, apart from the constant-parameters time lapse, there are other
variables that influence the optimal block size. These can be included in the
trade-off between time resolution and real-time processing. Ideally, it would be
desirable to have the block as small as possible (with the upper bound that
gives us enough periods to estimate the pitch). The reason for that is because
it is desired to be able to synthesize every single millisecond of voice with the
particular characteristics of each millisecond. Having a larger block will lead to
a loss in terms of resolution, and thus some fast variations will disappear. Also,
because of the fact that the 20ms time lapse is not synchronized with when the
speech signal changes, it is usual that one block contains two different kinds of
speech signal, each one with different pitch, etc.

Nevertheless, when implementing the algorithm in a DSP, the processing
time has to be taken into account. As it will be seen, the main time consum-
ing task is the Levinson-Durbin algorithm. The Levinson-Durbin algorithm is
calculated for every single block. Thus, the smaller the block, the more often
Levinson-Durbin is calculated. In this project, real-time processing is intended.
Thus, there is a bound on how fast Levinson-Durbin algorithm can be per-
formed. Too small blocks will lead to a situation where there is not enough
time to perform all the processing algorithms before the next signal block is
ready to be processed, making impossible the real-time implementation of the
desired algorithm.

Lastly, there is also a relation between the perceived delay at the output of
the DSP and the block size. The reason for that is because at first, the system
has to wait for an entire block to be stored in memory to be processed. Thus,
that amount of time has to be added to the delay related to the signal processing
at the DSP. However, in this particular project, a small increment on the output
delay is not really a problem, and thus this constraint hasn’t been taken into
account.

2.1.2 Speech signal

The speech signal is an specific kind of signal produced naturally by humans
when speaking. From a signal processing point of view, speech signal can be
regarded as a kind of signal which is composed by spectral resonances (also
called formands), some periodic excitation (voicing), some noise, transients and
amplitude modulation.

4

Figure 2: A typical block of a normal
speech signal. Horizontal axis is the dis-
crete signal number on the block and the
vertical axis is the amplitude.

Various methods have been pro-
posed to model the speech signal gen-
eration. However, the one used in this
project is the source filter model.

This model basically separates the
speech synthesis into two main com-
ponents: the source, which is basi-
cally a pulse train with a certain pitch
and with or without fritation noise;
and the filter, which includes the res-
onance terms. Thus, to sum up, it has
been seen that speech can be mod-
elled as the output of a certain system
(that will be approximated as LTI)
excited by pulses and/or noise. An
example of a typical block of speech
can be seen in figure 2.

2.1.3 LPC

Once the main idea and modeling of the speech signal have been presented, it is
time to be able to estimate the different parameters that characterize the speech
generation model to be able to effectively synthesize speech signal, as intended
in this project. For this purpose, the Linear Predictive Coding algorithm is
used[3]. The reason of why this kind of method is used to address this kind of
problem is that it efficiently estimates the speech parameters as they have been
modeled before: as a linear system excited by some glottal pulses and noise.
Thus, LPC works directly with the expression of the source-filter model it has
been presented.

The specific algorithm used to solve this LPC is the Levison-Durbin algo-
rithm. The basic idea is that, after completing the processing with the Levinson-
Durbin algorithm, the linear prediction filter is obtained, which represents the
vocal tract (all the correlated terms) and some residual signal, which represents
the uncorrelated signal (it is obtained as the difference between the real recorded
signal and the predicted signal, which just contain correlated terms).

2.1.4 Speech Synthesis (Excitation Generation)

At this point estimated all the parameters of the source-filter model of the
speech voice have been estimated: a prediction filter which takes into account
all the correlated parameters of the speech signal has been obtained, and the
residual noise after extracting the recorded signal to the predicted signal has
been calculated and an example of a block can be seen in figure 3.

However, to synthesize speech, the residual noise is not used as the exciting
signal: On the contrary, It is necessary to generate a computer-based excitation
which has some of the parameters of the residual excitation signal to generate
the sound. In this project, the first parameter that was pursued was the pitch
of the signal.

When the general waveform of a excitation signal is observed, it can be seen
that it is formed by some pulses that are periodic (considering small amount of

5

time). The inverse of the period of this pulses represents the pitch of the speech
signal. Thus, to generate an artificial excitation, it is neccesary to estimate the
pitch of the residual signal. There are many methods to do that. In this project,
the autocorrelation of the signal was used. By autocorrelating the signal the
similarity between the signal and a delayed version of the same signal can be
obtained. Thus, if the signal is periodic (and has some periodic components
such as pulses), some maximum values in the autocorrelation will be seen as the
delay value of the second signal approximates to the period of the pulse train.
After that, a simple maximum-value search is enough to calculate the period of
the pulses, and thus the pitch.

Figure 3: Prediction error of the original
signal for one block. Horizontal axis is
the discrete signal number on the block
and the vertical axis is the amplitude.

Then it was time to generate the
excitation signal. As described, it will
be basically a train of pulses with
a period equal to the inverse of the
pitch calculated. A typical block of
the excitation signal can be seen in
figure 4. However, the height of the
pulses (the amplitude of them) is a
value that has to be estimated as well.
This value will have an impact on the
energy of the excitation signal, and
thus will have an impact in the en-
ergy of the synthesize signal. In order
to generate a speech signal with the
same energy as the speech recorded,
the value that comes directly when
using Levinson-Durbin algorithm was
used for the pulse generation.

Last stage of the excitation gener-
ation was the generation of some form of noise. As described in the first section
of this theoretical analysis, the excitation signal is not only composed by a train
of pulses, but also by some form on noise, representing fricative noise. A speech
signal synthesized without this kind of noise will sound too robotic and artifi-
cial. In this project, some Gaussian distributed noise was generated, and later
on added it to the pulse train to model this behaviour [2].

2.1.5 Speech Synthesis (Output signal Generation)

Once the excitation signal has been generated, it was time to include all the
components of the formants that have been estimated with the linear prediction
coding algorithm. As has been explained, all that information is stored in a form
of a FIR filter, that basically predicts the next sample of a signal. However,
it is neccesary to perform the inverse operation: for a given excitation signal,
generate the speech signal is desired. In order to perform that, the excitation
signal is going to be filtered with the inverse filter that comes out from the
Levinson-Durbin algorithm. This means converting the FIR filter into an IIR
filter, and then directly filtering the pulse train with noise with it in order to
generate the final speech signal.

6

2.2 DSP Implementation

Figure 4: Synthesised error for one
block of normal speech. Horizontal axis
is the discrete signal number on the
block and the vertical axis is the am-
plitude.

Since the DSP runs with limitations
not found in a regular computer a lot
of time was spend trying to find out
how to program the DSP and what
methods available for it. The main
difference, apart from using different
languages, was that the DSP didn’t
have access to a pre-implemented ver-
sion of the Levinson-Durbin algo-
rithm.

The Implementation of the speech
synthesize on the DSP was done with
the help of a program called Visu-
alDSP++. To avoid having to turn
hardware on and off all the time a
simulation for the DSP was set up
in VisualDSP++ where we had the
additional possibilities of printing out
optional data in the terminal for de-
bugging. Given that the exact same
method was to be implemented on the DSP as in Matlab made the transition
from Matlab code to C code quite easy. There were however a few differences
apart from the non-existing Levinson-Durbin method that made the implemen-
tation lite less of a direct code conversion. The largest of these was that there
was no pre implemented version of an IIR-filter that suited the needs of the
project. This however was a relatively quick thing to implement resulting on
only a minor delay of the schedule. The C code for the IIR-filter used in the
finished program can be seen in appendix B.

Research on the Levinson-Durbin algorithm showed that it solves a system
of equations called the Yule-Walker AR equations. This is basically a recursive
matrix equation of a toeplitz matrix to find the next step in a prediction filter[1].
A block schematic can be of a prediction filter returned by the Levinson-Durbin
method can bee seen in figur 5.

Figure 5: The 1-step forward prediction filter which is returned implemented
using the Levinson-Durbin algorithm. a represents the linear predictor coeffi-
cients.

The implementation on the DSP uses block of 320 signals at a time which are
aligned as a vector. This decreased the problem of solving a recursive equation
system of matrices into solving it only for vectors. This meant little differ-

7

ence in the time it took to implement but requires less calculation and thus
less processing time on the DSP. The pseudo code for the projects take on the
Levinson-Durbin algorithm can be seen below, with R representing the autocor-
relation coefficients and A representing the Levinson coefficients returned from
the algorithm. For a full implementation of the algorithm see appendix B.

� Initialize predicted error as E = R[0].

� For i from 0 to 15

� initialize temp[0] = R[i + 1].

� initialize sum = R[i + 1].

� calculate sum = 1
E ·

i∑
j=1

A[j] + R[i− j + 1].

� calculate temp[j] = A[j] − sum
E ·A[i− j + 1].

� initialize temp[i + 1] = sum
E

� update E = E · (1 − (sum
E)2).

� update A = temp.

3 Problems

3.1 Problems in Matlab

Fortunately, Matlab implementation was simple compared to a direct DSP im-
plementation. The first problem was related to the used function for the LPC
algorithm. Instead of using directly the Levinson Durvin algorithm, with returns
the coefficients of the whole system (which is composed by the LPC filter plus
the subtraction), the LPC function was used, which just returns the LPC filter.
Thus, it was neccesary to manually perform the prediction filtering and subtrac-
tion from the recorded signal. After having some problems with this approach,
and following the teacher’s instructions, Levinson as the Matlab function was
used.

The second problem encountered was during the excitation generation. At
first, a simple approach was implemented that set, for each block, all the po-
sitions of the pulses starting from the sample ”one”. This caused a lot of dis-
tortion, due to the fact that between blocks there was no consistency, and thus
it was common to have two pulses (the last one of the block k and the first
one of the block k+1) too close to each other, and then generating some high
frequency distortion terms. It was easily solved by taking into account the po-
sition of the last pulse on the generation of the pulse train of the next block,
and then including a certain offset to avoid this problem.

The last problem encountered was a remaining beeping and distortion due to
the rapid and abrupt change in the frequency and shape of the excitation signal
between blocks. To address this problem, the way the buffering was taking place
was changed. Instead of taking non-overlapping blocks, which produced a lot of
distortion, overlapping blocks (which is easily achieved by the Matlab’s buffer
function) were taken. After that, when combining all the results from each
block, Hamming windowing was used. However, the result was not as good as
expected, so it has been finally removed it as it introduces an important amount
of complexity for a not really big improvement on the sound’s quality.

8

3.2 DSP problems

Most of the limitations on the DSP turned out not to be a problem during the
project. However an important part when debugging and comparing the step
by step results with the ones achieved in Matlab was that the DSP works with
32 − bit sized variables whereas Matlab works with 64 − bit sized. This in turn
resulted in minor differences in the values, something that in it self is of little
importance but can be confusing when searching for a small actual error that
results in a defective implementation in the end.

As for the Levinson-Durbin algorithm, which was the main part to imple-
ment on the DSP, this took quite a lot of time to implement. The most difficult
part of the algorithm was to understand what was needed from it. Several im-
plementations were tried until the theory of the algorithm was fully understood
and an reduced working implementation was made.

The second largest problem was the IIR-filter. There where three alterna-
tives for pre implemented versions of such a filter for the DSP. All of these
required input that was not available or simply gave a result different from the
what was needed. Full understanding of these functions was never achieved but
instead an autoregressive filter was implemented to suit the need of the project.
The full implementation of the filter can be seen in appendix B.

4 Results

Then end result of the project is two output alternatives on the DSP. Both
alternatives results in a relatively clear speech signal to the output.

First one produces an output signal constructed from filtering the synthe-
sized error signal back through a autoregressive filter. This produces a signal
where it is no problem to hear what is being said when talking into a micro-
phone. There are however smaller breaks in between the actual sounds leading
to a sound that that can be compared to a monotonic stuttering or a more
robotic voice.

The second alternative was created to counter the problem with the first one.
With the introduction of additive white Gaussian Noise that was added to the
synthesized error signal the resulting signal became much more fluent. There
are however problems with the addition of noise. The signal get noisy and it
gets harder to clearly hear what is being said when talking into a microphone.
That being said, it produces a signal that is less monotonic and where the breaks
in between the signals are evened out resulting in a sound that is much more
comfortable to listen to in the long run.

5 Conclusions

Even though the project seemed relatively easy at the start there has been at
least one problem with every step in the process. Not only from working with
an unknown environment such as the DSP but even in the beginning when
working on the proof of concept using the familiar Matlab language there has
been frequent problems in the process. This has of course resulted in that the
Matlab implementation took a lot longer that initially expected. Instead of the
two weeks, which was the planed time, Matlab was used right up until the last

9

week of implementations. This did result in being able to spend less time with
the DSP implementation and therefor only resulting in two quite similar speech
synthesis.

Although the resulting outputs are a form of speech synthesis it is not what
was expected in the beginning of the project. The sound could have been clearer
and there could have been ”funnier” alternatives to the ones in the result. This
would of course require more time to work with the DSP.

10

References

[1] http://www.emptyloop.com/technotes/a%20tutorial%20on%20linear%20prediction%20and%20levinson-
durbin.pdf. Retrieved 2015-01-25

[2] http://en.wikipedia.org/wiki/Box%E2%80%93Muller transform Retrieved
2015-02-05

[3] http://www.ece.ucsb.edu/Faculty/Rabiner/ece259/digital%20speech%20processing%20course/lectures new/Lecture%2013 winter 2012 6tp.pdf
Retrieved 2015-02-20

11

A Matlab code

A.1 SpeechSynth.m

function SpeechSynth

[x2, Fs] = audioread (’Brienne.wav’);

x2 = decimate(x2, 6);

[r c] = size(x2);

x = x2(1:c);

Fs = Fs/6;

xb = buffer (x , 320);

[M , N] = size (xb);

yb = zeros (M , N);

output=[];

Zi=zeros(1, 15);

paddO = 1;

for n = 1: N

[temp, Zf, paddOf]=processLev (xb (: , n), Fs, Zi, paddO);

Zi=Zf;

paddO=paddOf;

output=[output; temp];

end

y = yb (:);

sound(output,Fs);

end

A.2 processLev.m

function [R, Zf, paddO] = processLev(fx, Fs, Zi, paddI)

close all;

[r c] = size(fx);

Fmin = 80; %minimum frequency we are expecting as voice

maxLag = ceil((1/Fmin)*Fs); %Maximum Lag expected

maxLag = 200;

length = 15; %Length of the Levinson Filter we want to achieve

autoXbil = xcorr(fx,fx,length); %Autocorrelation for Levinson

Calculation

autoX = autoXbil(length+1:end); %Just the second half is important

[a predErr]= levinson(autoX); %Calculation of the filter

[e, Z] = filter(a,1,fx, Zi); %Extraction of the error signal

Zi=Z;

acor = xcorr(e,e,maxLag); %Autocorrelation for pitch detection

acor = acor(maxLag+20:maxLag+75); %For vector Matching

peak = find(acor == max(acor)) + 1; %Find the peak. +1 for consistency

peak = round((peak+20));

Fspeech = 1/(1/Fs * peak); %With Lag, calculate

errorSynt = zeros(r,1);

12

if(Fspeech > 3000),

paddO = 1;

else

errorSynt(paddI:peak:end) = predErr; %Synthesised error with

energy conservation

vector1 = find(errorSynt == predErr);

last = vector1(end);

paddO = peak-(260 - last) + 1;

end;

additiveNoise = randn(r, 1); %Gaussian Noise Generation

errorSyntNoise = errorSynt*(24/25) + additiveNoise*predErr*(1/25);

[speechSyntNoise, Z] = filter(1,a,errorSyntNoise, Zi); %Generate

speech signal with noise (less robotic)

Zf=Z;

R=speechSyntNoise;

end

13

B C code

B.1 autoRegressiveFilter.c

float *autoRegressiveFilter (float dm out[], float dm in[], float dm

coeff[], int length, int size, float dm prev[]) {

int n, i;

for(n=0;n<length;n++){

out[n]=in[n];

for(i=1;i<=n;i++) {

out[n]=out[n]-(coeff[i]*out[n-i]);

}

for(i=n+1; i<length;i++) {

out[n]=out[n]-(coeff[i]*prev[length-i+n]);

}

}

for(n=length;n<size;n++){

out[n]=in[n];

for(i=1;i<length;i++) {

out[n]=out[n]-(coeff[i]*out[n-i]);

}

}

}

B.2 ETIN80.c

#include <processor_include.h>

#include <sysreg.h>

#include <signal.h>

#include <string.h>

#include <filters.h>

#include <stdio.h>

#include <stdlib.h>

#include <stats.h>

#include <math.h>

#include "framework.h"

static float X[DSP_BLOCK_SIZE]; // temporary input signal

static float Y[DSP_BLOCK_SIZE]; // temporary output signal

static int program, maxLag=201, length=15, paddO, paddI, maxY, maxout;

static float Zi[15];

void process(int sig){

int n, i;

srand(time(NULL));

14

sample_t *audioin = dsp_get_audio();

sample_t *audioout = dsp_get_audio();

for(n=0; n<DSP_BLOCK_SIZE; ++n) {

X[n] = audioin[n].left;

}

float R[length+1];

autocorrf(R, X, DSP_BLOCK_SIZE, length+1);

for(i=0;i<sizeof(R);i++){

R[i]=DSP_BLOCK_SIZE*R[i];

}

float A[length+1], Ep;

for(i=0;i<sizeof(A);i++){

A[i]=0;

}

levinsonDurbin(A, R, length, &Ep);

float Ar[length+1];

for(i=0;i<sizeof(A);i++){

Ar[i]=A[length-i];

}

float E[DSP_BLOCK_SIZE], state[length+2];

for(i=0;i<sizeof(state);i++){

state[i]=0;

}

fir_vec(X, E, Ar, state, DSP_BLOCK_SIZE, length+1);

float acor[maxLag];

autocorrf(acor, E, DSP_BLOCK_SIZE, maxLag);

for(i=0;i<sizeof(acor);i++){

acor[i]=DSP_BLOCK_SIZE*acor[i];

}

int peak=0;

float max=0.0, temp=0.0;

for(i=19;i<75;i++){

temp=acor[i];

if(temp>max){

max=temp;

peak=i;

}

}

peak=peak+2;

float Fspeech=((float)DSP_SAMPLE_RATE/((float)peak+1)),

errorSynth[sizeof(E)];

int last;

for(i=0;i<sizeof(errorSynth);i++){

15

errorSynth[i]=0;

}

if(Fspeech>3000){

paddO=0;

}else{

for(i=paddI;i<sizeof(errorSynth);i=i+peak+1){

errorSynth[i]=Ep;

last=i;

}

paddO=peak-(260-last)+2;

}

paddI=paddO;

float Y[sizeof(X)];

if(program==1) {

autoRegressiveFilter(Y, errorSynth, A, length+1, sizeof(X), Zi);

} else if(program==2) {

float result;

for(i=0;i<sizeof(errorSynth);i++){

GWN(&result);

errorSynth[i]=(errorSynth[i]*0.90)+(result*Ep*0.10);

}

autoRegressiveFilter(Y, errorSynth, A, length+1, sizeof(X), Zi);

} else if(program==3){

autoRegressiveFilter(Y, errorSynth, A, length+1, sizeof(X), Zi);

} else {

memcpy(Y, X, sizeof(X));

}

// Copy output buffer to left and right audio channels.

for(n=0; n<DSP_BLOCK_SIZE; ++n) {

audioout[n].left = Y[n];

audioout[n].right = Y[n];

}

}

static void keyboard(int sig){

unsigned int keys = dsp_get_keys();

if(keys & 1) {

program = 1;

} else if(keys & 2) {

program = 2;

} else if(keys & 3) {

program = 3;

} else if(keys & 4) {

program = 4;

}

}

static void timer(int sig){

}

16

void main(){

paddI=0;

paddO=0;

maxY=0;

maxout=0;

dsp_init();

interrupt(SIG_SP1, process);

interrupt(SIG_USR0, keyboard);

interrupt(SIG_TMZ, timer);

timer_set(9830400, 9830400);

timer_on();

dsp_start();

for(;;) {

idle();

}

}

B.3 GWN.c

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

static float PI=3.1415926536;

float *GWN (float *result) {

float temp1=0, temp2=0, randMax=0.3, random;

int p=1;

while(p>0){

random=rand()%1600000;

temp2=(random/randMax);

if(temp2==0){

p=1;

} else {

p=-1;

}

}

random=rand()%1600000;

temp1=cosf(2.0*PI*random/randMax);

*result=sqrtf(2.0*logf(temp2))*temp1;

}

B.4 levinsonDurbin.c

17

float *levinsonDurbin (float dm out[], float dm in[], int length, float

*Ep) {

int i, j;

float temp[length+1], E, sum, k, A[length+1];

E=in[0];

for(i=0;i<=length;i++){

temp[i]=0;

A[i]=0;

}

for(i=0;i<length;i++){

for(j=1;j<i+1;j++){

temp[j]=0;

}

temp[0]=1;

sum=in[i+1];

for(j=1;j<=i;j++){

sum=sum+(A[j]*in[i-j+1]);

}

k=-sum/E;

for(j=1;j<=i;j++){

temp[j]=A[j]+(k*A[i-j+1]);

}

temp[i+1]=k;

E=E*(1-(k*k));

for(j=0;j<=length;j++){

A[j]=temp[j];

}

}

for(i=0;i<=length;i++){

out[i]=A[i];

}

*Ep=E;

}

18

