Speech synthesizer

W. Tidelund S. Andersson R. Andersson
March 11, 2015

1 Introduction

A real time speech synthesizer is created by modifying a recorded signal on
a DSP by using a prediction filter. The filter coefficients are calculated by
using the Levinson-Durbin algorithm on an autocorrelated recorded signal. The
algorithm then uses autocorrelation to generate a pulse train which is filtered
through an FIR-filter with the prediction coefficients. This signal is then sent
through an ITR-filter with the same coefficients as the FIR-filter. If the frequency
of a pulse train is modified, so is the reconstructed signal. The DSP used is
ADSP-21262 and it is programmed in C by using Visual DSP++ 5.0 with a
preconfigured framework.

2 Implementation

2.1 Theory

The following part will briefly describe the application and each part of it will
be described in more detail later. The method that was used to solve this task
is called linear prediction [1], and a block diagram of the predictor can be seen
in figure 1. Where x is the sampled speech signal, u is the one sample delayed
speech signal, d is the desired signal, y is the predicted signal and e is the pre-
diction error.

Prediction e
filter

Delay —

Figure 1: Block diagram of the linear predictor

An analytic filter was used to predict the n-th sample with the information
acquired from the n-1 previous samples. This was done using the Levinson-
Durbin algorithm, equation 4, which calculates the predictor filter taps. This
filter can only predict stationary signals and since speech is stationary for about
20ms the signal was sampled in blocks of 20ms, this is represented by 320 samples
with a sampling frequency of 16kHz.

Furthermore only the formants in the speech generates a stationary signal,
the non-formants behaves non-stationary and transiently. This means that the
prediction error mainly will contain the unpredictable non-formants and noise,
also if this error signal is sent through the inverse-filter one will get the original
signal back.

By manipulating the error signal and construct a pulse train out of it which
is then sent through the inverse-filter one will be able to modify the original
voice signal. In this project, one version of the pulse train was created from the
error signal using Dirac pulses to represent the new modified voice signal. The
error signal was examined and if it showed any sign of periodicity the pulse train
would be implemented with pulses of that periodic frequency. The frequency of
these pulse trains can then be modified to give the reconstructed signal different
pitches. If no sign of periodicity was shown, noise was added instead of pulses.
Another great property of the recreated signal is that it contains less data than
the original signal, which is good if it is to be transmitted over a limited channel.

The following equations were used to implement the linear predictor and
reconstruction of the signal:

M
y(n) =Y hk)z(n —k) (1)
k=0

Equation 1 describes the discrete filtering with an FIR-filter, where h are the
filter coefficients of order M-1 acquired from Levinson-Durbin, x the input signal
and y the output signal.

M
y(n) = 2(n) — > axy(n — k) (2)
k=1

Equation 2 shows the discrete filtering with an IIR-filter, where aj are the filter
coefficients of order M acquired from Levinson-Durbin, x the input signal and
y the output signal.

r(n) =Y x(n)e(n - k) (3)
k

In equation 3 the autocorrelation r of the signal x is presented.

r(0) r(1) r(M—1) 1 Py
r(1) r(0) r(M —2) a; 0

: : . S N (%)
r(M—-1) r(M—-2) - r(0) an 0

Equation 4 shows the forward linear prediction problem that was solved using
[1] the Levinson-Durbin algorithm. Where r are the autocorrelation, as the
resulting filter coefficients, Py; the forward prediction-error power and M the
filter order.

2.2 DSP - Implementation

An offline version of the program was first created in MATLAB and tested
to see if the method would work. This version partially used functions already
implemented in MATLAB and these functions therefore needed to be translated
into C-code in order to be implemented on the DSP.

A flowchart of the code implemented on the DSP can be seen in figure 2 which
represents the whole synthesizer. To begin with, a sampled block of 320 samples
is autocorrelated using equation 3. Where half of the autocorrelation vector,
with the biggest value at index 0, is passed into the Levinson-Durbin algorithm.
This block then solves the prediction problem in equation 4 and returns the
optimum filter vector as well as the prediction-error power coefficient. The
filterorder was chosen to be 15 which gives 16 coefficients. Moving on to the
next block, the error signal was then obtained by filtering the original speech
signal through an FIR-filter, equation 1, which consists of the coefficients from
the Levinson-Durbin algorithm.

To decide whether the pulse train should consist of noise or pulses the power
coefficient from the Levinson-Durbin was examined. If it was sufficiently large,
meaning that the signal mostly consists of formants, pulses should be made.
The frequency of these pulses were chosen by looking at the maximum correla-
tion, in the interval of typical human speech (80-350Hz), of the autocorrelated
error signal. The pulse train was then sent through an IIR-filter which is the
inverse filter of the FIR-filter. By doing this the original signal was recreated
and modified. To pitch the reconstructed signal, the frequency of the pulse train
was either made higher or lower than the frequency found in the autocorrelation
of the error. Some pseudo code is found below figure 2 and the source to these
methods are attached in the appendix.

Sampled Reconstructed

block—>Auto Correlationt— L-:B:insonf > FIR-Filter Pulse train IIR-Filter |—> signal
urbin

Figure 2: Block diagram of the DSP implementation

/* Input data */
X - A recorded block of 320 samples

/* Initializationx*/

xc = autoCorr(x);

levDurb = levinsonDurbin(xc); // Calculates the coefficients

xFilt = FIRfilt(x, levDurb); // Filters x with the coefficients

pulse = pulse(xc); // Creates and modifies the pulse train
newSignal = IIRfilt(pulse, xFilt, levDurb); // Reconstructs the signal

Pseudo code 1: Code of the synthesizer using the same model as figure 2

3 Problems

The most persistent problem faced was how to detect a fundamental frequency
in the error signal, which we could then use to create the pulse train needed to
synthesize the speech. A couple of different methods were tested to combat this
issue and with them entailed several further problems.

The approach finally agreed upon was the method detailed in the implemen-
tations section, using the energy given by the Levinson-Durbin algorithm as an
indicator of whether the current block contains a formant or not. The problem
with using this method is that the energy should be lower for the formants,
since the filter resulting from the Levinson-Durbin algorithm should remove
any periodic components of the speech signal (i.e. the formants). However,
the energy is also highly dependent on the volume of the recorded voice. This
coupled with the fact that formants typically have a higher vocal output than
the non-formants, means that a static energy level above which the speech is
considered to contain formants could not be consistently set. The subsequent
problem consisted of determining the main frequency of the blocks which con-
tained formants. It was decided that the autocorrelation of the error signal was
to be used instead of slightly more complex solutions involving the fast Fourier
transform. In order for this to work, some time lags of the autocorrelation
function had to be rejected, namely those which lie outside the fundamental
frequencies of human speech. For a sampling frequency of 16kHz, the lower and
upper limits are 45 and 200 samples respectively. The autocorrelation sequence
of the error signal of a block containing a formant can be seen in figure 3, with
the sought fundamental peak within the human range and a secondary peak
outside the human range both marked.

When the program was fully implemented there was a significant flaw in
the finished synthesizer; the reconstructed signal did not sound as desired. In
addition to this the quality of the reconstructed signal varied when the pitch
was changed. Even the best result was not good enough and therefore a decision
to use another method was made. This method was found during testing and
uses white noise instead of a pulse train to reconstruct the signal and gave a
much better result. It was now possible to distinguish most of the reconstructed
words. Even when this method is used it still did not sound as desired, it is
however much more acceptable than previous versions. If the implementation
would have been correct it should not be possible to distinguish words from each
other when using white noise. A downside to this method is that it is impossible
to change the pitch of the recreated signal. Since the pulse train method should
perform adequately, it was left in as an option in the DSP.

w1 Autacarrelation of the error signal
B T T T T T T

106
Y 000527

m
Iy ¥ 219 .
Y. 0.003376

Carrelation

1 1 1 1 1
1] a0 100 180 200 250 300 350
Time lag

Figure 3: The autocorrelation sequence of the error signal of a block containing
a formant

4 Results

A snippet of a speech signal can be seen in figure 4 and the different steps in
the processing are presented in the subsequent figures 5, 6 and 7. All of the
figures are results from the offline testing in MATLAB. The error signal in figure
5 is a result of filtering the input with the filter given by the Levinson-Durbin
algorithm. Further, figure 6 shows that we were quite successful in finding the
main frequency of the error signal and in representing this as a pulse train.
Lastly, figure 7 shows the reconstructed signal which is the result of filtering
the pulse train through the inverse of the filter given by the Levinson-Durbin
algorithm.

Original speech signal Error signal

Amplitude

Amplitude

4200 4400 4600 4800 5000 5200 5400 5600 5800 6000 4200 4400 4600 4800 5000 5200 5400 5600 5800 6000
Sample Sample

Figure 4: Part of the original speech Figure 5: Part of the error signal
signal given by filtering

Pulse signal Reconstructed signal

01 <
a1 -
o
n]
e Ll]

01 L L L L L L L L 05 L L L L L L L L
4200 4400 4600 4800 5000 5200 5400 5600 6800 BOOD 200 4400 4600 4800 5000 5200 5400 5600 6800 BOOO

ample Sample

Amplitude
Amplitude

Figure 6: Part of the pulse train sig- Figure 7: Part of the reconstructed
nal signal

5 Conclusions

Although no one involved was particularly proficient in C-programming, the
migration of the project from MATLAB to C went fairly smoothly in terms of
getting the code to run. Getting the DSP implementation to function correctly,
however, was a bit more difficult as it proved.

As can be seen in the figures 4, 5, 6 and 7 in the results section above,
the recreated signal from MATLAB looks rather good. In fact, the program
written in MATLAB works as intended. Since the C-program does not work
exactly as advertised, there seems to be some kind of mismatch between the
two. This led to mainly white noise being used to excite the IIR-filter instead
of the pulse train. One possible reason for the unsatisfactory performance of
the pulse train could be because of the difficulty in deciding a power threshold
for the algorithm (see implementation section). This can easily be found by
studying the signal offline in MATLAB, but is more arbitrarily decided in the
online implementation because of all of the factors that weigh in. Of course,
this discrepancy could also be an indication of the present inexperience of the

C language among the members. Despite the flaws in the implementation, the
secondary goal of creating a sound effect on a speech signal has been fulfilled.
Although the solution was not the most desired solution, it was made because
of the time constraint of the course. Had more time been allotted, errors with
the DSP implementation would likely surface.

References

[1] S. Haykin, “Adaptive Filter Theory fifth edition”, Pearson Education 2014

