
ELECTRICAL AND INFORMATION TECHNOLOGY, FACULTY OF ENGINEERING | LUND UNIVERSITY

Algorithms in Signal Processors - Project Course
Automatic Speech Recognition

Hanna Runer ael10hru@student.lu.se
Filip Gummesson dat11fgu@student.lu.se
Viktor Stevander elt11vst@student.lu.se

March 10, 2015

Supervisor: Mikael Swartling, mikael.swartling@eit.lth.se

ael10hru@student.lu.se
dat11fgu@student.lu.se
elt11vst@student.lu.se
mikael.swartling@eit.lth.se

CONTENTS

1 Introduction 2

2 Theory 2
2.1 Speech . 2
2.2 Levinson-Durbin and Schur . 2
2.3 Identification and Validation . 2

3 Implementation 3
3.1 Level Detection . 4
3.2 Recording . 4
3.3 Filtering . 4
3.4 Cutting . 5
3.5 Calculation of coefficients . 5
3.6 Dividing into subsets . 5
3.7 Database . 6
3.8 Matching . 7

4 MATLAB 8

5 ADSP - 21262 8
5.1 Listening . 10
5.2 Collecting . 10
5.3 Processing . 10

6 Results 10
6.1 MATLAB . 10
6.2 ADSP-21262 . 12

7 Conclusions och Discussion 13

1

1 INTRODUCTION

In this report the project in "Algorithms in Signal Processors - Project Course" - ETIN80[1] is
presented. The project considers an automatic speech recognition(ASR)problem which will
be implemented on a DSP. The goals are to be able to detect if speech is present, decide if the
word is in the library and what word was being said.

The problem solving approach was to first test the functionality of the algorithms and build
high level libraries in MATLAB. Then, when it was clear that the algorithms were working as
expected, they were implemented on the DSP commenced. The digital signal processor used
is the 32-Bit Floating-Point SHARC DSP, ADSP-21262. The program VisualDSP++ was used to
program the DSP.

2 THEORY

2.1 SPEECH

Speech is created when air flows through the vocal tract which compresses the air and sound
waves are formed [2]. All human speech can be categorized into two subcategories. These are
voiced- and unvoiced speech.

A voiced speech originates from vocals which are folded in the larynx, and an unvoiced
speech comes mostly from consonants. If these two speeches would be plotted, the voiced
speech would be very periodic while the unvoiced speech would look noisy. This makes it
more valuable to use statistics from voiced speech than unvoiced.

Speech also has the inconvenient property of being non-stationary, but it is however true
that it is stationary for about 20 ms. When having this insight, the prediction of speech is easier
to realize.

2.2 LEVINSON-DURBIN AND SCHUR

Voiced speech is measured by calculating the reflection coefficients, using either Schur- or
Levinson-Durbin algorithm.

The Levinson-Durbin algorithm is a recursive algorithm that calculates a lattice-filter in
order to find both the IIR-filter coefficients and the reflection coefficients.

The Schur algorithm is calculating the coefficients based on auto correlation and is by
that avoiding computation of inner products. It is hence an effective algorithm to use if only
the reflection coefficients are needed. Since it instead requires matrix computation to solve
the equation it does not make up for an easy implementation in C-code, but is efficient in
MATLAB.

2.3 IDENTIFICATION AND VALIDATION

When talking about speech recognition, one has to make difference between identification
and validation. Identification is made when software can determine which word most likely

2

was spoken from an predefined library.

3 IMPLEMENTATION

Figure 3.1: This speech recognition algorithm is implemented as a state machine.

The speech recognition algorithm consists of three states, see figure 3.1. The first state, Listen-
ing, samples the the input source and runs a speech detecting algorithm. If there is a speech,
the state changes to the state Collecting. In this state the algorithm collects samples in blocks
and store the in internal memory1 and the state changes. Next the Processing state becomes
active. This state performs the signal processing and matching of a signal. Identification and
validation is also a part of the processing state.

In the different states there is a total of seven parts - level detection, recording, filtering,
cutting, calculation of coefficients, dividing into subsets and matching. The implementation
method of these parts differ from the implementation in MATLAB and on the DSP, but the
principle is the same.

The first five parts handle blocks of 160 consecutive sample. After the reflection coefficients
are calculated and put into a feature vector, the signal is represented by a matrix of feature
vectors.

A feature vector is retrieved through the following steps. IIR - filter removes some noise,
pre-emphasis filter boosts higher frequencies and Hamming window removes the effect of
transients. See figure 3.2.

1The DSP is not able to store a complete signal, instead the signals features are exracted.

3

Figure 3.2: Transformation steps of a signal block.

3.1 LEVEL DETECTION

To determine if speech is present and recording should commence a Voice Activity Detection
(VAD) algorithm. The algorithm is based on a dynamic noise detection which adapts in
accordance to its surroundings. That is, in a constantly noisy environment the algorithm will
raise the threshold on which speech can be detected, thus minimizing the risk of an insertion
2. If the VAD- algorithm is activated, a sound signal will be recorded.

3.2 RECORDING

When speech is detected recording of the following 1.5 seconds follows. A sample rate of 8 kHz
was chosen to keep amount of data down and to prevent disturbance from high frequency
components. Speech has usually a maximum frequency of around 4 kHz and because high
frequency consonants, such as k, t, s, f, does not give any information to the reflection co-
efficients, there is no need to sample at a higher rate. The recording outputs a block of 160
consecutive samples. Next, the recorded block of samples enters the first step seen in figure
3.2.

3.3 FILTERING

Two types of filters are applied to the recorded signal, a high-pass and a notch filter, in that
specific order. Low frequencies has normally a higher effect then the higher ones, which is
why the recorded signal is filtered with a high-pass filter. The high-pass filter removes low
frequency signals such as vibrations from table and floor.

Following after is the notch filter, the pre-emphasis filter, which removes low frequency dis-
turbances and boosts higher frequencies. The high-pass filter is a FIR-filter and pre-emphasis
an IIR-filter.
See figure 3.3 below for the characteristics of the two filters.

2insertion - when a recognizer hypothesize a word that was not spoken[2]

4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

80

100

Normalized Frequency (×π rad/sample)

P
h
a
s
e
 (

d
e
g
re

e
s
)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−25

−20

−15

−10

−5

0

5

M
a
g
n
it
u
d
e
 (

d
B

)

High−pass filter

(a) High-pass filter characteristics

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

30

Normalized Frequency (×π rad/sample)

P
h
a
s
e
 (

d
e
g
re

e
s
)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−8

−6

−4

−2

0

2

4

M
a
g
n
it
u
d
e
 (

d
B

)

Pre−emphasis filter

(b) Pre-emphasis filter characteristics

Figure 3.3: The filters applied to the signal

3.4 CUTTING

The recorded signal is often longer than it has to be, thus the signal is cut. As this is done,
recordings will start and end with vocal speech, and no unnecessary samples, containing
noise, will be saved. See figure 6.2 for an example of a signal being processed by the use of
filters and cutting of the signal.

3.5 CALCULATION OF COEFFICIENTS

As stated before, the Schur and Levinson-Durbin algorithm are used to calculate the reflection
coefficients. The two algorithms are applied to extract feature coefficients from a stationary
signal. It is in this part the choice of block size becomes apparent as speech is non-stationary
in general, but if considering only a block size representing around 20ms, the speech can be
considered stationary.

The two algorithms extracts the same feature vectors from a block, but in different ways.
Schur is more complex and uses matrix multiplications to obtain the coefficients while the
Levinson-Durbin is a recursive algorithm. The former is quick but hard to implement on
DSP. The latter extracts the feature vector as a by-product and that makes it slower, but the
Levinson-Durbin algorithm is much easier to implement i C code.

Schur and Levinson-Durbin algorithm is applied on each block to calculate the reflection
coefficients. Each set of reflection coefficients, calculated from one block of 160 samples, is
called a feature vector.

3.6 DIVIDING INTO SUBSETS

When every block of samples from the recording have been processed and a feature vector
from each block have been extracted, a matrix of K feature vectors have been produced. Then,

5

for both memory saving properties and robustness of the characteristics of the speech, the
feature vectors are divided into subsets by taking a mean value row wise along the feature
vectors. After this averaging, the set of M subsets is considered a database containing the
characteristics of the recorded spoken word. See figure 3.4[3].

Figure 3.4: Dividing the feature vectors into subsets

3.7 DATABASE

The database consists of two types of words, "Höger" and "Vänster". The two words have
several recordings stored, that is, there exist several versions of the two words. The number
of versions of each word increases the chance of finding a better match. For example for
two types of words, that have five versions each, there exists 10 database items to match the
recorded word against.

A method of testing the words in the library was to plot the Euclidean distance between
different versions of a word and a test signal with a different word. See figure 3.5 The point was
to note the diversity in the points and therefore find a few versions of the word which works
together and define a threshold for validation.

6

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
7

8

9

10

11

12

13

14

15

Figure 3.5: Plot of the sum of the error in Euclidean distance between different versions of the
same word (blue stars) and a test signal. The red plus sign is the mean error.

3.8 MATCHING

To match a recorded word against the database the Euclidean distance for between the
recorded subsets reflection coefficients and the database subsets reflection coefficients are
calculated and summarized. See figure 3.6. The recorded word is tested against every word
and every version of a word in the database. Two types of error are saved used in the matching
decision:

εmi n which is the smallest ε of all versions.
εtot which is the is the total error for all versions for a type of word.

For identification, the word which produced the smallest εtot is the recognized word.

But if wanting validation for a word much harsher constraints are needed. To decide on
a specific word both εmi n and εtot have to belong to the same type of word, for example
"Vänster", to give a decision that the recognized word is "Vänster". If the two errors do not
belong to the same type of word, the decision states that no match was found. For greater
accuracy a threshold was also added, that is, alongside the two error needing to belong to the
same type of word, the error must lie beneath the threshold to decide upon a certain word.

7

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
7

8

9

10

11

12

13

14

15

Figure 3.6: The Euclidean distance is the distance between the red and the blue dot in the
same vertical line, where each dot represents a reflection coefficient.

4 MATLAB

MATLAB was used to build high level libraries. These could be tested with prerecorded signals
in an offline manner. This made it easy to test our algorithms and change parameters the
obtain a desired behavior before starting to write C code for the DSP. MATLAB was also
used during the DSP implementation as tool for testing if the DSP implemented algorithms
produced the same output as MATLAB algorithms.

5 ADSP - 21262

On the DSP the program runs in a bit different order, due to the continuous data stream. The
program is build in three stages – listening, collecting and processing, as shown in Figure(5.1).
This is due to the online process which interrupts our process each time a new block of samples
is available.

As an extra feature, an buffer is implemented to be able to start the record in a few samples
before the VAD is activated. This to make sure no important information is dropped.

8

Figure 5.1: A flowchart over the process implemented on the DSP.

9

5.1 LISTENING

The AD-converter saves samples in a buffer and therefore produces blocks of 80 samples to be
handled, one a time. Each block is then going through the same procedure with filters and
pre-emphasis as above, before entering a level detection.

In the level detection, the energy of each block is compared to the energy of the previous
block. When enough blocks are changing enough energy if level detection is not recognizing
any speech, the block is placed in a buffer with a capacity of three blocks. The blocks on the
buffer will later be processed to make sure the whole signal is covered.

5.2 COLLECTING

When speech is detected the program is then entering stage two where it collects data. The
largest problem with the DSP is the limited amount of data that can be stored in the data
memory. The first step is therefore to calculate the reflection coefficient to reduce the number
of data to a tenth of the collected. The DSP collects a block, filters it, calculates the energy and
the reflection coefficients, that is, the feature vector. To calculate the reflection coefficients the
Levinson-Durbin algorithm was used. The energy of the block was also calculated and stored
to be used later to determine where to cut the signal.

This way of collecting data was looped for the amount of blocks corresponding to 1.5
seconds, before entering the third stage of process.

5.3 PROCESSING

The first step in the third stage is to take care of the blocks in the buffer, by calculating the
coefficients. The energy stored from the blocks in stage two is then used to cut from the end of
the recorded signal. The remaining feature vectors are then divided into subsets and matched
against the library in the same way as described in section 3.8.

6 RESULTS

6.1 MATLAB

The MATLAB implementation worked as it was supposed to. The FFT of a signal, spoken
by a man, as seen in Figure 6.1, shows that the signals frequency spectra is leveled by the
notch-filter and that the higher frequencies are boosted by the pre-emphasis.

10

Frequency (Hz)
0 500 1000 1500 2000 2500 3000 3500 4000

|Y
(f

)|

×10
-4

0

1

2

3

4

5

6

7

8
Single-Sided Amplitude Spectrum of Original Sound

Frequency (Hz)
0 500 1000 1500 2000 2500 3000 3500 4000

|Y
(f

)|

×10
-4

0

1

2

3

4

5

6
Single-Sided Amplitude Spectrum after Low- and High pass filtering

Frequency (Hz)
0 500 1000 1500 2000 2500 3000 3500 4000

|Y
(f

)|

×10
-4

0

0.5

1

1.5

2

2.5

3
Single-Sided Amplitude Spectrum after Pree-Emphasis

Frequency (Hz)
0 500 1000 1500 2000 2500 3000 3500 4000

|Y
(f

)|

×10
-3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Single-Sided Amplitude Spectrum after Cutting the Signal

Figure 6.1: One sided Fourier-transform of a male saying the word "Höger". The spectra is
leveled out and boosted. The only notable change after cutting the signal is that
the high level noise is reduced.

Figure 6.2 displays how the filtering and pre-emphasis affects the signal. This can, however,
be hard to see in the time domain and better shown in in the frequency domain (Figure 6.1).
What is interesting is the signal is cut to a length that makes sure only the speech is within the
region of interest (down right in Figure 6.2).

Samples
0 2000 4000 6000 8000 10000 12000

A
m

p
lit

u
d
e

-0.06

-0.04

-0.02

0

0.02

0.04

0.06
Original recording

Samples
0 2000 4000 6000 8000 10000 12000

A
m

p
lit

u
d
e

-0.04

-0.02

0

0.02

0.04

0.06

0.08
After high and low pass filtering

Samples
0 2000 4000 6000 8000 10000 12000

A
m

p
lit

u
d
e

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06
After pre-emphasis

Samples
0 500 1000 1500 2000 2500 3000 3500

A
m

p
lit

u
d
e

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06
After cutting the signal

Figure 6.2: Speech pattern in the time domain of a male saying the word "Höger". Note that
the cut-function (down-right) reduce the number of samples by 8600, from 12000
to 3400.

11

When tests was performed in MATLAB, like the one described in Figure 3.5, it showed that
the program could identify the right word in 100 % of the cases and validate a right answer in
around 80 %. These tests was performed using a different microphone and algorithm settings
than the used with the DSP in the end. These results was achieved early on in project, before
implementation on the DSP was done, and gave a hint that the algorithms should work.

6.2 ADSP-21262

Two different test were performed on the DSP. The first test considered the two words "Höger"
and "Vänster" being said 100 times each and counting the number of times the correct word
was successfully matched, see table 6.1 for results. The desired result is a low Word error
rate(WER).

The second test was to see how the DSP would interpret normal speech, without mentioning
the word "Höger" or "Vänster", the results from the second test is seen in table 6.2. Here the
number of occasions "Höger" and "Vänster" was detected is desired small and the number of
occasion no word in database was found, desired high.

Word "Höger" "Vänster"
Word error rate (%) 9 27

Table 6.1: Word error rate of the two words, each spoken 100 times

Recognized word "Höger" "Vänster" No word i database
Number of occasions 3 27 70

Table 6.2: Detection and matching speech without mentioning "Höger" or "Vänster", 100
occasions speech was detected

12

7 CONCLUSIONS OCH DISCUSSION

The implemented speech recognition software can identify two different words and validate if
it is one of the words in the database, or if the spoken word is not in the database.

The results in table 6.1 and 6.2 are quite satisfactory, considering the lack of finesse the
algorithms have. It is clear that the word "Vänster" is more tricky to extract features from since
it was both hard to recognize when the word was spoken, and that the word was mistakenly
recognized at a high number of occasions. The word "Höger", on the other hand, obtained far
better results in both tests. This indicates that a proper, or proper enough, feature extraction
was not achieved. This recognition system is rather primitive and there is a lot of ideas and
tricks that be implemented that will give a more robust ASR system.

The current implementation holds some restrictions:

• The same person who recorded the words in the database, is the person using the system
for best recognition

• The database contains several versions of the two word, but they are not too different in
pronunciation.

• The distance to the microphone is crucial in matching, that is, the algorithms do not
take the amplitude of the speech in consideration

• The words should to be chosen such that they differ from each other, to increase the
accuracy of the algorithms

Summing up, in this implementation, the speaker must speak at a steady volume and quite
similar to the recorded versions in the database to achieve high recognition rates.
These point are all matter of improving if continuing this project. There is already some ideas
and thoughts around improving, for example:

• Filtering of the reflection coefficients to increase robustness

• Testing different numbers of subsets and reflection coefficients that characterize the
signal

• Using the energy of the signal to scale and use as a score when comparing against a
threshold

• Adding different pronunciations of word, and with that, switch matching strategy. This
since, the matching algorithm also checks the sum of the error of all the version for one
type of word. Different pronunciations will most likely increase this summed error, but
decrease the smallest error.

• Trying to extract the features of a block of samples in an other way than with reflection
coefficients, for example, mel frequency cepstral coefficients[2](MFCC).

13

REFERENCES

[1] The course webpage: http://www.eit.lth.se/index.php?ciuid=821&coursepage=kursfakta&L=1

[2] Woelfel W., McDonough J., 2009 "Distant Speech Recognition", Wiley

[3] Picture from document provided by Mikael Swartling, teacher in the course [1]

14

http://www.eit.lth.se/index.php?ciuid=821&coursepage=kursfakta&L=1

	Introduction
	Theory
	Speech
	Levinson-Durbin and Schur
	Identification and Validation

	Implementation
	Level Detection
	Recording
	Filtering
	Cutting
	Calculation of coefficients
	Dividing into subsets
	Database
	Matching

	MATLAB
	ADSP - 21262
	Listening
	Collecting
	Processing

	Results
	MATLAB
	ADSP-21262

	Conclusions och Discussion

