
ETIN80 - Speech Recognition

Jens Nilsson

1 Introduction

Speech recognition is something that recognizes speech or words, this can
be used for various things example turning on a light with the use of your
voice. The aim of this project is to find an algorithm and implement it on
a DSP for exactly this use.

2 Theory

When making a speech recognition system a learning part and a recognition
part is needed. The learning part consists of a speech analyzer which cal-
culates the reflection coefficients. Then doing a vector quantization of these
reflection coefficients. “Training” of the system is done to learn specific
words, making a databank with these words. The recognition part consists
of the same analyzer and then comparing and matching these reflection co-
efficients to the vector quantization done in the learning part, see figure 4.
When matching the words with the databank a state machine is used.

2.1 Learning part

2.1.1 Speech analyzer

The speech analyzer consists of a pre-emphasizer, signal framing and vector
calculation see figure 1.

Figure 1: Speech Analyzer

Pre-emphasis: The purpose of the pre-emphasis is to remove negative
effects of noise, making the in signal x(n) less noisy. The filter is a first
order system:

1

Hpre(z) = β(1− γz−1) where |γ| < 1

Signalframing: The signal framing part divides the input signal s(n) into
frames. The size of the frame depends on how big L is set. L is calculated
according to: L = blocklength/fs. Where blocklength is the length of a
frame in milli seconds, fs is the sampling frequency of the input signal. In
other words L is the amount of samples you will have in each frame. D is how
much overlap each frame L has. w(n) is the window function to multiply
each frame with, where the window Hanning is used. This procedure is then
done for all frames of the signal s(n), creating a vector sk.

Vector calculation (calculating the reflection coefficients): For each
frame that is windowed an autocorrelation is done. Then the first P sam-
ples is chosen from the autocorrelation that will be used for calculating the
reflection coefficients. To calculate the reflection coefficients the Schur re-
cursion is used which gives the coefficients in a more efficient way than the
Levinson Durbin algorithm. After iterated over all frames a vector v with
k blocks will be made, this can be seen as a Pxk matrix, see figure 2.

Figure 2: Reflection coefficients divided into subset

2.1.2 Vector quantization (making the databank)

When making the databank a quantization of the vector v must be done
according to figure 2. How many blocks that will be in each subset are
chosen by M . When calculating the subsets each row with all columns in
that subset is summed and divided by the number of columns in that subset.
This is done for all rows and columns for each subset, for all subset, see figure
3.

2

Figure 3: Database vector with M blocks (M columns)

2.2 Recognition part

This part uses the same analysis stage as described above and a state ma-
chine to evaluate the input signal with the database created, see figure 4.

Figure 4: Recognition part

The state machine works as follow:
dk,s = |vk − ds|

dk,s+1 = |vk − ds+1|

Where the state machine compares the incoming vector vk with the database
vector ds where s is a block according to figure 3. The state of the state
machine denoted by s and whose is initialy set to s = 1, determines which
block in the database is currently being tracked. For each feature vector from
the analysis stage, it is decided whether the state machine should remain in
its current state or jump to the state s+ 1, see equation bellow:

s =

{
s dk,s ≤ dk,s+1

s+ 1 otherwise

The state machine is running until either the end of the signal is reached
or until the state machine enters the state s = M . The error between each
sequence is calculated as:

ek = ek−1 + min(dk,s, dk,s+1)

3

Where the initial error is e0 = 0. The final error is the result from the
state machine and if the error is small enough according to what threshold
is given it will be word that is in the databank.

3 Implementation

3.1 Matlab implementation

When initiating the implementation these constants where used:

Beta = 1
Gamma = 0.95
fs = 16000Hz
Blocklength = 20ms
L = blocklength/fs
D = L/2
Window function = hanning
P = 10
M = 8

When creating the databank and when recording the signal that would be
compared to the databank an interval of 1.5 seconds was made for recording
the speech. When implementing the theory in to Matlab, I first tried to do
the Schur recursion according to the pseudo code on page 245 in the book
“Statistical Digital Signal Processing and Modeling” written by Monson H.
Hayes. The problem I got when doing this was that the reflection coeffi-
cients were not stable, i.e some coefficients were bigger or smaller than 1
respectively -1. I later used Matlabs own function “schurrc” instead.

When implementing the database I needed to get the same amount of vectors
in each subset, this was done by taking the floor function of the number of
columns in the vector v divided by M . When doing this the last samples
gets discarded, but since usually the last samples contain background noise
this discarding was ok.

One problem with the state machine was that it often found matches pretty
early of the signal and then not searching through the whole vector vk

which led to bad results. To solve this problem another method in Matlab
was made to instead compare the database vectors to each other instead of
using the state machine, i.e norm(d− d′) where d is the databank and d′ is
the signal to compare. This worked better but was still not that stable and
the result could vary much.

Since I made a recording of 1.5 seconds a lot of background noise would
be before and after the word to be processed. To get rid of these noise two

4

methods was done in Matlab. When using these two methods before sending
the signal to the analysis section made a huge difference and finally some
decent results were made.

3.2 VisualDSP++ implementation

The pros with Matlab is that you can store the whole signal and then process
it. Since this isent possible in VisualDSP, an real-time method is used
instead, that is treating each frame directly instead of taking each frame
from an array of the full signal. The Matlab code was translated to C-code
and no changes was done in the code of the learning part and recognition
part (except using my own method which compared databanks instead of
the state machine), except that you process each frame instead of the whole
signal. The part that differed from Matlab is how to manage the input signal
in the correct way and setting a threshold and a time length for the input
signal.

4 Result

A databank of the word “Alfa” was made with three different recordings in
matlab, these where then hardcoded into the C-code for comparison of the
signal that should be compared. To get a small error i.e better result when
using the DSP I’ve noticed that you have to talk aggressive/loud yet clear.
Since the amplitude of the signal shoudn’t be a factor when calculating the
reflection coefficients, the only reason for this is that if you talk aggressive
you will drown out the backround noise. In figure 5 you can see the input
signal of the word “Alfa”. The signal is pretty loud but not clipping when
listening to it.

A second databank of the word “Freeze” was also made. In matlab this
worked good and a low error could be made and matlab could distinguish
between the word “Alfa” and “Freeze” and neglect other random words.
But when using the Freeze databank with the DSP it didnt work. I dont
know why but the error was to high when using the DSP. In figure 6 you can
see the input signal for “Freeze”, and my guesses are that either the word
“Freeze” contains to much noise like sounds or the input signal is to weak
compared to the input of “Alfa” and not drowning out background noise.

An attempt to use the word “Bravo” will be done to see if this databank
will work better with the DSP.

5

0 0.5 1 1.5 2 2.5

x 10
4

−1

−0.5

0

0.5

1
Raw Input Alfa

0 2000 4000 6000 8000 10000 12000 14000
−1

−0.5

0

0.5

1
Input w/o start and end noise

0 0.5 1 1.5 2 2.5

x 10
4

−1

−0.5

0

0.5

1

0 2000 4000 6000 8000 10000 12000 14000 16000
−1

−0.5

0

0.5

1

0 0.5 1 1.5 2 2.5

x 10
4

−1

−0.5

0

0.5

1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

−1

−0.5

0

0.5

1

Figure 5: Recorded input signal of the word “Alfa”

0 1 2 3

x 10
4

−1

0

1
Raw Input Freeze

0 5000 10000 15000
−1

0

1
Input w/o start and end noise

0 1 2 3

x 10
4

−1

0

1

0 5000 10000 15000
−1

0

1

0 1 2 3

x 10
4

−1

0

1

0 5000 10000 15000
−1

0

1

Figure 6: Recorded input signal of the word “Freeze”

6

5 Conclusions

After doing this project I’ve learned that the cleaner input signal you have
the better result you will get. To make the result even better some form of
noise reduction would be appropriate to implement, but since I was alone
on this project there was too little time. The state machine method maybe
would have worked after I removed all noise from the beginning and end of
the input signal, but since the method with just comparing the databases to
each other worked good I stuck to that solution since it was less to translate
to C-code, time was a factor in this project when working alone.

6 References

Mikael Swartling, PhD. Department of EIT, Faculty of Engineering (LTH),
Lund University.

Monson H. Hayes: Statistical Digital Signal Processing and Modeling.

7

7 Matlab code

7.1 Record Input Signal

close all;
clear all;
%%
%%%%%RECORD A INPUT AND SAVE AS DOUBLE ARRAY%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Vid inspelning av ljudfil
r = audiorecorder(16000, 16, 1);
record(r); % speak into microphone...
pause(1.5)
stop(r);
p = play(r); % listen to complete recording
alfabank1= getaudiodata(r, ’double’); % get data as double array
%%%

7.2 Learning (Run method)

%
% THIS M-FILE DOES THE SIGNAL FRAMING, ANALYSIS STAGE, CREATES THE DATABASE
%
%

close all;
clear all;

%%
%Initiation of constants
gamma= 0.95; %Pre-emphasis
fs = 16000; %Samplingsfrequence
time = 1/fs;
blocklength = 20*10.ˆ(-3); % blocklength 20 ms
L = blocklength/time; % 320 block at 20 ms
D= L/2; %D= L/2; %overlap
win = ’hanning’; %window function
P=10; %prediction
M=8;

%%Creates database for alfa
load alfabank1;
%sound(alfabank1, fs)
figure
title_a = subplot(3,2,1);

8

plot(alfabank1);

alfabank1 = remove_startNoise(alfabank1);
alfabank1 = remove_endNoise(alfabank1);

title_b = subplot(3,2,2);
plot(alfabank1);

v = Analysis(alfabank1, L, D, win , gamma , P);
d_alfabank1 = Create_Database(v,M);
clear v;

title(title_a,’Raw Input Alfa’);
title(title_b,’Input w/o start and end noise’);
%%Creates database for alfa2
load alfabank2;
%sound(alfabank2, fs)
subplot(3,2,3);
plot(alfabank2);

alfabank2 = remove_startNoise(alfabank2);
alfabank2 = remove_endNoise(alfabank2);

subplot(3,2,4);
plot(alfabank2);

v = Analysis(alfabank2, L, D, win , gamma , P);
d_alfabank2 = Create_Database(v,M);
clear v;

%%Creates database for alfa3
load alfabank3;
%sound(alfabank3, fs)

subplot(3,2,5);
plot(alfabank3);

alfabank3 = remove_startNoise(alfabank3);
alfabank3 = remove_endNoise(alfabank3);

subplot(3,2,6);
plot(alfabank3);

v = Analysis(alfabank3, L, D, win , gamma , P);

9

d_alfabank3 = Create_Database(v,M);
clear v;

%%Creates database for freeze
load freezebank1;
%sound(freezebank1, fs)
figure
title_c = subplot(3,2,1);
plot(freezebank1);

freezebank1 = remove_startNoise(freezebank1);
freezebank1 = remove_endNoise(freezebank1);

title_d = subplot(3,2,2);
plot(freezebank1);

v = Analysis(freezebank1, L, D, win , gamma , P);
d_freezebank1 = Create_Database(v,M);
clear v;

title(title_c,’Raw Input Freeze’);
title(title_d,’Input w/o start and end noise’);
%%Creates database for freeze2
load freezebank2;
%sound(freezebank2, fs)
subplot(3,2,3);
plot(freezebank2);

freezebank2 = remove_startNoise(freezebank2);
freezebank2 = remove_endNoise(freezebank2);

subplot(3,2,4);
plot(freezebank2);

v = Analysis(freezebank2, L, D, win , gamma , P);
d_freezebank2 = Create_Database(v,M);
clear v;
%%Creates database for freeze3
load freezebank3;
%sound(freezebank3, fs)

subplot(3,2,5);
plot(freezebank3);

10

freezebank3 = remove_startNoise(freezebank3);
freezebank3 = remove_endNoise(freezebank3);

subplot(3,2,6);
plot(freezebank3);

v = Analysis(freezebank3, L, D, win , gamma , P);
d_freezebank3 = Create_Database(v,M);
clear v;

7.3 Recognition (Run method)

% This m-file does the recognition and compares the "SoundToCompare" with
% the databank and writes the result

close all;

a=1;
while(a==1)

%%%%%RECORD A SOUND%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%Vid inspelning av ljudfil
r = audiorecorder(16000, 16, 1);
record(r); % speak into microphone...
pause(1.5)
stop(r);
p = play(r); % listen to complete recording
SoundToCompare = getaudiodata(r, ’double’); % get data as double array
% %%

subplot(2,1,1)
plot(SoundToCompare) %Plot of the signal recorded

SoundToCompare = remove_startNoise(SoundToCompare);
SoundToCompare = remove_endNoise(SoundToCompare);
%SoundToCompare =SoundToCompare’;

subplot(2,1,2)
plot(SoundToCompare) %Plot of the signal recorded without noise

% Analysis stage
clear v;
v = Analysis(SoundToCompare, L, D, win , gamma , P);

%Create the Create_Database

11

dprime = Create_Database(v,M);

% Compare to the databank "Alfa"
score1 = Compare_Databank(d_alfabank1,dprime);
score2 = Compare_Databank(d_alfabank2,dprime);
score3 = Compare_Databank(d_alfabank3,dprime);

% Compare to the databank "Freeze"
score4 = Compare_Databank(d_freezebank1,dprime);
score5 = Compare_Databank(d_freezebank2,dprime);
score6 = Compare_Databank(d_freezebank3,dprime);

%Calculate mean value
score_medel_alfa = (score1+score2+score3)/3
score_medel_freeze = (score4+score5+score6)/3

%Check if the input is below the limit
if score_medel_alfa <0.70 %Limit at 0.70

a=0;
ALFA = score_medel_alfa
break

end

if score_medel_freeze <0.70 %Limit at 0.70
a=0;
FREEZE = score_medel_freeze
break

end

% This part is a heads up for the next recording
% (next iteration of the while-loop) if not under the limit value.
pause(3)
Two = ’Two’
pause(1)
One = ’One’
pause(1)
Record = ’Record’

end

7.4 Analysis

function v = analysis (x, L, D, win , gamma , P)
% ANALYSIS Analysis stage of speech recognition .
% v = ANALYSIS (x, L, D, window , gamma , P) returns the feature vector of

12

% the signal x. The framing and windowing is controlled by L, D and
% window , and gamma specifies the pre - emphasize filter . The feature
% vectors from the analysis stage are the reflection coefficients of the
% prediction filter of order P for each signal frame . v(:, k) is the
% feature vector for signal frame k.

s = filter([1 -gamma],1,x);
stepsize = L-D;
numberOfFrames = length(s)/stepsize-1;

%Initiation of the first 320 blocks
samp1 = 1;
samp2 = L;

for i =1:numberOfFrames
window = hanning(L);
s(samp1:samp2);
s_k = window.*(s(samp1:samp2)’);
rxx = xcorr(s_k,’biased’);

%prediction of order 10
g=0;
for e=1:P+1 %I must have 11 here to get 10 rows of refl.coeff. schurrc(g) discards first value???

g(e) = rxx(e+L-1);
end
g;
K = schurrc(g); % K is refl.coef
v(:,i)=K; %v(:,i)=K;
samp1 = samp1 + stepsize;
samp2 = samp2 + stepsize;

end

v;

7.5 Create Database

function d = Create_Database (v, M)
% DATABASE Converts feature vectors into a database for speech recognition .
% d = DATABASE (v, M) converts the feature vectors v into a database by
% grouping the feature vectors into M adjacent subsets . d(:, m) is the
% database vector for the m:th feature vector subset .

[rader koloner] = size(v);
d_koloner = floor(koloner/M);

13

sampel1 = 1;
sampel2 = d_koloner;
i= 1;
for m = 1:d_koloner*M

if m == sampel2
for q = 1:rader

d(q,i) = 1/d_koloner * sum(v(q,sampel1:sampel2))’;
end
i=i+1;
sampel1 = sampel2+1;
sampel2 = sampel2 + d_koloner;

end
end
d;

7.6 Compare Databank

function c = Compare_Databank(d, dprime)
% compareDatabank Matches an analyzed signal with a database for speech recognition .
% c = compareDatabank(d, dprime) evaluates the analyzed signal d for the database dprime for
% speech recognition .

[rader, koloner] = size(dprime);
c=0;
for k = 1:koloner

d_k(k)= norm(d(:,k) - dprime(:,k));
c=c + d_k(k);

end

c=c/koloner;

7.7 Remove Start Noise

function output = remove_startNoise(input)
% remove_startNoise discard the noise in the beginning of the signal
%
%
index = 1;
for i = 1:length(input)

if input(i) > 0.1 % Limit for the noise. The magnitud of the noise will vary how close to the mic you are
temp = input;
input = 0;

14

for n = i:length(temp)
output(index) = temp(n);
index = index + 1;

end
clear temp;
break

end
end

7.8 Remove End Noise

function output = remove_endNoise (input)
% Discards the end noise of the signal by checking the mean value for the
% 10 last indexes of the signal
%
stepsize= 10;
samp1 =1;
samp2 = stepsize;
temp = 0;
for i= 1:length(input)

output(i) = input(i);
for n = samp1:samp2

if n > length(input)%If the signal does not contain noise in the last indexes,
%then add zero to the end of the array

input(n)=0;
end
temp = temp + abs(input(n));

end
temp = temp/stepsize;%Mean value of the noise
if temp < 0.001% Noise level. Best with limit at 0.001?

break
end
samp1 = samp1+1;
samp2 = samp2+1;

end

15

8 C code

To be included, code needs cleaning first.

16

