
Algorithms in Signal Processors

ETIN80

Instrument Multi e�ects Processor

Authors:

Erik Nilsson, Wang Yihe,
Wenbo Ye

Abstract

The purpose of this project was to implement a multi e�ects processor

for an electric instrument or vocals. Some classic e�ects were chosen to

implement on the SHARC ADSP-2126 DSP. These e�ects include chorus,

�anger, delay and reverb. In order to implement a real time e�ects proces-

sor, constraints associated with embedded systems had to be taken into

consideration. These constraints typically involved memory management.

The project resulted in a functional multi e�ects process with potential

for further development.

March 5, 2014

Contents

1 Introduction 2

1.1 Delay . 3
1.2 Chorus . 3
1.3 Flanger . 4
1.4 Reverb . 5

2 Theory 6

3 Implementation 6

3.1 Bu�ering of samples . 6
3.2 Calculating output . 7
3.3 Cycle e�ects with keypad . 7

4 Result 9

5 Discussion and Conclusion 9

6 References 9

1

1 Introduction

E�ects units that alter the output sound from a musical instrument or other
sound sources have been largely available for consumer use since electrical in-
struments began to win in popularity.

E�ects units were originally created by exclusively using analog components
to manipulate the input signal of the instrument. Digital technology has had an
important role in reducing cost and creating new possibilities for "exotic" e�ects.

Today e�ects units comes in a variety of form factors ranging from small stomp
boxes designed to have one speci�c e�ect to rack mounted multi e�ects units
relying on multiple DSPs.

The purpose of this project was to learn about the implementation of some
well-established classic e�ects in a modern DSP and to understand how the
DSP is well suited for the application of manipulating incoming signals in real
time.

2

1.1 Delay

Perhaps the most classic and historically used e�ect is the basic delay. As one
would assume from the name, it takes the input signal from a �xed time ago and
outputs it along with the most current signal. Parameters for the user to control
may typically include the delay time and gain of the delay. In more advanced
implementations of the delay e�ect, the user may be able to manipulate the
decay of the delayed signal and if the e�ect is in stereo; the stereo separation.

Figure 1: The Delay-e�ect

1.2 Chorus

Another classic e�ect is chorus. A chorus e�ect makes the output signal seem
thicker and gives it a type of electronic shimmer. The implementation of the
chorus e�ect is much similar to the delay e�ect. The main di�erence is the
modulation of the delay time. This is achieved by using a LFO (Low Frequency
Oscillator).

Figure 2: The Chours-e�ect

3

1.3 Flanger

The �anging e�ect is produced by mixing the input signal with a delayed input
where the delay modulates by using a LFO. Part of the output signal is fed
back to the input to enhance the e�ect. This feedback is the main di�erence
from the chorus e�ect. The name "�anger" originates from when the e�ect was
produced with tape recorders, one would put a �nger on the �ange or rim of the
tape reel to slow down the speed, making it out of sync with the other identical
recording.

Figure 3: The Flanger-e�ect

4

1.4 Reverb

Reverberation is the persistence of sound in a space where the original sound
was produced. A simulated reverberation can be produced by using multiple
feedback delays to create a large series of decaying echoes. This is the method
used in this project since the process of creating a realistic approximation of
reverberation is fairly complicated and the time budget did not allow for more
elaborate implementations.

Figure 4: The Reverb-e�ect

5

2 Theory

All the e�ects described above relates to each other in the sense that they some-
how need to make use of signals from the past that has been stored away in a
bu�er. The very basics of a delay e�ect are to take the stored signal from a
speci�c time ago and mix it with the untreated input signal.

In the chorus and the �anger e�ect the delay is modulated between a min-
imum and a maximum delay value by using a LFO. The LFO consists of a
waveform that may take the form of di�erent shapes (Sine, Square, Triangle,
and Sawtooth); in this project a basic sine wave function was chosen.

The basic formula for modulating the delay in the chorus and �anger e�ect:

D = Fs ∗ ([maxDelay −minDelay] ∗ [1/2sin(ft) + 1/2] +minDelay) (1)

Where Fs are the sampling rate and f is the LFO frequency. In order to im-
plement an approximation of the reverberation e�ect the output signal was fed
back to the beginning of the bu�er several times with di�erent delay values.
This feedback needs to be performed for every sample in the current block.

3 Implementation

3.1 Bu�ering of samples

In order to test the algorithms for the e�ects, they were implemented in Mat-
lab. Since there are no constraints on time or memory when using Matlab it
was fairly straight forward to get a working implementation of the delay, chorus
and �anger. The reverb was not so easy to implement since it relies on multiple
feedback loops to give an approximation of realistic reverberation.

When implementing the e�ects on the DSP consideration of real time results
and memory constraint was the main issues. The SHARC ADSP-2126 DSP has
2 Mibit (Mebibit) RAM which makes memory somewhat scarce for bu�ering
purpose. The DSP samples at a �xed rate, every samples contains two channels
for stereo. In order to conserve memory and maximize the bu�er size, only one
channel was used. To be able to store one second of delay at 16000 samples per
second, the same amount of samples needs to be stored.

If the global bu�er was allocated and initialized in stack memory it could hold
a maximum of 15000 integer values for one channel. This equals almost a full
second of delay and is considered enough for this project.

The e�ects function in the code is registered as a hardware interrupt that arrives
every time a block of samples is streamed in to the DSP. The block size is user
de�ned just like the sample rate. In this project the block size was left at the
default size of 32 samples.

In order to continuously write and read samples to and from the bu�er, a FIFO
circular queue structure was needed. The most straightforward way of achieving
this bu�er could be summed up as:

6

1. Shifting the entire bu�er minus the last block to the left, thereby over-
writing the �rst block in the bu�er.

2. Write the last block to the end of the bu�er.

This assures that the latest sample is always at the end of the bu�er, making
the read operating easy since one would only have to go T*Fs steps back in the
bu�er to get the delay of T seconds. This algorithm is however somewhat costly
since almost the entire bu�er has to be shifted for every block. Since the DSP
runs at 200 MHz this is however not a big problem, to optimize the algorithm one
would use pointers to keep track of the latest sample. The less costly algorithm
then becomes:

1. Store the latest value at the global end-pointer index.

2. Update the end pointer using modulus to cycle the bu�er.

This approach requires that the application checks that no negative index
is produced when trying to access the bu�er when the end-pointer refers to a
location at the beginning of the bu�er. This check may possibly be performed
by the hardware to further optimize the implementation.

3.2 Calculating output

The e�ects function is executed every time a block of samples is streamed to
the DSP. All the calculations are performed in a loop that goes through every
sample in the block. In order to calculate the time for the LFO function a static
counter is de�ned that keeps track of the current block. Knowing the sample
rate and the block size enables the calculation from "block time" to time in
seconds by using the formula:

double SECONDS = (BLOCK / DSP_SAMPLE_RATE) ∗ DSP_BLOCK_SIZE;

that updates for every block. In addition with

double t = SECONDS + (n/DSP_SAMPLE_RATE) ;

that gets calculated for every sample in the block the time parameter of the
LFO is calculated.

3.3 Cycle e�ects with keypad

The board were the DSP is located also provides a four button keypad. A push
on a key generates a hardware interrupt in order to tell the application that a
key has been pressed. The user is able to cycle through the e�ects by pressing
the two buttons nearest the I/O. The two buttons located nearest the power
input were used to cycle preset parameter values for the various e�ects. A basic
switch-case block was used to handle an incoming key press. The application
starts with no e�ect applied to the input signal.

7

Figure 5: Button assignment

8

4 Result

The project resulted in a functional multi e�ects processor for vocals or an
electrical instrument. The user is able to change the e�ects by pushing the
two highest keys, and change parameters by pressing the two lower keys. The
parameters are set at a few di�erent �xed values and include delay time and
oscillator frequency.

The perceived quality of the e�ects much depends on what type of instrument
that is played and in what style. For an instance, an acoustic guitar sounds
great with some chorus applied, but for a sharp clean electric guitar the sound
may clip if too much chorus is applied. If the modulating frequency is too high,
the sound is perceived as out of tune.

5 Discussion and Conclusion

This project has been very awarding since it provided hands on experience in
manipulating signals in real time combined with overcoming the challenge of em-
bedded systems hardware constraints. The project also contributed to a deeper
understanding and how to practically apply theory involving Z-transformation
and sampling of analog signals.

This project could easily be expanded by adding other similar e�ects or im-
proving on the current implementation. The purpose of the project was mainly
to learn about the inner workings of a DSP and the project could be viewed as
a proof of concept.

6 References

[1] Chorus E�ect Page http://www.donreiman.com/Chorus/Chorus.htm
Visited: 2014-03-05
[2] Chorus e�ect http://en.wikipedia.org/wiki/Chorus_effect
Visited: 2014-03-05
[3] Flanger E�ect Page http://www.donreiman.com/Flanger/Flanger.htm
Visited: 2014-03-05
[4] Flanging http://en.wikipedia.org/wiki/Flanger

Visited: 2014-03-05
[5] Delay E�ect Page http://www.donreiman.com/Delay/Delay.htm
Visited: 2014-03-05
[6] Reverb E�ect Page http://www.donreiman.com/Reverb/Reverb.htm
Visited: 2014-03-05
[7] Reverberation http://en.wikipedia.org/wiki/Reverberation

Visited: 2014-03-05

9

http://www.donreiman.com/Chorus/Chorus.htm
http://en.wikipedia.org/wiki/Chorus_effect
http://www.donreiman.com/Flanger/Flanger.htm
http://en.wikipedia.org/wiki/Flanger
http://www.donreiman.com/Delay/Delay.htm
http://www.donreiman.com/Reverb/Reverb.htm
http://en.wikipedia.org/wiki/Reverberation

	Introduction
	Delay
	Chorus
	Flanger
	Reverb

	Theory
	Implementation
	Buffering of samples
	Calculating output
	Cycle effects with keypad

	Result
	Discussion and Conclusion
	References

